151
|
Li P, Xiao Z, Sun J, Oyang X, Xie X, Li Z, Tian X, Li J. Metabolic regulations in lettuce root under combined exposure to perfluorooctanoic acid and perfluorooctane sulfonate in hydroponic media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138382. [PMID: 32481221 DOI: 10.1016/j.scitotenv.2020.138382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been detected in many agricultural products in contaminated fields and in supply chains. Roots are the main organ in plants to uptake and bio-accumulate PFASs, but the changes of metabolic regulation in roots by PFASs are largely unexplored. Here, lettuce exposed to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at different concentrations (500, 1000, 2000 and 5000 ng/L) was investigated via metabolomics. Many key metabolites, such as antioxidants, lipids, amino acids, fatty acids, carbohydrates, linolenic acid derivatives, purine and nucleosides, were significantly altered. Tyrosine metabolism, purine metabolism, isoquinoline alkaloid biosynthesis and terpenoid backbone biosynthesis were altered in roots by PFOA and PFOS. Tricarboxylic acid cycle was perturbed by 5000 ng/L exposure. Activation of antioxidant defense pathways, reallocation of carbon and nitrogen metabolism, regulation of energy metabolism and purine metabolism were reprogrammed in roots. Lettuce employed multiple strategies to increase tolerance to PFOA and PFOS, which includes the adjustment of membrane composition, elevation of inorganic nitrogen fixation and respiration, accumulation of sucrose and regulation of signaling molecules. The results of this study offer insights into the molecular reprogramming of plant roots in response to PFAS exposure and provide important information for the risk assessment of PFASs in environment.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China; Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Zhiyong Xiao
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Jiang Sun
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xihui Oyang
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xiaocan Xie
- Department of Vegetable Science, Beijing Key laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhifang Li
- Department of Vegetable Science, Beijing Key laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
152
|
Yang L, He L, Xue J, Ma Y, Xie Z, Wu L, Huang M, Zhang Z. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122405. [PMID: 32120220 DOI: 10.1016/j.jhazmat.2020.122405] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have attracted global attention due to their chemical durability, wide distribution, biotoxicity and bioaccumulative properties. Persulfate is a promising alternative to H2O2 for advanced oxidation processes and effective for organic removal. In this review, persulfate activation methods and operational factors in persulfate-based PFOA / PFOS degradation are analyzed and summarized. Moreover, the decomposing mechanisms of PFOA and PFOS are outlined in terms of molecular structures based a series of proposed pathways. PFOS could be converted to PFOA with the attack of SO4- and OH. And then PFOA defluorination occurs with one CF2 unit missing in each round and the similar procedure would occur continuously with sufficient SO4- and OH until entire decomposition. In addition, several knowledge gaps and research needs for further in-depth studies are identified. This review provides an overview for better understanding of the mechanisms and prospects in persulfate-based degradation of PFOA and PFOS.
Collapse
Affiliation(s)
- Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch 8440, New Zealand
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch 8440, New Zealand; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhiyong Xie
- Centre for Materials and Coastal Research, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, 21502, Germany
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; The James Hutton Institute, Craigiebuckler, Aberdeen ABI5 8QH, UK.
