151
|
Abstract
Many physicians are unaware of the many phenotypes associated with the fragile X premutation, an expansion in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene that consists of 55-200 CGG repeats. The most severe of these phenotypes is fragile X-associated tremor/ataxia syndrome (FXTAS), which occurs in the majority of ageing male premutation carriers but in fewer than 20% of ageing women with the premutation. The prevalence of the premutation is 1 in 150-300 females, and 1 in 400-850 males, so physicians are likely to see people affected by FXTAS. Fragile X DNA testing is broadly available in the Western world. The clinical phenotype of FXTAS at presentation can vary and includes intention tremor, cerebellar ataxia, neuropathic pain, memory and/or executive function deficits, parkinsonian features, and psychological disorders, such as depression, anxiety and/or apathy. FXTAS causes brain atrophy and white matter disease, usually in the middle cerebellar peduncles, the periventricular area, and the splenium and/or genu of the corpus callosum. Here, we review the complexities involved in the clinical management of FXTAS and consider how targeted treatment for these clinical features of FXTAS will result from advances in our understanding of the molecular mechanisms that underlie this neurodegenerative disorder. Such targeted approaches should also be more broadly applicable to earlier forms of clinical involvement among premutation carriers.
Collapse
|
152
|
Abstract
Hybridization of RNA to its template DNA strand during transcription induces formation of R-loops-RNA:DNA hybrids with unpaired non-template DNA strands. Although unresolved R-loops can be detrimental, some R-loops contribute to regulation of chromatin structure. Consequently, R-loops help regulate gene expression and play important roles in numerous cellular processes.
Collapse
Affiliation(s)
- Thomas G Fazzio
- a Department of Molecular, Cell, and Cancer Biology , University of Massachusetts Medical School , Worcester , MA , USA.,b Program in Molecular Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
153
|
Epshtein A, Potenski CJ, Klein HL. Increased Spontaneous Recombination in RNase H2-Deficient Cells Arises From Multiple Contiguous rNMPs and Not From Single rNMP Residues Incorporated by DNA Polymerase Epsilon. MICROBIAL CELL 2016; 3:248-254. [PMID: 28203566 PMCID: PMC5305187 DOI: 10.15698/mic2016.06.506] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ribonucleotides can become embedded in DNA from insertion by DNA polymerases,
failure to remove Okazaki fragment primers, R-loops that can prime replication,
and RNA/cDNA-mediated recombination. RNA:DNA hybrids are removed by RNase H
enzymes. Single rNMPs in DNA are removed by RNase H2 and if they remain on the
leading strand, can lead to mutagenesis in a Top1-dependent pathway. rNMPs in
DNA can also stimulate genome instability, among which are homologous
recombination gene conversion events. We previously found that, similar to the
rNMP-stimulated mutagenesis, rNMP-stimulated recombination was also
Top1-dependent. However, in contrast to mutagenesis, we report here that
recombination is not stimulated by rNMPs incorporated by the replicative
polymerase epsilon. Instead, recombination seems to be stimulated by multiple
contiguous rNMPs, which may arise from R-loops or replication priming
events.
Collapse
Affiliation(s)
- Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| |
Collapse
|
154
|
Hale CJ, Potok ME, Lopez J, Do T, Liu A, Gallego-Bartolome J, Michaels SD, Jacobsen SE. Identification of Multiple Proteins Coupling Transcriptional Gene Silencing to Genome Stability in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006092. [PMID: 27253878 PMCID: PMC4890748 DOI: 10.1371/journal.pgen.1006092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes are regulated by epigenetic marks that act to modulate transcriptional control as well as to regulate DNA replication and repair. In Arabidopsis thaliana, mutation of the ATXR5 and ATXR6 histone methyltransferases causes reduction in histone H3 lysine 27 monomethylation, transcriptional upregulation of transposons, and a genome instability defect in which there is an accumulation of excess DNA corresponding to pericentromeric heterochromatin. We designed a forward genetic screen to identify suppressors of the atxr5/6 phenotype that uncovered loss-of-function mutations in two components of the TREX-2 complex (AtTHP1, AtSAC3B), a SUMO-interacting E3 ubiquitin ligase (AtSTUbL2) and a methyl-binding domain protein (AtMBD9). Additionally, using a reverse genetic approach, we show that a mutation in a plant homolog of the tumor suppressor gene BRCA1 enhances the atxr5/6 phenotype. Through characterization of these mutations, our results suggest models for the production atxr5 atxr6-induced extra DNA involving conflicts between the replicative and transcriptional processes in the cell, and suggest that the atxr5 atxr6 transcriptional defects may be the cause of the genome instability defects in the mutants. These findings highlight the critical intersection of transcriptional silencing and DNA replication in the maintenance of genome stability of heterochromatin. In eukaryotic genomes cellular processes such as transcription and replication need to be tightly controlled in order to promote genomic stability and prevent deleterious mutations. In Arabidopsis thaliana, two redundant histone methyltransferases, ATXR5 and ATXR6, are responsible for the deposition of a silencing epigenetic mark, histone H3 lysine 27 monomethylation. Loss of ATXR5/6 results in transcriptional activation of transposable elements (TEs), upregulation of DNA damage response genes and a genomic instability defect characterized as an excess of DNA corresponding to heterochromatin regions. Using a genetic screen, we sought to find suppressors of the atxr5/6 phenotype, and interestingly, we identified multiple genes implicated in general transcriptional activity. Through genomic characterization of the mutants our data suggest a model where transcriptional silencing of heterochromatin during S-phase is required for proper replication and maintenance of genome stability. These findings emphasize the important relationship between chromatin, transcriptional control and replication in the maintenance of genome stability in a eukaryotic system and identify new players involved in these processes.
Collapse
Affiliation(s)
- Christopher J. Hale
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
- Center for Precision Diagnostics, University of Washington, Seattle, Washington, United States of America
| | - Magdalena E. Potok
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Jennifer Lopez
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Truman Do
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Ao Liu
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Javier Gallego-Bartolome
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Scott D. Michaels
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
155
|
Hand SC, Denlinger DL, Podrabsky JE, Roy R. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1193-211. [PMID: 27053646 PMCID: PMC4935499 DOI: 10.1152/ajpregu.00250.2015] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 03/11/2016] [Indexed: 01/22/2023]
Abstract
Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in post-dauer animals have been documented in Caenorhabditis elegans It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages.
Collapse
Affiliation(s)
- Steven C Hand
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana;
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio
| | - Jason E Podrabsky
- Department of Biology, Portland State University, Portland, Oregon; and
| | - Richard Roy
- Department of Biology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
156
|
Wilson FR, Ho A, Walker JR, Zhu XD. Cdk-dependent phosphorylation regulates TRF1 recruitment to PML bodies and promotes C-circle production in ALT cells. J Cell Sci 2016; 129:2559-72. [PMID: 27185864 DOI: 10.1242/jcs.186098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022] Open
Abstract
TRF1, a duplex telomeric DNA binding protein, is implicated in homologous-recombination-based alternative lengthening of telomeres, known as ALT. However, how TRF1 promotes ALT activity has yet to be fully characterized. Here we report that Cdk-dependent TRF1 phosphorylation on T371 acts as a switch to create a pool of TRF1, referred to as (pT371)TRF1, which is recruited to ALT-associated PML bodies (APBs) in S and G2 phases independently of its binding to telomeric DNA. We find that phosphorylation of T371 is essential for APB formation and C-circle production, both of which are hallmarks of ALT. We show that the interaction of (pT371)TRF1 with APBs is dependent upon ATM and homologous-recombination-promoting factors Mre11 and BRCA1. In addition, (pT371)TRF1 interaction with APBs is sensitive to transcription inhibition, which also reduces DNA damage at telomeres. Furthermore, overexpression of RNaseH1 impairs (pT371)TRF1 recruitment to APBs in the presence of campothecin, an inhibitor that prevents topoisomerase I from resolving RNA-DNA hybrids. These results suggest that transcription-associated DNA damage, perhaps arising from processing RNA-DNA hybrids at telomeres, triggers (pT371)TRF1 recruitment to APBs to facilitate ALT activity.
