151
|
Ibañez LI, Caldevilla CA, Paredes Rojas Y, Mattion N. Genetic and subunit vaccines based on the stem domain of the equine influenza hemagglutinin provide homosubtypic protection against heterologous strains. Vaccine 2018; 36:1592-1598. [PMID: 29454522 DOI: 10.1016/j.vaccine.2018.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
H3N8 influenza virus strains have been associated with infectious disease in equine populations throughout the world. Although current vaccines for equine influenza stimulate a protective humoral immune response against the surface glycoproteins, disease in vaccinated horses has been frequently reported, probably due to poor induction of cross-reactive antibodies against non-matching strains. This work describes the performance of a recombinant protein vaccine expressed in prokaryotic cells (ΔHAp) and of a genetic vaccine (ΔHAe), both based on the conserved stem region of influenza hemagglutinin (HA) derived from A/equine/Argentina/1/93 (H3N8) virus. Sera from mice inoculated with these immunogens in different combinations and regimes presented reactivity in vitro against highly divergent influenza virus strains belonging to phylogenetic groups 1 and 2 (H1 and H3 subtypes, respectively), and conferred robust protection against a lethal challenge with both the homologous equine strain (100%) and the homosubtypic human strain A/Victoria/3/75 (H3N2) (70-100%). Animals vaccinated with the same antigens but challenged with the human strain A/PR/8/34 (H1N1), belonging to the phylogenetic group 1, were not protected (0-33%). Combination of protein and DNA immunogens showed higher reactivity to non-homologous strains than protein alone, although all vaccines were permissive for lung infection.
Collapse
Affiliation(s)
- Lorena Itatí Ibañez
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Cecilia Andrea Caldevilla
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Yesica Paredes Rojas
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Nora Mattion
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
152
|
Pseudotype Neutralization Assays: From Laboratory Bench to Data Analysis. Methods Protoc 2018; 1:mps1010008. [PMID: 31164554 PMCID: PMC6526431 DOI: 10.3390/mps1010008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/29/2022] Open
Abstract
Pseudotype neutralization assays are powerful tools to study functional antibody responses against viruses in low biosafety laboratories. However, protocols described in the literature differ widely with respect to material, reagents, and methods used to perform these assays and to analyse the raw data generated. This could result in discrepancies between the results of different laboratories even when the same pseudotypes and the same samples are analysed. Here, we describe, in detail, an experimental protocol to perform pseudotype neutralization assays using lentiviral pseudotypes bearing influenza haemagglutinin and expressing firefly luciferase. We also present the steps necessary to analyse the data and calculate the half maximal inhibitory concentration of the sera analysed. This protocol will provide support for the validation and the standardization of the pseudotype neutralization assay for influenza virus serology. Additionally, it will provide a starting point for the development of pseudotype neutralization assays using pseudotypes bearing other viral envelope proteins.
Collapse
|
153
|
Abstract
Animal models are essential to examine the pathogenesis and transmission of influenza viruses and for preclinical evaluation of influenza virus vaccines. Among the animal models used in influenza virus research, the domestic ferret (Mustela putorius furo) is the gold standard. As seen in humans, infection with influenza virus or immunization with an influenza virus vaccine induces humoral and cellular immunity in ferrets that provides protection against infection by an antigenically similar influenza virus. Antibodies against the globular head domain of the influenza hemagglutinin can provide sterilizing immunity against virus infection by blocking receptor binding. However, antibodies that bind the stalk region of the hemagglutinin also confer protection by several mechanisms including antibody-dependent cellular cytotoxicity or phagocytosis. Recently, the antigenically and structurally conserved hemagglutinin stalk has become an attractive target for the development of universal influenza virus vaccines that hold the promise to provide protection against influenza epidemics and pandemics. Herein, in vivo and in vitro assays, including optimization of assay conditions to examine hemagglutinin stalk-specific antibody responses in small animal models, are described.
Collapse
|
154
|
Abstract
This chapter makes the case against performing exceptionally dangerous gain-of-function experiments that are designed to create potentially pandemic and novel strains of influenza, for example, by enhancing the airborne transmissibility in mammals of highly virulent avian influenza strains. This is a question of intense debate over the last 5 years, though the history of such experiments goes back at least to the synthesis of viable influenza A H1N1 (1918) based on material preserved from the 1918 pandemic. This chapter makes the case that experiments to create potential pandemic pathogens (PPPs) are nearly unique in that they present biosafety risks that extend well beyond the experimenter or laboratory performing them; an accidental release could, as the name suggests, lead to global spread of a virulent virus, a biosafety incident on a scale never before seen. In such cases, biosafety considerations should be uppermost in the consideration of alternative approaches to experimental objectives and design, rather than being settled after the fact, as is appropriately done for most research involving pathogens. The extensive recent discussion of the magnitude of risks from such experiments is briefly reviewed. The chapter argues that, while there are indisputably certain questions that can be answered only by gain-of-function experiments in highly pathogenic strains, these questions are narrow and unlikely to meaningfully advance public health goals such as vaccine production and pandemic prediction. Alternative approaches to experimental influenza virology and characterization of existing strains are in general completely safe, higher throughput, more generalizable, and less costly than creation of PPP in the laboratory and can thereby better inform public health. Indeed, virtually every finding of recent PPP experiments that has been cited for its public health value was predated by similar findings using safe methodologies. The chapter concludes that the unique scientific and public health value of PPP experiments is inadequate to justify the unique risks they entail and that researchers would be well-advised to turn their talents to other methodologies that will be safe and more rewarding scientifically.
Collapse
Affiliation(s)
- Marc Lipsitch
- Departments of Epidemiology and Immunology and Infectious Diseases, Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
155
|
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, García-Sastre A. Influenza. Nat Rev Dis Primers 2018; 4:3. [PMID: 29955068 PMCID: PMC7097467 DOI: 10.1038/s41572-018-0002-y] [Citation(s) in RCA: 857] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
Collapse
Affiliation(s)
- Florian Krammer
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Gavin J. D. Smith
- 0000 0001 2180 6431grid.4280.eDuke–NUS Medical School, Singapore, Singapore ,0000 0004 1936 7961grid.26009.3dDuke Global Health Institute, Duke University, Durham, NC USA
| | - Ron A. M. Fouchier
- 000000040459992Xgrid.5645.2Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Malik Peiris
- 0000000121742757grid.194645.bWHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China ,0000000121742757grid.194645.bCenter of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Katherine Kedzierska
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Peter C. Doherty
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,0000 0001 0224 711Xgrid.240871.8Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Peter Palese
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDivision of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Megan L. Shaw
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Treanor
- 0000 0004 1936 9166grid.412750.5Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Robert G. Webster
- 0000 0001 0224 711Xgrid.240871.8Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
156
|
de Vries RD, Nieuwkoop NJ, van der Klis FRM, Koopmans MPG, Krammer F, Rimmelzwaan GF. Primary Human Influenza B Virus Infection Induces Cross-Lineage Hemagglutinin Stalk-Specific Antibodies Mediating Antibody-Dependent Cellular Cytoxicity. J Infect Dis 2017; 217:3-11. [PMID: 29294018 PMCID: PMC5853962 DOI: 10.1093/infdis/jix546] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) and influenza B virus (IBV) cause substantial morbidity and mortality during annual epidemics. Two distinct lineages of IBV are distinguished, based on variation in hemagglutinin (HA): B/Victoria/2/87-like (B/Vic) and B/Yamagata/16/88-like (B/Yam). Here, we show that, in humans, primary IBV infection with either lineage induces HA-specific antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. IBV infection induced antibodies specific to the HA head and stalk, but only HA stalk-specific antibodies mediated ADCC efficiently and displayed cross-reactivity with IBV of both lineages. This corresponds to recent findings that 2 points of contact between the effector and target cell (ie, HA and sialic acid, respectively, and the fragment crystallizable [Fc] domain and Fcγ receptor IIIα, respectively) are required for efficient ADCC activity and that antibodies specific for the receptor-binding site located in the head domain of HA therefore fail to mediate ADCC. Potentially, ADCC-mediating antibodies directed to the HA stalk of IBV contribute to cross-protective immunity to IBV of both lineages.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Nella J Nieuwkoop
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Fiona R M van der Klis
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
157
|
Hegde NR, Gauthami S, Sampath Kumar HM, Bayry J. The use of databases, data mining and immunoinformatics in vaccinology: where are we? Expert Opin Drug Discov 2017; 13:117-130. [PMID: 29226722 DOI: 10.1080/17460441.2018.1413088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Vaccinology has evolved from a sub-discipline focussed on simplistic vaccine development based on antibody-mediated protection to a separate discipline involving epidemiology, host and pathogen biology, immunology, genomics, proteomics, structure biology, protein engineering, chemical biology, and delivery systems. Data mining in combination with bioinformatics has provided a scaffold linking all these disciplines to the design of vaccines and vaccine adjuvants. Areas covered: This review provides background knowledge on immunological aspects which have been exploited with informatics for the in silico analysis of immune responses and the design of vaccine antigens. Furthermore, the article presents various databases and bioinformatics tools, and discusses B and T cell epitope predictions, antigen design, adjuvant research and systems immunology, highlighting some important examples, and challenges for the future. Expert opinion: Informatics and data mining have not only reduced the time required for experimental immunology, but also contributed to the identification and design of novel vaccine candidates and the determination of biomarkers and pathways of vaccine response. However, more experimental data is required for benchmarking immunoinformatic tools. Nevertheless, developments in immunoinformatics and reverse vaccinology, which are nascent fields, are likely to hasten vaccine discovery, although the path to regulatory approval is likely to remain a necessary impediment.