| |
Collapse
|
153
|
Tian Y, Liu J, Pan L. The mechanism of Mitogen-Activated Protein Kinases to mediate apoptosis and immunotoxicity induced by Benzo[a]pyrene on hemocytes of scallop Chlamys farreri in vitro. FISH & SHELLFISH IMMUNOLOGY 2020; 102:64-72. [PMID: 32268177 DOI: 10.1016/j.fsi.2020.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Benzo [a]pyrene (B [a]P) has received widespread attention for serious pollution in the sea, which may reduce immunity and lead to the outbreak of disease in bivalves. However, the mechanism of immunotoxicity induced by B [a]P in bivalves was still unclear. Previous studies have found that Mitogen-Activated Protein Kinases (MAPKs) including three classic pathways (ERK, p38 and JNK) play an important role in mediating this process. Thus, in order to explore the mechanism of immunotoxicity induced by B [a]P in scallop Chlamys farreri, hemocytes were treated with PD98059 (ERK inhibitor), SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) for 1 h and then incubation with B [a]P for 24 h at 1 μg/mL. Indexes including oxidative damage, apoptotic rate, and immune indicators were detected in the present study. The results showed that the increase of Reactive Oxygen Species (ROS) and DNA damage induced by B [a]P was inhibited with PD98059 and SB203580. Besides, lysosomal membrane stability (LMS) damage was promoted by PD98059, while it was opposite when treated with SB203580. Moreover, the ascended apoptosis rate induced by B [a]P was increased significantly after treatment with PD98059, but it was remarkably attenuated by SB203580 and SP600125. However, the opposite pattern was showed in phagocytosis compared with apoptosis rate in all of three inhibitors. In addition, antibacterial activity and bacteriolytic activity were enhanced by SB203580 while inhibited by PD98059. Therefore, these results showed that MAPKs directly or indirectly mediate the decrease of oxidative damage, apoptosis and immune defense ability of C. farreri hemocytes, which suggesting ERK/p38/JNK pathways have different functions in the apoptosis and immunity of C. farreri hemocytes after B [a]P exposure. In conclusion, this study intended to enrich the theoretical basis for immunotoxicology of bivalves exposed to pollutants.
Collapse
Affiliation(s)
- Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jing Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
154
|
Li P, Oyang X, Xie X, Li Z, Yang H, Xi J, Guo Y, Tian X, Liu B, Li J, Xiao Z. Phytotoxicity induced by perfluorooctanoic acid and perfluorooctane sulfonate via metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121852. [PMID: 31848096 DOI: 10.1016/j.jhazmat.2019.121852] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/16/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are becoming common pollutants in natural environment, while the toxic effects and defense mechanisms in agricultural plants are poorly understood. Here, lettuce exposed to either perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) at two different concentrations (500, 5000 ng/L) in hydroponic media was investigated via metabolomics. Under the tested conditions, the growth and biomass of lettuce were not affected by PFOA and PFOS, but metabolic profiles in leaves were altered. The composition and metabolism of lipids, carbohydrates, fatty acids, amino acids and some antioxidants were regulated, compromising the nutritional quality of the plants. Key pathways in energy metabolism were disturbed by both PFOA and PFOS, including tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism and pyruvate metabolism. Amino acid metabolism, e.g., phenylalanine and tyrosine, was disturbed by PFOA. The metabolism of linoleic acid was disturbed by PFOS. The changes of antioxidants and 8-hydroxy-deoxyguanosine indicated the occurrence of oxidative stress and DNA damage under PFOA or PFOS exposure. The main defense processes against PFASs exposure in lettuce included alteration in plasma membrane, activation of antioxidant systems, increase of tolerance and repair of DNA injury. These findings help elucidate the response of plants to PFASs in a molecular-scale perspective.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China; Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Xihui Oyang
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xiaocan Xie
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhifang Li
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongju Yang
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Jialin Xi
- Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Yang Guo
- Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Bin Liu
- Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China.
| | - Zhiyong Xiao
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China.
