151
|
Zhao S, Gu Z, Wang L, Guan L, Wang F, Yang N, Luo L, Gao Z, Song Y, Wang L, Liu D, Gao C. G-CSF inhibits LFA-1-mediated CD4 + T cell functions by inhibiting Lck and ZAP-70. Oncotarget 2017; 8:51578-51590. [PMID: 28881670 PMCID: PMC5584271 DOI: 10.18632/oncotarget.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we showed that G-CSF mobilization increased the frequency of T cells, specifically CD3+CD4+ T cells. G-CSF mobilization decreased the secretion of inflammatory cytokines of CD4+ T cells through the LFA-1/ICAM-1 signaling pathway, whereas it did not alter the TH1/TH2 ratio. We found that G-CSF mobilization inhibited LFA-1-mediated CD4+ T cell polarization and motility. In vitro, G-CSF stimulation also attenuated the polarization and adhesiveness of CD4+ T cells through the LFA-1/ICAM-1 interaction. Further investigation revealed that G-CSF mobilization suppressed LFA-1 signaling by down-regulating Lck and ZAP-70 expression in CD4+ T cells, similar results was also confirmed by in-vitro studies. These findings suggested that G-CSF directly suppressed LFA-1-mediated CD4+ T cell functions through the down-regulation of Lck and ZAP-70. The immunosuppressive effect of G-CSF mobilization deepened our understanding about peripheral blood hematopoietic stem cell transplantation. LFA-1/ICMA-1 pathway may become a potential target for graft-versus-host disease prophylaxis.
Collapse
Affiliation(s)
- Shasha Zhao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China.,Medical School, Nankai University, Tianjin 300071, China
| | - Zhenyang Gu
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology and Oncology, Laoshan Branch, No. 401 Hospital of Chinese PLA, Qingdao 266101, China
| | - Lixun Guan
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Feiyan Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Yang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lan Luo
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhe Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingwei Song
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Daihong Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunji Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
152
|
Dougher CWL, Buffone A, Nemeth MJ, Nasirikenari M, Irons EE, Bogner PN, Lau JTY. The blood-borne sialyltransferase ST6Gal-1 is a negative systemic regulator of granulopoiesis. J Leukoc Biol 2017; 102:507-516. [PMID: 28550122 PMCID: PMC5505748 DOI: 10.1189/jlb.3a1216-538rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/25/2022] Open
Abstract
Responding to systemic demands in producing and replenishing end-effector blood cells is predicated on the appropriate delivery and interpretation of extrinsic signals to the HSPCs. The data presented herein implicate the systemic, extracellular form of the glycosyltransferase ST6Gal-1 in the regulation of late-stage neutrophil development. ST6Gal-1 is typically a membrane-bound enzyme sequestered within the intracellular secretory apparatus, but an extracellular form is released into the blood from the liver. Both human and murine HSPCs, upon exposure to extracellular ST6Gal-1 ex vivo, exhibited decreased proliferation, diminished expression of the neutrophilic primary granule protein MPO, and decreased appearance of CD11b+ cells. HSPC suppression was preceded by decreased STAT-3 phosphorylation and diminished C/EBPα expression, without increased apoptosis, indicating attenuated G-CSF receptor signaling. A murine model to raise systemic ST6Gal-1 level was developed to examine the role of the circulatory enzyme in vivo. Our results show that systemic ST6Gal-1 modified the cell surface of the GMP subset of HSPCs and decreased marrow neutrophil reserves. Acute airway neutrophilic inflammation by LPS challenge was used to drive demand for new neutrophil production. Reduced neutrophil infiltration into the airway was observed in mice with elevated circulatory ST6Gal-1 levels. The blunted transition of GMPs into GPs in vitro is consistent with ST6Gal-1-attenuated granulopoiesis. The data confirm that circulatory ST6Gal-1 is a negative systemic regulator of granulopoiesis and moreover suggest a clinical potential to limit the number of inflammatory cells by manipulating blood ST6Gal-1 levels.
Collapse
Affiliation(s)
| | - Alexander Buffone
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Mehrab Nasirikenari
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| | - Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| |
Collapse
|
153
|
Bigler J, Boedigheimer M, Schofield JPR, Skipp PJ, Corfield J, Rowe A, Sousa AR, Timour M, Twehues L, Hu X, Roberts G, Welcher AA, Yu W, Lefaudeux D, Meulder BD, Auffray C, Chung KF, Adcock IM, Sterk PJ, Djukanović R. A Severe Asthma Disease Signature from Gene Expression Profiling of Peripheral Blood from U-BIOPRED Cohorts. Am J Respir Crit Care Med 2017; 195:1311-1320. [PMID: 27925796 DOI: 10.1164/rccm.201604-0866oc] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Stratification of asthma at the molecular level, especially using accessible biospecimens, could greatly enable patient selection for targeted therapy. OBJECTIVES To determine the value of blood analysis to identify transcriptional differences between clinically defined asthma and nonasthma groups, identify potential patient subgroups based on gene expression, and explore biological pathways associated with identified differences. METHODS Transcriptomic profiles were generated by microarray analysis of blood from 610 patients with asthma and control participants in the U-BIOPRED (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes) study. Differentially expressed genes (DEGs) were identified by analysis of variance, including covariates for RNA quality, sex, and clinical site, and Ingenuity Pathway Analysis was applied. Patient subgroups based on DEGs were created by hierarchical clustering and topological data analysis. MEASUREMENTS AND MAIN RESULTS A total of 1,693 genes were differentially expressed between patients with severe asthma and participants without asthma. The differences from participants without asthma in the nonsmoking severe asthma and mild/moderate asthma subgroups were significantly related (r = 0.76), with a larger effect size in the severe asthma group. The majority of, but not all, differences were explained by differences in circulating immune cell populations. Pathway analysis showed an increase in chemotaxis, migration, and myeloid cell trafficking in patients with severe asthma, decreased B-lymphocyte development and hematopoietic progenitor cells, and lymphoid organ hypoplasia. Cluster analysis of DEGs led to the creation of subgroups among the patients with severe asthma who differed in molecular responses to oral corticosteroids. CONCLUSIONS Blood gene expression differences between clinically defined subgroups of patients with asthma and individuals without asthma, as well as subgroups of patients with severe asthma defined by transcript profiles, show the value of blood analysis in stratifying patients with asthma and identifying molecular pathways for further study. Clinical trial registered with www.clinicaltrials.gov (NCT01982162).
Collapse
Affiliation(s)
| | | | - James P R Schofield
- 3 Centre for Biological Sciences, Southampton University, Southampton, United Kingdom
| | - Paul J Skipp
- 3 Centre for Biological Sciences, Southampton University, Southampton, United Kingdom
| | - Julie Corfield
- 4 AstraZeneca R&D, Molndal, Sweden.,5 Areteva R&D, Nottingham, United Kingdom
| | - Anthony Rowe
- 6 Janssen Research and Development, High Wycombe, United Kingdom
| | - Ana R Sousa
- 7 Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom
| | | | | | - Xuguang Hu
- 8 Amgen Inc., South San Francisco, California
| | - Graham Roberts
- 9 Respiratory Biomedical Research Unit, Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | | | - Wen Yu
- 1 Amgen Inc., Seattle, Washington
| | - Diane Lefaudeux
- 10 European Institute for Systems Biology and Medicine, Centre National de la Recherche Scientifique, Lyon, France
| | - Bertrand De Meulder
- 10 European Institute for Systems Biology and Medicine, Centre National de la Recherche Scientifique, Lyon, France
| | - Charles Auffray
- 10 European Institute for Systems Biology and Medicine, Centre National de la Recherche Scientifique, Lyon, France
| | - Kian F Chung
- 11 National Heart & Lung Institute, Imperial College & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; and
| | - Ian M Adcock
- 11 National Heart & Lung Institute, Imperial College & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; and
| | - Peter J Sterk
- 12 Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Ratko Djukanović
- 9 Respiratory Biomedical Research Unit, Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | | |
Collapse
|
154
|
Map3k8 controls granulocyte colony-stimulating factor production and neutrophil precursor proliferation in lipopolysaccharide-induced emergency granulopoiesis. Sci Rep 2017; 7:5010. [PMID: 28694430 PMCID: PMC5503936 DOI: 10.1038/s41598-017-04538-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/17/2017] [Indexed: 01/15/2023] Open
Abstract
Map3k8 has been proposed as a useful target for the treatment of inflammatory diseases. We show here that during lipopolysaccharide-induced emergency granulopoiesis, Map3k8 deficiency strongly impairs the increase in circulating mature (Ly6GhighCD11b+) and immature (Ly6GlowCD11b+) neutrophils. After chimaeric bone marrow (BM) transplantation into recipient Map3k8−/− mice, lipopolysaccharide treatment did not increase circulating Ly6GhighCD11b+ cells and strongly decreased circulating Ly6GlowCD11b+ cells. Lipopolysaccharide-treated Map3k8−/− mice showed decreased production of granulocyte colony-stimulating factor (G-CSF), a key factor in neutrophil expansion, and a Map3k8 inhibitor blocked lipopolysaccharide-mediated G-CSF expression in endothelial cell lines. Ly6GlowCD11b+ BM cells from lipopolysaccharide-treated Map3k8−/− mice displayed impaired expression of CCAAT-enhancer-binding protein β, which depends on G-CSF for expression and is crucial for cell cycle acceleration in this life-threatening condition. Accordingly, lipopolysaccharide-treated Map3k8−/− mice showed decreased Ly6GlowCD11b+ BM cell proliferation, as evidenced by a decrease in the percentage of the most immature precursors, which have the highest proliferation capacity among this cell population. Thus, Map3k8 expression by non-haematopoietic tissue is required for lipopolysaccharide-induced emergency granulopoiesis. The novel observation that inhibition of Map3k8 activity decreases neutrophilia during life-threatening systemic infection suggests a possible risk in the proposed use of Map3k8 blockade as an anti-inflammatory therapy.
Collapse
|
155
|
Aqmasheh S, Shamsasanjan K, Akbarzadehlaleh P, Pashoutan Sarvar D, Timari H. Effects of Mesenchymal Stem Cell Derivatives on Hematopoiesis and Hematopoietic Stem Cells. Adv Pharm Bull 2017; 7:165-177. [PMID: 28761818 PMCID: PMC5527230 DOI: 10.15171/apb.2017.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is a balance among quiescence, self-renewal, proliferation, and differentiation, which is believed to be firmly adjusted through interactions between hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This microenvironment is derived from a common progenitor of mesenchymal origin and its signals should be capable of regulating the cellular memory of transcriptional situation and lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells can support hematopoiesis through release various molecules that play a crucial role in migration, homing, self-renewal, proliferation, and differentiation of HSPCs. Studies on the effects of MSCs on HSPC differentiation can develop modern solutions in the treatment of patients with hematologic disorders for more effective Bone Marrow (BM) transplantation in the near future. However, considerable challenges remain on realization of how paracrine mechanisms of MSCs act on the target tissues, and how to design a therapeutic regimen with various paracrine factors in order to achieve optimal results for tissue conservation and regeneration. The aim of this review is to characterize and consider the related aspects of the ability of MSCs secretome in protection of hematopoiesis.