Collapse
Affiliation(s)
- Florence R Wilson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Angus Ho
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - John R Walker
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
157
|
Dumitrache LC, McKinnon PJ. Polynucleotide kinase-phosphatase (PNKP) mutations and neurologic disease. Mech Ageing Dev 2016; 161:121-129. [PMID: 27125728 DOI: 10.1016/j.mad.2016.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/12/2016] [Accepted: 04/24/2016] [Indexed: 12/30/2022]
Abstract
A variety of human neurologic diseases are caused by inherited defects in DNA repair. In many cases, these syndromes almost exclusively impact the nervous system, underscoring the critical requirement for genome stability in this tissue. A striking example of this is defective enzymatic activity of polynucleotide kinase-phosphatase (PNKP), leading to microcephaly or neurodegeneration. Notably, the broad neural impact of mutations in PNKP can result in markedly different disease entities, even when the inherited mutation is the same. For example microcephaly with seizures (MCSZ) results from various hypomorphic PNKP mutations, as does ataxia with oculomotor apraxia 4 (AOA4). Thus, other contributing factors influence the neural phenotype when PNKP is disabled. Here we consider the role for PNKP in maintaining brain function and how perturbation in its activity can account for the varied pathology of neurodegeneration or microcephaly present in MCSZ and AOA4 respectively.
Collapse
Affiliation(s)
- Lavinia C Dumitrache
- Dept. of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Dept. of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
158
|
Bacolla A, Tainer JA, Vasquez KM, Cooper DN. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Res 2016; 44:5673-88. [PMID: 27084947 PMCID: PMC4937311 DOI: 10.1093/nar/gkw261] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes.
Collapse
Affiliation(s)
- Albino Bacolla
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
159
|
Liu SR, Hu CG, Zhang JZ. Regulatory effects of cotranscriptional RNA structure formation and transitions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:562-74. [PMID: 27028291 DOI: 10.1002/wrna.1350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
Abstract
RNAs, which play significant roles in many fundamental biological processes of life, fold into sophisticated and precise structures. RNA folding is a dynamic and intricate process, which conformation transition of coding and noncoding RNAs form the primary elements of genetic regulation. The cellular environment contains various intrinsic and extrinsic factors that potentially affect RNA folding in vivo, and experimental and theoretical evidence increasingly indicates that the highly flexible features of the RNA structure are affected by these factors, which include the flanking sequence context, physiochemical conditions, cis RNA-RNA interactions, and RNA interactions with other molecules. Furthermore, distinct RNA structures have been identified that govern almost all steps of biological processes in cells, including transcriptional activation and termination, transcriptional mutagenesis, 5'-capping, splicing, 3'-polyadenylation, mRNA export and localization, and translation. Here, we briefly summarize the dynamic and complex features of RNA folding along with a wide variety of intrinsic and extrinsic factors that affect RNA folding. We then provide several examples to elaborate RNA structure-mediated regulation at the transcriptional and posttranscriptional levels. Finally, we illustrate the regulatory roles of RNA structure and discuss advances pertaining to RNA structure in plants. WIREs RNA 2016, 7:562-574. doi: 10.1002/wrna.1350 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sheng-Rui Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
160
|
Ray-Soni A, Bellecourt MJ, Landick R. Mechanisms of Bacterial Transcription Termination: All Good Things Must End. Annu Rev Biochem 2016; 85:319-47. [PMID: 27023849 DOI: 10.1146/annurev-biochem-060815-014844] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcript termination is essential for accurate gene expression and the removal of RNA polymerase (RNAP) at the ends of transcription units. In bacteria, two mechanisms are responsible for proper transcript termination: intrinsic termination and Rho-dependent termination. Intrinsic termination is mediated by signals directly encoded within the DNA template and nascent RNA, whereas Rho-dependent termination relies upon the adenosine triphosphate-dependent RNA translocase Rho, which binds nascent RNA and dissociates the elongation complex. Although significant progress has been made in understanding these pathways, fundamental details remain undetermined. Among those that remain unresolved are the existence of an inactivated intermediate in the intrinsic termination pathway, the role of Rho-RNAP interactions in Rho-dependent termination, and the mechanisms by which accessory factors and nucleoid-associated proteins affect termination. We describe current knowledge, discuss key outstanding questions, and highlight the importance of defining the structural rearrangements of RNAP that are involved in the two mechanisms of transcript termination.
Collapse
Affiliation(s)
- Ananya Ray-Soni
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; , .,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| |
Collapse
|
161
|
Jackson RA, Wu JS, Chen ES. C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response. Cell Div 2016; 11:2. [PMID: 27030795 PMCID: PMC4812661 DOI: 10.1186/s13008-016-0014-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 12/02/2022] Open
Abstract
Research on the involvement of C1D and its yeast homologues Rrp47 (S. cerevisiae) and Cti1 (S. pombe) in DNA damage repair and RNA processing has remained mutually exclusive, with most studies predominantly concentrating on Rrp47. This review will look to reconcile the functions of these proteins in their involvement with the RNA exosome, in the regulation of chromatin architecture, and in the repair of DNA double-strand breaks, focusing on non-homologous end joining and homologous recombination. We propose that C1D is situated in a central position to maintain genomic stability at highly transcribed gene loci by coordinating these processes through the timely recruitment of relevant regulatory factors. In the event that the damage is beyond repair, C1D induces apoptosis in a p53-dependent manner.
Collapse
Affiliation(s)
- Rebecca A Jackson
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Jocelyn Shumei Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore ; National University Health System (NUHS), Singapore, 119228 Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
162
|
Tresini M, Marteijn JA, Vermeulen W. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage. RNA Biol 2016; 13:272-8. [PMID: 26913497 PMCID: PMC4829274 DOI: 10.1080/15476286.2016.1142039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/24/2022] Open
Abstract
In response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-independent pathway activated by transcription-blocking DNA lesions, which utilizes the ATM signaling kinase to regulate spliceosome function in a reciprocal manner. We present a model according to which, displacement of co-transcriptional spliceosomes from lesion-arrested RNA polymerases, culminates in R-loop formation and non-canonical ATM activation. ATM signals in a feed-forward fashion to further impede spliceosome organization and regulates UV-induced gene expression and alternative splicing genome-wide. This reciprocal coupling between ATM and the spliceosome highlights the importance of ATM signaling in the cellular response to transcription-blocking lesions and supports a key role of the splicing machinery in this process.
Collapse
Affiliation(s)
- Maria Tresini
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A. Marteijn
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
163
|
Abstract
It is emerging that the pathways that process newly transcribed RNA molecules also regulate the response to DNA damage at multiple levels. Here, we discuss recent insights into how RNA processing pathways participate in DNA damage recognition, signaling, and repair, selectively influence the expression of genome-stabilizing proteins, and resolve deleterious DNA/RNA hybrids (R-loops) formed during transcription and RNA processing. The importance of these pathways for the DNA damage response (DDR) is underscored by the growing appreciation that defects in these regulatory connections may be connected to the genome instability involved in several human diseases, including cancer.
Collapse
Affiliation(s)
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
164
|
Muñoz S, Méndez J. DNA replication stress: from molecular mechanisms to human disease. Chromosoma 2016; 126:1-15. [PMID: 26797216 DOI: 10.1007/s00412-016-0573-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/29/2022]
Abstract
The genome of proliferating cells must be precisely duplicated in each cell division cycle. Chromosomal replication entails risks such as the possibility of introducing breaks and/or mutations in the genome. Hence, DNA replication requires the coordinated action of multiple proteins and regulatory factors, whose deregulation causes severe developmental diseases and predisposes to cancer. In recent years, the concept of "replicative stress" (RS) has attracted much attention as it impinges directly on genomic stability and offers a promising new avenue to design anticancer therapies. In this review, we summarize recent progress in three areas: (1) endogenous and exogenous factors that contribute to RS, (2) molecular mechanisms that mediate the cellular responses to RS, and (3) the large list of diseases that are directly or indirectly linked to RS.