| |
Collapse
|
155
|
Zeeshan M, Yang Y, Zhou Y, Huang W, Wang Z, Zeng XY, Liu RQ, Yang BY, Hu LW, Zeng XW, Sun X, Yu Y, Dong GH. Incidence of ocular conditions associated with perfluoroalkyl substances exposure: Isomers of C8 Health Project in China. ENVIRONMENT INTERNATIONAL 2020; 137:105555. [PMID: 32059142 DOI: 10.1016/j.envint.2020.105555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/10/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The detrimental effects of perfluoroalkyl substances (PFASs) on several physiological systems have been reported, but the association of PFASs with eye, one of the most sensitive and exposed organ, has never been explored. To investigate the association between eye diseases including visual impairment (VI) and PFASs isomers, a cross-sectional stratified study was conducted in 1202 Chinese population, aged 22-96 years, from Shenyang, China. A standard protocol including Snellen vision chart, slit-lamp microscopy and direct ophthalmoscopy was used to examine eye diseases/conditions relating to anterior and posterior segment of eyes. In addition, we measured the blood concentrations of 19 linear and branched PFASs at one-time point. Results indicated that blood levels of PFASs were significantly higher in eye disease group than normal group. PFASs exposure were positively associated with both combined eye diseases and individual eye diseases. Among other PFASs, linear perfluorooctane sulfonate (n-PFOS; odds ratio [OR] = 3.37, 95% confidence interval [CI]: 2.50, 4.56), branched perfluorooctane sulfonate (Br-PFOS; OR = 2.25, 95% CI: 1.72, 2.93) and linear perfluorooctanoic acid (n-PFOA; OR = 1.79, 95% CI: 1.36, 2.37) significantly increases the odds of VI. Vitreous disorder was adversely associated with long-chain PFASs exposure. For example, perfluorotridecanoic acid (PFTrDA; OR = 1.86, 95% CI: 1.51, 2.29) and perfluorodecanoic acid (PFDA; OR = 1.79, 95% CI: 1.36, 2.36) showed the most significant association. In conclusion, this study suggests higher serum PFASs levels were associated with increase odds of VI and vitreous disorder in Chinese adults.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunqing Yang
- Department of Preventive Medicine, Guangzhou Institute of Dermatology, Guangzhou 510095, China
| | - Yang Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenzhong Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhibin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore 21205, USA
| | - Xiao-Yun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women's and Children's Hospital. No.87 Danan Street, Shenhe District, Shenyang 110011, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
156
|
Chou WC, Lin Z. Probabilistic human health risk assessment of perfluorooctane sulfonate (PFOS) by integrating in vitro, in vivo toxicity, and human epidemiological studies using a Bayesian-based dose-response assessment coupled with physiologically based pharmacokinetic (PBPK) modeling approach. ENVIRONMENT INTERNATIONAL 2020; 137:105581. [PMID: 32087483 DOI: 10.1016/j.envint.2020.105581] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/21/2020] [Accepted: 02/12/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Environmental exposure to perfluorooctane sulfonate (PFOS) is associated with various adverse outcomes in humans. However, risk assessment for PFOS with the traditional risk estimation method is faced with multiple challenges because there are high variabilities and uncertainties in its toxicokinetics and toxicity between species and among different types of studies. OBJECTIVES This study aimed to develop a robust probabilistic risk assessment framework accounting for interspecies and inter-experiment variabilities and uncertainties to derive the human equivalent dose (HED) and reference dose for PFOS. METHODS A Bayesian dose-response model was developed to analyze selected 34 critical studies, including human epidemiological, animal in vivo, and ToxCast in vitro toxicity datasets. The dose-response results were incorporated into a multi-species physiologically based pharmacokinetic (PBPK) model to reduce the toxicokinetic/toxicodynamic variabilities. In addition, a population-based probabilistic risk assessment of PFOS was performed for Asian, Australian, European, and North American populations, respectively, based on reported environmental exposure levels. RESULTS The 5th percentile of HEDs derived from selected studies was estimated to be 21.5 (95% CI: 10.6-36.3) ng/kg/day. After exposure to environmental levels of PFOS, around 50% of the population in all studied populations would likely have >20% of increase in serum cholesterol, but the effects on other endpoints were estimated to be minimal (<10% changes). There was a small population (~10% of the population) that was highly sensitive to endocrine disruption and cellular response by environmental PFOS exposure. CONCLUSION Our results provide insights into a complete risk characterization of PFOS and may help regulatory agencies in the reevaluation of PFOS risk. Our new probabilistic approach can conduct dose-response analysis of different types of toxicity studies simultaneously and this method could be used to improve risk assessment for other perfluoroalkyl substances (PFAS).
