151
|
Settanni CR, Bibbò S, Ianiro G, Rinninella E, Cintoni M, Mele MC, Cammarota G, Gasbarrini A. Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota. Expert Rev Gastroenterol Hepatol 2021; 15:599-622. [PMID: 33356668 DOI: 10.1080/17474124.2021.1869938] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder typical of early age, characterized by impaired communication, social interaction, and repetitive behaviors. ASD patients frequently suffer from gastrointestinal (GI) symptoms. Neuro-psychological functions, intestinal homeostasis, and functional GI disturbances are modulated by the gut microbiota through the so-called 'microbiota-gut-brain axis'. AREAS COVERED Literature regarding GI symptoms among the ASD community as well as the involvement and modulation of the gut microbiota in GI disturbances of ASD patients was searched. Constipation, diarrhea, reflux, abdominal bloating, pain, and discomfort are reported with variable prevalence. ASD is characterized by a reduction of Bacteroidetes/Firmicutes, of the abundance of Bacteroidetes and other imbalances. ASD patients with GI symptoms present microbial changes with plausible relation with deficiency of digestive enzymes, carbohydrate malabsorption, selective eating, bacterial toxins, serotonin metabolism, and inflammation. The strategies to mitigate the GI distress through the gut microbiota modulation comprise antimicrobials, probiotics, prebiotics, fecal microbiota transplantation, and dietary intervention. EXPERT OPINION The modulation of the gut microbiota in ASD individuals with GI disturbances seems a promising target for the future medicine. A standardization of the research strategies for large-scale studies together with a focus on poorly explored fields is necessary to strengthen this hypothesis.
Collapse
Affiliation(s)
- Carlo Romano Settanni
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Stefano Bibbò
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Gianluca Ianiro
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Emanuele Rinninella
- UOC Di Nutrizione Clinica, Dipartimento Di Scienze Gastroenterologiche, Endocrino-Metaboliche E Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy
| | - Marco Cintoni
- Scuola Di Specializzazione in Scienza dell'Alimentazione, University of Rome Tor Vergata, Rome, Italy
| | - Maria Cristina Mele
- UOC Di Nutrizione Clinica, Dipartimento Di Scienze Gastroenterologiche, Endocrino-Metaboliche E Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy
| | - Giovanni Cammarota
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy.,Istituto Di Patologia Speciale Medica, Università Cattolica Del Sacro Cuore, Italy
| | - Antonio Gasbarrini
- Dipartimento di Scienze mediche e chirurgiche, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy.,Istituto Di Patologia Speciale Medica, Università Cattolica Del Sacro Cuore, Italy
| |
Collapse
|
152
|
Abdul F, Sreenivas N, Kommu JVS, Banerjee M, Berk M, Maes M, Leboyer M, Debnath M. Disruption of circadian rhythm and risk of autism spectrum disorder: role of immune-inflammatory, oxidative stress, metabolic and neurotransmitter pathways. Rev Neurosci 2021; 33:93-109. [PMID: 34047147 DOI: 10.1515/revneuro-2021-0022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/01/2021] [Indexed: 12/27/2022]
Abstract
Circadian rhythms in most living organisms are regulated by light and synchronized to an endogenous biological clock. The circadian clock machinery is also critically involved in regulating and fine-tuning neurodevelopmental processes. Circadian disruption during embryonic development can impair crucial phases of neurodevelopment. This can contribute to neurodevelopmental disorders like autism spectrum disorder (ASD) in the offspring. Increasing evidence from studies showing abnormalities in sleep and melatonin as well as genetic and epigenetic changes in the core elements of the circadian pathway indicate a pivotal role of circadian disruption in ASD. However, the underlying mechanistic basis through which the circadian pathways influence the risk and progression of ASD are yet to be fully discerned. Well-recognized mechanistic pathways in ASD include altered immune-inflammatory, nitro oxidative stress, neurotransmission and synaptic plasticity, and metabolic pathways. Notably, all these pathways are under the control of the circadian clock. It is thus likely that a disrupted circadian clock will affect the functioning of these pathways. Herein, we highlight the possible mechanisms through which aberrations in the circadian clock might affect immune-inflammatory, nitro-oxidative, metabolic pathways, and neurotransmission, thereby driving the neurobiological sequelae leading to ASD.
Collapse
Affiliation(s)
- Fazal Abdul
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nikhitha Sreenivas
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - John Vijay Sagar Kommu
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Moinak Banerjee
- Human Molecular Genetics Division, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum, 695014, Kerala, India
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.,Orygen, The Centre of Excellence in Youth Mental Health, The Department of Psychiatry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Michael Maes
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.,Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Pathum Wan, Pathum Wan District, Bangkok, 10330, Thailand.,Department of Psychiatry, Medical University of Plovdiv, bul. "Vasil Aprilov" 15A, 4002 Tsetar, Plovdiv, Bulgaria
| | - Marion Leboyer
- Université Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires "H. Mondor", DMU IMPACT, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, 8, rue du Général Sarrail, 94010, Creteil, France
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| |
Collapse
|
153
|
Zhang N, Yao L, Wang P, Liu Z. Immunoregulation and antidepressant effect of ketamine. Transl Neurosci 2021; 12:218-236. [PMID: 34079622 PMCID: PMC8155793 DOI: 10.1515/tnsci-2020-0167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental health disorder that brings severe disease burden worldwide. Traditional antidepressants are mainly targeted at monoamine neurotransmitters, with low remission rates and high recurrence rates. Ketamine is a noncompetitive glutamate N-methyl-d-aspartate receptor (NMDAR) antagonist, and its rapid and powerful antidepressant effects have come to light. Its antidepressant mechanism is still unclarified. Research found that ketamine had not only antagonistic effect on NMDAR but also strong immunomodulatory effect, both of which were closely related to the pathophysiology of MDD. Although there are many related studies, they are relatively heterogeneous. Therefore, this review mainly describes the immune mechanisms involved in MDD and how ketamine plays an antidepressant role by regulating peripheral and central immune system, including peripheral inflammatory cytokines, central microglia, and astrocytes. This review summarizes the related research, finds out the deficiencies of current research, and provides ideas for future research and the development of novel antidepressants.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Rd. 238, 430060, Wuhan, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Rd. 238, 430060, Wuhan, China
| | - Peilin Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Rd. 238, 430060, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Rd. 238, 430060, Wuhan, China
| |
Collapse
|
154
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
155
|
From the Role of Microbiota in Gut-Lung Axis to SARS-CoV-2 Pathogenesis. Mediators Inflamm 2021; 2021:6611222. [PMID: 33953641 PMCID: PMC8059477 DOI: 10.1155/2021/6611222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is responsible for the outbreak of a new viral respiratory infection. It has been demonstrated that the microbiota has a crucial role in establishing immune responses against respiratory infections, which are controlled by a bidirectional cross-talk, known as the “gut-lung axis.” The effects of microbiota on antiviral immune responses, including dendritic cell (DC) function and lymphocyte homing in the gut-lung axis, have been reported in the recent literature. Additionally, the gut microbiota composition affects (and is affected by) the expression of angiotensin-converting enzyme-2 (ACE2), which is the main receptor for SARS-CoV-2 and contributes to regulate inflammation. Several studies demonstrated an altered microbiota composition in patients infected with SARS-CoV-2, compared to healthy individuals. Furthermore, it has been shown that vaccine efficacy against viral respiratory infection is influenced by probiotics pretreatment. Therefore, the importance of the gut microbiota composition in the lung immune system and ACE2 expression could be valuable to provide optimal therapeutic approaches for SARS-CoV-2 and to preserve the symbiotic relationship of the microbiota with the host.
Collapse
|
156
|
Haq SU, Bhat UA, Kumar A. Prenatal stress effects on offspring brain and behavior: Mediators, alterations and dysregulated epigenetic mechanisms. J Biosci 2021. [DOI: 10.1007/s12038-021-00153-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
157
|
Association of food hypersensitivity in children with the risk of autism spectrum disorder: a meta-analysis. Eur J Pediatr 2021; 180:999-1008. [PMID: 33145704 DOI: 10.1007/s00431-020-03826-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
This meta-analysis was performed to clarify the association between food hypersensitivity in children and autism spectrum disorder (ASD) in detail. Relevant studies published in 8 databases before March 2020 were retrieved and screened according to established inclusion criteria. The odds ratio (OR) with the 95% confidence interval (CI) was pooled to estimate the effect. Subgroup analyses were performed in terms of publication year, study design, location, sample size, definition of food hypersensitivity, definition of ASD, and study quality score. Furthermore, we stratified studies by participant sex and age to perform a more detailed analysis. This meta-analysis included 12 published articles with 434,809 subjects. A significant association was observed between food hypersensitivity and the risk of ASD (OR = 2.792, 95% CI: 2.081-3.746). The risk of ASD among girls and subjects younger than 12 with food hypersensitivity may be greater than that among boys and those older than 12. The results of sensitivity analysis and publication bias analysis show that the association is relatively stable.Conclusion: Our results showed a positive association between food hypersensitivity and autism spectrum disorder, and girls and subjects younger than 12 may be more sensitive to this association. The role of food hypersensitivity in the onset of ASD deserves more attention. What is Known: • Food hypersensitivity is a term used to describe food allergies and food intolerance. • ASD is a group of neurodevelopmental disorders that are characterized by deficits in social interaction, repetitive or stereotypic behavior, and verbal communication disorder. • The prevalence rates of ASD and food hypersensitivity in the developed world are increasing. What is New: • In this work, we reviewed and analyzed the available data and studies and found a positive association between food hypersensitivity and ASD. • Girls and children younger than 12 may be more sensitive to have ASD than boys and children older than 12.