Collapse
Affiliation(s)
- Sara Aqmasheh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasanjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamze Timari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
156
|
Bukowska-Strakova K, Ciesla M, Szade K, Nowak WN, Straka R, Szade A, Tyszka-Czochara M, Najder K, Konturek A, Siedlar M, Dulak J, Jozkowicz A. Reprint of: Heme oxygenase 1 affects granulopoiesis in mice through control of myelocyte proliferation. Immunobiology 2017; 222:846-857. [PMID: 28576353 DOI: 10.1016/j.imbio.2017.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022]
Abstract
Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPβ (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPβ expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPβ protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.
Collapse
Affiliation(s)
- Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Ciesla
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold Norbert Nowak
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Straka
- AGH University of Science and Technology, Faculty of Metal Engineering and Industrial Computer Science, Department of Heat Engineering and Environment Protection, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Tyszka-Czochara
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Najder
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Konturek
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
157
|
Characterization of the leukemogenic potential of distal cytoplasmic CSF3R truncation and missense mutations. Leukemia 2017; 31:2752-2760. [PMID: 28439110 PMCID: PMC5682244 DOI: 10.1038/leu.2017.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/09/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022]
Abstract
An increasing number of variants of unknown significance (VUS) are being identified in leukemia patients with the application of deep sequencing and these include CSF3R cytoplasmic mutations. Previous studies have demonstrated oncogenic potential of certain CSF3R truncation mutations prior to internalization motifs. However, the oncogenic potential of truncating the more distal region of CSF3R cytoplasmic domain as well as cytoplasmic missense mutations remains uncharacterized. Here we identified that CSF3R distal cytoplasmic truncation mutations (Q793–Q823) also harbored leukemogenic potential. Mechanistically, these distal cytoplasmic truncation mutations demonstrated markedly decreased receptor degradation, probably due to loss of the de-phosphorylation domain (residues N818–F836). Furthermore, all truncations prior to Q823 demonstrated increased expression of the higher molecular weight CSF3R band, which is shown to be essential for the receptor surface expression and the oncogenic potential. We further demonstrated that sufficient STAT5 activation is essential for oncogenic potential. In addition, CSF3R K704A demonstrated transforming capacity due to interruption of receptor ubiquitination and degradation. In summary, we have expanded the region of the CSF3R cytoplasmic domain in which truncation or missense mutations exhibit leukemogenic capacity, which will be useful for evaluating the relevance of CSF3R mutations in patients and helpful in defining targeted therapy strategies.
Collapse
|
158
|
Ibusuki R, Uto H, Oda K, Ohshige A, Tabu K, Mawatari S, Kumagai K, Kanmura S, Tamai T, Moriuchi A, Tsubouchi H, Ido A. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis. PLoS One 2017; 12:e0174913. [PMID: 28403148 PMCID: PMC5389644 DOI: 10.1371/journal.pone.0174913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP)-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1. METHODS Transgenic (TG) mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT) mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro. RESULTS After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro. CONCLUSIONS HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.
Collapse
Affiliation(s)
- Rie Ibusuki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Hirofumi Uto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Digestive and Liver Diseases, Miyazaki Medical Center Hospital, Miyazaki, Japan
- * E-mail:
| | - Kohei Oda
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiko Ohshige
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuaki Tabu
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tsutomu Tamai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Moriuchi
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirohito Tsubouchi
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Kagoshima City Hospital, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
159
|
Mature CD10+ and immature CD10− neutrophils present in G-CSF–treated donors display opposite effects on T cells. Blood 2017; 129:1343-1356. [DOI: 10.1182/blood-2016-04-713206] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023] Open
Abstract
Key Points
CD10 as a marker discriminating mature from immature neutrophils within heterogeneous neutrophil populations in pathological settings. Immunosuppressive mature CD66b+CD10+ and immunostimulatory immature CD66b+CD10− neutrophils coexist in G-CSF–treated donors.
Collapse
|
160
|
Netherby CS, Abrams SI. Mechanisms overseeing myeloid-derived suppressor cell production in neoplastic disease. Cancer Immunol Immunother 2017; 66:989-996. [PMID: 28224211 DOI: 10.1007/s00262-017-1963-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/27/2017] [Indexed: 01/04/2023]
Abstract
Perturbations in myeloid cell differentiation are common in neoplasia, culminating in immature populations known as myeloid-derived suppressor cells (MDSCs). MDSCs favor tumor progression due to their ability to suppress host immunity or promote invasion and metastasis. They are thought to originate from the bone marrow as a result of exposure to stromal- or circulating tumor-derived factors (TDFs). Although great interest has been placed on understanding how MDSCs function, less is known regarding how MDSCs develop at a transcriptional level. Our work explores the premise that MDSCs arise because cancer cells, through the production of certain TDFs, inhibit the expression of interferon regulatory factor-8 (IRF8) that is ordinarily essential for controlling fundamental properties of myeloid cell differentiation. Our interest in IRF8 has been based on the following rationale. First, it is well-recognized that IRF8 is a 'master regulator' of normal myelopoiesis, critical not only for producing monocytes, dendritic cells (DCs), and neutrophils, but also for controlling the balance of all three major myeloid cell types. This became quite evident in IRF8-/- mice, whereby the loss of IRF8 leads to a disproportionate accumulation of neutrophils at the expense of monocytes and DCs. Second, we showed that such myeloid populations from IRF8-/- mice exhibit similar characteristics to MDSCs from tumor-bearing mice. Third, in a reciprocal fashion, we showed that enforced expression of IRF8 in the myeloid system significantly mitigates tumor-induced MDSC accumulation and improves immunotherapy efficacy. Altogether, these observations support the hypothesis that IRF8 is an integral negative regulator of MDSC biology.
Collapse
Affiliation(s)
- Colleen S Netherby
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
161
|
Kotzur T, Benavides-Garcia R, Mecklenburg J, Sanchez JR, Reilly M, Hermann BP. Granulocyte colony-stimulating factor (G-CSF) promotes spermatogenic regeneration from surviving spermatogonia after high-dose alkylating chemotherapy. Reprod Biol Endocrinol 2017; 15:7. [PMID: 28077131 PMCID: PMC5225630 DOI: 10.1186/s12958-016-0226-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The lifesaving chemotherapy and radiation treatments that allow patients to survive cancer can also result in a lifetime of side-effects, including male infertility. Infertility in male cancer survivors is thought to primarily result from killing of the spermatogonial stem cells (SSCs) responsible for producing spermatozoa since SSCs turn over slowly and are thereby sensitive to antineoplastic therapies. We previously demonstrated that the cytokine granulocyte colony-stimulating factor (G-CSF) can preserve spermatogenesis after alkylating chemotherapy (busulfan). METHODS Male mice were treated with G-CSF or controls before and/or after sterilizing busulfan treatment and evaluated immediately or 10-19 weeks later for effects on spermatogenesis. RESULTS We demonstrated that the protective effect of G-CSF on spermatogenesis was stable for at least 19 weeks after chemotherapy, nearly twice as long as previously shown. Further, G-CSF treatment enhanced spermatogenic measures 10 weeks after treatment in the absence of a cytotoxic insult, suggesting G-CSF acts as a mitogen in steady-state spermatogenesis. In agreement with this conclusion, G-CSF treatment for 3 days before busulfan treatment exacerbated the loss of spermatogenesis observed with G-CSF alone. Reciprocally, spermatogenic recovery was modestly enhanced in mice treated with G-CSF for 4 days after busulfan. These results suggested that G-CSF promoted spermatogonial proliferation, leading to enhanced spermatogenic regeneration from surviving SSCs. Similarly, there was a significant increase in proportion of PLZF+ undifferentiated spermatogonia that were Ki67+ (proliferating) 1 day after G-CSF treatment. CONCLUSIONS Together, these results clarify that G-CSF protects spermatogenesis after alkylating chemotherapy by stimulating proliferation of surviving spermatogonia, and indicate it may be useful as a retrospective fertility-restoring treatment.
Collapse
Affiliation(s)
- Travis Kotzur
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Roberto Benavides-Garcia
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Jennifer Mecklenburg
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Jamila R. Sanchez
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Matthew Reilly
- Departments of Biomedical Engineering and Ophthalmology, The Ohio State University, 1080 Carmack Road, Columbus, OH 43210 USA
| | - Brian P. Hermann
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| |
Collapse
|
162
|
Yao H, Ma Y, Hong Z, Zhao L, Monaghan SA, Hu MC, Huang LJ. Activating JAK2 mutants reveal cytokine receptor coupling differences that impact outcomes in myeloproliferative neoplasm. Leukemia 2017; 31:2122-2131. [PMID: 28057939 PMCID: PMC5589508 DOI: 10.1038/leu.2017.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, yet constitutively active JAK2 mutants are able to drive selective expansion of particular lineage(s) in myeloproliferative neoplasm (MPN). The molecular basis of lineage specificity is unclear. Here, we show that three activating JAK2 mutants with similar kinase activities in vitro elicit distinctive MPN phenotypes in mice by differentially expanding erythroid vs granulocytic precursors. Molecularly, this reflects the differential binding of JAK2 mutants to cytokine receptors EpoR and GCSFR in the erythroid vs granulocytic lineage and the creation of unique receptor/JAK2 complexes that generate qualitatively distinct downstream signals. Our results demonstrate that activating JAK2 mutants can differentially couple to selective cytokine receptors and change the signaling repertoire, revealing the molecular basis for phenotypic differences elicited by JAK2 (V617F) or mutations in exon 12. On the basis of these findings, receptor-JAK2 interactions could represent new targets of lineage-specific therapeutic approaches against MPN, which may be applicable to other cancers with aberrant JAK-STAT signaling.