Collapse
Affiliation(s)
- Wei-Chun Chou
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
157
|
Zeng XW, Li QQ, Chu C, Ye WL, Yu S, Ma H, Zeng XY, Zhou Y, Yu HY, Hu LW, Yang BY, Dong GH. Alternatives of perfluoroalkyl acids and hepatitis B virus surface antibody in adults: Isomers of C8 Health Project in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113857. [PMID: 31918137 DOI: 10.1016/j.envpol.2019.113857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Previous epidemiological and experimental studies have shown that legacy perfluoroalkyl acids (PFAAs) are immunotoxic. However, whether the immunosuppressive effects in PFAA alternatives which recently have been widely detected in the environment are unknown. To address this knowledge gap, we investigated the relationship of serum legacy PFAAs and PFAA alternatives with the antibody of hepatitis B virus in adults. We recruited 605 participants from a cross-sectional study, the Isomer of C8 Health Project in China. We measured two representative legacy PFAAs (perfluorooctane sulfonate, PFOS and perfluorooctanoic acid, PFOA), and three PFAA alternatives (two chlorinated polyfluorinated ether sulfonic acids, Cl-PFESAs and perfluorobutanoic acid, PFBA) in serum using ultra-performance liquid chromatograph-tandem mass spectrometry (UPLC-MS/MS). We applied linear and logistic regression models to analyze associations between serum PFAAs and hepatitis B surface antibody (HBsAb) with multivariable adjustments. We found negative associations between serum PFAAs concentrations and HBsAb. Lower serum HBsAb levels (log mIU/mL) were observed for each log-unit increase in linear PFOS (β = -0.31, 95% confidential interval: 0.84, -0.18), 6:2 PFESA (β = -0.81, 95% CI: 1.20, -0.42), 8:2 PFESA (β = -0.29, 95% CI: 0.43, -0.14) and PFBA (β = -0.18, 95% CI: 0.28, -0.08). The association between PFAAs and HBsAb seronegative seemed to be higher for 6:2 PFESA (odds ratio = 3.32, 95% CI: 2.16, 5.10) than its predecessors, linear PFOS (OR = 1.96, 95% CI: 1.37, 2.81) and branched PFOS isomers (OR = 1.64, 95% CI: 1.05, 2.56). We report new evidence that exposure to PFAA alternatives are associated with lower HBsAb in adults. This association seems to be stronger in 6:2 PFESA than PFOS. Our results suggest that more studies are needed to clarify the potential toxicity of PFAA alternatives in human which will facilitate better chemical regulations for PFAAs.
Collapse
Affiliation(s)
- Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wan-Lin Ye
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiao-Yun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yang Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
158
|
Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1668. [PMID: 32143379 PMCID: PMC7084585 DOI: 10.3390/ijerph17051668] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of environmentally persistent chemicals used in industrial and consumer products. Human exposure to PFAS is extensive, and PFAS contamination has been reported in drinking water and food supplies as well as in the serum of nearly all people. The most well-studied member of the PFAS class, perfluorooctanoic acid (PFOA), induces tumors in animal bioassays and has been associated with elevated risk of cancer in human populations. GenX, one of the PFOA replacement chemicals, induces tumors in animal bioassays as well. Using the Key Characteristics of Carcinogens framework for cancer hazard identification, we considered the existing epidemiological, toxicological and mechanistic data for 26 different PFAS. We found strong evidence that multiple PFAS induce oxidative stress, are immunosuppressive, and modulate receptor-mediated effects. We also found suggestive evidence indicating that some PFAS can induce epigenetic alterations and influence cell proliferation. Experimental data indicate that PFAS are not genotoxic and generally do not undergo metabolic activation. Data are currently insufficient to assess whether any PFAS promote chronic inflammation, cellular immortalization or alter DNA repair. While more research is needed to address data gaps, evidence exists that several PFAS exhibit one or more of the key characteristics of carcinogens.