Collapse
Affiliation(s)
| | - S Gauthami
- b Ella Foundation, Turkapally , Hyderabad , India
| | - H M Sampath Kumar
- c Council of Scientific and Industrial Research - Indian Institute of Chemical Technology , Hyderabad , India
| | - Jagadeesh Bayry
- d Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1138 , Centre de Recherche des Cordeliers, Paris , France
| |
Collapse
|
158
|
Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus. NPJ Vaccines 2017; 2:33. [PMID: 29263888 PMCID: PMC5714955 DOI: 10.1038/s41541-017-0034-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5Nx viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines have been demonstrated to be efficacious and safe in poultry. Herein, we developed an NDV-based H5 vaccine (NDV-H5) that expresses a codon-optimized ectodomain of the hemagglutinin from the A/chicken/Iowa/04-20/2015 (H5N2) virus and evaluated its efficacy in chickens. Results showed that both live and inactivated NDV-H5 vaccines induced hemagglutinin inhibition antibody titers against the H5N2 virus in immunized chickens after prime and booster, and both NDV-H5 vaccines completely protected chickens from lethal challenge with the highly pathogenic H5N2 A/turkey/Minnesota/9845-4/2015 virus. No clinical signs and only minimal virus shedding was observed in both vaccinated groups. In contrast, all mock-vaccinated, H5N2-infected chickens shed virus and died within 5 days post challenge. Furthermore, one dose of the live NDV-H5 vaccine also provided protection of 90% chickens immunized by coarse spraying; after exposure to H5N2 challenge, sera from vaccinated surviving chickens neutralized both highly pathogenic H5N1 and H5N8 viruses. Taken together, our results suggest that the NDV-based H5 vaccine is able to protect chickens against intercontinental highly pathogenic H5Nx viruses and can be used by mass application to protect the poultry industry. Vaccines based on Newcastle disease virus have proved efficacious in protecting chickens from H5 avian influenza strains. Avian influenza causes significant losses to the agriculture industry, indicating the importance of research into their control. A research collaboration of US and Chinese scientists, led by Kansas State University’s Wenjun Ma, have now produced vaccines based on Newcastle disease virus (NDV) — a platform easily modified to express immunity-stimulating proteins from other pathogens. Chickens vaccinated with the group’s vaccines survived a lethal dose of avian flu strain H5N2 and generated neutralizing antibodies cross-protective against other avian flu subtypes. The vaccine was easily applied by spraying the animals. The authors suggest that their data, in addition to previous studies, indicate that NDV could also be a useful vaccine platform for mammals such as humans.
Collapse
|
159
|
Membrane-anchored stalk domain of influenza HA enhanced immune responses in mice. Microb Pathog 2017; 113:421-426. [PMID: 29174687 DOI: 10.1016/j.micpath.2017.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/17/2022]
Abstract
Current strategies for influenza virus vaccines primarily aim to elicit immune responses towards the globular head domain of the hemagglutinin (HA) protein so that binding of the virus to membrane receptors on the host cells is inhibited. In the present study, we show a novel strategy to generate immunity against the highly conserved region of the influenza virus. The globular head domain was replaced by different linkers to generate a headless HA (stalk domain) and then coexpressed with influenza M1 proteinin Tni insect cells. The expression was validated by western blot analysis, and stalk domain with peptides (GGGGS)4 linkers was identified to anchor in a stable way to the cell membrane. An immunoelectron microscope showed that stalk domain with (GGGGS)4 linkers were steadily incorporated to the surface of influenza virus-like particles (VLPs). Mice immunized with these VLPs exhibited enhanced systemic antibody responses with increased binding avidity and study found high titers of ADCC antibodies to the influenza virus, these VLPs also induced mucosal immune responses and produced antigen-specific IgG and IgA in nasal and lung washes. In addition, antigen-specific IgG antibody-secreting cells (ASCs) increased significantly in the spleen and lymph node. The results of this study suggest that the headless HA is a useful target in developing a universal vaccine against influenza virus.
Collapse
|
160
|
Stadlbauer D, Nachbagauer R, Meade P, Krammer F. Universal influenza virus vaccines: what can we learn from the human immune response following exposure to H7 subtype viruses? Front Med 2017; 11:471-479. [PMID: 29159597 DOI: 10.1007/s11684-017-0602-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
Several universal influenza virus vaccine candidates based on eliciting antibodies against the hemagglutinin stalk domain are in development. Typically, these vaccines induce responses that target group 1 or group 2 hemagglutinins with little to no cross-group reactivity and protection. Similarly, the majority of human anti-stalk monoclonal antibodies that have been isolated are directed against group 1 or group 2 hemagglutinins with very few that bind to hemagglutinins of both groups. Here we review what is known about the human humoral immune response to vaccination and infection with H7 subtype influenza viruses on a polyclonal and monoclonal level. It seems that unlike vaccination with H5 hemagglutinin, which induces antibody responses mostly restricted to the group 1 stalk domain, H7 exposure induces both group 2 and cross-group antibody responses. A better understanding of this phenomenon and the underlying mechanisms might help to develop future universal influenza virus vaccine candidates.
Collapse
Affiliation(s)
- Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA.
| |
Collapse
|
161
|
Anderson CS, Ortega S, Chaves FA, Clark AM, Yang H, Topham DJ, DeDiego ML. Natural and directed antigenic drift of the H1 influenza virus hemagglutinin stalk domain. Sci Rep 2017; 7:14614. [PMID: 29097696 PMCID: PMC5668287 DOI: 10.1038/s41598-017-14931-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/18/2017] [Indexed: 12/02/2022] Open
Abstract
The induction of antibodies specific for the influenza HA protein stalk domain is being pursued as a universal strategy against influenza virus infections. However, little work has been done looking at natural or induced antigenic variability in this domain and the effects on viral fitness. We analyzed human H1 HA head and stalk domain sequences and found substantial variability in both, although variability was highest in the head region. Furthermore, using human immune sera from pandemic A/California/04/2009 immune subjects and mAbs specific for the stalk domain, viruses were selected in vitro containing mutations in both domains that partially contributed to immune evasion. Recombinant viruses encoding amino acid changes in the HA stalk domain replicated well in vitro, and viruses incorporating two of the stalk mutations retained pathogenicity in vivo. These findings demonstrate that the HA protein stalk domain can undergo limited drift under immune pressure and the viruses can retain fitness and virulence in vivo, findings which are important to consider in the context of vaccination targeting this domain.
Collapse
Affiliation(s)
- Christopher S Anderson
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States
| | - Sandra Ortega
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States
| | - Francisco A Chaves
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States
| | - Amelia M Clark
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States.
| | - Marta L DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States.
| |
Collapse
|
162
|
A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. NPJ Vaccines 2017; 2:26. [PMID: 29263881 PMCID: PMC5627297 DOI: 10.1038/s41541-017-0026-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/08/2022] Open
Abstract
Influenza viruses evade human adaptive immune responses due to continuing antigenic changes. This makes it necessary to re-formulate and re-administer current seasonal influenza vaccines on an annual basis. Our pan-influenza vaccination approach attempts to redirect antibody responses from the variable, immuno-dominant hemagglutinin head towards the conserved—but immuno-subdominant—hemagglutinin stalk. The strategy utilizes sequential immunization with chimeric hemagglutinin-based vaccines expressing exotic head domains, and a conserved hemagglutinin stalk. We compared a live-attenuated influenza virus prime followed by an inactivated split-virus boost to two doses of split-virus vaccines and assessed the impact of adjuvant on protection against challenge with pandemic H1N1 virus in ferrets. All tested immunization regimens successfully induced broadly cross-reactive antibody responses. The combined live-attenuated/split virus vaccination conferred superior protection against pandemic H1N1 infection compared to two doses of split-virus vaccination. Our data support advancement of this chimeric hemagglutinin-based vaccine approach to clinical trials in humans. A vaccine against influenza targets non-varying parts of surface proteins to overcome the virus’ attempt at evading detection. Influenza viruses possess rapidly shifting surface proteins, effectively camouflaging themselves. These changes are making it difficult for vaccines to elicit reliable antibody responses against the threat. A team of researchers led by Florian Krammer and Randy A. Albrecht, of the United States’ Icahn School of Medicine at Mount Sinai, now describes a vaccine regimen that repeatedly targets a conserved component of the virus’ surface, prompting a broadly protective immune response. The conserved domains of the viral surface proteins are traditionally a more difficult target for vaccines as the immune systems of vaccinees have a preference for the varying domains. The team’s data, generated from ferret experiments, supports an investigation into the efficacy of this approach in humans.