Collapse
Affiliation(s)
- Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| |
Collapse
|
165
|
Cannan WJ, Pederson DS. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol 2016; 231:3-14. [PMID: 26040249 DOI: 10.1002/jcp.25048] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
All organisms suffer double-strand breaks (DSBs) in their DNA as a result of exposure to ionizing radiation. DSBs can also form when replication forks encounter DNA lesions or repair intermediates. The processing and repair of DSBs can lead to mutations, loss of heterozygosity, and chromosome rearrangements that result in cell death or cancer. The most common pathway used to repair DSBs in metazoans (non-homologous DNA end joining) is more commonly mutagenic than the alternative pathway (homologous recombination mediated repair). Thus, factors that influence the choice of pathways used DSB repair can affect an individual's mutation burden and risk of cancer. This review describes radiological, chemical, and biological mechanisms that generate DSBs, and discusses the impact of such variables as DSB etiology, cell type, cell cycle, and chromatin structure on the yield, distribution, and processing of DSBs. The final section focuses on nucleosome-specific mechanisms that influence DSB production, and the possible relationship between higher order chromosome coiling and chromosome shattering (chromothripsis).
Collapse
Affiliation(s)
- Wendy J Cannan
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - David S Pederson
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| |
Collapse
|
166
|
Chib S, Byrd AK, Raney KD. Yeast Helicase Pif1 Unwinds RNA:DNA Hybrids with Higher Processivity than DNA:DNA Duplexes. J Biol Chem 2016; 291:5889-5901. [PMID: 26733194 DOI: 10.1074/jbc.m115.688648] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 01/14/2023] Open
Abstract
Saccharomyces cerevisiae Pif1, an SF1B helicase, has been implicated in both mitochondrial and nuclear functions. Here we have characterized the preference of Pif1 for RNA:DNA heteroduplexes in vitro by investigating several kinetic parameters associated with unwinding. We show that the preferential unwinding of RNA:DNA hybrids is due to neither specific binding nor differences in the rate of strand separation. Instead, Pif1 is capable of unwinding RNA:DNA heteroduplexes with moderately greater processivity compared with its duplex DNA:DNA counterparts. This higher processivity of Pif1 is attributed to slower dissociation from RNA:DNA hybrids. Biologically, this preferential role of the helicase may contribute to its functions at both telomeric and nontelomeric sites.
Collapse
Affiliation(s)
- Shubeena Chib
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
167
|
Aronica L, Kasparek T, Ruchman D, Marquez Y, Cipak L, Cipakova I, Anrather D, Mikolaskova B, Radtke M, Sarkar S, Pai CC, Blaikley E, Walker C, Shen KF, Schroeder R, Barta A, Forsburg SL, Humphrey TC. The spliceosome-associated protein Nrl1 suppresses homologous recombination-dependent R-loop formation in fission yeast. Nucleic Acids Res 2015; 44:1703-17. [PMID: 26682798 PMCID: PMC4770224 DOI: 10.1093/nar/gkv1473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 12/03/2015] [Indexed: 01/07/2023] Open
Abstract
The formation of RNA–DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability. nrl1Δ mutants exhibit endogenous DNA damage, are sensitive to exogenous DNA damage, and have defects in homologous recombination (HR) repair. Concomitantly, nrl1Δ cells display significant changes in gene expression, similar to those induced by DNA damage in wild-type cells. Further, we find that nrl1Δ cells accumulate high levels of R-loops, which co-localize with HR repair factors and require Rad51 and Rad52 for their formation. Together, our findings support a model in which R-loop accumulation and subsequent DNA damage sequesters HR factors, thereby compromising HR repair at endogenously or exogenously induced DNA damage sites, leading to genome instability.
Collapse
Affiliation(s)
- Lucia Aronica
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, Vienna A-1030, Austria Department of Oncology, Stanford University, Stanford 94305, USA
| | - Torben Kasparek
- CRUK/MRC Oxford Institute for Radiation Oncology, Oxford OX37DQ , UK
| | - David Ruchman
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, Vienna A-1030, Austria
| | - Yamile Marquez
- Department of Medical Biochemistry, Max F. Perutz Laboratories,Medical University of Vienna, Vienna A-1030, Austria
| | - Lubos Cipak
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava 81438, Slovakia
| | - Ingrid Cipakova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava 81438, Slovakia
| | - Dorothea Anrather
- Max F. Perutz Laboratories, Mass Spectrometry Facility, Vienna A-1030, Austria
| | - Barbora Mikolaskova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava 81438, Slovakia
| | - Maximilian Radtke
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, Vienna A-1030, Austria
| | - Sovan Sarkar
- CRUK/MRC Oxford Institute for Radiation Oncology, Oxford OX37DQ , UK
| | - Chen-Chun Pai
- CRUK/MRC Oxford Institute for Radiation Oncology, Oxford OX37DQ , UK
| | | | - Carol Walker
- CRUK/MRC Oxford Institute for Radiation Oncology, Oxford OX37DQ , UK
| | - Kuo-Fang Shen
- University of Southern California, Los Angeles 90089-0911, USA
| | - Renee Schroeder
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, Vienna A-1030, Austria
| | - Andrea Barta
- Department of Medical Biochemistry, Max F. Perutz Laboratories,Medical University of Vienna, Vienna A-1030, Austria
| | | | | |
Collapse
|
168
|
Rubio-Peña K, Fontrodona L, Aristizábal-Corrales D, Torres S, Cornes E, García-Rodríguez FJ, Serrat X, González-Knowles D, Foissac S, Porta-De-La-Riva M, Cerón J. Modeling of autosomal-dominant retinitis pigmentosa in Caenorhabditis elegans uncovers a nexus between global impaired functioning of certain splicing factors and cell type-specific apoptosis. RNA (NEW YORK, N.Y.) 2015; 21:2119-31. [PMID: 26490224 PMCID: PMC4647465 DOI: 10.1261/rna.053397.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Abstract
Retinitis pigmentosa (RP) is a rare genetic disease that causes gradual blindness through retinal degeneration. Intriguingly, seven of the 24 genes identified as responsible for the autosomal-dominant form (adRP) are ubiquitous spliceosome components whose impairment causes disease only in the retina. The fact that these proteins are essential in all organisms hampers genetic, genomic, and physiological studies, but we addressed these difficulties by using RNAi in Caenorhabditis elegans. Our study of worm phenotypes produced by RNAi of splicing-related adRP (s-adRP) genes functionally distinguishes between components of U4 and U5 snRNP complexes, because knockdown of U5 proteins produces a stronger phenotype. RNA-seq analyses of worms where s-adRP genes were partially inactivated by RNAi, revealed mild intron retention in developing animals but not in adults, suggesting a positive correlation between intron retention and transcriptional activity. Interestingly, RNAi of s-adRP genes produces an increase in the expression of atl-1 (homolog of human ATR), which is normally activated in response to replicative stress and certain DNA-damaging agents. The up-regulation of atl-1 correlates with the ectopic expression of the pro-apoptotic gene egl-1 and apoptosis in hypodermal cells, which produce the cuticle, but not in other cell types. Our model in C. elegans resembles s-adRP in two aspects: The phenotype caused by global knockdown of s-adRP genes is cell type-specific and associated with high transcriptional activity. Finally, along with a reduced production of mature transcripts, we propose a model in which the retina-specific cell death in s-adRP patients can be induced through genomic instability.