Collapse
Affiliation(s)
- Alexis M. Temkin
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Barbara A. Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| | - David Q. Andrews
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Olga V. Naidenko
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Lisa M. Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| |
Collapse
|
159
|
Investigation of the Interaction Mechanism of Perfluoroalkyl Carboxylic Acids with Human Serum Albumin by Spectroscopic Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041319. [PMID: 32085632 PMCID: PMC7068604 DOI: 10.3390/ijerph17041319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are some of the most significant pollutants in human serum, and are reported to be potentially toxic to humans. In this study, the binding mechanism of PFCAs with different carbon lengths to human serum albumin (HSA) was studied at the molecular level by means of fluorescence spectroscopy under simulated physiological conditions and molecular modeling. Fluorescence data indicate that PFCAs with a longer carbon chain have a stronger fluorescence quenching ability. Perfluorobutanoic acid (PFBA) and perfluorohexanoic acid (PFHxA) had little effect on HSA. Fluorescence quenching of HSA by perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) was a static process that formed a PFCA-HSA complex. Electrostatic interactions were the main intermolecular forces between PFOA and HSA, while hydrogen bonding and van der Waals interactions played important roles in the combination of PFDA and HSA. In fact, the binding of PFDA to HSA was stronger than that of PFOA as supported by fluorescence quenching and molecular docking. In addition, infrared spectroscopy demonstrated that the binding of PFOA/PFDA resulted in a sharp decrease in the β-sheet and α-helix conformations of HSA. Our results indicated that the carbon chain length of PFCAs had a great impact on its binding affinity, and that PFCAs with longer carbon chains bound more strongly.
Collapse
|
160
|
Chu C, Zhou Y, Li QQ, Bloom MS, Lin S, Yu YJ, Chen D, Yu HY, Hu LW, Yang BY, Zeng XW, Dong GH. Are perfluorooctane sulfonate alternatives safer? New insights from a birth cohort study. ENVIRONMENT INTERNATIONAL 2020; 135:105365. [PMID: 31830731 DOI: 10.1016/j.envint.2019.105365] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Experimental studies show that chlorinated polyfluorinated ether sulfonic acids (Cl-PFESA 6:2 and 8:2), one of perfluoroalkyl substances (PFAS) used as perfluorooctane sulfonate (PFOS) alternatives, are reproductive toxicants in vivo and in vitro. However, the associations between gestational exposure to Cl-PFESAs and birth outcomes are unknown. OBJECTIVES We investigated associations between 6:2 Cl-PFESA and 8:2 Cl-PFESA in maternal serum and birth outcomes. METHODS We measured four PFAS, including 6:2 Cl-PFESA, 8:2 Cl-PFESA, PFOS, and perfluorooctanoic acid (PFOA) in third-trimester maternal serum collected from 372 mother-child dyads participating in the Guangzhou Birth Cohort Study. Characteristics of mothers and infants were gathered from medical records and by interviewer-administered questionnaires. RESULTS PFOS was the most abundant PFAS in maternal serum (median: 7.15 ng/mL), followed by 6:2 Cl-PFESA (median: 2.41 ng/mL). Greater maternal serum levels of all PFAS alternatives were significantly associated with lower birth weight, adjusted for confounding variables. For example, each ln-ng/mL greater concentration of 6:2 Cl-PFESA and 8:2 Cl-PFESA was associated with a 54.44 g [95% confidence interval (CI): -95.66, -13.22] and 21.15 g (95% CI: -41.44, -0.86) lower birth weight, respectively. Greater continuous maternal serum 6:2 Cl-PFESA (OR: 2.67, 95% CI: 1.73, 4.15) and PFOS (OR: 2.03, 95% CI: 1.24, 3.32) were also associated with higher risks for preterm birth, adjusted for confounders, with a possible threshold effect at the highest quartile of 6:2 Cl-PFESA. CONCLUSIONS For the first time, we report associations between maternal serum 6:2 Cl-PFESA and 8:2 Cl-PFESA concentrations and adverse birth outcomes. Our findings suggest that PFOS alternatives may be reproductive toxicants in human populations and should be considered with caution before widespread use. Given the preliminary nature of our results, additional epidemiological and toxicological investigations are needed to more definitively assess the risks.