Collapse
|
163
|
Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands Work Additively via MyD88 To Induce Protective Antiviral Immunity in Mice. J Virol 2017; 91:JVI.01050-17. [PMID: 28724768 DOI: 10.1128/jvi.01050-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus hemagglutinin, inducing rapid and sustained immunity that is protective against influenza viruses in homologous, heterologous, and heterosubtypic murine challenge models. Combining the TLR4 and TLR7 ligands balances Th1 and Th2-type immune responses for long-lived cellular and neutralizing humoral immunity against the viral hemagglutinin. Here, we demonstrate that the protective response induced in mice by this combined adjuvant is dependent upon TLR4 and TLR7 signaling via myeloid differentiation primary response gene 88 (MyD88), indicating that the adjuvants function in vivo via their known receptors, with negligible off-target effects, to induce protective immunity. The combined adjuvant acts via MyD88 in both bone marrow-derived and non-bone marrow-derived radioresistant cells to induce hemagglutinin-specific antibodies and protect mice against influenza virus challenge. The protective efficacy generated by immunization with this adjuvant and recombinant hemagglutinin antigen is transferable with serum from immunized mice to recipient mice in a homologous, but not a heterologous, H1N1 viral challenge model. Depletion of CD4+ cells after an established humoral response in immunized mice does not impair protection from a homologous challenge; however, it does significantly impair recovery from a heterologous challenge virus, highlighting an important role for vaccine-induced CD4+ cells in cross-protective vaccine efficacy. The combination of the two TLR agonists allows for significant dose reductions of each component to achieve a level of protection equivalent to that afforded by either single agent at its full dose.IMPORTANCE Development of novel adjuvants is needed to enhance immunogenicity to provide better protection from seasonal influenza virus infection and improve pandemic preparedness. We show here that several dose combinations of synthetic TLR4 and TLR7 ligands are potent adjuvants for recombinant influenza virus hemagglutinin antigen induction of humoral and cellular immunity against viral challenges. The components of the combined adjuvant work additively to enable both antigen and adjuvant dose sparing while retaining efficacy. Understanding an adjuvant's mechanism of action is a critical component for preclinical safety evaluation, and we demonstrate here that a combined TLR4 and TLR7 adjuvant signals via the appropriate receptors and the MyD88 adaptor protein. This novel adjuvant combination contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.
Collapse
|
164
|
Islam S, Mohn KGI, Krammer F, Sanne M, Bredholt G, Jul-Larsen Å, Tete SM, Zhou F, Brokstad KA, Cox RJ. Influenza A haemagglutinin specific IgG responses in children and adults after seasonal trivalent live attenuated influenza vaccination. Vaccine 2017; 35:5666-5673. [PMID: 28899626 DOI: 10.1016/j.vaccine.2017.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/07/2017] [Accepted: 08/19/2017] [Indexed: 11/18/2022]
Abstract
Influenza is a major respiratory pathogen and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV3) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoprotein, haemagglutinin (HA), play an important role in virus neutralization through different mechanism. The objective of this study was to dissect the HA specific antibody responses induced after LAIV3 immunization to the influenza A viruses in children and adults. Plasma was collected from 20 children and 20 adults pre- and post-LAIV3 vaccination (up to ayear) and analysed by the haemagglutination inhibition (HI) and ELISA assays. We found that LAIV3 boosted the HA specific IgG response against the head and the full-length of H3N2 in children, but not adults. Adults had higher levels of pre-existing stalk antibodies (towards H3N2 and H1N1), but these were not boosted by LAIV3. Importantly, we observed a trend in boosting of H1N1 HA stalk specific antibodies in children after LAIV3. Whereas, heterosubtypic H5 and H7 full-length HA specific antibodies were not boosted in either children or adults. In conclusion, LAIV3 elicited H3-head and low levels of H1 stalk specific antibody responses in children, supporting the prophylactic use of LAIV in children.
Collapse
Affiliation(s)
- Shahinul Islam
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin Greve-Isdahl Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Mari Sanne
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Åsne Jul-Larsen
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sarah M Tete
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Research & Development, Haukeland University Hospital, Bergen, Norway
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Karl Albert Brokstad
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Research & Development, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
165
|
Adamson PJ, Al Kindi MA, Wang JJ, Colella AD, Chataway TK, Petrovsky N, Gordon TP, Gordon DL. Proteomic analysis of influenza haemagglutinin-specific antibodies following vaccination reveals convergent immunoglobulin variable region signatures. Vaccine 2017; 35:5576-5580. [PMID: 28888340 DOI: 10.1016/j.vaccine.2017.08.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/02/2017] [Accepted: 08/27/2017] [Indexed: 10/18/2022]
Abstract
Analysis of the anti-haemagglutinin serum antibody proteome from six H1N1pdm09 influenza A vaccinated subjects demonstrated restricted IgG1 heavy chain species encoded by IGHV5-51 and IGHV3-7 gene families in 2 subjects and either IGHV5-51 or IGHV3-7 in 4 individuals. All subjects exhibited a dominant IGKV3-20 light chain, however 5 subjects also exhibited IGKV3-11 and IGKV4-1 families. Sequences were closely aligned with the matched germline sequence, with few shared mutations. This study illustrates the feasibility of using a proteomic approach to determine the expressed V region signatures of serum antibodies induced by vaccination.
Collapse
Affiliation(s)
- Penelope J Adamson
- Department of Microbiology and Infectious Diseases, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Mahmood A Al Kindi
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Jing J Wang
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Alex D Colella
- Flinders Proteomic Facility, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Timothy K Chataway
- Flinders Proteomic Facility, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Nikolai Petrovsky
- Department of Endocrinology, Flinders University and Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| |
Collapse
|
166
|
Henry C, Palm AKE, Krammer F, Wilson PC. From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol 2017; 39:70-79. [PMID: 28867526 DOI: 10.1016/j.it.2017.08.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/15/2023]
Abstract
Antibody responses are essential for protection against influenza virus infection. Humans are exposed to a multitude of influenza viruses throughout their lifetime and it is clear that immune history influences the magnitude and quality of the antibody response. The 'original antigenic sin' concept refers to the impact of the first influenza virus variant encounter on lifelong immunity. Although this model has been challenged since its discovery, past exposure, and likely one's first exposure, clearly affects the epitopes targeted in subsequent responses. Understanding how previous exposure to influenza virus shapes antibody responses to vaccination and infection is critical, especially with the prospect of future pandemics and for the effective development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Carole Henry
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA.
| | - Anna-Karin E Palm
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
167
|
Peng B, Peng N, Zhang Y, Zhang F, Li X, Chang H, Fang F, Wang F, Lu F, Chen Z. Comparison of the Protective Efficacy of Neutralizing Epitopes of 2009 Pandemic H1N1 Influenza Hemagglutinin. Front Immunol 2017; 8:1070. [PMID: 28912784 PMCID: PMC5583165 DOI: 10.3389/fimmu.2017.01070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/16/2017] [Indexed: 12/03/2022] Open
Abstract
The 2009 H1N1 influenza (Pdm09) pandemic has been referred to as the first influenza pandemic of the twenty-first century. There is a marked difference in antigenicity between the pandemic H1N1 virus and past seasonal H1N1 viruses, which allowed the pandemic virus to spread rapidly in humans. Antibodies (Abs) against hemagglutinin (HA), especially neutralizing Abs against epitopes in the head of HA, play critical roles in defending the host against the virus. Some preexisting neutralizing Abs that recognize neutralizing epitopes of Pdm09 HA, thereby affording cross-protection, have been reported. To better understand the protective effects of epitopes in Pdm09 HA, we constructed a series of plasmid DNAs (DNA vaccines) by cloning various combinations of Pdm09 neutralizing epitopes into the HA backbone derived from A/PR/8/1934 (H1N1). We subsequently compared the protective immune responses induced by these various forms of HA in a mouse model. We found that the plasmid DNAs with epitope substitutions provided better protection against lethal virus challenge and induced higher strain-specific antibody titers, with epitope Sa being the most effective. Moreover, the combination of epitopes Sa and Sb provided almost complete protection in mice. These findings provide new insights into the protective efficacy of neutralizing epitopes of influenza HA.