Collapse
Affiliation(s)
- H Yao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Y Ma
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Z Hong
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S A Monaghan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M-C Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L J Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
163
|
Hatfield KJ, Melve GK, Bruserud Ø. Granulocyte colony-stimulating factor alters the systemic metabolomic profile in healthy donors. Metabolomics 2017; 13:2. [PMID: 27980502 PMCID: PMC5126202 DOI: 10.1007/s11306-016-1139-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Peripheral blood stem cells mobilized by granulocyte colony-stimulating factor (G-CSF) from healthy donors are commonly used for allogeneic stem cell transplantation. The effect of G-CSF administration on global serum metabolite profiles has not been investigated before. OBJECTIVES This study aims to examine the systemic metabolomic profiles prior to and following administration of G-CSF in healthy adults. METHODS Blood samples were collected from 15 healthy stem cell donors prior to and after administration of G-CSF 10 µg/kg/day for 4 days. Using a non-targeted metabolomics approach, metabolite levels in serum were determined using ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography/mass spectrometry. RESULTS Comparison of the metabolite profiles of donors before and after G-CSF treatment revealed 239 metabolites that were significantly altered. The major changes of the metabolite profiles following G-CSF administration included alteration of several fatty acids, including increased levels of several medium and long-chain fatty acids, as well as polyunsaturated fatty acids; while there were lower levels of other lipid metabolites such as phospholipids, lysolipids, sphingolipids. Furthermore, there were significantly lower levels of several amino acids and/or their metabolites, including several amino acids with known immunoregulatory functions (methionine, tryptophan, valine). Lastly, the levels of several nucleotides and nucleotide metabolites (guanosine, adenosine, inosine) were also decreased after G-CSF administration, while methylated products were increased. Some of these altered products/metabolites may potentially have angioregulatory effects whereas others may suggest altered intracellular epigenetic regulation. CONCLUSION Our results show that G-CSF treatment alters biochemical serum profiles, in particular amino acid, lipid and nucleotide metabolism. Additional studies are needed to further evaluate the relevance of these changes in healthy donors.
Collapse
Affiliation(s)
- Kimberley Joanne Hatfield
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Guro Kristin Melve
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
164
|
Kiafar F, Siahi Shadbad MR, Valizadeh H. Filgrastim (G-CSF) loaded liposomes: mathematical modeling and optimization of encapsulation efficiency and particle size. ACTA ACUST UNITED AC 2016; 6:195-201. [PMID: 28265535 PMCID: PMC5326667 DOI: 10.15171/bi.2016.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/20/2016] [Accepted: 11/06/2016] [Indexed: 11/09/2022]
Abstract
![]()
Introduction: Optimization of filgrastim (G-CSF) (granulocyte colony stimulating factor) liposomes formulation prepared by the method of film hydration was the aim of this research.
Methods: To study the independent variables effects in the development of filgrastim (G-CSF) liposomes, method of factorial design was applied. The molar ratio of dipalmitoyl phophatidylcholine (DPPC) per cholesterol (Chol.) and hydration time were chosen as two independent factors. The dependent variables were encapsulation efficiency percent (EE %) and particle size (PS). Ultrafiltration method was applied for separation of un-encapsulated protein. RP-HPLC method was employed for analysis of G-CSF.
Results: Application of response surface methodology (RSM) in formulation of filgrastim liposomes and the obtained results for responses including particle size and EE % showed that the main effective independent variable was DPPC/Chol molar ratio. Different impacts of influencing parameters including interaction and individual effects were checked employing a mathematical method for obtaining desired liposomes. Optimum liposomal formulations were established using this method for enhancing their characteristics. Average percent errors (APEs) were 3.86% and 3.27% for predicting EE % and PS, respectively which reflect high model ability in this regard.
Conclusion: It is concluded that observed and predicted values regarding PS and EE % were consistent and this model is efficient enough in prediction of the mentioned characteristics while preparing filgrastim (G-CSF) liposomes.
Collapse
Affiliation(s)
- Farhad Kiafar
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Valizadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
165
|
Saleh M, Shamsasanjan K, Movassaghpour AA, Akbarzadehlaleh P, Molaeipour Z. Inhibitory Effect of Mesenchymal Stem Cell Co-Culture on Erythroid Differentiation of K562 Cells Compared to The Control Group. CELL JOURNAL 2016; 19:127-136. [PMID: 28367423 PMCID: PMC5241509 DOI: 10.22074/cellj.2016.4133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/12/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Bone marrow mesenchymal stem cells (BMMSCs) reside in the bone marrow and control the process of hematopoiesis. They are an excellent instrument for regenerative treatment and co-culture with hematopoietic stem cells (HSCs). MATERIALS AND METHODS In this experimental study, K562 cell lines were either treated with butyric acid and co-cultured with MSCs, or cultivated in a conditioned medium from MSCs plus butyric acid for erythroid differentiation. We used the trypan blue dye exclusion assay to determine cell counts and viability in each group. For each group, we separately assessed erythroid differentiation of the K562 cell line with Giemsa stain under light microscopy, expression of specific markers of erythroid cells by flowcytometry, and erythroidspecific gene expressions by real-time polymerase chain reaction (RT-PCR). RESULTS There was enhandced erythroid differentiation of K562 cells with butyric acid compared to the K562 cell line co-cultured with MSCs and butyric acid. Erythroid differentiation of the K562 cell line cultivated in conditioned medium with butyric acid was higher than the K562 cell line co-cultured with MSCs and butyric acid, but less than K562 cell line treated with butyric acid only. CONCLUSION Our results showed that MSCs significantly suppressed erythropoiesis. Therefore, MSCs would not be a suitable optimal treatment strategy for patients with erythroid leukemia.
Collapse
Affiliation(s)
- Mahshid Saleh
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasanjan
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parvin Akbarzadehlaleh
- Department of Pharmacutical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Molaeipour
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
166
|
Gavioli E, Abrams M. Prevention of granulocyte-colony stimulating factor (G-CSF) induced bone pain using double histamine blockade. Support Care Cancer 2016; 25:817-822. [PMID: 27817104 DOI: 10.1007/s00520-016-3465-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Febrile neutropenia (FN) is an oncological emergency that may reduce patient survival due to chemotherapy dose delays or reductions. It is recommended that patients at risk for FN receive prophylaxis with granulocyte-colony stimulating factor (G-CSF). Bone pain is a common side effect through a mechanism not fully understood. It is thought to be due to histamine release from an inflammatory response. METHODS This was a retrospective cohort from January to November 2015. Oncology patients receiving an initial dose of G-CSFs rated their bone pain on a 0-10 scale prior to starting each cycle of chemotherapy and at least 1 day after G-CSF had been given. Those who developed bone pain received prophylaxis at their next G-CSF dose with a combination of famotidine and loratadine. The primary endpoint was to determine the analgesic effects of double histamine blockade for G-CSF induced bone pain. The secondary endpoint was to determine potential risk factors for the development of bone pain. RESULTS Thirty percent of patients developed bone pain within this cohort, and 17 patients were included in the final analysis. Bone pain scores were lower by a mean of 1.21[(0.20-2.23), p = 0.019] in patients who were prophylaxed with the double histamine blockade. Type of cancer, treatment, age, and BMI were not significant predictors of bone pain. CONCLUSION The use of a double histamine blockade is an inexpensive, safe, and effective way to alleviate bone pain symptoms secondary to G-CSF agents. Further investigation is warranted for prospective larger studies to confirm these results.
Collapse
Affiliation(s)
- Elizabeth Gavioli
- Department of Pharmacy, Indiana University Health, 601 W. Second St., Bloomington, IN, 47403, USA.
| | - Misty Abrams
- Indiana University Health Cancer Care Infusion, 508 W. 2nd St., Bloomington, IN, 47403, USA.,Indiana University Health Infusion Therapy, 601 W 2nd St., Bloomington, IN, 47403, USA
| |
Collapse
|
167
|
Li L, Qi X, Sun W, Abdel-Azim H, Lou S, Zhu H, Prasadarao NV, Zhou A, Shimada H, Shudo K, Kim YM, Khazal S, He Q, Warburton D, Wu L. Am80-GCSF synergizes myeloid expansion and differentiation to generate functional neutrophils that reduce neutropenia-associated infection and mortality. EMBO Mol Med 2016; 8:1340-1359. [PMID: 27737899 PMCID: PMC5090663 DOI: 10.15252/emmm.201606434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neutrophils generated by granulocyte colony‐stimulating factor (GCSF) are functionally immature and, consequently, cannot effectively reduce infection and infection‐related mortality in cancer chemotherapy‐induced neutropenia (CCIN). Am80, a retinoic acid (RA) agonist that enhances granulocytic differentiation by selectively activating transcription factor RA receptor alpha (RARα), alternatively promotes RA‐target gene expression. We found that in normal and malignant primary human hematopoietic specimens, Am80‐GCSF combination coordinated proliferation with differentiation to develop complement receptor‐3 (CR3)‐dependent neutrophil innate immunity, through altering transcription of RA‐target genes RARβ2,C/EBPε, CD66,CD11b, and CD18. This led to generation of functional neutrophils capable of fighting infection, whereas neutralizing neutrophil innate immunity with anti‐CD18 antibody abolished neutrophil bactericidal activities induced by Am80‐GCSF. Further, Am80‐GCSF synergy was evaluated using six different dose‐schedule‐infection mouse CCIN models. The data demonstrated that during “emergency” granulopoiesis in CCIN mice undergoing transient systemic intravenous bacterial infection, Am80 effect on differentiating granulocytic precursors synergized with GCSF‐dependent myeloid expansion, resulting in large amounts of functional neutrophils that reduced infection. Importantly, extensive survival tests covering a full cycle of mouse CCIN with perpetual systemic intravenous bacterial infection proved that without causing myeloid overexpansion, Am80‐GCSF generated sufficient numbers of functional neutrophils that significantly reduced infection‐related mortality in CCIN mice. These findings reveal a differential mechanism for generating functional neutrophils to reduce CCIN‐associated infection and mortality, providing a rationale for future therapeutic approaches.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotian Qi
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Weili Sun
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Hisham Abdel-Azim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Siyue Lou
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Hong Zhu
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Nemani V Prasadarao
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA.,Division of Infectious Diseases, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Alice Zhou
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Hiroyuki Shimada
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Koichi Shudo
- Japan Pharmaceutical Information Center, Shibuya-ku, Tokyo, Japan
| | - Yong-Mi Kim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Sajad Khazal
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Lingtao Wu
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA .,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
168
|
Bukowska-Strakova K, Ciesla M, Szade K, Nowak WN, Straka R, Szade A, Tyszka-Czochara M, Najder K, Konturek A, Siedlar M, Dulak J, Jozkowicz A. Heme oxygenase 1 affects granulopoiesis in mice through control of myelocyte proliferation. Immunobiology 2016; 222:506-517. [PMID: 27817989 DOI: 10.1016/j.imbio.2016.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPβ (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPβ expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPβ protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.