Collapse
Affiliation(s)
- Karinna Rubio-Peña
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Silvia Torres
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Francisco J García-Rodríguez
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Xènia Serrat
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - David González-Knowles
- Integromics, Integromics SL, Parque Científico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | | | - Montserrat Porta-De-La-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain C. elegans Core Facility, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| |
Collapse
|
169
|
Francia S. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Front Genet 2015; 6:320. [PMID: 26617633 PMCID: PMC4643122 DOI: 10.3389/fgene.2015.00320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.
Collapse
Affiliation(s)
- Sofia Francia
- IFOM - FIRC Institute of Molecular Oncology Milan, Italy ; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche Pavia, Italy
| |
Collapse
|
170
|
Yadav P, Owiti N, Kim N. The role of topoisomerase I in suppressing genome instability associated with a highly transcribed guanine-rich sequence is not restricted to preventing RNA:DNA hybrid accumulation. Nucleic Acids Res 2015; 44:718-29. [PMID: 26527723 PMCID: PMC4737143 DOI: 10.1093/nar/gkv1152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022] Open
Abstract
Highly transcribed guanine-run containing sequences, in Saccharomyces cerevisiae, become unstable when topoisomerase I (Top1) is disrupted. Topological changes, such as the formation of extended RNA:DNA hybrids or R-loops or non-canonical DNA structures including G-quadruplexes has been proposed as the major underlying cause of the transcription-linked genome instability. Here, we report that R-loop accumulation at a guanine-rich sequence, which is capable of assembling into the four-stranded G4 DNA structure, is dependent on the level and the orientation of transcription. In the absence of Top1 or RNase Hs, R-loops accumulated to substantially higher extent when guanine-runs were located on the non-transcribed strand. This coincides with the orientation where higher genome instability was observed. However, we further report that there are significant differences between the disruption of RNase Hs and Top1 in regards to the orientation-specific elevation in genome instability at the guanine-rich sequence. Additionally, genome instability in Top1-deficient yeasts is not completely suppressed by removal of negative supercoils and further aggravated by expression of mutant Top1. Together, our data provide a strong support for a function of Top1 in suppressing genome instability at the guanine-run containing sequence that goes beyond preventing the transcription-associated RNA:DNA hybrid formation.
Collapse
Affiliation(s)
- Puja Yadav
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Norah Owiti
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
171
|
Tan K, Zhou Q, Cheng B, Zhang Z, Joachimiak A, Tse-Dinh YC. Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I. Nucleic Acids Res 2015; 43:11031-46. [PMID: 26490962 PMCID: PMC4678816 DOI: 10.1093/nar/gkv1073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli topoisomerase I has an essential function in preventing hypernegative supercoiling of DNA. A full length structure of E. coli topoisomerase I reported here shows how the C-terminal domains bind single-stranded DNA (ssDNA) to recognize the accumulation of negative supercoils in duplex DNA. These C-terminal domains of E. coli topoisomerase I are known to interact with RNA polymerase, and two flexible linkers within the C-terminal domains may assist in the movement of the ssDNA for the rapid removal of transcription driven negative supercoils. The structure has also unveiled for the first time how the 4-Cys zinc ribbon domain and zinc ribbon-like domain bind ssDNA with primarily π-stacking interactions. This novel structure, in combination with new biochemical data, provides important insights into the mechanism of genome regulation by type IA topoisomerases that is essential for life, as well as the structures of homologous type IA TOP3α and TOP3β from higher eukaryotes that also have multiple 4-Cys zinc ribbon domains required for their physiological functions.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Qingxuan Zhou
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| | - Bokun Cheng
- Department of Biochemistry and Molecular Biology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA Biomolecular Sciences Institute, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| |
Collapse
|
172
|
Elevated Genome-Wide Instability in Yeast Mutants Lacking RNase H Activity. Genetics 2015; 201:963-75. [PMID: 26400613 DOI: 10.1534/genetics.115.182725] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 11/18/2022] Open
Abstract
Two types of RNA:DNA associations can lead to genome instability: the formation of R-loops during transcription and the incorporation of ribonucleotide monophosphates (rNMPs) into DNA during replication. Both ribonuclease (RNase) H1 and RNase H2 degrade the RNA component of R-loops, whereas only RNase H2 can remove one or a few rNMPs from DNA. We performed high-resolution mapping of mitotic recombination events throughout the yeast genome in diploid strains of Saccharomyces cerevisiae lacking RNase H1 (rnh1Δ), RNase H2 (rnh201Δ), or both RNase H1 and RNase H2 (rnh1Δ rnh201Δ). We found little effect on recombination in the rnh1Δ strain, but elevated recombination in both the rnh201Δ and the double-mutant strains; levels of recombination in the double mutant were ∼50% higher than in the rnh201 single-mutant strain. An rnh201Δ mutant that additionally contained a mutation that reduces rNMP incorporation by DNA polymerase ε (pol2-M644L) had a level of instability similar to that observed in the presence of wild-type Pol ε. This result suggests that the elevated recombination observed in the absence of only RNase H2 is primarily a consequence of R-loops rather than misincorporated rNMPs.
Collapse
|
173
|
Chromatin, DNA structure and alternative splicing. FEBS Lett 2015; 589:3370-8. [PMID: 26296319 DOI: 10.1016/j.febslet.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023]
Abstract
Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.
Collapse
|
174
|
Courcelle J, Wendel BM, Livingstone DD, Courcelle CT. RecBCD is required to complete chromosomal replication: Implications for double-strand break frequencies and repair mechanisms. DNA Repair (Amst) 2015; 32:86-95. [PMID: 26003632 PMCID: PMC4522357 DOI: 10.1016/j.dnarep.2015.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Several aspects of the mechanism of homologous double-strand break repair remain unclear. Although intensive efforts have focused on how recombination reactions initiate, far less is known about the molecular events that follow. Based upon biochemical studies, current models propose that RecBCD processes double-strand ends and loads RecA to initiate recombinational repair. However, recent studies have shown that RecBCD plays a critical role in completing replication events on the chromosome through a mechanism that does not involve RecA or recombination. Here, we examine several studies, both early and recent, that suggest RecBCD also operates late in the recombination process - after initiation, strand invasion, and crossover resolution have occurred. Similar to its role in completing replication, we propose a model in which RecBCD is required to resect and resolve the DNA synthesis associated with homologous recombination at the point where the missing sequences on the broken molecule have been restored. We explain how the impaired ability to complete chromosome replication in recBC and recD mutants is likely to account for the loss of viability and genome instability in these mutants, and conclude that spontaneous double-strand breaks and replication fork collapse occur far less frequently than previously speculated.
Collapse
Affiliation(s)
- Justin Courcelle
- Department of Biology, Portland State University, Portland, OR 97201, United States.
| | - Brian M Wendel
- Department of Biology, Portland State University, Portland, OR 97201, United States
| | - Dena D Livingstone
- Department of Biology, Portland State University, Portland, OR 97201, United States
| | - Charmain T Courcelle
- Department of Biology, Portland State University, Portland, OR 97201, United States
| |
Collapse
|
175
|
Petzold C, Marceau AH, Miller KH, Marqusee S, Keck JL. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity. J Biol Chem 2015; 290:14626-36. [PMID: 25903123 PMCID: PMC4505529 DOI: 10.1074/jbc.m115.655134] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.