Collapse
Affiliation(s)
- Bo Peng
- College of Life Science, Hunan Normal University, Changsha, China
| | - Na Peng
- College of Life Science, Hunan Normal University, Changsha, China
| | - Yanan Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Fenghua Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Haiyan Chang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Fang Fang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Fuyan Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Fangguo Lu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ze Chen
- College of Life Science, Hunan Normal University, Changsha, China.,Shanghai Institute of Biological Products, Shanghai, China
| |
Collapse
|
168
|
Riese P, Guzmán CA. Roads to advanced vaccines: influenza case study. Microb Biotechnol 2017; 10:1036-1040. [PMID: 28809451 PMCID: PMC5609253 DOI: 10.1111/1751-7915.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/30/2022] Open
Abstract
Vaccines represent a cornerstone to ensure healthy lives and promote well‐being for all at all ages. However, there are many diseases for which vaccines are not available, are relatively ineffective or need to be adapted periodically. Advances in microbial biotechnology will contribute to overcoming these roadblocks by laying the groundwork for improving and creating new approaches for developing better vaccines, as illustrated here in the case of influenza.
Collapse
Affiliation(s)
- Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| |
Collapse
|
169
|
Zhu W, Wang C, Wang BZ. From Variation of Influenza Viral Proteins to Vaccine Development. Int J Mol Sci 2017; 18:ijms18071554. [PMID: 28718801 PMCID: PMC5536042 DOI: 10.3390/ijms18071554] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022] Open
Abstract
Recurrent influenza epidemics and occasional pandemics are one of the most important global public health concerns and are major causes of human morbidity and mortality. Influenza viruses can evolve through antigen drift and shift to overcome the barriers of human immunity, leading to host adaption and transmission. Mechanisms underlying this viral evolution are gradually being elucidated. Vaccination is an effective method for the prevention of influenza virus infection. However, the emergence of novel viruses, including the 2009 pandemic influenza A (H1N1), the avian influenza A virus (H7N9), and the highly pathogenic avian influenza A virus (HPAI H5N1), that have infected human populations frequently in recent years reveals the tremendous challenges to the current influenza vaccine strategy. A better vaccine that provides protection against a wide spectrum of various influenza viruses and long-lasting immunity is urgently required. Here, we review the evolutionary changes of several important influenza proteins and the influence of these changes on viral antigenicity, host adaption, and viral pathogenicity. Furthermore, we discuss the development of a potent universal influenza vaccine based on this knowledge.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| | - Chao Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| |
Collapse
|
170
|
te Beest DE, de Bruin E, Imholz S, Koopmans M, van Boven M. Heterosubtypic cross-reactivity of HA1 antibodies to influenza A, with emphasis on nonhuman subtypes (H5N1, H7N7, H9N2). PLoS One 2017; 12:e0181093. [PMID: 28715468 PMCID: PMC5513445 DOI: 10.1371/journal.pone.0181093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/25/2017] [Indexed: 11/26/2022] Open
Abstract
Epidemics of influenza A vary greatly in size and age distribution of cases, and this variation is attributed to varying levels of pre-existing immunity. Recent studies have shown that antibody-mediated immune responses are more cross-reactive than previously believed, and shape patterns of humoral immunity to influenza A viruses over long periods. Here we quantify antibody responses to the hemagglutinin subunit 1 (HA1) across a range of subtypes using protein microarray analysis of cross-sectional serological surveys carried out in the Netherlands before and after the A/2009 (H1N1) pandemic. We find significant associations of responses, both within and between subtypes. Interestingly, substantial overall reactivity is observed to HA1 of avian H7N7 and H9N2 viruses. Seroprevalence of H7N7 correlates with antibody titers to A/1968 (H3N2), and is highest in persons born between 1954 and 1969. Seroprevalence of H9N2 is high across all ages, and correlates strongly with A/1957 (H2N2). This correlation is most pronounced in A/2009 (H1N1) infected persons born after 1968 who have never encountered A/1957 (H2N2)-like viruses. We conclude that heterosubtypic antibody cross-reactivity, both between human subtypes and between human and nonhuman subtypes, is common in the human population.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Antibodies, Viral/immunology
- Birds
- Child
- Child, Preschool
- Cross Reactions
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza A Virus, H7N7 Subtype/immunology
- Influenza A Virus, H7N7 Subtype/isolation & purification
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/isolation & purification
- Influenza in Birds/pathology
- Influenza in Birds/virology
- Influenza, Human/pathology
- Influenza, Human/virology
- Middle Aged
- Young Adult
Collapse
Affiliation(s)
- Dennis E. te Beest
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - Erwin de Bruin
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sandra Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Marion Koopmans
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Michiel van Boven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- * E-mail:
| |
Collapse
|
171
|
Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model. J Virol 2017; 91:JVI.00286-17. [PMID: 28356526 DOI: 10.1128/jvi.00286-17] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022] Open
Abstract
Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection.IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed.
Collapse
|
172
|
Inactivated influenza virus vaccines: the future of TIV and QIV. Curr Opin Virol 2017; 23:102-106. [PMID: 28505524 DOI: 10.1016/j.coviro.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
Abstract
Influenza viruses continue to be a major public health concern, despite the availability of vaccines. Currently licensed influenza vaccines aim at the induction of antibodies that target hemagglutinin, the major antigenic determinant on the surface of influenza virions that is responsible for attachment of the virus to the host cell that is to be infected. Currently licensed influenza vaccines come as inactivated or live attenuated influenza vaccines and are trivalent or quadrivalent as they contain antigens of two influenza A and one or two influenza B strains that circulate in the human population, respectively. In this review we briefly compare trivalent and quadrivalent inactivated influenza vaccines (TIV and QIV) with live attenuated influenza vaccines (LAIV). The use of the latter vaccine type in children age 2-8 has been disrecommended recently by the American Centers for Disease Control and Prevention due to inferior vaccine effectiveness in this age group in recent seasons. This recommendation will favor the use of TIV and QIV over LAIV in the near future. However, there is much evidence from studies in humans that illustrate the benefit of LAIV and we discuss some of the mechanisms that contribute to broader protection against influenza viruses of different subtypes induced by natural infection and LAIV. The future challenge will be to apply these insights to allow induction of broader and long-lasting protection provided by TIV and QIV vaccines, for example, by the use of adjuvants or combining LAIV with TIV and QIV. Other immune factors than serum hemagglutination inhibiting antibodies have shown to correlate with protection provided by TIV and QIV, which illustrates the need for other correlates of protection than hemagglutination inhibition by serum antibodies and justifies more focus on influenza antigens in the TIV and QIV other than hemagglutinin.
Collapse
|
173
|
Liu L, Nachbagauer R, Zhu L, Huang Y, Xie X, Jin S, Zhang A, Wan Y, Hirsh A, Tian D, Shi X, Dong Z, Yuan S, Hu Y, Krammer F, Zhang X, Xu J. Induction of Broadly Cross-Reactive Stalk-Specific Antibody Responses to Influenza Group 1 and Group 2 Hemagglutinins by Natural H7N9 Virus Infection in Humans. J Infect Dis 2017; 215:518-528. [PMID: 28380622 DOI: 10.1093/infdis/jiw608] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background The outbreak of novel avian H7N9 influenza virus infections in China in 2013 has demonstrated the continuing threat posed by zoonotic pathogens. Deciphering the immune response during natural infection will guide future vaccine development. Methods We assessed the induction of heterosubtypic cross-reactive antibodies induced by H7N9 infection against a large panel of recombinant hemagglutinins and neuraminidases by quantitative enzyme-linked immunosorbent assay, and novel chimeric hemagglutinin constructs were used to dissect the anti-stalk or -head humoral immune response. Results H7N9 infection induced strong antibody responses against divergent H7 hemagglutinins. Interestingly, we also found induction of antibodies against heterosubtypic hemagglutinins from both group 1 and group 2 and a boost in heterosubtypic neutralizing activity in the absence of hemagglutination inhibitory activity. Kinetic monitoring revealed that heterosubtypic binding/neutralizing antibody responses typically appeared and peaked earlier than intrasubtypic responses, likely mediated by memory recall responses. Conclusions Our results indicate that cross-group binding and neutralizing antibody responses primarily targeting the stalk region can be elicited after natural influenza virus infection. These data support our understanding of the breadth of the postinfection immune response that could inform the design of future, broadly protective influenza virus vaccines.