Collapse
Affiliation(s)
- Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Ciesla
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold Norbert Nowak
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Straka
- AGH University of Science and Technology, Faculty of Metal Engineering and Industrial Computer Science, Department of Heat Engineering and Environment Protection, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Tyszka-Czochara
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Najder
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Konturek
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
169
|
Ferdous F, Saski C, Bridges W, Burns M, Dunn H, Elliott K, Scott TR. Transcriptome Profile of the Chicken Thrombocyte: New Implications as an Advanced Immune Effector Cell. PLoS One 2016; 11:e0163890. [PMID: 27711235 PMCID: PMC5053482 DOI: 10.1371/journal.pone.0163890] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/18/2016] [Indexed: 12/30/2022] Open
Abstract
Thrombocytes are nucleated platelets involved in immune functions such as pathogen recognition and release of pro-inflammatory bioactive compounds when exposed to bacterial and viral molecules. However, the complete role of these cells in innate and adaptive immune responses is not understood, and little is known about their biology at the molecular-genetic level. Highly sensitive RNA-sequencing technologies were used to analyze the complete transcriptome of thrombocytes for the first time with analytical resolution focused on cell-based components of the immune system/response. Amongst all the genes listed in the current chicken genome assembly, 10,041 gene transcripts were found in the chicken thrombocyte. After 1-hour in vitro stimulation with lipopolysaccharide (LPS, Salmonella minnesota), 490 genes were upregulated and 359 genes were downregulated, respectively, with at least a 1-fold change relative to unexposed thrombocytes. Additionally, by constructing a de novo assembly, we were able to identify a total of 3,030 novel genes in the thrombocyte transcriptome. The information generated here is useful in development of novel solutions to lower the economic burden and zoonotic threat that accompanies infectious diseases for birds and fish. In addition, the resources created here have translational utility as a model system to find orthologous genes and genes related to its enucleated counterpart, the platelet.
Collapse
Affiliation(s)
- Farzana Ferdous
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Christopher Saski
- Clemson University Genomics Institute, Clemson University, Clemson, South Carolina, United States of America
| | - William Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Matthew Burns
- Clemson Cooperative Extension, Clemson University, Clemson, South Carolina, United States of America
| | - Heather Dunn
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kathryn Elliott
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Thomas R. Scott
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
170
|
Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev 2016; 31:1-15. [PMID: 27185365 PMCID: PMC5050093 DOI: 10.1016/j.cytogfr.2016.05.001] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022]
Abstract
The transcriptional regulator STAT3 has key roles in vertebrate development and mature tissue function including control of inflammation and immunity. Mutations in human STAT3 associate with diseases such as immunodeficiency, autoimmunity and cancer. Strikingly, however, either hyperactivation or inactivation of STAT3 results in human disease, indicating tightly regulated STAT3 function is central to health. Here, we attempt to summarize information on the numerous and distinct biological actions of STAT3, and highlight recent discoveries, with a specific focus on STAT3 function in the immune and hematopoietic systems. Our goal is to spur investigation on mechanisms by which aberrant STAT3 function drives human disease and novel approaches that might be used to modulate disease outcome.
Collapse
Affiliation(s)
- Emily J Hillmer
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
171
|
Abstract
PURPOSE OF REVIEW During severe systemic infection, steady-state hematopoiesis is switched to demand-adapted myelopoiesis, leading to increased myeloid progenitor proliferation and, depending on the context and type of pathogen, enhanced granulocytic or monocytic differentiation, respectively. We will review the recent advances in understanding direct and indirect mechanisms by which different pathogen signals are detected and subsequently translated into demand-adapted myelopoiesis. RECENT FINDINGS Enhanced myeloid progenitor proliferation and neutrophil differentiation following infection with prototypic Gram-negative bacterium Escherichia coli is mediated by granulocyte colony-stimulating factor, and reactive oxygen species released from endothelial cells and mature myeloid cells, respectively. Furthermore, hematopoietic stem and progenitor cells directly sense pathogen signals via Toll-like receptors and contribute to emergency granulopoiesis via release and subsequent autocrine and paracrine action of myelopoietic cytokines including IL-6. Moreover, emergency monocytopoiesis upon viral infection depends on T cell-derived IFNγ and release of IL-6 from bone marrow stromal cells. SUMMARY A complex picture is evolving in which various hematopoietic and nonhematopoietic cell types interact with the hematopoietic system in an intricate manner to shape an appropriate hematopoietic response to specific infectious stimuli.
Collapse
|
172
|
Pedersen CC, Borup R, Fischer-Nielsen A, Mora-Jensen H, Fossum A, Cowland JB, Borregaard N. Changes in Gene Expression during G-CSF-Induced Emergency Granulopoiesis in Humans. THE JOURNAL OF IMMUNOLOGY 2016; 197:1989-99. [PMID: 27481851 DOI: 10.4049/jimmunol.1502690] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/27/2016] [Indexed: 12/30/2022]
Abstract
Emergency granulopoiesis refers to the increased production of neutrophils in bone marrow and their release into circulation induced by severe infection. Several studies point to a critical role for G-CSF as the main mediator of emergency granulopoiesis. However, the consequences of G-CSF stimulation on the transcriptome of neutrophils and their precursors have not yet been investigated in humans. In this work, we examine the changes in mRNA expression induced by administration of G-CSF in vivo, as a model of emergency granulopoiesis in humans. Blood samples were collected from healthy individuals after 5 d of G-CSF administration. Neutrophil precursors were sorted into discrete stages of maturation by flow cytometry, and RNA was subjected to microarray analysis. mRNA levels were compared with previously published expression levels in corresponding populations of neutrophil precursors isolated from bone marrow of untreated, healthy individuals. One thousand one hundred and ten mRNAs were differentially expressed >2-fold throughout terminal granulopoiesis. Major changes were seen in pathways involved in apoptosis, cytokine signaling, and TLR pathways. In addition, G-CSF treatment reduced the levels of four of five measured granule proteins in mature neutrophils, including the proantibacterial protein hCAP-18, which was completely deficient in neutrophils from G-CSF-treated donors. These results indicate that multiple biological processes are altered to satisfy the increased demand for neutrophils during G-CSF-induced emergency granulopoiesis in humans.
Collapse
Affiliation(s)
- Corinna C Pedersen
- Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Rehannah Borup
- Center for Genomic Medicine, National University Hospital, DK-2100 Copenhagen, Denmark
| | - Anne Fischer-Nielsen
- Department of Clinical Immunology, Cell Therapy Facility, National University Hospital, DK-2100 Copenhagen, Denmark; and
| | - Helena Mora-Jensen
- Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Anna Fossum
- Biotech and Research Innovation Centre, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jack B Cowland
- Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Niels Borregaard
- Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| |
Collapse
|
173
|
Nojiri T, Hosoda H, Zenitani M, Tokudome T, Kimura T, Miura K, Miyazato M, Okumura M, Kangawa K. Atrial natriuretic peptide protects against cisplatin-induced granulocytopenia. Cancer Chemother Pharmacol 2016; 78:191-7. [PMID: 27286997 DOI: 10.1007/s00280-016-3075-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Granulocytopenia is the major toxicity associated with cisplatin treatment. Atrial natriuretic peptide (ANP) is a cardiac hormone used clinically for the treatment of acute heart failure in Japan. ANP exerts a wide range of protective effects on various organs, including the heart, blood vessels, lungs, and kidneys. This study's objective was to investigate the protective effects of ANP on cisplatin-induced granulocytopenia in mice. METHODS The mice were divided into two groups: cisplatin with vehicle and cisplatin with ANP. ANP (1.5 μg/kg/min via osmotic pump, subcutaneously) or vehicle administration was started 1 day before cisplatin injection until the mice were killed. At 0, 2, 4, 8, and 14 days after cisplatin injection (16 mg/kg, intraperitoneally as a single dose), the white blood cell, red blood cell, and platelet counts were measured in the peripheral blood in both groups. The numbers of total and live cells and colony-forming unit-granulocyte-macrophage (CFU-GM) colonies in the bone marrow of the mice were also examined. In addition, at 0, 0.5, 1, and 2 days after cisplatin injection, serum granulocyte colony-stimulating factor (G-CSF) levels were measured. RESULTS ANP significantly attenuated the white blood cell count decrease in the peripheral blood 2 and 4 days after cisplatin injection. ANP also attenuated the decrease in the number of live cells and CFU-GM colonies in bone marrow 2, 4, and 8 days after cisplatin injection. ANP significantly increased serum G-CSF levels 1 day after cisplatin injection. CONCLUSIONS ANP has protective effects in cisplatin-induced granulocytopenia, with increased G-CSF production.
Collapse
Affiliation(s)
- Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-City, Osaka, 565-8565, Japan.
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita-City, Osaka, Japan
| | - Masahiro Zenitani
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-City, Osaka, 565-8565, Japan
| | - Takeshi Tokudome
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-City, Osaka, 565-8565, Japan
| | - Toru Kimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-City, Osaka, 565-8565, Japan
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Koichi Miura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-City, Osaka, 565-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-City, Osaka, 565-8565, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-City, Osaka, 565-8565, Japan
| |
Collapse
|
174
|
Burkholderia pseudomallei Capsule Exacerbates Respiratory Melioidosis but Does Not Afford Protection against Antimicrobial Signaling or Bacterial Killing in Human Olfactory Ensheathing Cells. Infect Immun 2016; 84:1941-1956. [PMID: 27091931 DOI: 10.1128/iai.01546-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/03/2016] [Indexed: 02/03/2023] Open
Abstract
Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an often severe infection that regularly involves respiratory disease following inhalation exposure. Intranasal (i.n.) inoculation of mice represents an experimental approach used to study the contributions of bacterial capsular polysaccharide I (CPS I) to virulence during acute disease. We used aerosol delivery of B. pseudomallei to establish respiratory infection in mice and studied CPS I in the context of innate immune responses. CPS I improved B. pseudomallei survival in vivo and triggered multiple cytokine responses, neutrophil infiltration, and acute inflammatory histopathology in the spleen, liver, nasal-associated lymphoid tissue, and olfactory mucosa (OM). To further explore the role of the OM response to B. pseudomallei infection, we infected human olfactory ensheathing cells (OECs) in vitro and measured bacterial invasion and the cytokine responses induced following infection. Human OECs killed >90% of the B. pseudomallei in a CPS I-independent manner and exhibited an antibacterial cytokine response comprising granulocyte colony-stimulating factor, tumor necrosis factor alpha, and several regulatory cytokines. In-depth genome-wide transcriptomic profiling of the OEC response by RNA-Seq revealed a network of signaling pathways activated in OECs following infection involving a novel group of 378 genes that encode biological pathways controlling cellular movement, inflammation, immunological disease, and molecular transport. This represents the first antimicrobial program to be described in human OECs and establishes the extensive transcriptional defense network accessible in these cells. Collectively, these findings show a role for CPS I in B. pseudomallei survival in vivo following inhalation infection and the antibacterial signaling network that exists in human OM and OECs.