Collapse
Affiliation(s)
- Christine Petzold
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Aimee H Marceau
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Katherine H Miller
- California Institute for Quantitative Biosciences, QB3 and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Susan Marqusee
- California Institute for Quantitative Biosciences, QB3 and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| |
Collapse
|
176
|
Singh I, Ozturk N, Cordero J, Mehta A, Hasan D, Cosentino C, Sebastian C, Krüger M, Looso M, Carraro G, Bellusci S, Seeger W, Braun T, Mostoslavsky R, Barreto G. High mobility group protein-mediated transcription requires DNA damage marker γ-H2AX. Cell Res 2015; 25:837-50. [PMID: 26045162 DOI: 10.1038/cr.2015.67] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
The eukaryotic genome is organized into chromatins, the physiological template for DNA-dependent processes including replication, recombination, repair, and transcription. Chromatin-mediated transcription regulation involves DNA methylation, chromatin remodeling, and histone modifications. However, chromatin also contains non-histone chromatin-associated proteins, of which the high-mobility group (HMG) proteins are the most abundant. Although it is known that HMG proteins induce structural changes of chromatin, the processes underlying transcription regulation by HMG proteins are poorly understood. Here we decipher the molecular mechanism of transcription regulation mediated by the HMG AT-hook 2 protein (HMGA2). We combined proteomic, ChIP-seq, and transcriptome data to show that HMGA2-induced transcription requires phosphorylation of the histone variant H2AX at S139 (H2AXS139ph; γ-H2AX) mediated by the protein kinase ataxia telangiectasia mutated (ATM). Furthermore, we demonstrate the biological relevance of this mechanism within the context of TGFβ1 signaling. The interplay between HMGA2, ATM, and H2AX is a novel mechanism of transcription initiation. Our results link H2AXS139ph to transcription, assigning a new function for this DNA damage marker. Controlled chromatin opening during transcription may involve intermediates with DNA breaks that may require mechanisms that ensure the integrity of the genome.
Collapse
Affiliation(s)
- Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany
| | - Nihan Ozturk
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany
| | - Julio Cordero
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany
| | - Aditi Mehta
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany
| | - Diya Hasan
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany
| | - Claudia Cosentino
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02118, USA
| | - Carlos Sebastian
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02118, USA
| | - Marcus Krüger
- Division of Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany
| | - Mario Looso
- Group of Bioinformatics, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Saverio Bellusci
- 1] Chair for Lung Matrix Remodeling, Excellence Cluster Cardio Pulmonary System, University Justus Liebig, 35932 Giessen, Germany [2] Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation [3] Member of the Universities of Giessen and Marburg Lung Center (UGMLC) and the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL)
| | - Werner Seeger
- 1] Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany [2] Member of the Universities of Giessen and Marburg Lung Center (UGMLC) and the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL)
| | - Thomas Braun
- 1] Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany [2] Member of the Universities of Giessen and Marburg Lung Center (UGMLC) and the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL)
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02118, USA
| | - Guillermo Barreto
- 1] LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany [2] Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation [3] Member of the Universities of Giessen and Marburg Lung Center (UGMLC) and the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL)
| |
Collapse
|
177
|
Sollier J, Cimprich KA. Breaking bad: R-loops and genome integrity. Trends Cell Biol 2015; 25:514-22. [PMID: 26045257 DOI: 10.1016/j.tcb.2015.05.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022]
Abstract
R-loops, nucleic acid structures consisting of an RNA-DNA hybrid and displaced single-stranded (ss) DNA, are ubiquitous in organisms from bacteria to mammals. First described in bacteria where they initiate DNA replication, it now appears that R-loops regulate diverse cellular processes such as gene expression, immunoglobulin (Ig) class switching, and DNA repair. Changes in R-loop regulation induce DNA damage and genome instability, and recently it was shown that R-loops are associated with neurodegenerative disorders. We discuss recent developments in the field; in particular, the regulation and effects of R-loops in cells, their effect on genomic and epigenomic stability, and their potential contribution to the origin of diseases including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Julie Sollier
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
178
|
Costantino L, Koshland D. The Yin and Yang of R-loop biology. Curr Opin Cell Biol 2015; 34:39-45. [PMID: 25938907 DOI: 10.1016/j.ceb.2015.04.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/25/2015] [Accepted: 04/15/2015] [Indexed: 01/22/2023]
Abstract
RNA performs diverse functions in cells, directing translation, modulating transcription and catalyzing enzymatic reactions. Remarkably RNA can also anneal to its genomic template co- or post-transcriptionally to generate an RNA-DNA hybrid and a displaced single-stranded DNA. These unusual nucleic acid structures are called R-loops. Studies in the last decades concentrated on the detrimental effects of R-loop formation, particularly on genome stability. In fact, R-loops are thought to play a role in several human diseases like cancer and neurodegenerative syndromes. But recent data has revealed that R-loops can also have a positive impact on cell processes, like regulating gene expression, chromosome structure and DNA repair. Here we summarize our current understanding of the formation and dissolution of R-loops, and discuss their negative and positive impact on genome structure and function.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
179
|
Williams JD, Fleetwood S, Berroyer A, Kim N, Larson ED. Sites of instability in the human TCF3 (E2A) gene adopt G-quadruplex DNA structures in vitro. Front Genet 2015; 6:177. [PMID: 26029241 PMCID: PMC4426816 DOI: 10.3389/fgene.2015.00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/25/2015] [Indexed: 01/23/2023] Open
Abstract
The formation of highly stable four-stranded DNA, called G-quadruplex (G4), promotes site-specific genome instability. G4 DNA structures fold from repetitive guanine sequences, and increasing experimental evidence connects G4 sequence motifs with specific gene rearrangements. The human transcription factor 3 (TCF3) gene (also termed E2A) is subject to genetic instability associated with severe disease, most notably a common translocation event t(1;19) associated with acute lymphoblastic leukemia. The sites of instability in TCF3 are not randomly distributed, but focused to certain sequences. We asked if G4 DNA formation could explain why TCF3 is prone to recombination and mutagenesis. Here we demonstrate that sequences surrounding the major t(1;19) break site and a region associated with copy number variations both contain G4 sequence motifs. The motifs identified readily adopt G4 DNA structures that are stable enough to interfere with DNA synthesis in physiological salt conditions in vitro. When introduced into the yeast genome, TCF3 G4 motifs promoted gross chromosomal rearrangements in a transcription-dependent manner. Our results provide a molecular rationale for the site-specific instability of human TCF3, suggesting that G4 DNA structures contribute to oncogenic DNA breaks and recombination.