Collapse
|
158
|
Description of the fecal microbiota of siblings from Costa Rica with and without affective and psychotic disorders. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
159
|
Banerjee A, Pradhan LK, Sahoo PK, Jena KK, Chauhan NR, Chauhan S, Das SK. Unravelling the potential of gut microbiota in sustaining brain health and their current prospective towards development of neurotherapeutics. Arch Microbiol 2021; 203:2895-2910. [PMID: 33763767 DOI: 10.1007/s00203-021-02276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Increasing incidences of neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are being reported, but an insight into their pathology remains elusive. Findings have suggested that gut microbiota play a major role in regulating brain functions through the gut-brain axis. A unique bidirectional communication between gut microbiota and maintenance of brain health could play a pivotal role in regulating incidences of neurodegenerative diseases. Contrarily, the present life style with changing food habits and disturbed circadian rhythm may contribute to gut homeostatic imbalance and dysbiosis leading to progression of several neurological disorders. Therefore, dysbiosis, as a primary factor behind intestinal disorders, may also augment inflammation, intestinal and blood-brain barrier permeability through microbiota-gut-brain axis. This review primarily focuses on the gut-brain axis functions, specific gut microbial population, metabolites produced by gut microbiota, their role in regulating various metabolic processes and role of gut microbiota towards development of neurodegenerative diseases. However, several studies have reported a decrease in abundance of a specific gut microbial population and a corresponding increase in other microbial family, with few findings revealing some contradictions. Reports also showed that colonization of gut microbiota isolated from patients suffering from neurodegenerative disease leads to the development of enhance pathological outcomes in animal models. Hence, a systematic understanding of the dominant role of specific gut microbiome towards development of different neurodegenerative diseases could possibly provide novel insight into the use of probiotics and microbial transplantation as a substitute approach for treating/preventing such health maladies.
Collapse
Affiliation(s)
- Ankita Banerjee
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Kautilya Kumar Jena
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Nishant Ranjan Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
160
|
Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, Scicchitano M, Oppedisano F, Bosco F, Ruga S, Zito MC, Macri R, Palma E, Muscoli C, Mollace V. The Contribution of Gut Microbiota-Brain Axis in the Development of Brain Disorders. Front Neurosci 2021; 15:616883. [PMID: 33833660 PMCID: PMC8021727 DOI: 10.3389/fnins.2021.616883] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Different bacterial families colonize most mucosal tissues in the human organism such as the skin, mouth, vagina, respiratory, and gastrointestinal districts. In particular, the mammalian intestine hosts a microbial community of between 1,000 and 1,500 bacterial species, collectively called "microbiota." Co-metabolism between the microbiota and the host system is generated and the symbiotic relationship is mutually beneficial. The balance that is achieved between the microbiota and the host organism is fundamental to the organization of the immune system. Scientific studies have highlighted a direct correlation between the intestinal microbiota and the brain, establishing the existence of the gut microbiota-brain axis. Based on this theory, the microbiota acts on the development, physiology, and cognitive functions of the brain, although the mechanisms involved have not yet been fully interpreted. Similarly, a close relationship between alteration of the intestinal microbiota and the onset of several neurological pathologies has been highlighted. This review aims to point out current knowledge as can be found in literature regarding the connection between intestinal dysbiosis and the onset of particular neurological pathologies such as anxiety and depression, autism spectrum disorder, and multiple sclerosis. These disorders have always been considered to be a consequence of neuronal alteration, but in this review, we hypothesize that these alterations may be non-neuronal in origin, and consider the idea that the composition of the microbiota could be directly involved. In this direction, the following two key points will be highlighted: (1) the direct cross-talk that comes about between neurons and gut microbiota, and (2) the degree of impact of the microbiota on the brain. Could we consider the microbiota a valuable target for reducing or modulating the incidence of certain neurological diseases?
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
161
|
Garn H, Potaczek DP, Pfefferle PI. The Hygiene Hypothesis and New Perspectives-Current Challenges Meeting an Old Postulate. Front Immunol 2021; 12:637087. [PMID: 33815389 PMCID: PMC8012489 DOI: 10.3389/fimmu.2021.637087] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 01/11/2023] Open
Abstract
During its 30 years history, the Hygiene Hypothesis has shown itself to be adaptable whenever it has been challenged by new scientific developments and this is a still a continuously ongoing process. In this regard, the mini review aims to discuss some selected new developments in relation to their impact on further fine-tuning and expansion of the Hygiene Hypothesis. This will include the role of recently discovered classes of innate and adaptive immune cells that challenges the old Th1/Th2 paradigm, the applicability of the Hygiene Hypothesis to newly identified allergy/asthma phenotypes with diverse underlying pathomechanistic endotypes, and the increasing knowledge derived from epigenetic studies that leads to better understanding of mechanisms involved in the translation of environmental impacts on biological systems. Further, we discuss in brief the expansion of the Hygiene Hypothesis to other disease areas like psychiatric disorders and cancer and conclude that the continuously developing Hygiene Hypothesis may provide a more generalized explanation for health burden in highly industrialized countries also relation to global changes.
Collapse
Affiliation(s)
- Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Biochemical Pharmacological Center (BPC), Philipps University of Marburg, Marburg, Germany.,German Center for Lung Research (DZL), Marburg, Germany
| | - Daniel Piotr Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Biochemical Pharmacological Center (BPC), Philipps University of Marburg, Marburg, Germany
| | - Petra Ina Pfefferle
- German Center for Lung Research (DZL), Marburg, Germany.,Comprehensive Biobank Marburg (CBBMR), Medical Faculty, Philipps University of Marburg, Marburg, Germany.,German Biobank Alliance (GBA), Marburg, Germany
| |
Collapse
|
162
|
Li C, Pi G, Li F. The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:579323. [PMID: 33777828 PMCID: PMC7994858 DOI: 10.3389/fcimb.2021.579323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Intestinal flora located within the intestinal tract comprises a large number of cells, which are referred to as the second gene pool of the human body and form a complex symbiotic relationship with the host. The knowledge of the complex interaction between the intestinal flora and various life activities of the host is a novel and rapidly expanding field. Recently, many studies are being conducted on the relationship between the intestinal flora and bone homeostasis and indicate that the intestinal flora can regulate bone homeostasis via the host immune, metabolic, and endocrine systems. What’s more, based on several clinical and preclinical pieces of evidence, changing the composition and function of the host intestinal flora through the application of probiotics, prebiotics, and fecal microbiota transplantation is being considered to be a potential novel target for the regulation of bone homeostasis. Here, we searched relevant literature and reviewed the role of the intestinal flora in the regulation of bone homeostasis and its modulating interventions.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guofu Pi
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
163
|
Translational Approaches with Antioxidant Phytochemicals against Alcohol-Mediated Oxidative Stress, Gut Dysbiosis, Intestinal Barrier Dysfunction, and Fatty Liver Disease. Antioxidants (Basel) 2021; 10:antiox10030384. [PMID: 33806556 PMCID: PMC8000766 DOI: 10.3390/antiox10030384] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging data demonstrate the important roles of altered gut microbiomes (dysbiosis) in many disease states in the peripheral tissues and the central nervous system. Gut dysbiosis with decreased ratios of Bacteroidetes/Firmicutes and other changes are reported to be caused by many disease states and various environmental factors, such as ethanol (e.g., alcohol drinking), Western-style high-fat diets, high fructose, etc. It is also caused by genetic factors, including genetic polymorphisms and epigenetic changes in different individuals. Gut dysbiosis, impaired intestinal barrier function, and elevated serum endotoxin levels can be observed in human patients and/or experimental rodent models exposed to these factors or with certain disease states. However, gut dysbiosis and leaky gut can be normalized through lifestyle alterations such as increased consumption of healthy diets with various fruits and vegetables containing many different kinds of antioxidant phytochemicals. In this review, we describe the mechanisms of gut dysbiosis, leaky gut, endotoxemia, and fatty liver disease with a specific focus on the alcohol-associated pathways. We also mention translational approaches by discussing the benefits of many antioxidant phytochemicals and/or their metabolites against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease.