Collapse
|
175
|
Takehara M, Takagishi T, Seike S, Ohtani K, Kobayashi K, Miyamoto K, Shimizu T, Nagahama M. Clostridium perfringens α-Toxin Impairs Innate Immunity via Inhibition of Neutrophil Differentiation. Sci Rep 2016; 6:28192. [PMID: 27306065 PMCID: PMC4910053 DOI: 10.1038/srep28192] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022] Open
Abstract
Although granulopoiesis is accelerated to suppress bacteria during infection, some bacteria can still cause life-threatening infections, but the mechanism behind this remains unclear. In this study, we found that mature neutrophils in bone marrow cells (BMCs) were decreased in C. perfringens-infected mice and also after injection of virulence factor α-toxin. C. perfringens infection interfered with the replenishment of mature neutrophils in the peripheral circulation and the accumulation of neutrophils at C. perfringens-infected sites in an α-toxin-dependent manner. Measurements of bacterial colony-forming units in C. perfringens-infected muscle revealed that α-toxin inhibited a reduction in the load of C. perfringens. In vitro treatment of isolated BMCs with α-toxin (phospholipase C) revealed that α-toxin directly decreased mature neutrophils. α-Toxin did not influence the viability of isolated mature neutrophils, while simultaneous treatment of BMCs with granulocyte colony-stimulating factor attenuated the reduction of mature neutrophils by α-toxin. Together, our results illustrate that impairment of the innate immune system by the inhibition of neutrophil differentiation is crucial for the pathogenesis of C. perfringens to promote disease to a life-threatening infection, which provides new insight to understand how pathogenic bacteria evade the host immune system.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Teruhisa Takagishi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kaori Ohtani
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa 920-8640, Japan.,Miyarisan Pharmaceutical Co., LTD, 1-10-3, Kaminakazato, Kita-ku, Tokyo 114-0016, Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Tohru Shimizu
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
176
|
Local injection of granulocyte-colony stimulating factor accelerates wound healing in a rat excisional wound model. Tissue Eng Regen Med 2016; 13:297-303. [PMID: 30603411 DOI: 10.1007/s13770-016-9054-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 10/21/2022] Open
Abstract
A systemic treatment of granulocyte-colony stimulating factor (G-CSF) is known to improve healings of damaged tissues. However, recent studies suggested local actions of G-CSF on the healing processes of damaged tissues. We investigated the treatment effect of locally injected G-CSF and compared to that of systemically injected G-CSF in a rat model. A wound was created on the rat dorsum and treated either by local injection or by systemic injection of G-CSF. Wound healing rate, deposition of collagen, and gene expression were evaluated. G-CSF receptor (G-CSFR) protein was detected by Western blotting. The wound healing rate in the local injection group was significantly higher than that in the systemic injection group at days 9 and 15; it was also significantly higher than that in the control group at days 3, 9, and 15. The expression of G-CSFR protein in wound tissues was higher than in normal skin tissues. The local injection of G-CSF is more effective than systemic injection of G-CSF in promoting wound healing, which may implicate the local action of G-CSF treatment in wound healing processes.
Collapse
|
177
|
Henderson-Smith A, Corneveaux JJ, De Both M, Cuyugan L, Liang WS, Huentelman M, Adler C, Driver-Dunckley E, Beach TG, Dunckley TL. Next-generation profiling to identify the molecular etiology of Parkinson dementia. NEUROLOGY-GENETICS 2016; 2:e75. [PMID: 27275011 PMCID: PMC4881621 DOI: 10.1212/nxg.0000000000000075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We sought to determine the underlying cortical gene expression changes associated with Parkinson dementia using a next-generation RNA sequencing approach. METHODS In this study, we used RNA sequencing to evaluate differential gene expression and alternative splicing in the posterior cingulate cortex from neurologically normal control patients, patients with Parkinson disease, and patients with Parkinson disease with dementia. RESULTS Genes overexpressed in both disease states were involved with an immune response, whereas shared underexpressed genes functioned in signal transduction or as components of the cytoskeleton. Alternative splicing analysis produced a pattern of immune and RNA-processing disturbances. CONCLUSIONS Genes with the greatest degree of differential expression did not overlap with genes exhibiting significant alternative splicing activity. Such variation indicates the importance of broadening expression studies to include exon-level changes because there can be significant differential splicing activity with potential structural consequences, a subtlety that is not detected when examining differential gene expression alone, or is underrepresented with probe-limited array technology.
Collapse
Affiliation(s)
- Adrienne Henderson-Smith
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Jason J Corneveaux
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Matthew De Both
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Lori Cuyugan
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Winnie S Liang
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Matthew Huentelman
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Charles Adler
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Erika Driver-Dunckley
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Thomas G Beach
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Travis L Dunckley
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| |
Collapse
|
178
|
Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant? PLoS One 2016; 11:e0154737. [PMID: 27152621 PMCID: PMC4859543 DOI: 10.1371/journal.pone.0154737] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
Long-term stable mixed chimerism is a rare and poorly understood phenomenon post hematopoietic stem cell transplantation. This study aims to shed light on whether the two hematopoietic systems in patients with mixed chimerism remain functional. Additionally, we investigate possible immunologic differences in these individuals compared to patients with only donor derived immune cells. Patients with donor and mixed chimerism, at median 10 (5–16) years post-HSCT for non-malignant diseases, were assessed regarding clinical situation and immune system (phenotypical and functional). No difference in long-term outcome was seen in terms of general wellbeing, central phenotypic immune system features (e.g., differentiation status, CD4/CD8 ratio, B and NK-cell frequency) and antibody responses to immunizations. At a median of 10 years post transplantation, patients with mixed chimerism had significantly higher IgG3 and platelet levels. Additionally, these patients had higher NKT-cell levels (CD94+CD8+ and CD56+CD8+) than patients with donor chimerism. In depth phenotypic analysis of patients with mixed chimerism demonstrated recipient-derived fractions in most immune cell lineages (e.g., T-cell, B-cell and NK-cell subsets). Recipient cells were also capable of responding to mitogenic stimulation with production of several cytokines. In conclusion, long-term mixed chimerism did not negatively affect patient wellbeing and long-term outcome. Moreover, recipient-derived immunity may still be functional in these patients, suggesting an active state of tolerance and immunologic dependence on both hematopoietic systems.
Collapse
|
179
|
Katzenback BA, Katakura F, Belosevic M. Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:68-85. [PMID: 26546240 DOI: 10.1016/j.dci.2015.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The process of myeloid cell development (myelopoiesis) in fish has mainly been studied in three cyprinid species: zebrafish (Danio rerio), ginbuna carp (Carassius auratus langsdorfii) and goldfish (C. auratus, L.). Our studies on goldfish myelopoiesis have utilized in vitro generated primary kidney macrophage (PKM) cultures and isolated primary kidney neutrophils (PKNs) cultured overnight to study the process of macrophage (monopoiesis) and neutrophil (granulopoiesis) development and the key growth factors, receptors, and transcription factors that govern this process in vitro. The PKM culture system is unique in that all three subpopulations of macrophage development, namely progenitor cells, monocytes, and mature macrophages, are simultaneously present in culture unlike mammalian systems, allowing for the elucidation of the complex mixture of cytokines that regulate progressive and selective macrophage development from progenitor cells to fully functional mature macrophages in vitro. Furthermore, we have been able to extend our investigations to include the development of erythrocytes (erythropoiesis) and thrombocytes (thrombopoiesis) through studies focusing on the progenitor cell population isolated from the goldfish kidney. Herein, we review the in vitro goldfish model systems focusing on the characteristics of cell sub-populations, growth factors and their receptors, and transcription factors that regulate goldfish myelopoiesis.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Fumihiko Katakura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
180
|
Periasamy S, Avram D, McCabe A, MacNamara KC, Sellati TJ, Harton JA. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia. PLoS Pathog 2016; 12:e1005517. [PMID: 27015566 PMCID: PMC4807818 DOI: 10.1371/journal.ppat.1005517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.
Collapse
Affiliation(s)
- Sivakumar Periasamy
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dorina Avram
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Katherine C. MacNamara
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jonathan A. Harton
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
181
|
Goldberg GL, Cornish AL, Murphy J, Pang ES, Lim LL, Campbell IK, Scalzo-Inguanti K, Chen X, McMenamin PG, Maraskovsky E, McKenzie BS, Wicks IP. G-CSF and Neutrophils Are Nonredundant Mediators of Murine Experimental Autoimmune Uveoretinitis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:172-84. [DOI: 10.1016/j.ajpath.2015.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
|
182
|
Hu L, Huang W, Hjort EE, Bei L, Platanias LC, Eklund EA. The Interferon Consensus Sequence Binding Protein (Icsbp/Irf8) Is Required for Termination of Emergency Granulopoiesis. J Biol Chem 2015; 291:4107-20. [PMID: 26683374 DOI: 10.1074/jbc.m115.681361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
Emergency granulopoiesis occurs in response to infectious or inflammatory challenge and is a component of the innate immune response. Some molecular events involved in initiating emergency granulopoiesis are known, but termination of this process is less well defined. In this study, we found that the interferon consensus sequence binding protein (Icsbp/Irf8) was required to terminate emergency granulopoiesis. Icsbp is an interferon regulatory transcription factor with leukemia suppressor activity. Expression of Icsbp is decreased in chronic myeloid leukemia, and Icsbp(-/-) mice exhibit progressive granulocytosis with evolution to blast crisis, similar to the course of human chronic myeloid leukemia. In this study, we found aberrantly sustained granulocyte production in Icsbp(-/-) mice after stimulation of an emergency granulopoiesis response. Icsbp represses transcription of the genes encoding Fas-associated phosphatase 1 (Fap1) and growth arrest-specific 2 (Gas2) and activates genes encoding Fanconi C and F. After stimulation of emergency granulopoiesis, we found increased and sustained expression of Fap1 and Gas2 in bone marrow myeloid progenitor cells from Icsbp(-/-) mice in comparison with the wild type. This was associated with resistance to Fas-induced apoptosis and increased β-catenin activity in these cells. We also found that repeated episodes of emergency granulopoiesis accelerated progression to acute myeloid leukemia in Icsbp(-/-) mice. This was associated with impaired Fanconi C and F expression and increased sensitivity to DNA damage in bone marrow myeloid progenitors. Our results suggest that impaired Icsbp expression enhances leukemogenesis by deregulating processes that normally limit granulocyte expansion during the innate immune response.