Collapse
Affiliation(s)
| | - Sara Fleetwood
- School of Biological Sciences, Illinois State University Normal, IL, USA
| | - Alexandra Berroyer
- School of Biological Sciences, Illinois State University Normal, IL, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University Normal, IL, USA
| |
Collapse
|
180
|
Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K, Dimitrov S, Pathania S, McKinney KM, Eaton ML, Kellis M, Hill SJ, Parmigiani G, Proudfoot NJ, Livingston DM. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 2015; 57:636-647. [PMID: 25699710 PMCID: PMC4351672 DOI: 10.1016/j.molcel.2015.01.011] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/21/2014] [Accepted: 01/05/2015] [Indexed: 11/07/2022]
Abstract
The mechanisms contributing to transcription-associated genomic instability are both complex and incompletely understood. Although R-loops are normal transcriptional intermediates, they are also associated with genomic instability. Here, we show that BRCA1 is recruited to R-loops that form normally over a subset of transcription termination regions. There it mediates the recruitment of a specific, physiological binding partner, senataxin (SETX). Disruption of this complex led to R-loop-driven DNA damage at those loci as reflected by adjacent γ-H2AX accumulation and ssDNA breaks within the untranscribed strand of relevant R-loop structures. Genome-wide analysis revealed widespread BRCA1 binding enrichment at R-loop-rich termination regions (TRs) of actively transcribed genes. Strikingly, within some of these genes in BRCA1 null breast tumors, there are specific insertion/deletion mutations located close to R-loop-mediated BRCA1 binding sites within TRs. Thus, BRCA1/SETX complexes support a DNA repair mechanism that addresses R-loop-based DNA damage at transcriptional pause sites. Endogenous BRCA1 and senataxin (SETX) interact in a BRCA1-driven process BRCA1/SETX complexes are recruited to R-loop-associated termination regions (TRs) BRCA1/SETX complexes suppress transcriptional DNA damage arising at nearby R-loops BRCA1 breast cancers reveal indel mutations near BRCA1 TR binding regions
Collapse
Affiliation(s)
- Elodie Hatchi
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | | | - Steffen Ventz
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Angela Yen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA
| | | | - Stoil Dimitrov
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Shailja Pathania
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kristine M McKinney
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Matthew L Eaton
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA
| | - Sarah J Hill
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Giovanni Parmigiani
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | | | - David M Livingston
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
181
|
Naro C, Bielli P, Pagliarini V, Sette C. The interplay between DNA damage response and RNA processing: the unexpected role of splicing factors as gatekeepers of genome stability. Front Genet 2015; 6:142. [PMID: 25926848 PMCID: PMC4397863 DOI: 10.3389/fgene.2015.00142] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 12/22/2022] Open
Abstract
Genome integrity is constantly threatened by endogenous and exogenous factors. However, its preservation is ensured by a network of pathways that prevent and/or repair the lesion, which constitute the DNA damage response (DDR). Expression of the key proteins involved in the DDR is controlled by numerous post-transcriptional mechanisms, among which pre-mRNA splicing stands out. Intriguingly, several splicing factors (SFs) have been recently shown to play direct functions in DNA damage prevention and repair, which go beyond their expected splicing activity. At the same time, evidence is emerging that DNA repair proteins (DRPs) can actively sustain the DDR by acting as post-transcriptional regulator of gene expression, in addition to their well-known role in the mechanisms of signaling and repair of the lesion. Herein, we will review these non-canonical functions of both SFs and DRPs, which suggest the existence of a tight interplay between splicing regulation and canonical DNA safeguard mechanisms ensuring genome stability.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| |
Collapse
|
182
|
Wons E, Mruk I, Kaczorowski T. Relaxed specificity of prokaryotic DNA methyltransferases results in DNA site-specific modification of RNA/DNA heteroduplexes. J Appl Genet 2015; 56:539-546. [PMID: 25787880 DOI: 10.1007/s13353-015-0279-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/18/2023]
Abstract
RNA/DNA hybrid duplexes regularly occur in nature, for example in transcriptional R loops. Their susceptibility to modification by DNA-specific or RNA-specific enzymes is, thus, a biologically relevant question, which, in addition, has possible biotechnological implications. In this study, we investigated the activity of four isospecific DNA methyltransferases (M.EcoVIII, M.LlaCI, M.HindIII, M.BstZ1II) toward an RNA/DNA duplex carrying one 5'-AAGCUU-3'/3'-TTCGAA-5' target sequence. The analyzed enzymes belong to the β-group of adenine N6-methyltransferases and recognize the palindromic DNA sequence 5'-AAGCTT-3'/3'-TTCGAA-5'. Under standard conditions, none of these isospecific enzymes could detectibly methylate the RNA/DNA duplex. However, the addition of agents that generally relax specificity, such as dimethyl sulfoxide (DMSO) and glycerol, resulted in substantial methylation of the RNA/DNA duplex by M.EcoVIII and M.LlaCI. Only the DNA strand of the RNA/DNA duplex was methylated. The same was not observed for M.HindIII or M.BstZ1II. This is, to our knowledge, the first report that demonstrates such activity by prokaryotic DNA methyltransferases. Possible applications of these findings in a laboratory practice are also discussed.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
183
|
Benedetti F, Japaridze A, Dorier J, Racko D, Kwapich R, Burnier Y, Dietler G, Stasiak A. Effects of physiological self-crowding of DNA on shape and biological properties of DNA molecules with various levels of supercoiling. Nucleic Acids Res 2015; 43:2390-9. [PMID: 25653164 PMCID: PMC4344501 DOI: 10.1093/nar/gkv055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DNA in bacterial chromosomes and bacterial plasmids is supercoiled. DNA supercoiling is essential for DNA replication and gene regulation. However, the density of supercoiling in vivo is circa twice smaller than in deproteinized DNA molecules isolated from bacteria. What are then the specific advantages of reduced supercoiling density that is maintained in vivo? Using Brownian dynamics simulations and atomic force microscopy we show here that thanks to physiological DNA–DNA crowding DNA molecules with reduced supercoiling density are still sufficiently supercoiled to stimulate interaction between cis-regulatory elements. On the other hand, weak supercoiling permits DNA molecules to modulate their overall shape in response to physiological changes in DNA crowding. This plasticity of DNA shapes may have regulatory role and be important for the postreplicative spontaneous segregation of bacterial chromosomes.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland
| | - Aleksandre Japaridze
- Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015-Lausanne, Switzerland
| | - Julien Dorier
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland Vital-IT, SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland
| | - Dusan Racko
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland Polymer Institute of the Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Robert Kwapich
- Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015-Lausanne, Switzerland Department of Medical Physics, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Yannis Burnier
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015-Lausanne, Switzerland
| | - Giovanni Dietler
- Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015-Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland
| |
Collapse
|
184
|
Koo CX, Kobiyama K, Shen YJ, LeBert N, Ahmad S, Khatoo M, Aoshi T, Gasser S, Ishii KJ. RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression. J Biol Chem 2015; 290:7463-73. [PMID: 25623070 PMCID: PMC4367256 DOI: 10.1074/jbc.m115.636365] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells.
Collapse
Affiliation(s)
- Christine Xing'er Koo
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, the Laboratory of Adjuvant Innovation and
| | - Kouji Kobiyama
- the Laboratory of Adjuvant Innovation and the Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (iFREC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu J Shen
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| | - Nina LeBert
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and
| | - Shandar Ahmad
- the Laboratory of Bioinformatics, National Institute of Biomedical Innovation (NIBIO), Ibaraki, Osaka 567-0085, Japan, and
| | - Muznah Khatoo
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and
| | - Taiki Aoshi
- the Laboratory of Adjuvant Innovation and the Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (iFREC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Stephan Gasser
- From the Immunology Programme and Department of Microbiology, Centre for Life Sciences, and the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456,
| | - Ken J Ishii
- the Laboratory of Adjuvant Innovation and the Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (iFREC), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
185
|
End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria. PLoS Genet 2015; 11:e1004909. [PMID: 25569209 PMCID: PMC4287441 DOI: 10.1371/journal.pgen.1004909] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In bacterial cells, bidirectional replication of the circular chromosome is initiated from a single origin (oriC) and terminates in an antipodal terminus region such that movement of the pair of replication forks is largely codirectional with transcription. The terminus region is flanked by discrete Ter sequences that act as polar, or direction-dependent, arrest sites for fork progression. Alternative oriC-independent modes of replication initiation are possible, one of which is constitutive stable DNA replication (cSDR) from transcription-associated RNA–DNA hybrids or R-loops. Here, I discuss the distinctive attributes of fork progression and termination associated with different modes of bacterial replication initiation. Two hypothetical models are proposed: that head-on collisions between pairs of replication forks, which are a feature of replication termination in all kingdoms of life, provoke bilateral fork reversal reactions; and that cSDR is characterized by existence of distinct subpopulations in bacterial cultures and a widespread distribution of origins in the genome, each with a small firing potential. Since R-loops are known to exist in eukaryotic cells and to inflict genome damage in G1 phase, it is possible that cSDR-like events promote aberrant replication initiation even in eukaryotes.