Collapse
Affiliation(s)
- Lu Liu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Yang Huang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Xinci Xie
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Shan Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Anli Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Yanmin Wan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Di Tian
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Xiaolin Shi
- VacDiagn Biotechnology, Suzhou, Jiangsu, China
| | - Zhaoguang Dong
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Yunwen Hu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| |
Collapse
|
174
|
Van Reeth K, Gracia JCM, Trus I, Sys L, Claes G, Versnaeyen H, Cox E, Krammer F, Qiu Y. Heterologous prime-boost vaccination with H3N2 influenza viruses of swine favors cross-clade antibody responses and protection. NPJ Vaccines 2017; 2. [PMID: 29250437 PMCID: PMC5604745 DOI: 10.1038/s41541-017-0012-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emergence of multiple novel lineages of H1 and H3 influenza A viruses in swine has confounded control by inactivated vaccines. Because of substantial genetic and geographic heterogeneity among circulating swine influenza viruses, one vaccine strain per subtype cannot be efficacious against all of the current lineages. We have performed vaccination-challenge studies in pigs to examine whether priming and booster vaccinations with antigenically distinct H3N2 swine influenza viruses could broaden antibody responses and protection. We prepared monovalent whole inactivated, adjuvanted vaccines based on a European and a North American H3N2 swine influenza virus, which showed 81.5% aa homology in the HA1 region of the hemagglutinin and 83.4% in the neuraminidase. Our data show that (i) Priming with European and boosting with North American H3N2 swine influenza virus induces antibodies and protection against both vaccine strains, unlike prime-boost vaccination with a single virus or a single administration of bivalent vaccine. (ii) The heterologous prime-boost vaccination enhances hemagglutination inhibiting, virus neutralizing and neuraminidase inhibiting antibody responses against H3N2 viruses that are antigenically distinct from both vaccine strains. Antibody titers to the most divergent viruses were higher than after two administrations of bivalent vaccine. (iii) However, it does not induce antibodies to the conserved hemagglutinin stalk or to other hemagglutinin subtypes. We conclude that heterologous prime-boost vaccination might broaden protection to H3N2 swine influenza viruses and reduce the total amount of vaccine needed. This strategy holds potential for vaccination against influenza viruses from both humans and swine and for a better control of (reverse) zoonotic transmission of influenza viruses.
Collapse
Affiliation(s)
- Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | | | - Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Lieve Sys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Gerwin Claes
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Han Versnaeyen
- Laboratory of Pathology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Qiu
- OIE Sub-Regional Representation for South-East Asia, Bangkok, Thailand
| |
Collapse
|
175
|
Pavlova S, D'Alessio F, Houard S, Remarque EJ, Stockhofe N, Engelhardt OG. Workshop report: Immunoassay standardisation for "universal" influenza vaccines. Influenza Other Respir Viruses 2017; 11:194-201. [PMID: 28146323 PMCID: PMC5410724 DOI: 10.1111/irv.12445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
The development of broadly reactive influenza vaccines raises the need to identify the most appropriate immunoassays that can be used for the evaluation of so-called universal influenza vaccines and to explore a path towards the standardisation of such assays. More than fifty experts from the global influenza vaccine research and development field met to initiate such discussion at a workshop co-organised by the EDUFLUVAC consortium, a European Union funded project coordinated by the European Vaccine Initiative, and the National Institutes of Health/National Institute of Allergy and Infectious Diseases, USA. The workshop audience agreed that it was not possible to establish a single immunoassay for "universal" influenza vaccines because the current approaches differ in the vaccines' nature and immunogenicity properties. Therefore, different scientific rationales for the immunoassay selection are required. To avoid dilution of efforts, the choice of the primary evaluation criteria (eg serological assays or T-cell assays) should drive the effort of harmonisation. However, at an early phase of clinical development, more efforts on exploratory assessments should be undertaken to better define the immune profile in response to immunisation with new vaccines. The workshop concluded that each laboratory should aim towards validation of the appropriate immunoassays used during the entire process of vaccine development from antigen discovery up to establishment of correlates of protection, including the different steps of quality control (eg potency assays), animal studies and human clinical development. Standardisation of the immunoassays is the ultimate goal, and there is a long way to go.
Collapse
Affiliation(s)
- Sophia Pavlova
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | | | - Norbert Stockhofe
- Wageningen Bioveterinary Research/Wageningen University & Re-search, Lelystad, The Netherlands
| | - Othmar G Engelhardt
- National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, UK
| |
Collapse
|
176
|
Nachbagauer R, Krammer F. Universal influenza virus vaccines and therapeutic antibodies. Clin Microbiol Infect 2017; 23:222-228. [PMID: 28216325 PMCID: PMC5389886 DOI: 10.1016/j.cmi.2017.02.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Current influenza virus vaccines are effective when well matched to the circulating strains. Unfortunately, antigenic drift and the high diversity of potential emerging zoonotic and pandemic viruses make it difficult to select the right strains for vaccine production. This problem causes vaccine mismatches, which lead to sharp drops in vaccine effectiveness and long response times to manufacture matched vaccines in case of novel pandemic viruses. AIMS To provide an overview of universal influenza virus vaccines and therapeutic antibodies in preclinical and clinical development. SOURCES PubMed and clinicaltrials.gov were used as sources for this review. CONTENT Universal influenza virus vaccines that target conserved regions of the influenza virus including the haemagglutinin stalk domain, the ectodomain of the M2 ion channel or the internal matrix and nucleoproteins are in late preclinical and clinical development. These vaccines could confer broad protection against all influenza A and B viruses including drift variants and thereby abolish the need for annual re-formulation and re-administration of influenza virus vaccines. In addition, these novel vaccines would enhance preparedness against emerging influenza virus pandemics. Finally, novel therapeutic antibodies against the same conserved targets are in clinical development and could become valuable tools in the fight against influenza virus infection. IMPLICATIONS Both universal influenza virus vaccines and therapeutic antibodies are potential future options for the control of human influenza infections.
Collapse
Affiliation(s)
- R Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - F Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
177
|
Holthausen DJ, Lee SH, Kumar VTV, Bouvier NM, Krammer F, Ellebedy AH, Wrammert J, Lowen AC, George S, Pillai MR, Jacob J. An Amphibian Host Defense Peptide Is Virucidal for Human H1 Hemagglutinin-Bearing Influenza Viruses. Immunity 2017; 46:587-595. [DOI: 10.1016/j.immuni.2017.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 01/11/2023]
|
178
|
Progesterone-Based Contraceptives Reduce Adaptive Immune Responses and Protection against Sequential Influenza A Virus Infections. J Virol 2017; 91:JVI.02160-16. [PMID: 28179523 DOI: 10.1128/jvi.02160-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
In addition to their intended use, progesterone (P4)-based contraceptives promote anti-inflammatory immune responses, yet their effects on the outcome of infectious diseases, including influenza A virus (IAV) infection, are rarely evaluated. To evaluate their impact on immune responses to sequential IAV infections, adult female mice were treated with placebo or one of two progestins, P4 or levonorgestrel (LNG), and infected with a mouse-adapted H1N1 (maH1N1) virus. Treatment with P4 or LNG reduced morbidity but had no effect on pulmonary virus titers during primary H1N1 infection compared to placebo treatment. In serum and bronchoalveolar lavage fluid, total anti-IAV IgG and IgA titers and virus-neutralizing antibody titers but not hemagglutinin stalk antibody titers were lower in progestin-treated mice than placebo-treated mice. Females were challenged 6 weeks later with either an maH1N1 drift variant (maH1N1dv) or maH3N2 IAV. The level of protection following infection with the maH1N1dv was similar among all groups. In contrast, following challenge with maH3N2, progestin treatment reduced survival as well as the numbers and activity of H1N1- and H3N2-specific memory CD8+ T cells, including tissue-resident cells, compared with placebo treatment. In contrast to primary IAV infection, progestin treatment increased the titers of neutralizing and IgG antibodies against both challenge viruses compared with those achieved with placebo treatment. While the immunomodulatory properties of progestins protected immunologically naive female mice from the severe outcomes from IAV infection, it made them more susceptible to secondary challenge with a heterologous IAV, despite improving their antibody responses against a secondary IAV infection. Taken together, the immunomodulatory effects of progestins differentially regulate the outcome of infection depending on exposure history.IMPORTANCE The impact of hormone-based contraceptives on the outcome of infectious diseases outside the reproductive tract is rarely considered. Using a mouse model, we have made the novel observation that treatment with either progesterone or a synthetic analog found in hormonal contraceptives, levonorgestrel, impacts sequential influenza A virus infection by modulating antibody responses and decreasing the numbers and activity of memory CD8+ T cells. Progestins reduced the antibody responses during primary H1N1 virus infection but increased antibody titers following a sequential infection with either an H1N1 drift variant or an H3N2 virus. Following challenge with an H3N2 virus, female mice treated with progestins experienced greater mortality with increased pulmonary inflammation and reduced numbers and activity of CD8+ T cells. This study suggests that progestins significantly affect adaptive immune responses to influenza A virus infection, with their effect on the outcome of infection depending on exposure history.
Collapse
|
179
|
Krammer F. Strategies to induce broadly protective antibody responses to viral glycoproteins. Expert Rev Vaccines 2017; 16:503-513. [PMID: 28277797 DOI: 10.1080/14760584.2017.1299576] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Currently, several universal/broadly protective influenza virus vaccine candidates are under development. Many of these vaccines are based on strategies to induce protective antibody responses against the surface glycoproteins of antigenically and genetically diverse influenza viruses. These strategies might also be applicable to surface glycoproteins of a broad range of other important viral pathogens. Areas covered: Common strategies include sequential vaccination with divergent antigens, multivalent approaches, vaccination with glycan-modified antigens, vaccination with minimal antigens and vaccination with antigens that have centralized/optimized sequences. Here we review these strategies and the underlying concepts. Furthermore, challenges, feasibility and applicability to other viral pathogens are discussed. Expert commentary: Several broadly protective/universal influenza virus vaccine strategies will be tested in humans in the coming years. If successful in terms of safety and immunological readouts, they will move forward into efficacy trials. In the meantime, successful vaccine strategies might also be applied to other antigenically diverse viruses of concern.