Collapse
Affiliation(s)
- Liping Hu
- From the Feinberg School of Medicine and
| | - Weiqi Huang
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | | | - Ling Bei
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Leonidas C Platanias
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612 Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Elizabeth A Eklund
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612 Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| |
Collapse
|
183
|
Madalli S, Beyrau M, Whiteford J, Duchene J, Singh Nandhra I, Patel NSA, Motwani MP, Gilroy DW, Thiemermann C, Nourshargh S, Scotland RS. Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states. Biol Sex Differ 2015; 6:27. [PMID: 26617980 PMCID: PMC4661984 DOI: 10.1186/s13293-015-0047-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/17/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tissue infiltration by neutrophils during acute inflammatory states causes substantial tissue injury. While the magnitude of tissue neutrophil accumulation in innate immune responses is profoundly greater in males than females, fundamental aspects of the molecular mechanisms underlying these sex differences remain largely unknown. METHODS We investigated sex differences in neutrophil stimulation and recruitment in ischemia/reperfusion (I/R; mesenteric or renal) or carrageenan pleurisy in rats or mice, as well as skin injury in human volunteers. The induction of potent chemoattractive mediators (chemokines) and neutrophil adhesion molecules were measured by real-time PCR, flow cytometry, and protein assays. RESULTS Mesenteric I/R in age-matched Wistar rats resulted in substantially more neutrophil accumulation and tissue injury at 2 h reperfusion in males than females. Using intravital microscopy, we show that the immediate (<30 min) neutrophil response to I/R is similar in males and females but that prolonged neutrophil recruitment occurs in males at sites local and distal to inflammatory insult partly due to an increase in circulating neutrophil populations with elevated surface expression of adhesion molecules. Sex differences in neutrophil kinetics were correlated with sustained induction of chemokine Cxcl5 in the tissue, circulation, and bone marrow of males but not females. Furthermore, blockade of Cxcl5 in males prior to ischemia resulted in neutrophil responses that were similar in magnitude to those in females. Conversely, administration of Cxcl5 to males in the absence of I/R was sufficient to increase levels of systemic neutrophils. Cxcl5 treatment of bone marrow neutrophils in vitro caused substantial induction of neutrophil-mobilizing cytokine granulocyte colony-stimulating factor (GCSF) and expression of β2 integrin that accounts for sexual dimorphism in circulating neutrophil populations in I/R. Moreover, male Cxcl5-stimulated bone marrow neutrophils had an increased capacity to adhere to β2 integrin ligand ICAM-1, implicating a greater sensitivity of male leukocytes to Cxcl5-mediated activation. Differential induction of Cxcl5 (human CXCL6) between the sexes was also evident in murine renal I/R, rat pleurisy, and human skin blisters and correlated with the magnitude of neutrophil accumulation in tissues. CONCLUSIONS Our study reveals that sex-specific induction of chemokine Cxcl5/CXCL6 contributes to sexual dimorphism in neutrophil recruitment in diverse acute inflammatory responses partly due to increased stimulation and trafficking of bone marrow neutrophils in males.
Collapse
Affiliation(s)
| | - Martina Beyrau
- />Centre for Microvascular Research, London, EC1M 6BQ UK
| | | | - Johan Duchene
- />Department of Cardiovascular Research, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | | | - Nimesh S. A. Patel
- />Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, London, EC1M 6BQ UK
| | - Madhur P. Motwani
- />Department of Medicine, Rayne Institute, University College London, London, WC1 6JJ UK
| | - Derek W. Gilroy
- />Department of Medicine, Rayne Institute, University College London, London, WC1 6JJ UK
| | - Christoph Thiemermann
- />Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, London, EC1M 6BQ UK
| | | | | |
Collapse
|
184
|
Hall C, Crosier P, Crosier K. Inflammatory cytokines provide both infection-responsive and developmental signals for blood development: Lessons from the zebrafish. Mol Immunol 2015; 69:113-22. [PMID: 26563946 DOI: 10.1016/j.molimm.2015.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are rare, largely dormant, long-lived cells that are capable of establishing and regenerating all mature blood cell lineages throughout the life of the host. Given their therapeutic importance, understanding factors that regulate HSC development and influence HSC proliferation and differentiation is of great interest. Exploring HSC biology through the lens of infection has altered our traditional view of the HSC. The HSC can now be considered a component of the immune response to infection. In response to inflammatory cytokine signaling, HSCs enhance their proliferative state and contribute to the production of in-demand blood cell lineages. Similar cytokine signaling pathways also participate during embryonic HSC production. With its highly conserved hematopoietic system and experimental tractability, the zebrafish model has made significant contributions to the hematopoietic field. In particular, the zebrafish system has been ideally suited to help reveal the molecular and cellular mechanisms underlying HSC development. This review highlights recent zebrafish studies that have uncovered new mechanistic insights into how inflammatory signaling pathways influence HSC behavior during infection and HSC production within the embryo.
Collapse
Affiliation(s)
- Chris Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
| | - Phil Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
185
|
Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Reports 2015; 4:282-96. [PMID: 25680479 PMCID: PMC4325194 DOI: 10.1016/j.stemcr.2015.01.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
Interleukin-3 (IL-3) is capable of supporting the proliferation of a broad range of hematopoietic cell types, whereas granulocyte colony-stimulating factor (G-CSF) and macrophage CSF (M-CSF) represent critical cytokines in myeloid differentiation. When this was investigated in a pluripotent-stem-cell-based hematopoietic differentiation model, IL-3/G-CSF or IL-3/M-CSF exposure resulted in the continuous generation of myeloid cells from an intermediate myeloid-cell-forming complex containing CD34+ clonogenic progenitor cells for more than 2 months. Whereas IL-3/G-CSF directed differentiation toward CD45+CD11b+CD15+CD16+CD66b+ granulocytic cells of various differentiation stages up to a segmented morphology displaying the capacity of cytokine-directed migration, respiratory burst response, and neutrophil-extracellular-trap formation, exposure to IL-3/M-CSF resulted in CD45+CD11b+CD14+CD163+CD68+ monocyte/macrophage-type cells capable of phagocytosis and cytokine secretion. Hence, we show here that myeloid specification of human pluripotent stem cells by IL-3/G-CSF or IL-3/M-CSF allows for prolonged and large-scale production of myeloid cells, and thus is suited for cell-fate and disease-modeling studies as well as gene- and cell-therapy applications. Myeloid specification of human PSCs by IL-3-/M-CSF, G-CSF, or GM-CSF Large-scale and continuous generation of M2-MΦ or granulocytes by M-CSF or G-CSF Functional iPSC-derived macrophages or granulocytes similar to in-vivo-derived cells
Collapse
|
186
|
Lambertini M, Ferreira AR, Del Mastro L, Danesi R, Pronzato P. Pegfilgrastim for the prevention of chemotherapy-induced febrile neutropenia in patients with solid tumors. Expert Opin Biol Ther 2015; 15:1799-817. [PMID: 26488491 DOI: 10.1517/14712598.2015.1101063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Neutropenia and febrile neutropenia are the most common and most severe bone marrow toxicities of chemotherapy. Recombinant granulocyte-colony stimulating factors (G-CSFs), both daily (filgrastim and biosimilars, and lenograstim) and long-acting (pegfilgrastim and lipegfilgrastim) formulations, are currently available to counteract the negative consequences of these side effects. AREAS COVERED The purpose of this article is to review the physiopathology of chemotherapy-induced febrile neutropenia and its consequences, and the current evidence regarding the pharmacological properties, clinical efficacy and cost-effectiveness of pegfilgrastim as a strategy to prevent chemotherapy-induced febrile neutropenia in patients with solid tumors. EXPERT OPINION Chemotherapy-induced febrile neutropenia and its complications are still a major health-care concern, and the inappropriate employment of G-CSFs in clinical practice can partially explain its burden. Pegfilgrastim has pharmacological advantages over daily G-CSFs that makes it easily administrable, thus reducing the chance of incorrect delivery. The once-per-cycle administration might explain the findings derived from observational studies suggesting a possible superior efficacy of pegfilgrastim over daily G-CSFs. For patients at higher risk of failure with daily G-CSF prophylaxis (e.g. risk of non-compliance, difficulties on performing regular hemograms, high risk of developing febrile neutropenia), pegfilgrastim might be the most appropriate option.
Collapse
Affiliation(s)
- Matteo Lambertini
- a Department of Medical Oncology, U.O. Oncologia Medica 2 , IRCCS AOU San Martino - IST , 16132 Genoa , Italy
| | - Arlindo R Ferreira
- b Department of Medical Oncology , Hospital de Santa Maria and Instituto de Medicina Molecular of the Faculty of Medicine of the University of Lisbon , 1600 Lisbon , Portugal
| | - Lucia Del Mastro
- c Department of Medical Oncology , U.O. Sviluppo Terapie Innovative, IRCCS AOU San Martino - IST , 16132 Genoa , Italy
| | - Romano Danesi
- d Department of Clinical and Experimental Medicine , University of Pisa , 56126 Pisa , Italy
| | - Paolo Pronzato
- a Department of Medical Oncology, U.O. Oncologia Medica 2 , IRCCS AOU San Martino - IST , 16132 Genoa , Italy
| |
Collapse
|
187
|
Myeloid-derived suppressor cells in B cell malignancies. Tumour Biol 2015; 36:7339-53. [DOI: 10.1007/s13277-015-4004-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
|
188
|
Thanasaksiri K, Hirono I, Kondo H. Temperature-dependent regulation of gene expression in poly (I:C)-treated Japanese flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:835-840. [PMID: 26052011 DOI: 10.1016/j.fsi.2015.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Gene expression profiling of poly (I:C)-treated Japanese flounder, Paralichthys olivaceus, under different temperatures was investigated using microarray analysis. The response was analyzed in spleen tissue at 3 and 24 h post injection (hpi) at 15 °C and 25 °C. A large number of genes in fish treated with poly (I:C) at 25 °C were expressed at 3 hpi, whereas the expression profiles at 24 hpi appeared to be similar to those of the controls. Cluster analysis of the different expression profiles showed three distinct groups of up-regulated genes in fish reared at 15 °C. These were early (3 hpi), early-to-late (3 and 24 hpi), and late (24 hpi) up-regulated genes. These genes included type I IFN-related genes and inflammatory genes. Among the up-regulated genes, most of the type I IFN-related genes played early-to-late- and late-responding genes at 15 °C but early-responding genes at 25 °C. Thus, several up-regulated genes in these groups from the microarray result were further verified by qPCR. These results indicate that the type I IFN gene expressions of P. olivaceus treated with poly (I:C) can be regulated in a temperature-dependent manner.
Collapse
Affiliation(s)
- Kittipong Thanasaksiri
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
189
|
Zhao CL, Zhang GP, Xiao ZZ, Ma ZK, Lei CP, Song SY, Feng YY, Zhao YC, Feng XS. Recombinant Human Granulocyte Colony-Stimulating Factor Promotes Preinvasive and Invasive Estrogen Receptor-Positive Tumor Development in MMTV-erbB2 Mice. J Breast Cancer 2015; 18:126-33. [PMID: 26155288 PMCID: PMC4490261 DOI: 10.4048/jbc.2015.18.2.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/28/2015] [Indexed: 01/22/2023] Open
Abstract
PURPOSE We investigated whether recombinant human granulocyte colony-stimulating factor (rhG-CSF) could promote the development of preinvasive and invasive breast cancer in mouse mammary tumor virus (MMTV-erbB2) mice with estrogen receptor-positive tumors. METHODS MMTV-erbB2 mice were randomly divided into three experimental groups with 20 mice in each group. MMTV-erbB2 mice were treated with daily subcutaneous injections of vehicle or rhG-CSF (low-rhG-CSF group, rhG-CSF 0.125 µg; vehicle-rhG-CSF group, normal saline 0.25 µg; and high-rhG-CSF group, rhG-CSF 0.25 µg) at 3 months of age. Cellular and molecular mechanisms of G-CSF action in mammary glands were investigated via immunohistochemistry and reverse transcription polymerase chain reaction. RESULTS Low, but not high, rhG-CSF doses significantly accelerated mammary tumorigenesis in MMTV-erbB2 mice. Short-term treatment with rhG-CSF could significantly promote the development of preinvasive mammary lesions. The cancer prevention effect was associated with reduced expression of proliferating cell nuclear antigen, cluster of differentiation 34, and signal transducers and activators of transcription 3 in mammary glands by >80%. CONCLUSION We found that G-CSF was regulated by rhG-CSF both in vitro and in vivo. Identification of G-CSF genes helped us further understand the mechanism by which G-CSF promotes cancer. Low doses of rhG-CSF could significantly increase tumor latency and increase tumor multiplicity and burden. Moreover, rhG-CSF effectively promotes development of both malignant and premalignant mammary lesions in MMTV-erbB2 mice.