Collapse
|
164
|
Moradi K, Ashraf-Ganjouei A, Tavolinejad H, Bagheri S, Akhondzadeh S. The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110091. [PMID: 32891667 DOI: 10.1016/j.pnpbp.2020.110091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impairments in social and cognitive activities, stereotypical and repetitive behaviors and restricted areas of interest. A remarkable proportion of ASD patients represent immune dysregulation as well as gastrointestinal complications. Hence, a novel concept has recently emerged, addressing the possible intercommunication between the brain, the immune system, the gut and its commensals. Here, we provide an overview of how gut microbes and their metabolites are associated with neurobehavioral features of ASD through various immunologic mechanisms. Moreover, we discuss the potential therapeutic options that could modify these features.
Collapse
Affiliation(s)
- Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Tavolinejad
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
165
|
Pérez-Santiago J, Marquine MJ, Cookson D, Giraud-Colón R, Heaton RK, Grant I, Ellis RJ, Letendre SL, Peterson SN. Gut microbiota dysbiosis is associated with worse emotional states in HIV infection. J Neurovirol 2021; 27:228-238. [PMID: 33651324 DOI: 10.1007/s13365-020-00933-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
The biological mechanisms underlying emotional distress in HIV infection are likely to be complex but remain understudied. We investigated whether dysbiotic signatures in the gut microbiome of persons living with HIV (PLWH) are associated with their emotional status. We retrospectively examined the gut microbiome and clinical evaluation of 129 adults (94 PLWH and 35 HIV-) enrolled at UC San Diego's HIV Neurobehavioral Research Program. A subset of participants (32 PLWH vs. 13 HIV-) underwent an emotional assessment using the NIH Toolbox Emotion Battery summarized by three composite scores (negative affect, social satisfaction, and psychological well-being). We then sequenced the 16S rDNA V3-V4 regions from stool and performed taxonomic assignment using CLC Microbial Genomics Module. The gut microbiota profiles were evaluated in relation to participants' emotional assessment. All analyses were done in R statistical software. We found that the relative abundance of aerotolerant bacteria was significantly higher in PLWH (p < 0.01) and was associated with a lifetime major depression diagnosis independently of HIV status (p = 0.05). Moreover, PLWH experienced significantly worse psychological well-being (p = 0.02), less social satisfaction (p = 0.03), and more negative affect (p = 0.02). Higher levels of aerotolerant bacteria were associated with worse psychological well-being (rho = -0.35, p = 0.02), less social satisfaction (r = - 0.42, p < 0.01), and more negative affect (rho = 0.46, p < 0.01). The association of aerotolerant bacteria with social satisfaction and negative affect was independent of HIV status (p < 0.05, for both). The over-representation of aerotolerant bacteria in the gut may reflect worse oxidative stress and barrier defects and may contribute to emotional distress during HIV infection.
Collapse
Affiliation(s)
- Josué Pérez-Santiago
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, USA. .,University of California San Diego, La Jolla, CA, USA.
| | | | | | | | | | - Igor Grant
- University of California San Diego, La Jolla, CA, USA
| | | | | | - Scott N Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
166
|
Franza L, Carusi V, Nucera E, Pandolfi F. Luteolin, inflammation and cancer: Special emphasis on gut microbiota. Biofactors 2021; 47:181-189. [PMID: 33507594 DOI: 10.1002/biof.1710] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Luteolin belongs to the family of flavonoids, which have anti-inflammatory functions, potentially useful in a clinical context, particularly for patients suffering from cancer, neuropsychiatric disorders, inflammatory bowel conditions. This peculiarity has been used for centuries in traditional Chinese medicine, for many different diseases. Its anti-inflammatory effects might be particularly relevant in cancer, with some studies reporting anti-angiogenesis, anti-metastatic, and apoptotic effects on cancer cells by luteolin and other flavonoids. In this article, we analyze the anti-inflammatory role of luteolin, discussing the pathways it may act on. We will then discuss the possible role of microbiota in inflammatory modulation by luteolin. Finally, the possible therapeutic applications of luteolin's anti-inflammatory properties will be analyzed, with a particular focus on cancer.
Collapse
Affiliation(s)
- Laura Franza
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Carusi
- Immunology and Allergy, Internal Medicine Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Nucera
- Immunology and Allergy, Internal Medicine Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Franco Pandolfi
- Immunology and Allergy, Internal Medicine Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
167
|
Makris AP, Karianaki M, Tsamis KI, Paschou SA. The role of the gut-brain axis in depression: endocrine, neural, and immune pathways. Hormones (Athens) 2021; 20:1-12. [PMID: 32827123 DOI: 10.1007/s42000-020-00236-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The aim of this article is to summarize the pathways connecting the gut and the brain and to highlight their role in the development of depression as well as their potential use as therapeutic targets. A literature search was conducted in PubMed using relevant keywords and their combinations up to the end of March 2020. Previously seen as a disease pertaining solely to the central nervous system, depression is now perceived as a multifactorial condition that extends beyond neurotransmitter depletion. Central to our understanding of the disease is our current knowledge of the communication between the gut and the brain, which is bidirectional and involves neural, endocrine, and immune pathways. This communication is facilitated via stress-mediated activation of the HPA axis, which stimulates the immune system and causes a decrease in microbial diversity, also known as dysbiosis. This change in the intestinal flora leads, in turn, to bacterial production of various substances which stimulate both the enteric nervous system and the vagal afferents and contribute to additional activation of the HPA axis. Concomitantly, these substances are associated with an increase in intestinal permeability, namely, the leaky gut phenomenon. The bidirectional link between the gut and the brain is of great importance for a more inclusive approach to the management of depression. It can thus be deployed for the development of novel therapeutic strategies against depression, offering promising alternatives to limited efficacy antidepressants, while combination therapy also remains a potential treatment option.
Collapse
Affiliation(s)
| | | | - Konstantinos I Tsamis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- School of Medicine, University of Ioannina, Ioannina, Greece
| | - Stavroula A Paschou
- School of Medicine, European University Cyprus, Nicosia, Cyprus.
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
168
|
Troyer EA, Kohn JN, Ecklu-Mensah G, Aleti G, Rosenberg DR, Hong S. Searching for host immune-microbiome mechanisms in obsessive-compulsive disorder: A narrative literature review and future directions. Neurosci Biobehav Rev 2021; 125:517-534. [PMID: 33639178 DOI: 10.1016/j.neubiorev.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Obsessive-compulsive disorder (OCD) is disabling and often treatment-refractory. Host immunity and gut microbiota have bidirectional communication with each other and with the brain. Perturbations to this axis have been implicated in neuropsychiatric disorders, but immune-microbiome signaling in OCD is relatively underexplored. We review support for further pursuing such investigations in OCD, including: 1) gut microbiota has been associated with OCD, but causal pathogenic mechanisms remain unclear; 2) early environmental risk factors for OCD overlap with critical periods of immune-microbiome development; 3) OCD is associated with increased risk of immune-mediated disorders and changes in immune parameters, which are separately associated with the microbiome; and 4) gut microbiome manipulations in animal models are associated with changes in immunity and some obsessive-compulsive symptoms. Theoretical pathogenic mechanisms could include microbiota programming of cytokine production, promotion of expansion and trafficking of peripheral immune cells to the CNS, and regulation of microglial function. Immune-microbiome signaling in OCD requires further exploration, and may offer novel insights into pathogenic mechanisms and potential treatment targets for this disabling disorder.
Collapse
Affiliation(s)
- Emily A Troyer
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States.