Collapse
Affiliation(s)
- F Krammer
- a Department of Microbiology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
180
|
Conroy PJ, Law RH, Caradoc-Davies TT, Whisstock JC. Antibodies: From novel repertoires to defining and refining the structure of biologically important targets. Methods 2017; 116:12-22. [DOI: 10.1016/j.ymeth.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/02/2023] Open
|
181
|
Nachbagauer R, Choi A, Hirsh A, Margine I, Iida S, Barrera A, Ferres M, Albrecht RA, García-Sastre A, Bouvier NM, Ito K, Medina RA, Palese P, Krammer F. Defining the antibody cross-reactome directed against the influenza virus surface glycoproteins. Nat Immunol 2017; 18:464-473. [PMID: 28192418 PMCID: PMC5360498 DOI: 10.1038/ni.3684] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
Abstract
Influenza virus infections induce antibodies against the viral surface glycoproteins hemagglutinin and neuraminidase, and these responses can be broadly protective. To test the breadth and magnitude of antibody responses, mice, guinea pigs and ferrets were sequentially infected with divergent H1N1 or H3N2 viruses. Antibody responses were measured by ELISA against an extensive panel of recombinant glycoproteins representing the viral diversity in nature. Guinea pigs developed high titers of broadly cross-reactive antibodies; mice and ferrets exhibited narrower humoral responses. Then, we compared antibody responses after H1N1 or H3N2 infections in humans and found markedly broad responses and cogent evidence for original antigenic sin. This work will inform universal influenza vaccine design and can guide pandemic preparedness efforts against emerging influenza viruses.
Collapse
Affiliation(s)
- Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irina Margine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sayaka Iida
- Division of Bioinformatics, Hokkaido University Research Center for Zoonosis Control, Kitaku, Japan
| | - Aldo Barrera
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Ferres
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kimihito Ito
- Division of Bioinformatics, Hokkaido University Research Center for Zoonosis Control, Kitaku, Japan
| | - Rafael A Medina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
182
|
Di Mario G, Soprana E, Gubinelli F, Panigada M, Facchini M, Fabiani C, Garulli B, Basileo M, Cassone A, Siccardi A, Donatelli I, Castrucci MR. Immunogenicity of modified vaccinia virus Ankara expressing the hemagglutinin stalk domain of pandemic (H1N1) 2009 influenza virus. Pathog Glob Health 2017; 111:69-75. [PMID: 28081672 PMCID: PMC5375617 DOI: 10.1080/20477724.2016.1275464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Vaccination offers protection against influenza, although current vaccines need to be reformulated each year. The development of a broadly protective influenza vaccine would guarantee the induction of heterosubtypic immunity also against emerging influenza viruses of a novel subtype. Vaccine candidates based on the stalk region of the hemagglutinin (HA) have the potential to induce broad and persistent protection against diverse influenza A viruses. METHODS Modified vaccinia virus Ankara (MVA) expressing a headless HA (hlHA) of A/California/4/09 (CA/09) virus was used as a vaccine to immunize C57BL/6 mice. Specific antibody and cell-mediated immune responses were determined, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. RESULTS Immunization of mice with CA/09-derived hlHA, vectored by MVA, was able to elicit influenza-specific broad cross-reactive antibodies and cell-mediated immune responses, but failed to induce neutralizing antibodies and did not protect mice against virus challenge. CONCLUSION Although highly immunogenic, our vaccine was unable to induce a protective immunity against influenza. A misfolded and unstable conformation of the hlHA molecule may have affected its capacity of inducing neutralizing antiviral, conformational antibodies. Design of stable hlHA-based immunogens and their delivery by recombinant MVA-based vectors has the potential of improving this promising approach for a universal influenza vaccine.
Collapse
Affiliation(s)
- Giuseppina Di Mario
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Elisa Soprana
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Francesco Gubinelli
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Maddalena Panigada
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Marzia Facchini
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Concetta Fabiani
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Bruno Garulli
- c Department of Biology and Biotechnology "Charles Darwin" , Sapienza University of Rome , Rome , Italy
| | - Michela Basileo
- d Polo d'Innovazione della Genomica, Genetica e Biologia , University of Perugia , Perugia , Italy
| | - Antonio Cassone
- d Polo d'Innovazione della Genomica, Genetica e Biologia , University of Perugia , Perugia , Italy
| | - Antonio Siccardi
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Isabella Donatelli
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Maria R Castrucci
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
183
|
Di Mario G, Sciaraffia E, Facchini M, Gubinelli F, Soprana E, Panigada M, Bernasconi V, Garulli B, Siccardi A, Donatelli I, Castrucci MR. Protective immunity against influenza in HLA-A2 transgenic mice by modified vaccinia virus Ankara vectored vaccines containing internal influenza proteins. Pathog Glob Health 2017; 111:76-82. [PMID: 28079473 PMCID: PMC5375616 DOI: 10.1080/20477724.2016.1275465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The emergence of novel strains of influenza A viruses with hemagglutinins (HAs) that are antigenically distinct from those circulating in humans, and thus have pandemic potential, pose concerns and call for the development of more broadly protective influenza vaccines. In the present study, modified vaccinia virus Ankara (MVA) encoding internal influenza antigens were evaluated for their immunogenicity and ability to protect HLA-A2.1 transgenic (AAD) mice from infection with influenza viruses. METHODS MVAs expressing NP (MVA-NP), M1 (MVA-M1) or polymerase PB1 (MVA-PB1) of A/California/4/09 (CA/09) virus were generated and used to immunize AAD mice. Antibodies and CD8+T cell responses were assessed by ELISA and ELISPOT, respectively, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. RESULTS CD8+T cells specific to immunodominant and subdominant epitopes on the internal influenza proteins were elicited by MVA-based vectors in AAD mice, whereas influenza-specific antibodies were detected only in MVA-NP-immunized mice. Both M1- and NP-based MVA vaccines, regardless of whether they were applied individually or in combination, conferred protection against lethal influenza virus challenge. CONCLUSION Our data further emphasize the promising potential of MVA vector expressing internal antigens toward the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Giuseppina Di Mario
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Ester Sciaraffia
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Marzia Facchini
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Francesco Gubinelli
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Elisa Soprana
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Maddalena Panigada
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | | | - Bruno Garulli
- c Department of Biology and Biotechnology "Charles Darwin" , Sapienza University of Rome , Rome , Italy
| | - Antonio Siccardi
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Isabella Donatelli
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Maria R Castrucci
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
184
|
de Vries RD, Nieuwkoop NJ, Pronk M, de Bruin E, Leroux-Roels G, Huijskens EGW, van Binnendijk RS, Krammer F, Koopmans MPG, Rimmelzwaan GF. Influenza virus-specific antibody dependent cellular cytoxicity induced by vaccination or natural infection. Vaccine 2016; 35:238-247. [PMID: 27914742 DOI: 10.1016/j.vaccine.2016.11.082] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 11/18/2022]
Abstract
Influenza viruses are responsible for substantial morbidity and mortality during seasonal epidemics. Vaccination is the most effective method to prevent infection, however due to antigenic drift of the viral surface protein hemagglutinin (HA), annual influenza virus vaccination is required. In addition to seasonal viruses, certain (avian) influenza A viruses of other subtypes, like H5N1 or H7N9, cause sporadic zoonotic infections. Therefore, the availability of game-changing novel vaccines that induce "universal" immune responses to a wide variety of influenza A virus subtypes is highly desirable. The quest for universal influenza vaccines has fueled the interest in broadly-reactive antibodies specific for the stalk of hemagglutinin (HA) and biological activities of antibodies other than direct virus neutralization, like antibody-dependent cellular cytotoxicity (ADCC). In the present study, we investigated the ADCC response upon influenza virus vaccination and infection in humans using a robust ADCC assay that is based on the use of recombinant HA and a continuous NK cell line that expresses FcγRIII (CD16). This assay offers advantages over existing methods, like ease to perform and possibilities to standardize. We showed that HA-specific ADCC mediating antibodies are induced by vaccination with adjuvanted trivalent seasonal and monovalent H1N1pdm09 inactivated vaccines, and by infection with H1N1pdm09 virus. In addition, the use of chimeric influenza HA with a H1 stem but antigenically irrelevant head domain derived from an avian virus allowed detection of H1-stalk-specific ADCC mediating antibodies. This assay will facilitate the assessment of ADCC mediating serum antibodies after (universal) influenza vaccination or infection and may define ADCC activity as a correlate of (cross-) protection in the future.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Mark Pronk
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Rob S van Binnendijk
- Centers for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | |
Collapse
|
185
|
Mc Mahon A, Martin-Loeches I. The pharmacological management of severe influenza infection - 'existing and emerging therapies'. Expert Rev Clin Pharmacol 2016; 10:81-95. [PMID: 27797595 DOI: 10.1080/17512433.2017.1255550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Over the last century several influenza outbreaks have traversed the globe, most recently the influenza A(H1N1) 2009 pandemic. On each occasion, a highly contagious, virulent pathogen has emerged, leading to significant morbidity and mortality amongst those affected. Areas covered: Early antiviral therapy and supportive care is the mainstay of treatment. Treatment should be started as soon as possible and not delayed for the results of diagnostic testing. Whilst oseltamivir is still the first choice, in case of treatment failure, oseltamivir resistance should be considered, particularly in immunosuppressed patients. Here we review the antivirals currently used for management of influenza and explore a number of investigational agents that may emerge as effective antivirals including parenteral agents, combination antiviral therapy and novel agents in order to adequately target influenza virulence. Expert Commentary: New tools for rapid diagnosis and susceptible strains will help if a patient is not improving because of a resistant strain or an inadequate immune response. Further randomized control trials will be conducted to investigate the use of new antivirals and co-adjuvant therapies that will help to elucidate the process of immune modulation, particularly in immunocompetent patients.