Collapse
Affiliation(s)
- Chun Ling Zhao
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Guang Ping Zhang
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zheng Zheng Xiao
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhi Kun Ma
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Cai Peng Lei
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Shi Yuan Song
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Ying Ying Feng
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Ya Chao Zhao
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiao Shan Feng
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
190
|
Hiemstra IH, Vrijland K, Hogenboom MM, Bouma G, Kraal G, den Haan JMM. Intestinal epithelial cell transported TLR2 ligand stimulates Ly6C⁺ monocyte differentiation in a G-CSF dependent manner. Immunobiology 2015; 220:1255-65. [PMID: 26143228 DOI: 10.1016/j.imbio.2015.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/06/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Abstract
Microflora-induced TLR signaling in the intestinal epithelium is essential for a proper intestinal barrier function. Because of the close interactions of this epithelial layer with underlying mononuclear phagocytes, we hypothesized that epithelial TLR signaling may affect the differentiation of myeloid cell populations. In in vitro cultures we observed that colonic epithelial monolayers actively transported TLR2 ligands towards their basolateral side. The transported TLR2 ligands strongly stimulated the development of Ly6C(+) monocytes, while dendritic cell differentiation was inhibited. The TLR2 effect on monocyte and dendritic cell differentiation was mediated by the production of G-CSF. Mice lacking TLR signaling and mice that were treated with antibiotics showed decreased numbers of Ly6C(+) monocytes in bone marrow and spleen, which points to a role for microbial derived TLR-ligands in the homeostasis of Ly6C(+) monocytes. In conclusion, our results indicate that TLR ligands that are transported by intestinal epithelial cells stimulate Ly6C(+) monocyte development and suggest that this process may be involved in the maintenance of systemic Ly6C(+) monocyte numbers.
Collapse
Affiliation(s)
- Ida H Hiemstra
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Kim Vrijland
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marye M Hogenboom
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerd Bouma
- Department of Gastroenterology, VU University Medical Center, Amsterdam, The Netherlands
| | - Georg Kraal
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
191
|
Staphylococcal enterotoxin A regulates bone marrow granulocyte trafficking during pulmonary inflammatory disease in mice. Toxicol Appl Pharmacol 2015; 287:267-75. [PMID: 26091799 DOI: 10.1016/j.taap.2015.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/12/2015] [Accepted: 06/14/2015] [Indexed: 01/24/2023]
Abstract
Pulmonary neutrophil infiltration produced by Staphylococcal enterotoxin A (SEA) airway exposure is accompanied by marked granulocyte accumulation in bone marrow (BM). Therefore, the aim of this study was to investigate the mechanisms of BM cell accumulation, and trafficking to circulating blood and lung tissue after SEA airway exposure. Male BALB/C mice were intranasally exposed to SEA (1μg), and at 4, 12 and 24h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. Adhesion of BM granulocytes and flow cytometry for MAC-1, LFA1-α and VLA-4 and cytokine and/or chemokine levels were assayed after SEA-airway exposure. Prior exposure to SEA promoted a marked PMN influx to BAL and lung tissue, which was accompanied by increased counts of immature and/or mature neutrophils and eosinophils in BM, along with blood neutrophilia. Airway exposure to SEA enhanced BM neutrophil MAC-1 expression, and adhesion to VCAM-1 and/or ICAM-1-coated plates. Elevated levels of GM-CSF, G-CSF, INF-γ, TNF-α, KC/CXCL-1 and SDF-1α were detected in BM after SEA exposure. SEA exposure increased production of eosinopoietic cytokines (eotaxin and IL-5) and BM eosinophil VLA-4 expression, but it failed to affect eosinophil adhesion to VCAM-1 and ICAM-1. In conclusion, BM neutrophil accumulation after SEA exposure takes place by integrated action of cytokines and/or chemokines, enhancing the adhesive responses of BM neutrophils and its trafficking to lung tissues, leading to acute lung injury. BM eosinophil accumulation in SEA-induced acute lung injury may occur via increased eosinopoietic cytokines and VLA-4 expression.
Collapse
|
192
|
Li HS, Watowich SS. Innate immune regulation by STAT-mediated transcriptional mechanisms. Immunol Rev 2015; 261:84-101. [PMID: 25123278 DOI: 10.1111/imr.12198] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term innate immunity typically refers to a quick but non-specific host defense response against invading pathogens. The innate immune system comprises particular immune cell populations, epithelial barriers, and numerous secretory mediators including cytokines, chemokines, and defense peptides. Innate immune cells are also now recognized to play important contributing roles in cancer and pathological inflammatory conditions. Innate immunity relies on rapid signal transduction elicited upon pathogen recognition via pattern recognition receptors (PRRs) and cell:cell communication conducted by soluble mediators, including cytokines. A majority of cytokines involved in innate immune signaling use a molecular cascade encompassing receptor-associated Jak protein tyrosine kinases and STAT (signal transducer and activator of transcription) transcriptional regulators. Here, we focus on roles for STAT proteins in three major innate immune subsets: neutrophils, macrophages, and dendritic cells (DCs). While knowledge in this area is only now emerging, understanding the molecular regulation of these cell types is necessary for developing new approaches to treat human disorders such as inflammatory conditions, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
193
|
Poitou C, Perret C, Mathieu F, Truong V, Blum Y, Durand H, Alili R, Chelghoum N, Pelloux V, Aron-Wisnewsky J, Torcivia A, Bouillot JL, Parks BW, Ninio E, Clément K, Tiret L. Bariatric Surgery Induces Disruption in Inflammatory Signaling Pathways Mediated by Immune Cells in Adipose Tissue: A RNA-Seq Study. PLoS One 2015; 10:e0125718. [PMID: 25938420 PMCID: PMC4418598 DOI: 10.1371/journal.pone.0125718] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/17/2015] [Indexed: 11/30/2022] Open
Abstract
Background Bariatric surgery is associated to improvements in obesity-associated comorbidities thought to be mediated by a decrease of adipose inflammation. However, the molecular mechanisms behind these beneficial effects are poorly understood. Methodology/Principal Findings We analyzed RNA-seq expression profiles in adipose tissue from 22 obese women before and 3 months after surgery. Of 15,972 detected genes, 1214 were differentially expressed after surgery at a 5% false discovery rate. Upregulated genes were mostly involved in the basal cellular machinery. Downregulated genes were enriched in metabolic functions of adipose tissue. At baseline, 26 modules of coexpressed genes were identified. The four most stable modules reflected the innate and adaptive immune responses of adipose tissue. A first module reflecting a non-specific signature of innate immune cells, mainly macrophages, was highly conserved after surgery with the exception of DUSP2 and CD300C. A second module reflected the adaptive immune response elicited by T lymphocytes; after surgery, a disconnection was observed between genes involved in T-cell signaling and mediators of the signal transduction such as CXCR1, CXCR2, GPR97, CCR7 and IL7R. A third module reflected neutrophil-mediated inflammation; after surgery, several genes were dissociated from the module, including S100A8, S100A12, CD300E, VNN2, TUBB1 and FAM65B. We also identified a dense network of 19 genes involved in the interferon-signaling pathway which was strongly preserved after surgery, with the exception of DDX60, an antiviral factor involved in RIG-I-mediated interferon signaling. A similar loss of connection was observed in lean mice compared to their obese counterparts. Conclusions/Significance These results suggest that improvements of the inflammatory state following surgery might be explained by a disruption of immuno-inflammatory cascades involving a few crucial molecules which could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Christine Poitou
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Nutriomics team, F-75005, Paris, France
| | - Claire Perret
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Genomics and Pathophysiology of Cardiovascular Diseases team, F-75013, Paris, France
| | - François Mathieu
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Genomics and Pathophysiology of Cardiovascular Diseases team, F-75013, Paris, France
| | - Vinh Truong
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Genomics and Pathophysiology of Cardiovascular Diseases team, F-75013, Paris, France
| | - Yuna Blum
- Department of Medicine/Division of Cardiology, University of California Los Angeles, Los Angeles, California 90095, United States of America
| | - Hervé Durand
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Genomics and Pathophysiology of Cardiovascular Diseases team, F-75013, Paris, France
| | - Rohia Alili
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Nutriomics team, F-75005, Paris, France
| | - Nadjim Chelghoum
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Post-Genomic Platform of Pitié-Salpêtrière (P3S), F-75013, Paris, France
| | - Véronique Pelloux
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Nutriomics team, F-75005, Paris, France
| | - Judith Aron-Wisnewsky
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Nutriomics team, F-75005, Paris, France
| | - Adriana Torcivia
- Assistance Publique-Hôpitaux de Paris, Department of Visceral Surgery, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Jean-Luc Bouillot
- Assistance Publique-Hôpitaux de Paris, Department of General, Digestive and Metabolic Surgery, Ambroise-Paré Hospital, F- 92100, Boulogne-Billancourt, France
| | - Brian W. Parks
- Department of Medicine/Division of Cardiology, University of California Los Angeles, Los Angeles, California 90095, United States of America
| | - Ewa Ninio
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Genomics and Pathophysiology of Cardiovascular Diseases team, F-75013, Paris, France
| | - Karine Clément
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Nutriomics team, F-75005, Paris, France
| | - Laurence Tiret
- Institute of Cardiometabolism And Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, F-75013, Paris, France
- Sorbonne Universités, University Pierre et Marie Curie (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Genomics and Pathophysiology of Cardiovascular Diseases team, F-75013, Paris, France
- * E-mail:
| |
Collapse
|
194
|
Wang H, Bei L, Shah CA, Hu L, Eklund EA. HoxA10 Terminates Emergency Granulopoiesis by Increasing Expression of Triad1. THE JOURNAL OF IMMUNOLOGY 2015; 194:5375-87. [PMID: 25895533 DOI: 10.4049/jimmunol.1401909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Expression of the E3 ubiquitin ligase Triad1 is greater in mature granulocytes than in myeloid progenitor cells. HoxA10 actives transcription of the gene encoding Triad1 (ARIH2) during myeloid differentiation, but the contribution of increased Triad1 expression to granulocyte production or function is unknown. Mice with bone marrow-specific disruption of the ARIH2 gene exhibit constitutive inflammation with tissue infiltration by granulocytes and B cells. In contrast, disruption of the HOXA10 gene in mice neither constitutively activates the innate immune response nor significantly alters steady-state granulopoiesis. This study explores the impact of HoxA10-induced Triad1 expression on emergency (stress) granulopoiesis. We found that mice with HOXA10 gene disruption exhibited an overwhelming and fatal emergency granulopoiesis response that was characterized by tissue infiltration with granulocytes, but reversed by re-expression of Triad1 in the bone marrow. We determined that HoxA9 repressed ARIH2 transcription in myeloid progenitor cells, antagonizing the effect of HoxA10 on Triad1 expression. Also, we found that differentiation-stage-specific ARIH2 transcription was regulated by the tyrosine phosphorylation states of HoxA9 and HoxA10. Our studies demonstrate a previously undescribed role for HoxA10 in terminating emergency granulopoiesis, suggesting an important contribution by Hox proteins to the innate immune response.