| | - Jordan N Kohn
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States
| | - Gertrude Ecklu-Mensah
- Department of Medicine and Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Gajender Aleti
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, United States
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
169
|
Hong M, Ho C, Zhang X, Zhang R, Liu Y. Dietary strategies may influence human nerves and emotions by regulating intestinal microbiota: an interesting hypothesis. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick NJ08901USA
| | - Xin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| | - Ruilin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| | - Yanan Liu
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| |
Collapse
|
170
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
171
|
Li Y, Zhang W, Sun T, Liu B, Manyande A, Xu W, Xiang HB. The Role of Gut Microbiota in Chronic Itch-Evoked Novel Object Recognition-Related Cognitive Dysfunction in Mice. Front Med (Lausanne) 2021; 8:616489. [PMID: 33614682 PMCID: PMC7892771 DOI: 10.3389/fmed.2021.616489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
The high incidence of patients with chronic itch highlights the importance of fundamental research. Recent advances in the interface of gut microbiota have shed new light into exploring this phenomenon. However, it is unknown whether gut microbiota plays a role in chronic itch in rodents with or without cognitive dysfunction. In this study, the role of gut microbiota in diphenylcyclopropenone (DCP)-evoked chronic itch was investigated in mice and hierarchical cluster analysis of novel object recognition test (ORT) results were used to classify DCP-evoked itch model in mice with or without cognitive dysfunction (CD)-like phenotype and 16S ribosomal RNA (rRNA) gene sequencing was used to compare gut bacterial composition between CD (Susceptible) and Non-CD phenotypes (Unsusceptible) in chronic itch mice. Results showed that the microbiota composition was significantly altered by DCP-evoked chronic itch and chronic itch induced novel object recognition-related CD. However, abnormal gut microbiota composition induced by chronic itch may not be correlated with novel object recognition-related CD.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tainning Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
172
|
Dalhoff A. Selective toxicity of antibacterial agents-still a valid concept or do we miss chances and ignore risks? Infection 2021; 49:29-56. [PMID: 33367978 PMCID: PMC7851017 DOI: 10.1007/s15010-020-01536-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Selective toxicity antibacteribiotics is considered to be due to interactions with targets either being unique to bacteria or being characterized by a dichotomy between pro- and eukaryotic pathways with high affinities of agents to bacterial- rather than eukaryotic targets. However, the theory of selective toxicity oversimplifies the complex modes of action of antibiotics in pro- and eukaryotes. METHODS AND OBJECTIVE This review summarizes data describing multiple modes of action of antibiotics in eukaryotes. RESULTS Aminoglycosides, macrolides, oxazolidinones, chloramphenicol, clindamycin, tetracyclines, glycylcyclines, fluoroquinolones, rifampicin, bedaquillin, ß-lactams inhibited mitochondrial translation either due to binding to mitosomes, inhibition of mitochondrial RNA-polymerase-, topoisomerase 2ß-, ATP-synthesis, transporter activities. Oxazolidinones, tetracyclines, vancomycin, ß-lactams, bacitracin, isoniazid, nitroxoline inhibited matrix-metalloproteinases (MMP) due to chelation with zinc and calcium, whereas fluoroquinols fluoroquinolones and chloramphenicol chelated with these cations, too, but increased MMP activities. MMP-inhibition supported clinical efficacies of ß-lactams and daptomycin in skin-infections, and of macrolides, tetracyclines in respiratory-diseases. Chelation may have contributed to neuroprotection by ß-lactams and fluoroquinolones. Aminoglycosides, macrolides, chloramphenicol, oxazolidins oxazolidinones, tetracyclines caused read-through of premature stop codons. Several additional targets for antibiotics in human cells have been identified like interaction of fluoroquinolones with DNA damage repair in eukaryotes, or inhibition of mucin overproduction by oxazolidinones. CONCLUSION The effects of antibiotics on eukaryotes are due to identical mechanisms as their antibacterial activities because of structural and functional homologies of pro- and eukaryotic targets, so that the effects of antibiotics on mammals are integral parts of their overall mechanisms of action.
Collapse
Affiliation(s)
- Axel Dalhoff
- Christian-Albrechts-University of Kiel, Institue for Infection Medicine, Brunswiker Str. 4, D-24105, Kiel, Germany.
| |
Collapse
|
173
|
Zhou GS, Zhang J, Yin Y, Tan YJ, Tao HJ, Chen JQ, Pu ZJ, Zhu ZH, Shi XQ, Tang YP, Duan JA. HILIC-UHPLC-QTRAP®/MS2 quantification of 15 neurotransmitters of the combination of donepezil and ginkgo ketoester tablet in different biological matrices from dementia mice: Application to study the synergistic effect of the two drugs. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
174
|
Hamad AF, Alessi-Severini S, Mahmud S, Brownell M, Kuo IF. Prenatal antibiotic exposure and risk of attention-deficit/hyperactivity disorder: a population-based cohort study. CMAJ 2021; 192:E527-E535. [PMID: 32575031 DOI: 10.1503/cmaj.190883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abnormal microbiota composition induced by prenatal exposure to antibiotics has been proposed as a potential contributor to the development of attention-deficit/hyperactivity disorder (ADHD). We examined the association between prenatal antibiotic exposure and risk of ADHD. METHODS We conducted a population-based retrospective cohort study of children born in Manitoba, Canada, between 1998 and 2017 and their mothers. We defined exposure as the mother having filled 1 or more antibiotic prescriptions during pregnancy. The outcome was diagnosis of ADHD in the offspring, as identified in administrative databases. We estimated hazard ratios (HRs) using Cox proportional hazards regression in the overall cohort, in a separate cohort matched on high-dimensional propensity scores and in a sibling cohort. RESULTS In the overall cohort, consisting of 187 605 children, prenatal antibiotic dispensation was associated with increased risk of ADHD (HR 1.22, 95% confidence interval [CI] 1.18-1.26). Similar results were observed in the matched cohort of 129 674 children (HR 1.20, 95% CI 1.15-1.24) but not in the sibling cohort (HR 1.06, 95% CI 0.99-1.13). Two negative-control analyses indicated a positive association with ADHD despite the lack of a reasonable biological mechanism, which suggested that the observed association between prenatal antibiotic dispensation and risk of ADHD was likely due to confounding. INTERPRETATION In our study, prenatal antibiotic exposure was not associated with increased risk of ADHD in children. Although the risk was higher in the overall and matched cohorts, it was likely overestimated because of unmeasured confounding. Future studies are warranted to examine other factors affecting microbiota composition in association with risk of ADHD.
Collapse
Affiliation(s)
- Amani F Hamad
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man
| | - Silvia Alessi-Severini
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man
| | - Salaheddin Mahmud
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man
| | - Marni Brownell
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man
| | - I Fan Kuo
- College of Pharmacy (Hamad, Alessi-Severini, Mahmud, Kuo), Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine (Alessi-Severini, Brownell), and Department of Community Health Sciences, Max Rady College of Medicine (Mahmud, Brownell), Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Man.
| |
Collapse
|
175
|
Peppas S, Pansieri C, Piovani D, Danese S, Peyrin-Biroulet L, Tsantes AG, Brunetta E, Tsantes AE, Bonovas S. The Brain-Gut Axis: Psychological Functioning and Inflammatory Bowel Diseases. J Clin Med 2021; 10:377. [PMID: 33498197 PMCID: PMC7863941 DOI: 10.3390/jcm10030377] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The brain-gut axis represents a complex bi-directional system comprising multiple interconnections between the neuroendocrine pathways, the autonomous nervous system and the gastrointestinal tract. Inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, is a chronic, relapsing-remitting inflammatory disorder of the gastrointestinal tract with a multifactorial etiology. Depression and anxiety are prevalent among patients with chronic disorders characterized by a strong immune component, such as diabetes mellitus, cancer, multiple sclerosis, rheumatoid arthritis and IBD. Although psychological problems are an important aspect of morbidity and of impaired quality of life in patients with IBD, depression and anxiety continue to be under-diagnosed. There is lack of evidence regarding the exact mechanisms by which depression, anxiety and cognitive dysfunction may occur in these patients, and whether psychological disorders are the result of disease activity or determinants of the IBD occurrence. In this comprehensive review, we summarize the role of the brain-gut axis in the psychological functioning of patients with IBD, and discuss current preclinical and clinical data on the topic and therapeutic strategies potentially useful for the clinical management of these patients. Personalized pathways of psychological supports are needed to improve the quality of life in patients with IBD.
Collapse
Affiliation(s)
- Spyros Peppas
- Department of Gastroenterology, Athens Naval Hospital, 11521 Athens, Greece;
| | - Claudia Pansieri
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Inserm U1256 NGERE, Nancy University Hospital, Lorraine University, 54500 Vandoeuvre-les-Nancy, France;
| | - Andreas G. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Enrico Brunetta
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Argirios E. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| |
Collapse
|
176
|
Gut-brain axis: A matter of concern in neuropsychiatric disorders…! Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110051. [PMID: 32758517 DOI: 10.1016/j.pnpbp.2020.110051] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023]
Abstract
The gut microbiota is composed of a large number of microbes, usually regarded as commensal bacteria. It has become gradually clear that gastrointestinal microbiota affects gut pathophysiology and the central nervous system (CNS) function by modulating the signaling pathways of the microbiota-gut-brain (MGB) axis. This bidirectional MGB axis communication primarily acts through neuroendocrine, neuroimmune, and autonomic nervous systems (ANS) mechanisms. Accumulating evidence reveals that gut microbiota interacts with the host brain, and its modulation may play a critical role in the pathology of neuropsychiatric disorders. Recently, neuroscience research has established the significance of gut microbiota in the development of brain systems that are essential to stress-related behaviors, including depression and anxiety. Application of modulators of the MGB, such as psychobiotics (e.g., probiotics), prebiotics, and specific diets, may be a promising therapeutic approach for neuropsychiatric disorders. The present review article primarily focuses on the relevant features of the disturbances of the MGB axis in the pathophysiology of neuropsychiatric disorders and its potential mechanisms.