Collapse
Affiliation(s)
- Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Departments of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Shao Lin
- Departments of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
161
|
Mahinroosta R, Senevirathna L. A review of the emerging treatment technologies for PFAS contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109896. [PMID: 32063301 DOI: 10.1016/j.jenvman.2019.109896] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 05/22/2023]
Abstract
Contamination of soils with poly- and perfluoroalkyl substances (PFAS) has become a challenging issue due to the adverse effects of these substances on both the environment and public health. PFAS have strong chemical structures and their bonding with soil makes them challenging to eliminate from soil environments. Traditional methods of soil remediation have not been successful in their reduction or removal from the environment. This paper provides a comprehensive evaluation of existing and emerging technologies for remediating PFAS contaminated soils with guidance on which approach to use in different contexts. The functions of all remediation technologies, their suitability, limitations, and the scale applied from laboratory to the field are presented as a baseline for understanding the research need for treatment in soil environments. To date, the immobilization method has been a significant part of the remediation solution for PFAS contaminated soils, although its long-term efficiency still needs further investigation. Soil washing and thermal treatment techniques have been tested at the field scale, but they are expensive and energy-intensive due to the use of a large volume of washing solvent and the high melting point of PFAS, respectively; both methods need a large initial investment for their installation. Other remediation technologies, such as chemical oxidation, ball milling, and electron beams, have been progressed in the laboratory. However, additional research is needed to make them feasible, cost-effective and applicable in the field.
Collapse
Affiliation(s)
- Reza Mahinroosta
- School of Engineering, Faculty of Business, Justice and Behavioural Sciences, Charles Sturt University, New South Wales, Australia.
| | - Lalantha Senevirathna
- School of Engineering, Faculty of Business, Justice and Behavioural Sciences, Charles Sturt University, New South Wales, Australia.
| |
Collapse
|
162
|
Dasgupta S, Reddam A, Liu Z, Liu J, Volz DC. High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113550. [PMID: 31706782 PMCID: PMC6920544 DOI: 10.1016/j.envpol.2019.113550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been used for decades within industrial processes and consumer products, resulting in frequent detection within the environment. Using zebrafish embryos, we screened 38 PFASs for developmental toxicity and revealed that perfluorooctanesulfonamide (PFOSA) was the most potent developmental toxicant, resulting in elevated mortality and developmental abnormalities following exposure from 6 to 24 h post fertilization (hpf) and 6 to 72 hpf. PFOSA resulted in a concentration-dependent increase in mortality and abnormalities, with surviving embryos exhibiting a >12-h delay in development at 24 hpf. Exposures initiated at 0.75 hpf also resulted in a concentration-dependent delay in epiboly, although these effects were not driven by a specific sensitive window of development. We relied on mRNA-sequencing to identify the potential association of PFOSA-induced developmental delays with impacts on the embryonic transcriptome. Relative to stage-matched vehicle controls, these data revealed that pathways related to hepatotoxicity and lipid transport were disrupted in embryos exposed to PFOSA from 0.75 to 14 hpf and 0.75 to 24 hpf. Therefore, we measured liver area as well as neutral lipids in 128-hpf embryos exposed to vehicle (0.1% DMSO) or PFOSA from 0.75 to 24 hpf and clean water from 24 to 128 hpf, and showed that PFOSA exposure from 0.75 to 24 hpf resulted in a decrease in liver area and increase in yolk sac neutral lipids at 128 hpf. Overall, our findings show that early exposure to PFOSA adversely impacts embryogenesis, an effect that may lead to altered lipid transport and liver development.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, CA, USA; Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Zekun Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
163
|
Li P, Oyang X, Xie X, Guo Y, Li Z, Xi J, Zhu D, Ma X, Liu B, Li J, Xiao Z. Perfluorooctanoic acid and perfluorooctane sulfonate co-exposure induced changes of metabolites and defense pathways in lettuce leaves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113512. [PMID: 31706779 DOI: 10.1016/j.envpol.2019.113512] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Growing evidence shows plants are at risks of exposure to various per- and polyfluoroalkyl substances (PFASs), however the phytotoxicity induced by these compounds remains largely unknown on the molecular scale. Here, lettuce exposed to both perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at different concentrations (500, 1000, 2000 and 5000 ng/L) in hydroponic media was investigated via metabolomics. Under the co-exposure conditions, the growth and biomass were not affected by PFOA and PFOS, but metabolic profiles of mineral elements and organic compounds in lettuce leaves were significantly altered. The contents of Na, Mg, Cu, Fe, Ca and Mo were decreased 1.8%-47.8%, but Zn was increased 7.4%-24.2%. The metabolisms of amino acids and peptides, fatty acids and lipids were down-regulated in a dose-dependent manner, while purine and purine nucleosides were up-regulated, exhibiting the stress response to PFOA and PFOS co-exposure. The reduced amounts of phytol (14.8%-77.0%) and abscisic acid (60.7%-73.8%) indicated the alterations in photosynthesis and signal transduction. The metabolism of (poly)phenol, involved in shikimate-phenylpropanoid pathway and flavonoid branch pathway, was strengthened, to cope with the stress of PFASs. As the final metabolites of (poly)phenol biosynthesis, the abundance of various antioxidants was changed. This study offers comprehensive insight of plant response to PFAS co-exposure and enhances the understanding in detoxifying mechanisms.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China; Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Xihui Oyang
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xiaocan Xie
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang Guo
- Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Zhifang Li
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jialin Xi
- Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Dongxue Zhu
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Xiao Ma
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Bin Liu
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China.