Collapse
Affiliation(s)
- Aisling Mc Mahon
- a Multidisciplinary Intensive Care Research Organization (MICRO) , St James's University Hospital , Dublin , Ireland
| | - Ignacio Martin-Loeches
- a Multidisciplinary Intensive Care Research Organization (MICRO) , St James's University Hospital , Dublin , Ireland.,b Department of Clinical Medicine , Trinity College, Welcome Trust-HRB Clinical Research Facility, St Jame's Hospital , Dublin , Ireland
| |
Collapse
|
186
|
Zheng D, Chen S, Qu D, Chen J, Wang F, Zhang R, Chen Z. Influenza H7N9 LAH-HBc virus-like particle vaccine with adjuvant protects mice against homologous and heterologous influenza viruses. Vaccine 2016; 34:6464-6471. [PMID: 27866773 DOI: 10.1016/j.vaccine.2016.11.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/15/2016] [Accepted: 11/07/2016] [Indexed: 01/31/2023]
Abstract
The long alpha-helix (LAH) region located in influenza virus hemagglutinin (HA) shows conservation among different influenza A strains, which could be used as a candidate target of influenza vaccines. Moreover, the hepatitis B virus core protein (HBc) is a carrier for heterologous epitopes in eliciting effective immune responses. We inserted the LAH region of H7N9 influenza virus into the HBc and prepared the LAH-HBc protein, which were capable of self-assembly into virus-like particles (VLP), by using E. coli expression system. Intranasal immunization of the LAH-HBc VLP in combination with chitosan adjuvant or CTB∗ adjuvant in mice could induce both humoral and cellular immune responses effectively and provide complete protection against lethal challenge of homologous H7N9 virus or heterologous H3N2 virus, as well as partial protection against lethal challenge of heterologous H1N1 virus. These results provide a proof of concept for LAH-HBc VLP vaccine that would be fast and easy to be produced and might be an ideal candidate as a rapid-response tool against a future influenza pandemic.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Chitosan/administration & dosage
- Cross Protection
- Disease Models, Animal
- Drug Carriers
- Epitopes/genetics
- Epitopes/immunology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hepatitis B Core Antigens/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Leukocytes, Mononuclear/immunology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- Dan Zheng
- Shanghai Institute of Biological Products, Shanghai 200052, China
| | - Shaoheng Chen
- Shanghai Institute of Biological Products, Shanghai 200052, China
| | - Di Qu
- Biosafety Level-3 Laboratory, Fudan University, Shanghai 200032, China
| | - Jianjun Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuyan Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ran Zhang
- Medical College, Hunan Normal University, Changsha 410013, China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai 200052, China; Medical College, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
187
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
188
|
Abstract
Seasonal influenza vaccine formulation efforts struggle to keep up with viral antigenic variation. Two studies now report engineered or naturally occurring human antibodies targeting the influenza hemagglutinin (HA) stem, with exceptional neutralizing breadth (Joyce et al., 2016; Kallewaard et al., 2016). Antibodies with similar structural features are elicited in multiple subjects, suggesting that modified vaccine regimens could provide broad protection.
Collapse
Affiliation(s)
| | - Scott D Boyd
- Department of Pathology, Stanford University, CA 94305, USA.
| |
Collapse
|
189
|
Kolpe A, Schepens B, Fiers W, Saelens X. M2-based influenza vaccines: recent advances and clinical potential. Expert Rev Vaccines 2016; 16:123-136. [DOI: 10.1080/14760584.2017.1240041] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Annasaheb Kolpe
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bert Schepens
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Walter Fiers
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
190
|
Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner. mBio 2016; 7:mBio.01624-16. [PMID: 27703076 PMCID: PMC5050345 DOI: 10.1128/mbio.01624-16] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Broadly neutralizing antibodies that recognize the conserved hemagglutinin (HA) stalk have emerged as exciting new biotherapeutic tools to combat seasonal and pandemic influenza viruses. Our general understanding of the mechanisms by which stalk-specific antibodies achieve protection is rapidly evolving. It has recently been demonstrated that broadly neutralizing HA stalk-specific IgG antibodies require Fc-Fcγ receptor (FcγR) interactions for optimal protection in vivo Here we examine the neutrophil effector functions induced by stalk-specific antibodies. As the most abundant subset of blood leukocytes, neutrophils represent a critical innate effector cell population and serve an instrumental role in orchestrating downstream adaptive responses to influenza virus infection. Yet, the interplay of HA stalk-specific IgG, Fc-FcγR engagement, and neutrophils has remained largely uncharacterized. Using an in vitro assay to detect the production of reactive oxygen species (ROS), we show that human and mouse monoclonal HA stalk-specific IgG antibodies are able to induce the production of ROS by neutrophils, while HA head-specific antibodies do not. Furthermore, our results indicate that the production of ROS is dependent on Fc receptor (FcR) engagement and phagocytosis. We went on to assess the ability of monoclonal HA stalk-specific IgA antibodies to induce ROS. Consistent with our findings for monoclonal IgGs, only HA stalk-specific IgA antibodies elicited ROS production by neutrophils. This induction is dependent on the engagement of FcαR1. Taken together, our findings describe a novel FcR-dependent effector function induced by HA stalk-specific IgG and IgA antibodies, and importantly, our studies shed light on the mechanisms by which HA stalk-specific antibodies achieve protection. IMPORTANCE The present study provides evidence that broadly neutralizing HA stalk-specific antibodies induce downstream Fc-mediated neutrophil effector functions. In addition to their ability to neutralize, this class of antibodies has been shown to rely on Fc-Fc receptor interactions for optimal protection in vivo Curiously, neutralizing antibodies that bind the HA head domain do not require such interactions. Our findings build on these previous observations and provide a more complete picture of the relationship between stalk-specific antibodies and cells of the innate immune compartment. Furthermore, our data suggest that the ability of HA stalk-specific antibodies to mediate Fc-Fc receptor engagement is epitope dependent. Overall, this work will inform the rational design of improved influenza virus vaccines and therapeutics.
Collapse
|
191
|
Nachbagauer R, Kinzler D, Choi A, Hirsh A, Beaulieu E, Lecrenier N, Innis BL, Palese P, Mallett CP, Krammer F. A chimeric haemagglutinin-based influenza split virion vaccine adjuvanted with AS03 induces protective stalk-reactive antibodies in mice. NPJ Vaccines 2016; 1. [PMID: 29250436 PMCID: PMC5707880 DOI: 10.1038/npjvaccines.2016.15] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Seasonal influenza virus vaccines are generally effective at preventing disease, but need to be well matched to circulating virus strains for maximum benefit. Influenza viruses constantly undergo antigenic changes because of their high mutation rate in the immunodominant haemagglutinin (HA) head domain, which necessitates annual re-formulation and re-vaccination for continuing protection. In case of pandemic influenza virus outbreaks, new vaccines need to be produced and quickly distributed. Novel influenza virus vaccines that redirect the immune response towards more conserved epitopes located in the HA stalk domain may remove the need for annual vaccine re-formulation and could also protect against emergent pandemic strains to which the human population is immunologically naive. One approach to create such universal influenza virus vaccines is the use of constructs expressing chimeric HAs. By sequential immunization with vaccine strains expressing the same conserved HA stalk domain and exotic HA heads to which the host is naive, antibodies against the stalk can be boosted to high titres. Here we tested a monovalent chimeric HA-based prototype universal influenza virus split virion vaccine candidate with and without AS03 adjuvant in primed mice. We found that the chimeric HA-based vaccination regimen induced higher stalk antibody titres than the seasonal vaccine. The stalk antibody responses were long lasting, cross-reactive to distantly related HAs and provided protection in vivo in a serum transfer challenge model. The results of this study are promising and support further development of a universal influenza vaccine candidate built on the chimeric HA technology platform.