Collapse
|
177
|
Wu ML, Yang XQ, Xue L, Duan W, Du JR. Age-related cognitive decline is associated with microbiota-gut-brain axis disorders and neuroinflammation in mice. Behav Brain Res 2021; 402:113125. [PMID: 33422597 DOI: 10.1016/j.bbr.2021.113125] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/03/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
Age-related cognitive decline is associated with chronic low grade neuroinflammation that may result from a complex interplay among many factors, such as bidirectional communication between the central nervous system (CNS) and gut microbiota. The present study used 2-month-old (young group) and 15-month-old (aged group) male C57BL/6 mice to explore the potential association between age-related cognitive decline and the microbiota-gut-brain axis disorder. We observed that aged mice exhibited significant deficits in learning and memory, neuronal and synaptic function compared with young mice. Aged mice also exhibited significant dysbiosis of the gut microbiota. Disruptions of the intestinal barrier and blood-brain barrier were also observed, including increases in intestinal, low-grade systemic and cerebral inflammation. Furthermore, plasma and brain levels of lipopolysaccharide (LPS) were significantly higher in aged mice compared with young mice, with increasing expression of Toll-like receptor 4 (TLR4) and myeloid differential protein-88 (MyD88) and the nuclear translocation of nuclear factor κB (NF-κB) in intestinal and brain tissues. These findings showed that microbiota-gut-brain axis dysfunction that occurs through LPS-induced activation of the TLR4/NF-κB signaling pathway is implicated in age-related neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Mei-Ling Wu
- Departmen Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Xue-Qin Yang
- Departmen Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Li Xue
- Departmen Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jun-Rong Du
- Departmen Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
178
|
Lu ZH, Liu YW, Ji ZH, Fu T, Yan M, Shao ZJ, Long Y. Alterations in the intestinal microbiome and mental health status of workers in an underground tunnel environment. BMC Microbiol 2021; 21:7. [PMID: 33407119 PMCID: PMC7788853 DOI: 10.1186/s12866-020-02056-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Working in an underground tunnel environment is unavoidable in professions such as miners and tunnel workers, and there is a concern about the health of these workers. Few studies have addressed alterations in the intestinal microbiome of workers within that environment. RESULTS Fecal samples were collected from the workers before they entered the tunnel (baseline status, BS) and after they left the tunnel (exposed status, ES), respectively (a time period of 3 weeks between them). We analyzed 16S rRNA sequencing to show the changes in microbial composition and self-evaluation of mental health questionnaire was also performed. The results showed that Shannon and Simpson indices decreased significantly from BS to ES. A higher abundance was found in the phylum Actinobacteria, classes Actinobacteria and Deltaproteobacteria, orders Bifidobacteriales, Coriobacteriales, and Desulfovibrionales, families Bifidobacteriaceae, Peptostreptococcaceae, Coriobacteriaceae, Clostridiaceae_1, Desulfovibrionaceae, Pseudomonadaceae, and Microbacteriaceae, and genera Bifidobacterium, Romboutsia, Clostridium sensu stricto, and Leucobacter in ES, while BS showed greater levels of genera Faecalibacterium and Roseburia. The self-evaluation showed that at least one-half of the tunnel workers experienced one or more symptoms of mental distress (inattention, sleeplessness, loss of appetite, headache or dizziness, irritability) after working in the underground tunnel environment. CONCLUSIONS Collectively, the underground tunnel environment led to alterations in the intestinal microbiome, which might be relevant to symptoms of mental distress in underground-tunnel workers.
Collapse
Affiliation(s)
- Zhen-Hua Lu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, People's Republic of China
| | - Yi-Wen Liu
- Wuwei Municipal Center for Disease Control and Prevention, Wuwei City, Gansu Province, People's Republic of China
| | - Zhao-Hua Ji
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, People's Republic of China
| | - Ting Fu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, People's Republic of China
| | - Min Yan
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, People's Republic of China
| | - Zhong-Jun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, People's Republic of China.
| | - Yong Long
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
179
|
Dysbiosis and Alzheimer's Disease: Cause or Treatment Opportunity? Cell Mol Neurobiol 2021; 42:377-387. [PMID: 33400081 DOI: 10.1007/s10571-020-01024-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
Recent investigations have increased the interest on the connection between the microorganisms inhabiting the gut (gut microbiota) and human health. An imbalance of the intestinal bacteria representation (dysbiosis) could lead to different diseases, ranging from obesity and diabetes, to neurological disorders including Alzheimer's disease (AD). The term "gut-brain axis" refers to a crosstalk between the brain and the gut involving multiple overlapping pathways, including the autonomic, neuroendocrine, and immune systems as well as bacterial metabolites and neuromodulatory molecules. Through this pathway, microbiota can influence the onset and progression of neuropathologies such as AD. This review discusses the possible interaction between the gut microbiome and AD, focusing on the role of gut microbiota in neuroinflammation, cerebrovascular degeneration and Aβ clearance.
Collapse
|
180
|
Kaur J, Singh BP, Chaudhary V, Elshaghabee FMF, Singh J, Singh A, Rokana N, Panwar H. Probiotics as Live Bio-therapeutics: Prospects and Perspectives. MICROORGANISMS FOR SUSTAINABILITY 2021:83-120. [DOI: 10.1007/978-981-15-6795-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
181
|
Zoccante L, Ciceri ML, Gozzi LA, Gennaro GD, Zerman N. The "Connectivome Theory": A New Model to Understand Autism Spectrum Disorders. Front Psychiatry 2021; 12:794516. [PMID: 35250650 PMCID: PMC8892379 DOI: 10.3389/fpsyt.2021.794516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
The classical approach to autism spectrum disorders (ASD) is often limited to considering their neuro-functional aspects. However, recent scientific literature has shown that ASDs also affect many body systems and apparatuses such as the immune system, the sensory-motor system, and the gut-brain axis. The connective tissue, a common thread linking all these structures, may have a pathogenetic role in the multisystem involvement of ASD. Depending on its different anatomical sites, the connective tissue performs functions of connection and support; furthermore, it acts as a barrier between the external and internal environments, regulating the interchange between the two and performing immunological surveillance. The connective tissue shares a close relationship with the central nervous system, the musculoskeletal system and the immune system. Alterations in brain connectivity are common to various developmental disorders, including ASD, and for this reason here we put forward the hypothesis that alterations in the physiological activity of microglia could be implicated in the pathogenesis of ASD. Also, muscle hypotonia is likely to clinically correlate with an altered sensoriality and, in fact, discomfort or early muscle fatigue are often reported in ASDs. Furthermore, patients with ASD often suffer from intestinal dysfunctions, malabsorption and leaky gut syndrome, all phenomena that may be linked to reduced intestinal connectivity. In addition, at the cutaneous and subcutaneous levels, ASDs show a greater predisposition to inflammatory events due to the lack of adequate release of anti-inflammatory mediators. Alveolar-capillary dysfunctions have also been observed in ASD, most frequently interstitial inflammations, immune-mediated forms of allergic asthma, and bronchial hyper-reactivity. Therefore, in autism, altered connectivity can result in phenomena of altered sensitivity to environmental stimuli. The following interpretative model, that we define as the "connectivome theory," considers the alterations in connective elements of common mesodermal origin located in the various organs and apparatuses and entails the evaluation and interpretation of ASDs through also highlighting somatic elements. We believe that this broader approach could be helpful for a more accurate analysis, as it is able to enrich clinical evaluation and define more multidisciplinary and personalized interventions.
Collapse
Affiliation(s)
- Leonardo Zoccante
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital Verona, Verona, Italy.,Autism Spectrum Disorders Regional Centre of Verona, Verona, Italy
| | - Marco Luigi Ciceri
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital Verona, Verona, Italy.,Autism Spectrum Disorders Regional Centre of Verona, Verona, Italy
| | - Luigi Alberto Gozzi
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital Verona, Verona, Italy.,Autism Spectrum Disorders Regional Centre of Verona, Verona, Italy
| | - Gianfranco Di Gennaro
- Department of Pathology and Diagnostics, Integrated University Hospital Verona, Verona, Italy
| | - Nicoletta Zerman
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| |
Collapse
|
182
|
Westfall S, Caracci F, Zhao D, Wu QL, Frolinger T, Simon J, Pasinetti GM. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun 2021; 91:350-368. [PMID: 33096252 PMCID: PMC7986984 DOI: 10.1016/j.bbi.2020.10.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic stress disrupts immune homeostasis while gut microbiota-derived metabolites attenuate inflammation, thus promoting resilience to stress-induced immune and behavioral abnormalities. There are both peripheral and brain region-specific maladaptations of the immune response to chronic stress that produce interrelated mechanistic considerations required for the design of novel therapeutic strategies for prevention of stress-induced psychological impairment. This study shows that a combination of probiotics and polyphenol-rich prebiotics, a synbiotic, attenuates the chronic-stress induced inflammatory responses in the ileum and the prefrontal cortex promoting resilience to the consequent depressive- and anxiety-like behaviors in male mice. Pharmacokinetic studies revealed that this effect may be attributed to specific synbiotic-produced metabolites including 4-hydroxyphenylpropionic, 4-hydroxyphenylacetic acid and caffeic acid. Using a model of chronic unpredictable stress, behavioral abnormalities were associated to strong immune cell activation and recruitment in the ileum while inflammasome pathways were implicated in the prefrontal cortex and hippocampus. Chronic stress also upregulated the ratio of activated proinflammatory T helper 17 (Th17) to regulatory T cells (Treg) in the liver and ileum and it was predicted with ingenuity pathway analysis that the aryl hydrocarbon receptor (AHR) could be driving the synbiotic's effect on the ileum's inflammatory response to stress. Synbiotic treatment indiscriminately attenuated the stress-induced immune and behavioral aberrations in both the ileum and the brain while in a gut-immune co-culture model, the synbiotic-specific metabolites promoted anti-inflammatory activity through the AHR. Overall, this study characterizes a novel synbiotic treatment for chronic-stress induced behavioral impairments while defining a putative mechanism of gut-microbiota host interaction for modulating the peripheral and brain immune systems.