| | - Zhiyong Xiao
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China.
| |
Collapse
|
164
|
Redesigning an Electrochemical MIP Sensor for PFOS: Practicalities and Pitfalls. SENSORS 2019; 19:s19204433. [PMID: 31614913 PMCID: PMC6832149 DOI: 10.3390/s19204433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/25/2023]
Abstract
There is a growing interest in the technological transfer of highly performing electrochemical sensors within portable analytical devices for the in situ monitoring of environmental contaminants, such as perfluorooctanesulfonic acid (PFOS). In the redesign of biomimetic sensors, many parameters should be taken into account from the working conditions to the electrode surface roughness. A complete characterization of the surface modifiers can help to avoid time-consuming optimizations and better interpret the sensor responses. In the present study, a molecularly imprinted polymer electrochemical sensor (MIP) for PFOS optimized on gold disk electrodes was redesigned on commercial gold screen-printed electrodes. However, its performance investigated by differential pulse voltammetry was found to be poor. Before proceeding with further optimization, a morphological study of the bare and modified electrode surfaces was carried out by scanning electron microscopy–energy-dispersive X-ray spectrometry (SEM–EDS), atomic force microscopy (AFM) and profilometry revealing an heterogeneous distribution of the polymer strongly influenced by the electrode roughness. The high content of fluorine of the target-template molecule allowed to map the distribution of the molecularly imprinted polymer before the template removal and to define a characterization protocol. This case study shows the importance of a multi-analytical characterization approach and identify significant parameters to be considered in similar redesigning studies.
Collapse
|
165
|
ROS-mediated JNK pathway critically contributes to PFOS-triggered apoptosis in SH-SY5Y cells. Neurotoxicol Teratol 2019; 75:106821. [DOI: 10.1016/j.ntt.2019.106821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 01/14/2023]
|
166
|
Martínez R, Navarro-Martín L, Luccarelli C, Codina AE, Raldúa D, Barata C, Tauler R, Piña B. Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:462-471. [PMID: 31022537 DOI: 10.1016/j.scitotenv.2019.04.200] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Exposure to PFOS (perfluorooctanesulfonate) has been related to toxic effects on lipid metabolism, immunological response, and different endocrine systems. We present here a transcriptomic analysis of zebrafish embryos exposed to different concentrations of PFOS (0.03-1.0 mg/L) from 48 to 120 hpf. No major survival or morphological alterations (swimming bladder inflation, kyphosis, eye separation and size…) were observed below the 1.0 mg/L mark. Conversely, we observed significant increase in transcripts related to lipid transport and metabolism even at the lowest used concentration. In addition, we observed a general decrease on transcripts related to natural immunity and defense again infections, which adds to the recent concerns about PFOS as immunotoxicant, particularly in humans. Derived PoD (Point of Departure) values for transcriptional changes (0.011 mg/L) were about 200-fold lower than the corresponding PoD values for morphometric effects (2.53 mg/L), and close to levels observed in human blood serum or bird eggs. Our data suggest that currently applicable tolerable levels of PFOS in commercial goods should be re-evaluated, taking into account its potential effects on lipid metabolism and the immune system.
Collapse
Affiliation(s)
- Rubén Martínez
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona 08007, Spain.
| | | | | | - Anna E Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| | | | - Carlos Barata
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Romà Tauler
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Benjamin Piña
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|