Collapse
|
186
|
Yadav P, Harcy V, Argueso JL, Dominska M, Jinks-Robertson S, Kim N. Topoisomerase I plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence. PLoS Genet 2014; 10:e1004839. [PMID: 25473964 PMCID: PMC4256205 DOI: 10.1371/journal.pgen.1004839] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
G-quadruplex or G4 DNA is a non-B secondary DNA structure that comprises a stacked array of guanine-quartets. Cellular processes such as transcription and replication can be hindered by unresolved DNA secondary structures potentially endangering genome maintenance. As G4-forming sequences are highly frequent throughout eukaryotic genomes, it is important to define what factors contribute to a G4 motif becoming a hotspot of genome instability. Using a genetic assay in Saccharomyces cerevisiae, we previously demonstrated that a potential G4-forming sequence derived from a guanine-run containing immunoglobulin switch Mu (Sμ) region becomes highly unstable when actively transcribed. Here we describe assays designed to survey spontaneous genome rearrangements initiated at the Sμ sequence in the context of large genomic areas. We demonstrate that, in the absence of Top1, a G4 DNA-forming sequence becomes a strong hotspot of gross chromosomal rearrangements and loss of heterozygosity associated with mitotic recombination within the ∼20 kb or ∼100 kb regions of yeast chromosome V or III, respectively. Transcription confers a critical strand bias since genome rearrangements at the G4-forming Sμ are elevated only when the guanine-runs are located on the non-transcribed strand. The direction of replication and transcription, when in a head-on orientation, further contribute to the elevated genome instability at a potential G4 DNA-forming sequence. The implications of our identification of Top1 as a critical factor in suppression of instability associated with potential G4 DNA-forming sequences are discussed. Genome instability is not evenly distributed, but rather is highly elevated at certain genomic loci containing DNA sequences that can fold into non-canonical secondary structures. The four-stranded G-quadruplex or G4 DNA is one such DNA structure capable of instigating transcription and/or replication obstruction and subsequent genome instability. In this study, we used a reporter system to quantitatively measure the level of genome instability occurring at a G4 DNA motif integrated into the yeast genome. We showed that the disruption of Topoisomerase I function significantly elevated various types of genome instability at the highly transcribed G4 motif generating loss of heterozygosity and copy number alterations (deletions and duplications), both of which are frequently observed in cancer genomes.
Collapse
Affiliation(s)
- Puja Yadav
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Victoria Harcy
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
187
|
Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 2014; 56:777-85. [PMID: 25435140 DOI: 10.1016/j.molcel.2014.10.020] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022]
Abstract
R-loops, consisting of an RNA-DNA hybrid and displaced single-stranded DNA, are physiological structures that regulate various cellular processes occurring on chromatin. Intriguingly, changes in R-loop dynamics have also been associated with DNA damage accumulation and genome instability; however, the mechanisms underlying R-loop-induced DNA damage remain unknown. Here we demonstrate in human cells that R-loops induced by the absence of diverse RNA processing factors, including the RNA/DNA helicases Aquarius (AQR) and Senataxin (SETX), or by the inhibition of topoisomerase I, are actively processed into DNA double-strand breaks (DSBs) by the nucleotide excision repair endonucleases XPF and XPG. Surprisingly, DSB formation requires the transcription-coupled nucleotide excision repair (TC-NER) factor Cockayne syndrome group B (CSB), but not the global genome repair protein XPC. These findings reveal an unexpected and potentially deleterious role for TC-NER factors in driving R-loop-induced DNA damage and genome instability.
Collapse
Affiliation(s)
- Julie Sollier
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caroline Townsend Stork
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Avenida Américo Vespucio, 41092 Seville, Spain
| | - Renee D Paulsen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Avenida Américo Vespucio, 41092 Seville, Spain
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
188
|
Legros P, Malapert A, Niinuma S, Bernard P, Vanoosthuyse V. RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes. PLoS Genet 2014; 10:e1004794. [PMID: 25392932 PMCID: PMC4230746 DOI: 10.1371/journal.pgen.1004794] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
Condensin-mediated chromosome condensation is essential for genome stability upon cell division. Genetic studies have indicated that the association of condensin with chromatin is intimately linked to gene transcription, but what transcription-associated feature(s) direct(s) the accumulation of condensin remains unclear. Here we show in fission yeast that condensin becomes strikingly enriched at RNA Pol III-transcribed genes when Swd2.2 and Sen1, two factors involved in the transcription process, are simultaneously deleted. Sen1 is an ATP-dependent helicase whose orthologue in Saccharomyces cerevisiae contributes both to terminate transcription of some RNA Pol II transcripts and to antagonize the formation of DNA:RNA hybrids in the genome. Using two independent mapping techniques, we show that DNA:RNA hybrids form in abundance at Pol III-transcribed genes in fission yeast but we demonstrate that they are unlikely to faciliate the recruitment of condensin. Instead, we show that Sen1 forms a stable and abundant complex with RNA Pol III and that Swd2.2 and Sen1 antagonize both the interaction of RNA Pol III with chromatin and RNA Pol III-dependent transcription. When Swd2.2 and Sen1 are lacking, the increased concentration of RNA Pol III and condensin at Pol III-transcribed genes is accompanied by the accumulation of topoisomerase I and II and by local nucleosome depletion, suggesting that Pol III-transcribed genes suffer topological stress. We provide evidence that this topological stress contributes to recruit and/or stabilize condensin at Pol III-transcribed genes in the absence of Swd2.2 and Sen1. Our data challenge the idea that a processive RNA polymerase hinders the binding of condensin and suggest that transcription-associated topological stress could in some circumstances facilitate the association of condensin. Failure to condense chromosomes prior to anaphase onset can lead to genome instability. The evolutionary-conserved condensin complex drives chromosome condensation, probably by changing the topology of chromatin around its binding sites. Condensin localizes to regions of high transcription, suggesting that some transcription-associated feature(s) direct its association with chromatin. Here we considered that transcription-dependent DNA:RNA hybrids or topological stress could be involved in recruiting condensin. Our data show that condensin is indeed enriched at regions accumulating DNA:RNA hybrids but that they are not involved in its recruitment. Rather, we identify a mutant combination where increased transcription by RNA Pol III is associated locally with stronger topological stress. Strikingly the localization of condensin is dramatically enhanced at the same loci and we show that topological stress contributes to this enhanced association. Our data strengthen the idea that transcription creates the environment necessary to recruit condensin in mitosis.
Collapse
Affiliation(s)
- Pénélope Legros
- CNRS, Université Lyon 01, UMR5239, LBMC; Ecole Normale Supérieure de Lyon, Lyon, France.
| | - Amélie Malapert
- CNRS, Université Lyon 01, UMR5239, LBMC; Ecole Normale Supérieure de Lyon, Lyon, France.
| | - Sho Niinuma
- CNRS, Université Lyon 01, UMR5239, LBMC; Ecole Normale Supérieure de Lyon, Lyon, France.
| | - Pascal Bernard
- CNRS, Université Lyon 01, UMR5239, LBMC; Ecole Normale Supérieure de Lyon, Lyon, France.
| | - Vincent Vanoosthuyse
- CNRS, Université Lyon 01, UMR5239, LBMC; Ecole Normale Supérieure de Lyon, Lyon, France.
- * E-mail:
| |
Collapse
|
189
|
Abstract
The mechanism by which cells recognize and complete replicated regions at their precise doubling point must be remarkably efficient, occurring thousands of times per cell division along the chromosomes of humans. However, this process remains poorly understood. Here we show that, in Escherichia coli, the completion of replication involves an enzymatic system that effectively counts pairs and limits cellular replication to its doubling point by allowing converging replication forks to transiently continue through the doubling point before the excess, over-replicated regions are incised, resected, and joined. Completion requires RecBCD and involves several proteins associated with repairing double-strand breaks including, ExoI, SbcDC, and RecG. However, unlike double-strand break repair, completion occurs independently of homologous recombination and RecA. In some bacterial viruses, the completion mechanism is specifically targeted for inactivation to allow over-replication to occur during lytic replication. The results suggest that a primary cause of genomic instabilities in many double-strand-break-repair mutants arises from an impaired ability to complete replication, independent from DNA damage.