Collapse
Affiliation(s)
- Susan Westfall
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Francesca Caracci
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Danyue Zhao
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Tal Frolinger
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Giulio Maria Pasinetti
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
183
|
Silva AR, Bernardo MA, Mesquita MF, Vaz Patto J, Moreira P, Padrão P, Silva ML. Dysbiosis, Small Intestinal Bacterial Overgrowth, and Chronic Diseases. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2021:334-362. [DOI: 10.4018/978-1-7998-4808-0.ch015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Dysbiosis is characterized by an alteration in quantity and quality of intestinal microbiota composition. In the presence of dysbiosis, enterocytes will have difficulty in maintaining the integrity of the mucosal barrier, leading to increased intestinal permeability. These events are recognised to be linked to several chronic diseases. One of the consequences of dysbiosis is the manifestation of small intestinal bacterial overgrowth (SIBO), which is associated to a variety of chronic diseases. Single food nutrients and bioactive molecules, food additives, pre- and probiotics, and different dietary patterns may change the composition of the intestinal microbiota. Low FODMAPs diet has been a reference in SIBO treatment. This chapter intends to describe how the intestinal microbiota, dysbiosis, and SIBO can be related; to define dysbiosis food and nutrients influence; and to offer some nutritional therapy strategies for applying the low FODMAPs protocol, enabling better adherence by patients in order to increase their wellbeing.
Collapse
Affiliation(s)
- Ana Rita Silva
- Centro de Investigação Interdisciplinar Egas Moniz, Portugal
| | | | | | | | - Pedro Moreira
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal
| | - Patrícia Padrão
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal
| | | |
Collapse
|
184
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
185
|
Sun Y, Cheng L, Zeng X, Zhang X, Liu Y, Wu Z, Weng P. The intervention of unique plant polysaccharides - Dietary fiber on depression from the gut-brain axis. Int J Biol Macromol 2020; 170:336-342. [PMID: 33373637 DOI: 10.1016/j.ijbiomac.2020.12.164] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
As an invisible organ of human body, the gut microbiota plays an important role in human life and has become a hot spot in the field of life science in recent years. Due to the increasing pressure of work and life, people are prone to depression. The in-depth mechanism studies indicated that the gut microbiota could improve the depression symptom through the gut-brain axis (GBA). As unique plant polysaccharides, dietary fiber can effectively modulate the intestinal flora disorders and its crucial role in orchestrating host-microbiota crosstalk has been confirmed. This review highlights the mechanisms that the gut microbiota affects the development of depression through GBA and focuses on dietary fiber intervention on the improvement of intestinal microbiota imbalance, which may provide new ideas for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Xiaoxiong Zeng
- Department of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
186
|
Zhang Y, Wang Z, Peng J, Gerner ST, Yin S, Jiang Y. Gut microbiota-brain interaction: An emerging immunotherapy for traumatic brain injury. Exp Neurol 2020; 337:113585. [PMID: 33370556 DOI: 10.1016/j.expneurol.2020.113585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Individuals suffering from traumatic brain injury (TBI) often experience the activation of the immune system, resulting in declines in cognitive and neurological function after brain injury. Despite decades of efforts, approaches for clinically effective treatment are sparse. Evidence on the association between current therapeutic strategies and clinical outcomes after TBI is limited to poorly understood mechanisms. For decades, an increasing number of studies suggest that the gut-brain axis (GBA), a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract, plays a critical role in systemic immune response following neurological diseases. In this review, we detail current knowledge of the immune pathologies of GBA after TBI. These processes may provide a new therapeutic target and rehabilitation strategy developed and used in clinical treatment of TBI patients.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhaoyang Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Stefan T Gerner
- Department of Neurology, University Hospital Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
187
|
Zachariassen LF, Sørensen DB, Krych L, Hansen AK, Hansen CHF. Effects of delivery mode on behavior in mouse offspring. Physiol Behav 2020; 230:113285. [PMID: 33309952 DOI: 10.1016/j.physbeh.2020.113285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
Cesarean section (CS) has been associated with an increased risk of mental disorders in the offspring. This could possibly be explained by an inadequate microbial colonization early in life with a consequential disturbed gut-brain interaction. To investigate the link between delivery mode and behavior and develop a suitable animal model for further research of the gut-brain axis, the aim of this study was to characterize the gut microbiota (GM) together with the behavioral response in various behavioral tests in CS-delivered mice. We hypothesized that mice delivered by CS would present with disturbances in normal physiological behavior possibly due to an inadequate microbial colonization. C57BL/6 mice delivered by CS or vaginal delivery (VD) were cross fostered and, as adults, observed for anxiety-related behavior in the open field test, social deficits in a sociability test and compulsive behavior in the marble burying test. GM was analyzed by 16S rRNA gene amplicon sequencing. The open field test showed that CS-delivered mice had a decreased activity and accelerated defecation compared to VD-delivered mice. In addition, CS-delivered female mice spend less time interacting with cage mates in the sociability test, whereas there was no effect of CS delivery on the average number of marbles buried. In conclusion, CS-delivered mice had a more pronounced anxiety-like behavior and showed less preference for sociability in female offspring.
Collapse
Affiliation(s)
- Line Fisker Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Dorte Bratbo Sørensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
188
|
Robinson JM, Cameron R. The Holobiont Blindspot: Relating Host-Microbiome Interactions to Cognitive Biases and the Concept of the " Umwelt". Front Psychol 2020; 11:591071. [PMID: 33281689 PMCID: PMC7705375 DOI: 10.3389/fpsyg.2020.591071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
Cognitive biases can lead to misinterpretations of human and non-human biology and behavior. The concept of the Umwelt describes phylogenetic contrasts in the sensory realms of different species and has important implications for evolutionary studies of cognition (including biases) and social behavior. It has recently been suggested that the microbiome (the diverse network of microorganisms in a given environment, including those within a host organism such as humans) has an influential role in host behavior and health. In this paper, we discuss the host’s microbiome in relation to cognitive biases and the concept of the Umwelt. Failing to consider the role of host–microbiome (collectively termed a “holobiont”) interactions in a given behavior, may underpin a potentially important cognitive bias – which we refer to as the Holobiont Blindspot. We also suggest that microbially mediated behavioral responses could augment our understanding of the Umwelt. For example, the potential role of the microbiome in perception and action could be an important component of the system that gives rise to the Umwelt. We also discuss whether microbial symbionts could be considered in System 1 thinking – that is, decisions driven by perception, intuition and associative memory. Recognizing Holobiont Blindspots and considering the microbiome as a key factor in the Umwelt and System 1 thinking has the potential to advance studies of cognition. Furthermore, investigating Holobiont Blindspots could have important implications for our understanding of social behaviors and mental health. Indeed, the way we think about how we think may need to be revisited.
Collapse
Affiliation(s)
- Jake M Robinson
- Department of Landscape Architecture, The University of Sheffield, Sheffield, United Kingdom.,In vivo Planetary Health, Worldwide Universities Network (WUN), West New York, NJ, United States.,The Healthy Urban Microbiome Initiative (HUMI), Australia
| | - Ross Cameron
- Department of Landscape Architecture, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
189
|
Guo X, Rao Y, Mao R, Cui L, Fang Y. Common cellular and molecular mechanisms and interactions between microglial activation and aberrant neuroplasticity in depression. Neuropharmacology 2020; 181:108336. [DOI: 10.1016/j.neuropharm.2020.108336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
|
190
|
Yang LL, Stiernborg M, Skott E, Söderström Å, Giacobini M, Lavebratt C. Proinflammatory mediators and their associations with medication and comorbid traits in children and adults with ADHD. Eur Neuropsychopharmacol 2020; 41:118-131. [PMID: 33160793 DOI: 10.1016/j.euroneuro.2020.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/24/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022]
Abstract
Peripheral immune activation can influence neurodevelopment and is increased in autism, but is less explored in attention deficit hyperactivity disorder (ADHD). Patients with ADHD often display comorbid autism traits and gastrointestinal (GI) symptoms. Plasma protein levels of two acute phase reactants, C-reactive protein (CRP) and serum amyloid A (SAA), and two endothelial adhesion molecules, soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vascular cell adhesion molecule 1 (sVCAM-1), which share important roles in inflammation, were analyzed in 154 patients with ADHD and 61 healthy controls. Their associations with ADHD diagnosis, severity, medication and comorbid autistic symptoms, emotion dysregulation and GI symptoms were explored. The ADHD patients had increased levels of sICAM-1 and sVCAM-1 compared to healthy controls (p = 8.6e-05, p = 6.9e-07, respectively). In children with ADHD, the sICAM-1 and sVCAM-1 levels were higher among those with ADHD medication than among children (p = 0.0037, p = 0.0053, respectively) and adults (p = 3.5e-09, p = 1.9e-09, respectively) without ADHD medication. Among the adult ADHD patients, higher sICAM-1 levels were associated with increased comorbid autistic symptoms in the domains attention to detail and imagination (p = 0.0081, p = 0.00028, respectively), and higher CRP levels were associated with more GI symptoms (p = 0.014). sICAM-1 and sVCAM-1 levels were highly correlated with each other, and so were CRP and SAA levels. To conclude, vascular inflammatory activity may be overrepresented in ADHD, with elevated sICAM-1 and sVCAM-1 levels and this may in children be a consequence of current ADHD medication, and in adults relate to increased comorbid autistic symptoms. Replication is warranted.