Collapse
Affiliation(s)
- Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David Kinzler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute of Molecular Virology, Center of Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
192
|
Andrews SF, Huang Y, Kaur K, Popova LI, Ho IY, Pauli NT, Henry Dunand CJ, Taylor WM, Lim S, Huang M, Qu X, Lee JH, Salgado-Ferrer M, Krammer F, Palese P, Wrammert J, Ahmed R, Wilson PC. Immune history profoundly affects broadly protective B cell responses to influenza. Sci Transl Med 2016; 7:316ra192. [PMID: 26631631 DOI: 10.1126/scitranslmed.aad0522] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Generating a broadly protective influenza vaccine is critical to global health. Understanding how immune memory influences influenza immunity is central to this goal. We undertook an in-depth study of the B cell response to the pandemic 2009 H1N1 vaccine over consecutive years. Analysis of monoclonal antibodies generated from vaccine-induced plasmablasts demonstrated that individuals with low preexisting serological titers to the vaccinating strain generated a broadly reactive, hemagglutinin (HA) stalk-biased response. Higher preexisting serum antibody levels correlated with a strain-specific HA head-dominated response. We demonstrate that this HA head immunodominance encompasses poor accessibility of the HA stalk epitopes. Further, we show polyreactivity of HA stalk-reactive antibodies that could cause counterselection of these cells. Thus, preexisting memory B cells against HA head epitopes predominate, inhibiting a broadly protective response against the HA stalk upon revaccination with similar strains. Consideration of influenza exposure history is critical for new vaccine strategies designed to elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Sarah F Andrews
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yunping Huang
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kaval Kaur
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA. Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Lyubov I Popova
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Irvin Y Ho
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Noel T Pauli
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA. Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Carole J Henry Dunand
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - William M Taylor
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Samuel Lim
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Min Huang
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Xinyan Qu
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jane-Hwei Lee
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Marlene Salgado-Ferrer
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jens Wrammert
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA. Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
193
|
Unmasking Stem-Specific Neutralizing Epitopes by Abolishing N-Linked Glycosylation Sites of Influenza Virus Hemagglutinin Proteins for Vaccine Design. J Virol 2016; 90:8496-508. [PMID: 27440889 DOI: 10.1128/jvi.00880-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Influenza virus hemagglutinin (HA) protein consists of two components, i.e., a globular head region and a stem region that are folded within six disulfide bonds, plus several N-linked glycans that produce a homotrimeric complex structure. While N-linked glycosylation sites on the globular head are variable among different strains and different subtypes, N-linked glycosylation sites in the stem region are mostly well conserved among various influenza virus strains. Targeting highly conserved HA stem regions has been proposed as a useful strategy for designing universal influenza vaccines. Since the HA stem region is constituted by an HA1 N-terminal part and a full HA2 part, we expressed a series of recombinant HA mutant proteins with deleted N-linked glycosylation sites in the HA1 stem and HA2 stem regions of H5N1 and pH1N1 viruses. Unmasking N-glycans in the HA2 stem region (H5 N484A and H1 N503A) was found to elicit more potent neutralizing antibody titers against homologous, heterologous, and heterosubtypic viruses. Unmasking the HA2 stem N-glycans of H5HA but not H1HA resulted in more CR6261-like and FI6v3-like antibodies and also correlated with the increase of cell fusion inhibition activity in antisera. Only H5 N484A HA2 stem mutant protein immunization increased the numbers of antibody-secreting cells, germinal center B cells, and memory B cells targeting the stem helix A epitopes in splenocytes. Unmasking the HA2 stem N-glycans of H5HA mutant proteins showed a significantly improvement in the protection against homologous virus challenges but did so to a less degree for the protection against heterosubtypic pH1N1 virus challenges. These results may provide useful information for designing more effective influenza vaccines. IMPORTANCE N-linked glycosylation sites in the stem regions of influenza virus hemagglutinin (HA) proteins are mostly well conserved among various influenza virus strains. Targeting highly conserved HA stem regions has been proposed as a useful strategy for designing universal influenza vaccines. Our studies indicate that unmasking the HA2 stem N-glycans of recombinant HA proteins from H5N1 and pH1N1 viruses induced more potent neutralizing antibody titers against homologous and heterosubtypic viruses. However, only immunization with the H5N1 HA2 stem mutant protein can refocus B antibody responses to the helix A epitope for inducing more CR6261-like/FI6v3-like and fusion inhibition antibodies in antisera, resulting in a significant improvement for the protection against lethal H5N1 virus challenges. These results may provide useful information for designing more effective influenza vaccines.
Collapse
|
194
|
Ross TM. Commentary on 'Dissecting the hemagglutinin head and stalk specific IgG antibody response in healthcare workers following pandemic H1N1 vaccination'. NPJ Vaccines 2016; 1:16004. [PMID: 29263850 PMCID: PMC5707889 DOI: 10.1038/npjvaccines.2016.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| |
Collapse
|
195
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
196
|
Dunkle LM, Izikson R. Recombinant hemagglutinin influenza vaccine provides broader spectrum protection. Expert Rev Vaccines 2016; 15:957-66. [DOI: 10.1080/14760584.2016.1203261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lisa M. Dunkle
- Clinical Research, Protein Sciences Corporation, Meriden, CT, USA
| | - Ruvim Izikson
- Clinical Research, Protein Sciences Corporation, Meriden, CT, USA
| |
Collapse
|
197
|
Lee KL, Twyman RM, Fiering S, Steinmetz N. Virus-based nanoparticles as platform technologies for modern vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:554-78. [PMID: 26782096 PMCID: PMC5638654 DOI: 10.1002/wnan.1383] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
Abstract
Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Karin L. Lee
- Department of Biomedical Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
| | | | - Steven Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Nicole Steinmetz
- Departments of Biomedical Engineering, Radiology, Materials Science and Engineering, and Macromolecular Science and Engineering, Case Western Reserve University and Medicine, Cleveland, OH 44106;
| |
Collapse
|
198
|
Ricklin ME, Vielle NJ, Python S, Brechbühl D, Zumkehr B, Posthaus H, Zimmer G, Summerfield A. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies. Front Immunol 2016; 7:253. [PMID: 27446083 PMCID: PMC4928594 DOI: 10.3389/fimmu.2016.00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/13/2016] [Indexed: 11/13/2022] Open
Abstract
This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value.
Collapse
Affiliation(s)
- Meret E Ricklin
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | | | - Sylvie Python
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | - Daniel Brechbühl
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | - Beatrice Zumkehr
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | - Horst Posthaus
- Vetsuisse Faculty, Institute for Animal Pathology, University of Bern , Bern , Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
199
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
200
|
Henry Dunand CJ, Leon PE, Huang M, Choi A, Chromikova V, Ho IY, Tan GS, Cruz J, Hirsh A, Zheng NY, Mullarkey CE, Ennis FA, Terajima M, Treanor JJ, Topham DJ, Subbarao K, Palese P, Krammer F, Wilson PC. Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection. Cell Host Microbe 2016; 19:800-13. [PMID: 27281570 PMCID: PMC4901526 DOI: 10.1016/j.chom.2016.05.014] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/04/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Pathogenic H7N9 avian influenza viruses continue to represent a public health concern, and several candidate vaccines are currently being developed. It is vital to assess if protective antibodies are induced following vaccination and to characterize the diversity of epitopes targeted. Here we characterized the binding and functional properties of twelve H7-reactive human antibodies induced by a candidate A/Anhui/1/2013 (H7N9) vaccine. Both neutralizing and non-neutralizing antibodies protected mice in vivo during passive transfer challenge experiments. Mapping the H7 hemagglutinin antigenic sites by generating escape mutant variants against the neutralizing antibodies identified unique epitopes on the head and stalk domains. Further, the broadly cross-reactive non-neutralizing antibodies generated in this study were protective through Fc-mediated effector cell recruitment. These findings reveal important properties of vaccine-induced antibodies and provide a better understanding of the human monoclonal antibody response to influenza in the context of vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Disease Models, Animal
- Dogs
- Female
- HEK293 Cells
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
Collapse
Affiliation(s)
- Carole J Henry Dunand
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Paul E Leon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Min Huang
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Veronika Chromikova
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irvin Y Ho
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Gene S Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nai-Ying Zheng
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Caitlin E Mullarkey
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francis A Ennis
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Masanori Terajima
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John J Treanor
- Division of Infectious Disease, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - David J Topham
- Center for Vaccine Biology & Immunology, Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20852, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Patrick C Wilson
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|