Collapse
|
190
|
El Hage A, Webb S, Kerr A, Tollervey D. Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet 2014; 10:e1004716. [PMID: 25357144 PMCID: PMC4214602 DOI: 10.1371/journal.pgen.1004716] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023] Open
Abstract
During transcription, the nascent RNA can invade the DNA template, forming extended RNA-DNA duplexes (R-loops). Here we employ ChIP-seq in strains expressing or lacking RNase H to map targets of RNase H activity throughout the budding yeast genome. In wild-type strains, R-loops were readily detected over the 35S rDNA region, transcribed by Pol I, and over the 5S rDNA, transcribed by Pol III. In strains lacking RNase H activity, R-loops were elevated over other Pol III genes, notably tRNAs, SCR1 and U6 snRNA, and were also associated with the cDNAs of endogenous TY1 retrotransposons, which showed increased rates of mobility to the 5′-flanking regions of tRNA genes. Unexpectedly, R-loops were also associated with mitochondrial genes in the absence of RNase H1, but not of RNase H2. Finally, R-loops were detected on actively transcribed protein-coding genes in the wild-type, particularly over the second exon of spliced ribosomal protein genes. R-loops (RNA-DNA hybrids) are potentially deleterious for gene expression and genome stability, but can be beneficial, for example, during immunoglobulin gene class-switch recombination. Here we made use of antibody S9.6, with specificity for RNA-DNA duplexes independently of their sequence. The genome-wide distribution of R-loops in wild-type yeast showed association with the highly transcribed ribosomal DNA, and protein-coding genes, particularly the second exon of spliced genes. On RNA polymerase III loci such as the highly transcribed transfer RNA genes (tRNAs), R-loop accumulation was strongly detected in the absence of both ribonucleases H1 and H2 (RNase H1 and H2), indicating that R-loops are inherently formed but rapidly cleared by RNase H. Importantly, stable R-loops lead to reduced synthesis of tRNA precursors in mutants lacking RNase H and DNA topoisomerase activities. RNA-DNA hybrids associated with TY1 cDNA retrotransposition intermediates were elevated in the absence of RNase H, and this was accompanied by increased retrotransposition, in particular to 5′-flanking regions of tRNAs. Our findings show that RNase H participates in silencing of TY1 life cycle. Surprisingly, R-loops associated with mitochondrial transcription units were suppressed specifically by RNase H1. These findings have potentially important implications for understanding human diseases caused by mutations in RNase H.
Collapse
Affiliation(s)
- Aziz El Hage
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (AEH); (DT)
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (AEH); (DT)
| |
Collapse
|
191
|
Abstract
R-loops are cellular structures composed of an RNA/DNA hybrid, which is formed when the RNA hybridises to a complementary DNA strand and a displaced single-stranded DNA. R-loops have been detected in various organisms from bacteria to mammals and play crucial roles in regulating gene expression, DNA and histone modifications, immunoglobulin class switch recombination, DNA replication, and genome stability. Recent evidence suggests that R-loops are also involved in molecular mechanisms of neurological diseases and cancer. In addition, mutations in factors implicated in R-loop biology, such as RNase H and SETX (senataxin), lead to devastating human neurodegenerative disorders, highlighting the importance of correctly regulating the level of R-loops in human cells. In this review we summarise current advances in this field, with a particular focus on diseases associated with dysregulation of R-loop structures. We also discuss potential therapeutic approaches for such diseases and highlight future research directions.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
192
|
Abstract
Homologous recombination (HR) is a molecular process that plays multiple important roles in DNA metabolism, both for DNA repair and genetic variation in all forms of life1. Generally, HR involves exchange of genetic information between two identical or nearly identical DNA molecules1; however, HR can also occur between RNA molecules, as shown for RNA viruses2. Previous research showed that synthetic RNA oligonucleotides (oligos) can template DNA double-strand break (DSB) repair in yeast and human cells3,4, and artificial long RNA templates injected in ciliate cells can guide genomic rearrangements5. Here we report that endogenous transcript RNA mediates HR with chromosomal DNA in yeast Saccharomyces cerevisiae. We developed a system to detect events of HR initiated by transcript RNA following repair of a chromosomal DSB occurring either in a homologous but remote locus (in trans), or in the same transcript-generating locus (in cis) in reverse transcription defective yeast strains. We found that RNA-DNA recombination is blocked by ribonucleases (RNases) H1 and H2. In the presence of RNases H, DSB repair proceeds through a cDNA intermediate, whereas in their absence, it proceeds directly through RNA. The proximity of the transcript to its chromosomal DNA partner in cis facilitates Rad52-driven HR during DSB repair. In accord, we demonstrate that yeast and human Rad52 proteins efficiently catalyze annealing of RNA to a DSB-like DNA end in vitro. Our results reveal a novel mechanism of HR and DNA repair templated by transcript RNA. Thus, considering the abundance of RNA transcripts in cells, the impact of RNA on genomic stability and plasticity could be vast.
Collapse
|
193
|
Li S, Li Z, Shu FJ, Xiong H, Phillips AC, Dynan WS. Double-strand break repair deficiency in NONO knockout murine embryonic fibroblasts and compensation by spontaneous upregulation of the PSPC1 paralog. Nucleic Acids Res 2014; 42:9771-80. [PMID: 25100870 PMCID: PMC4150768 DOI: 10.1093/nar/gku650] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NONO, SFPQ and PSPC1 make up a family of proteins with diverse roles in transcription, RNA processing and DNA double-strand break (DSB) repair. To understand long-term effects of loss of NONO, we characterized murine embryonic fibroblasts (MEFs) from knockout mice. In the absence of genotoxic stress, wild-type and mutant MEFs showed similar growth rates and cell cycle distributions, and the mutants were only mildly radiosensitive. Further investigation showed that NONO deficiency led to upregulation of PSPC1, which replaced NONO in a stable complex with SFPQ. Knockdown of PSPC1 in a NONO-deficient background led to severe radiosensitivity and delayed resolution of DSB repair foci. The DNA-dependent protein kinase (DNA-PK) inhibitor, NU7741, sensitized wild-type and singly deficient MEFs, but had no additional effect on doubly deficient cells, suggesting that NONO/PSPC1 and DNA-PK function in the same pathway. We tested whether NONO and PSPC1 might also affect repair indirectly by influencing mRNA levels for other DSB repair genes. Of 12 genes tested, none were downregulated, and several were upregulated. Thus, NONO or related proteins are critical for DSB repair, NONO and PSPC1 are functional homologs with partially interchangeable functions and a compensatory response involving PSPC1 blunts the effect of NONO deficiency.
Collapse
Affiliation(s)
- Shuyi Li
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA Department of Biochemistry, Emory University, Atlanta, GA 30322, USA Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA
| | - Zhentian Li
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA Department of Biochemistry, Emory University, Atlanta, GA 30322, USA Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA
| | - Feng-Jue Shu
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | - Hairong Xiong
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA State Key Laboratory of Virology/Institute of Medical Virology, Wuhan University, Wuhan 430071, China
| | - Andrew C Phillips
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA
| | - William S Dynan
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA Department of Biochemistry, Emory University, Atlanta, GA 30322, USA Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
194
|
Britton S, Dernoncourt E, Delteil C, Froment C, Schiltz O, Salles B, Frit P, Calsou P. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 2014; 42:9047-62. [PMID: 25030905 PMCID: PMC4132723 DOI: 10.1093/nar/gku601] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a two-phase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA:RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion. We propose that a new component of the DDR is an active anti-R-loop mechanism operating at damaged transcribed sites which includes the exclusion of mRNA biogenesis factors such as SAF-A, FUS and TAF15.
Collapse
Affiliation(s)
- Sébastien Britton
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Emma Dernoncourt
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Christine Delteil
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Carine Froment
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Odile Schiltz
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Bernard Salles
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Philippe Frit
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Patrick Calsou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| |
Collapse
|