Collapse
Affiliation(s)
- Hao Wang
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and
| | - Ling Bei
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and Jesse Brown Veteran's Administration Medical Center, Chicago, IL 60612
| | - Chirag A Shah
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and
| | - Liping Hu
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and
| | - Elizabeth A Eklund
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and Jesse Brown Veteran's Administration Medical Center, Chicago, IL 60612
| |
Collapse
|
195
|
Napier RJ, Norris BA, Swimm A, Giver CR, Harris WAC, Laval J, Napier BA, Patel G, Crump R, Peng Z, Bornmann W, Pulendran B, Buller RM, Weiss DS, Tirouvanziam R, Waller EK, Kalman D. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog 2015; 11:e1004770. [PMID: 25822986 PMCID: PMC4379053 DOI: 10.1371/journal.ppat.1004770] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/27/2015] [Indexed: 01/10/2023] Open
Abstract
Imatinib mesylate (Gleevec) inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs) and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics “emergency hematopoiesis,” a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens. Host-directed therapeutics (HDTs) for infectious diseases target cellular mechanisms used by pathogens to move into, through, or out of cells. The Abl tyrosine kinase (TK) inhibitor and cancer therapeutic imatinib mesylate (Gleevec), for example, has activity against bacterial and viral pathogens via effects on pathogen entry (polyomaviruses), intracellular transit (Mycobacteria) and exit (poxviruses and filoviruses). Other HDTs target the host immune system by suppressing or activating circulating innate and adaptive cells. Here we report that imatinib at doses that are effective in clearing Mycobacterial infections but which are 10-fold lower than those used for cancer, mimics a physiological innate response to infection in the bone marrow, called the “emergency response,” in which hematopoietic stem cells and multipotent progenitors expand and differentiate into mature myeloid cells that migrate to peripheral sites. Imatinib effects occur in part via partial inhibition of c-Kit, suggesting a mechanism by which c-Kit controls the earliest stages of hematopoiesis. Mimicking a physiological antimicrobial response may make imatinib broadly useful. Accordingly, imatinib also has efficacy against infections caused by Franciscella spp., which do not use imatinib-sensitive TKs for pathogenesis. These observations identify myelopoiesis as an important target for HDTs, and provide information on how to dose imatinib for clinical use.
Collapse
Affiliation(s)
- Ruth J. Napier
- Microbiology and Molecular Genetics Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Brian A. Norris
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Alyson Swimm
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cynthia R. Giver
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Wayne A. C. Harris
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Julie Laval
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Cystic Fibrosis Research, Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS UMR5535, Université Montpellier, Montpellier, France
| | - Brooke A. Napier
- Microbiology and Molecular Genetics Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gopi Patel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ryan Crump
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Zhenghong Peng
- MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - William Bornmann
- MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Bali Pulendran
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - R. Mark Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - David S. Weiss
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Cystic Fibrosis Research, Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
196
|
Cao Y, Slaney CY, Bidwell BN, Parker BS, Johnstone CN, Rautela J, Eckhardt BL, Anderson RL. BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res 2015; 74:5091-102. [PMID: 25224959 DOI: 10.1158/0008-5472.can-13-3171] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The TGFβ growth factor family member BMP4 is a potent suppressor of breast cancer metastasis. In the mouse, the development of highly metastatic mammary tumors is associated with an accumulation of myeloid-derived suppressor cells (MDSC), the numbers of which are reduced by exogenous BMP4 expression. MDSCs are undetectable in naïve mice but can be induced by treatment with granulocyte colony-stimulating factor (G-CSF/Csf3) or by secretion of G-CSF from the tumor. Both tumor-induced and G-CSF-induced MDSCs effectively suppress T-cell activation and proliferation, leading to metastatic enhancement. BMP4 reduces the expression and secretion of G-CSF by inhibiting NF-κB (Nfkb1) activity in human and mouse tumor lines. Because MDSCs correlate with poor prognosis in patients with breast cancer, therapies based on activation of BMP4 signaling may offer a novel treatment strategy for breast cancer. Cancer Res; 74(18); 5091-102. ©2014 AACR.
Collapse
Affiliation(s)
- Yuan Cao
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Clare Y Slaney
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Bradley N Bidwell
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Belinda S Parker
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Cameron N Johnstone
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia. Department of Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jai Rautela
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia. Department of Biochemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Bedrich L Eckhardt
- Morgan Welch Inflammatory Breast Cancer Research and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Robin L Anderson
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia. Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
197
|
Abstract
Neutrophils are endowed with a plethora of toxic molecules that are mobilized in immune responses. These cells evolved to fight infections, but when deployed at the wrong time and in the wrong place, they cause damage to the host. Here, we review the generalities of these cells as well as the difficulties encountered when trying to unravel them mechanistically. We then focus on how neutrophils develop and their function in infection. We center our attention on human neutrophils and what we learn from clinical immunodeficiencies. Finally, we use autoimmune disease to illustrate the harmful potential of dysregulated neutrophil responses.
Collapse
Affiliation(s)
- Bart W Bardoel
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Elaine F Kenny
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Gabriel Sollberger
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
198
|
Benavides-Garcia R, Joachim R, Pina NA, Mutoji KN, Reilly MA, Hermann BP. Granulocyte colony-stimulating factor prevents loss of spermatogenesis after sterilizing busulfan chemotherapy. Fertil Steril 2015; 103:270-80.e8. [PMID: 25439845 PMCID: PMC4282609 DOI: 10.1016/j.fertnstert.2014.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/24/2014] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine whether granulocyte colony-stimulating factor (G-CSF) could prevent loss of spermatogenesis induced by busulfan chemotherapy via protection of undifferentiated spermatogonia, which might serve as an adjuvant approach to preserving male fertility among cancer patients. DESIGN Laboratory animal study. SETTING University. ANIMAL(S) Laboratory mice. INTERVENTION(S) Five-week-old mice were treated with a sterilizing busulfan dose and with 7 days of G-CSF or vehicle treatment and evaluated 10 weeks later (experiment 1) or 24 hours after treatment (experiment 2). MAIN OUTCOME MEASURE(S) Experiment 1: testis weights, epididymal sperm counts, testis histology. Experiment 2: PLZF immunofluorescent costaining with apoptotic markers. Molecular analysis of G-CSF receptor expression in undifferentiated spermatogonia. RESULT(S) Ten weeks after treatment, busulfan-treated mice that also received treatment with G-CSF exhibited significantly better recovery of spermatogenesis and epididymal sperm counts than animals receiving busulfan alone. G-CSF led to increased numbers of PLZF+ spermatogonia 24 hours after treatment that was not accompanied by changes in apoptosis. To address the cellular target of G-CSF, mRNA for the G-CSF receptor, Csf3r, was found in adult mouse testes and cultured THY1+ (undifferentiated) spermatogonia, and cell-surface localized CSF3R was observed on 3% of cultured THY1+ spermatogonia. CONCLUSION(S) These results demonstrate that G-CSF protects spermatogenesis from gonadotoxic insult (busulfan) in rodents, and this may occur via direct action on CSF3R+ undifferentiated spermatogonia. G-CSF treatment might be an effective adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.
Collapse
Affiliation(s)
| | - Rose Joachim
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Nancy A Pina
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Kazadi N Mutoji
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Matthew A Reilly
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas.
| |
Collapse
|
199
|
Sugiyama A, Yujiri T, Tanaka M, Tanaka Y, Nakamura Y, Tanizawa Y. Altered expression of circadian clock genes during peripheral blood stem cell mobilization induced by granulocyte colony-stimulating factor. Chronobiol Int 2015; 32:934-41. [PMID: 26158633 DOI: 10.3109/07420528.2015.1053910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Circulating hematopoietic stem cells exhibit robust circadian fluctuations, which influence the mobilized cell yield, even during enforced stem cell mobilization. However, alterations in the expression of circadian clock genes during granulocyte colony-stimulating factor (G-CSF)-induced peripheral blood stem cell (PBSC) mobilization are not fully elucidated. Therefore, we measured the expression of these genes in human peripheral blood leukocytes from 21 healthy donors. While CRY1 mRNA expression significantly increased by 3.9-fold (p < 0.01), the expression of PER3, CRY2 and BMAL1 mRNAs significantly decreased (by 0.2-fold, 0.2-fold, and 0.6-fold, respectively; p < 0.001) after G-CSF administration. Moreover, CRY1 mRNA expression was inversely correlated with the plasma level of noradrenaline (r = -0.36, p < 0.05), while PER3, CRY2, and BMAL1 mRNA expression directly correlated with the plasma level of noradrenaline (r = 0.55, r = 0.66, and r = 0.57, respectively; p < 0.001). Thus, significant correlations between the levels of circadian clock gene mRNAs and the plasma level of noradrenaline, a sympathetic nervous system neurotransmitter, were established. The modulation of sympathetic activation and of the circadian clock may be novel therapeutic targets for increasing stem cell yields in PBSC donors.
Collapse
Affiliation(s)
- Akiko Sugiyama
- a Department of Bio-Signal Analysis , Yamaguchi University Graduate School of Medicine , Ube , Yamaguchi , Japan
| | | | | | | | | | | |
Collapse
|
200
|
Sun BL, He MQ, Han XY, Sun JY, Yang MF, Yuan H, Fan CD, Zhang S, Mao LL, Li DW, Zhang ZY, Zheng CB, Yang XY, Li YV, Stetler RA, Chen J, Zhang F. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats. Mol Neurobiol 2014; 53:320-330. [DOI: 10.1007/s12035-014-8984-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022]
|