Collapse
Affiliation(s)
- Liu L Yang
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Miranda Stiernborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Elin Skott
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden; PRIMA Child and Adult Psychiatry, Stockholm, Sweden
| | | | - MaiBritt Giacobini
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; PRIMA Child and Adult Psychiatry, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
191
|
Verduci E, Carbone MT, Borghi E, Ottaviano E, Burlina A, Biasucci G. Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients 2020; 12:E3319. [PMID: 33138040 PMCID: PMC7692600 DOI: 10.3390/nu12113319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The composition and functioning of the gut microbiota, the complex population of microorganisms residing in the intestine, is strongly affected by endogenous and exogenous factors, among which diet is key. Important perturbations of the microbiota have been observed to contribute to disease risk, as in the case of neurological disorders, inflammatory bowel disease, obesity, diabetes, cardiovascular disease, among others. Although mechanisms are not fully clarified, nutrients interacting with the microbiota are thought to affect host metabolism, immune response or disrupt the protective functions of the intestinal barrier. Similarly, key intermediaries, whose presence may be strongly influenced by dietary habits, sustain the communication along the gut-brain-axis, influencing brain functions in the same way as the brain influences gut activity. Due to the role of diet in the modulation of the microbiota, its composition is of high interest in inherited errors of metabolism (IEMs) and may reveal an appealing therapeutic target. In IEMs, for example in phenylketonuria (PKU), since part of the therapeutic intervention is based on chronic or life-long tailored dietetic regimens, important variations of the microbial diversity or relative abundance have been observed. A holistic approach, including a healthy composition of the microbiota, is recommended to modulate host metabolism and affected neurological functions.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children’s Hospital-University of Milan, Via Lodovico Castelvetro, 32, 20154 Milan, Italy
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Maria Teresa Carbone
- UOS Metabolic and Rare Diseases, AORN Santobono, Via Mario Fiore 6, 80122 Naples, Italy;
| | - Elisa Borghi
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Emerenziana Ottaviano
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Via Orus 2B, 35129 Padua, Italy;
| | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Via Taverna Giuseppe, 49, 29121 Piacenza, Italy;
| |
Collapse
|
192
|
Shaik L, Kashyap R, Thotamgari SR, Singh R, Khanna S. Gut-Brain Axis and its Neuro-Psychiatric Effects: A Narrative Review. Cureus 2020; 12:e11131. [PMID: 33240722 PMCID: PMC7682910 DOI: 10.7759/cureus.11131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota regulates the function and health of the human gut. Preliminary evidence suggests its impact on multiple human systems including the nervous and immune systems. A major area of research has been the directional relationship between intestinal microbiota and the central nervous system (CNS), called the microbiota-gut-brain axis. It is hypothesized that the intestinal microbiota affects brain activity and behavior via endocrine, neural, and immune pathways. An alteration in the composition of the gut microbiome has been linked to a variety of neurodevelopmental and neurodegenerative disorders. The connection between gut microbiome and several CNS disorders indicates that the focus of research in the future should be on the bacterial and biochemical targets. Through this review, we outline the established knowledge regarding the gut microbiome and gut-brain axis. In addition to gut microbiome in neurological and psychiatry diseases, we have briefly discussed microbial metabolites affecting the blood-brain barrier (BBB), immune dysregulation, modification of autonomic sensorimotor connections, and hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Likhita Shaik
- Internal Medicine, Ashwini Rural Medical College, Hospital & Research Centre, Solapur, IND
- Medical Oncology, Mayo Clinic, Rochester, USA
| | | | - Sahith Reddy Thotamgari
- Cardiology, Mayo Clinic, Rochester, USA
- Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Romil Singh
- Internal Medicine, Metropolitan Hospital, Jaipur, IND
| | | |
Collapse
|
193
|
Rawat K, Singh N, Kumari P, Saha L. A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective. Rev Neurosci 2020; 32:143-157. [PMID: 33070123 DOI: 10.1515/revneuro-2020-0078] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022]
Abstract
The gut microbiota plays an important role in neurological diseases via the gut-brain axis. Many factors such as diet, antibiotic therapy, stress, metabolism, age, geography and genetics are known to play a critical role in regulating the colonization pattern of the microbiota. Recent studies have shown the role of the low carbohydrate, adequate protein, and high fat "ketogenic diet" in remodeling the composition of the gut microbiome and thereby facilitating protective effects in various central nervous system (CNS) disorders. Gut microbes are found to be involved in the pathogenesis of various CNS disorders like epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), autism spectrum disorders (ASDs), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and stress, anxiety and depression. In vivo studies have shown an intricate link between gut microbes and KD and specific microbes/probiotics proved useful in in vivo CNS disease models. In the present review, we discuss the gut-brain bidirectional axis and the underlying mechanism of KD-based therapy targeting gut microbiome in in vivo animal models and clinical studies in neurological diseases. Also, we tried to infer how KD by altering the microbiota composition contributes towards the protective role in various CNS disorders. This review helps to uncover the mechanisms that are utilized by the KD and gut microbiota to modulate gut-brain axis functions and may provide novel opportunities to target therapies to the gut to treat neurologic disorders.
Collapse
Affiliation(s)
- Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Research Block B, Chandigarh, India
| | - Neha Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Research Block B, Chandigarh, India
| | - Puja Kumari
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Research Block B, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Research Block B, Chandigarh, India
| |
Collapse
|
194
|
Kaas TH, Vinding RK, Stokholm J, Bønnelykke K, Bisgaard H, Chawes BL. Association between childhood asthma and attention deficit hyperactivity or autism spectrum disorders: A systematic review with meta-analysis. Clin Exp Allergy 2020; 51:228-252. [PMID: 32997856 DOI: 10.1111/cea.13750] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Children with asthma are at risk of depression and anxiety and growing evidence suggest they may also be at risk of attention deficit hyperreactivity disorder (ADHD) and autism spectrum disorder (ASD). Here, we conducted a systematic review with meta-analysis of studies investigating association between asthma and ADHD or ASD in children. METHODS A comprehensive search using PubMed, EMBASE and Cochrane Library databases was completed in March 2019. Observational human studies published in English, clinic-based or population-based with a healthy comparator group, evaluating asthma-ADHD or asthma-ASD overlap in children 18 years or younger using categorical diagnoses (yes/no) were considered for inclusion. Random effects meta-analysis models were used to analyse data. The Newcastle Ottawa Scale was used to evaluate risk of bias. RESULTS A total of 25 asthma-ADHD studies were included of which 17 showed significant positive associations and one a negative association: 17/25 studies were population-based, 19/25 were cross-sectional or cohort studies and 7/25 had a low risk of bias. We performed a meta-analysis of 23 of the studies, which showed a significant association between asthma and ADHD: odds ratio (OR) 1.52 (1.42-1.63), P < .001, I2 = 60%. All studies were adjusted for age and sex and a large proportion; that is, 19/23 were further adjusted for relevant confounders. Seventeen asthma-ASD studies were included, whereof 7 showed a positive association and 3 a negative association; 8/17 were population-based with a cross-sectional study design and 4/17 had a low risk of bias. We performed a meta-analysis of 14 of the studies, which did not show a significant association between asthma and ASD: OR 1.12 (0.93-1.34), P = .24, I2 = 89%. All studies were adjusted for age and sex and 10/14 were further adjusted for relevant confounders. CONCLUSIONS This systematic review with meta-analyses shows a significant overlap between asthma and ADHD, but not between asthma and ASD in children. Clinicians taking care of children with asthma or ADHD should be aware of such association to aid an early diagnosis and treatment of such comorbidity.
Collapse
Affiliation(s)
- Trine H Kaas
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca K Vinding
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo L Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatric and Adolescent Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
195
|
GC-TOF-MS-Based Metabolomic Analysis and Evaluation of the Effects of HX106, a Nutraceutical, on ADHD-Like Symptoms in Prenatal Alcohol Exposed Mice. Nutrients 2020; 12:nu12103027. [PMID: 33023237 PMCID: PMC7600704 DOI: 10.3390/nu12103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in children characterized by inattention and hyperactivity. Prenatal alcohol exposure (PAE) can disrupt fetal neuronal development and cause an ADHD-like hyperactive behavior in the offspring. In this study, we hypothesized that metabolic disturbance would involve in ADHD neuropathology and aimed to investigate the changes in metabolite profile in PAE-induced ADHD-like model and the effects of HX106, a nutraceutical, on ADHD-like pathophysiology and metabolite changes. To this end, we administered HX106 to the mouse offspring affected by PAE (OPAE) and assessed the hyperactivity using the open field test. We observed that HX106-treated OPAE showed less hyperactive behavior than vehicle-treated OPAE. The effects of HX106 were found to be related to the regulation of dopamine transporter and D2 dopamine receptor expression. Furthermore, using gas chromatography time-of-flight mass spectrometry-based metabolomics, we explored the metabolite changes among the experimental groups. The metabolite profile, particularly related with the amino acids, linoleic acid and amino sugar pathways, was altered by PAE and reversed by HX106 treatment partially similar to that observed in the control group. Overall, this study suggest that metabolite alteration would be involved in ADHD pathology and that HX106 can be an efficient supplement to overcome ADHD by regulating dopamine signaling-related protein expression and metabolite changes.
Collapse
|
196
|
Carpita B, Marazziti D, Palego L, Giannaccini G, Betti L, Dell'Osso L. Microbiota, Immune System and Autism Spectrum Disorders: An Integrative Model towards Novel Treatment Options. Curr Med Chem 2020; 27:5119-5136. [PMID: 31448708 DOI: 10.2174/0929867326666190328151539] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a condition strongly associated with genetic predisposition and familial aggregation. Among ASD patients, different levels of symptoms severity are detectable, while the presence of intermediate autism phenotypes in close relatives of ASD probands is also known in literature. Recently, increasing attention has been paid to environmental factors that might play a role in modulating the relationship between genomic risk and development and severity of ASD. Within this framework, an increasing body of evidence has stressed a possible role of both gut microbiota and inflammation in the pathophysiology of neurodevelopment. The aim of this paper is to review findings about the link between microbiota dysbiosis, inflammation and ASD. METHODS Articles ranging from 1990 to 2018 were identified on PUBMED and Google Scholar databases, with keyword combinations as: microbiota, immune system, inflammation, ASD, autism, broad autism phenotype, adult. RESULTS Recent evidence suggests that microbiota alterations, immune system and neurodevelopment may be deeply intertwined, shaping each other during early life. However, results from both animal models and human samples are still heterogeneous, while few studies focused on adult patients and ASD intermediate phenotypes. CONCLUSION A better understanding of these pathways, within an integrative framework between central and peripheral systems, might not only shed more light on neural basis of ASD symptoms, clarifying brain pathophysiology, but it may also allow to develop new therapeutic strategies for these disorders, still poorly responsive to available treatments.
Collapse
Affiliation(s)
- Barbara Carpita
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Gino Giannaccini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Laura Betti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma, 6756100 Pisa, Italy
| |
Collapse
|
197
|
Obesity Worsens Gulf War Illness Symptom Persistence Pathology by Linking Altered Gut Microbiome Species to Long-Term Gastrointestinal, Hepatic, and Neuronal Inflammation in a Mouse Model. Nutrients 2020; 12:nu12092764. [PMID: 32927823 PMCID: PMC7551189 DOI: 10.3390/nu12092764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Persistence of Gulf War illness (GWI) pathology among deployed veterans is a clinical challenge even after almost three decades. Recent studies show a higher prevalence of obesity and metabolic disturbances among Gulf War veterans primarily due to the existence of post-traumatic stress disorder (PTSD), chronic fatigue, sedentary lifestyle, and consumption of a high-carbohydrate/high-fat diet. We test the hypothesis that obesity from a Western-style diet alters host gut microbial species and worsens gastrointestinal and neuroinflammatory symptom persistence. We used a 5 month Western diet feeding in mice that received prior Gulf War (GW) chemical exposure to mimic the home phase obese phenotype of the deployed GW veterans. The host microbial profile in the Western diet-fed GWI mice showed a significant decrease in butyrogenic and immune health-restoring bacteria. The altered microbiome was associated with increased levels of IL6 in the serum, Claudin-2, IL6, and IL1β in the distal intestine with concurrent inflammatory lesions in the liver and hyperinsulinemia. Microbial dysbiosis was also associated with frontal cortex levels of increased IL6 and IL1β, activated microglia, decreased levels of brain derived neurotrophic factor (BDNF), and higher accumulation of phosphorylated Tau, an indicator of neuroinflammation-led increased risk of cognitive deficiencies. Mechanistically, serum from Western diet-fed mice with GWI significantly increased microglial activation in transformed microglial cells, increased tyrosyl radicals, and secreted IL6. Collectively, the results suggest that an existing obese phenotype in GWI worsens persistent gastrointestinal and neuronal inflammation, which may contribute to poor outcomes in restoring cognitive function and resolving fatigue, leading to the deterioration of quality of life.
Collapse
|
198
|
Hao X, Pan J, Gao X, Zhang S, Li Y. Gut microbiota on gender bias in autism spectrum disorder. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0042/revneuro-2020-0042.xml. [PMID: 32887209 DOI: 10.1515/revneuro-2020-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Its three core symptoms are social communication disorder, communication disorder, narrow interest and stereotyped repetitive behavior. The proportion of male and female autistic patients is 4:1. Many researchers have studied this phenomenon, but the mechanism is still unclear. This review mainly discusses the related mechanism from the perspective of gut microbiota and introduces the influence of gut microbiota on the difference of ASD between men and women, as well as how gut microbiota may affect the gender dimorphism of ASD through metabolite of microbiota, immunity, and genetics, which provide some useful information for those who are interested in this research and find more gender-specific treatment for autistic men and women.
Collapse
Affiliation(s)
- Xia Hao
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
- College of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| | - Jiao Pan
- Department of Microbiology, Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin300071,China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| | - Shiyu Zhang
- College of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| |
Collapse
|
199
|
Abstract
The gut microbiome serves an important role in the human body. Reportedly, one of the benefits of these microflora is on mental health. Once established, food and other dietary sources that enhance quality microbiome content in our gastrointestinal system will be a significant consideration in individuals’ day to day lives. This literature review conducted a PubMed search for studies about the gut microbiome and its relation to depression. In using several Medical Subject Heading (MeSH) keywords, relevant literature was selected. A total of 26 articles were selected after applying the inclusion and exclusion criteria, and after checking the articles’ accessibility. This literature would like to establish the role of the gut microbiome in depression. This study's findings showed that there is a strong association of microbiome function to mental well-being.
Collapse
Affiliation(s)
- Therese Limbana
- Psychiatry, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Farah Khan
- Psychiatry, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Noha Eskander
- Psychiatry, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
200
|
Park HJ, Shim HS, Park S, Shim I. Antidepressant effect and neural mechanism of Acer tegmentosum in repeated stress-induced ovariectomized female rats. Anim Cells Syst (Seoul) 2020; 24:205-213. [PMID: 33029297 PMCID: PMC7473002 DOI: 10.1080/19768354.2020.1808063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acer tegmentosum (ATM) has antioxidant and anti-adipogenic activity. However, few studies have investigated the pharmacological activity or mechanism of ATM as an antidepressant agent. We assessed the antidepressant effect of ATM in modulating menopausal depressive symptoms and its mechanisms in ovariectomized (OVX) and repeatedly stressed (RS) female rats. The female rats were randomly divided into four groups: (1) naïve normal (normal) group, (2) OVX + repeated stress + saline-treated (control) group, (3) OVX + repeated stress + ATM (100 mg•kg−1)-treated (ATM100) group and (4) OVX + repeated stress + ATM (400 mg•kg−1)-treated (ATM400) group. We performed a battery of tests, such as the forced swimming test (FST), the sucrose intake test, and social exploration. After behavior testing, serum corticosterone levels were examined, followed by immunohistochemical determination of c-Fos, tyrosine hydroxylase (TH), and interleukin-1 beta (IL-1β) expression in the brain. ATM administration was associated with significantly decreased immobility time in the FST. Also, the control group tended to have decreased sucrose intake and social exploration compared with the normal group. However, ATM treatment was associated with markedly increased sucrose intake and active social exploration. In the paraventricular nucleus, c-Fos and IL-1β expression were significantly decreased in the ATM400 group compared with the control group. Compared with the control group, high-dose ATM administration was also associated with markedly decreased expression of TH-immunoreactive neurons in the locus coeruleus. The study findings demonstrated that ATM treatment effectively decreased behavioral and pathophysiological depression-like responses.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Physiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea.,Department of Food Science & Biotechnology, College of Science and Engineering, Kyonggi University, Suwon-si, Republic of Korea
| | - Hyun Soo Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - SongYi Park
- Department of Physiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| |
Collapse
|