151
|
Eriodictyol attenuates arsenic trioxide-induced liver injury by activation of Nrf2. Oncotarget 2017; 8:68668-68674. [PMID: 28978146 PMCID: PMC5620286 DOI: 10.18632/oncotarget.19822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Arsenic, a well-known human carcinogen, has been reported to induce hepatic oxidative stress and hepatic injury. Eriodictyol, a flavonoid found in citrus fruits, has been reported to have antioxidant effects. In this study, we aimed to investigate the protective effects of eriodictyol on arsenic trioxide (As2O3)-induced liver injury and to clarify the molecular mechanism. Male Wistar rats were administrated 3mg/kg As2O3 intravenous injection at days 1, 4, 5, and 7. Eriodictyol was given 1 h before or after As2O3 treatment. The results showed that eriodictyol prevented As2O3-induced liver reactive oxygen species (ROS) and malonaldehyde (MDA) levels. Eriodictyol abrogated As2O3-induced decrease of the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activity. Eriodictyol also attenuated As2O3-induced hepatic pathological damage. In addition, eriodictyol promoted the expression of nuclear factor erythroid 2 p45 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) up-regulated by As2O3. In conclusion, our results demonstrated that eriodictyol exhibited a protective effect on As2O3-induced liver injury and the possible mechanism is involved in activating Nrf2 signaling pathway.
Collapse
|
152
|
Brazão V, Santello FH, Colato RP, Mazotti TT, Tazinafo LF, Toldo MPA, do Vale GT, Tirapelli CR, do Prado JC. Melatonin: Antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection. J Pineal Res 2017; 63. [PMID: 28370218 DOI: 10.1111/jpi.12409] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/24/2017] [Indexed: 01/02/2023]
Abstract
The purpose of this study was to investigate the effects of melatonin on selected biomarkers of innate and humoral immune response as well as the antioxidant/oxidant status (superoxide dismutase-SOD and reduced glutathione levels (GSH) to understand whether age-related changes would influence the development of acute Trypanosoma cruzi (T. cruzi) infection. Young- (5 weeks) and middle-aged (18 months) Wistar rats were orally treated with melatonin (gavage) (05 mg/kg/day), 9 days after infection. A significant increase in both SOD activity and GSH levels was found in plasma from all middle-aged melatonin-treated animals. Melatonin triggered enhanced expression of major histocompatibility class II (MHC-II) antigens on antigen-presenting cell (APC) and peritoneal macrophages in all treated animals. High levels of CD4+ CD28-negative T cells (*P<.05) were detected in middle-aged control animals. Melatonin induced a significant reduction (***P<.001) in CD28-negative in CD4+ and CD8+ T cells in middle-aged control animals. Contrarily, the same group displayed upregulated CD4+ CD28+ T and CD8+ CD28+ T cells. Melatonin also triggered an upregulation of CD80 and CD86 expression in all young-treated groups. Significant percentages of B and spleen dendritic cells in middle-aged infected and treated animals were observed. Our data reveal new features of melatonin action in inhibiting membrane lipid peroxidation, through the reduction in 8-isoprostane, upregulating the antioxidant defenses and triggering an effective balance in the antioxidant/oxidant status during acute infection. The ability of melatonin to counteract the immune alterations induced by aging added further support to its use as a potential therapeutic target not only for T. cruzi infection but also for other immunocompromised states.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia H Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela P Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tamires T Mazotti
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas F Tazinafo
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Míriam Paula A Toldo
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel T do Vale
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - José C do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
153
|
Wu C, Chen CH, Chen HC, Liang HJ, Chen ST, Lin WY, Wu KY, Chiang SY, Lin CY. Nuclear magnetic resonance- and mass spectrometry-based metabolomics to study maleic acid toxicity from repeated dose exposure in rats. J Appl Toxicol 2017; 37:1493-1506. [PMID: 28691739 DOI: 10.1002/jat.3500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 01/11/2023]
Abstract
Maleic acid (MA), a chemical intermediate used in many consumer and industrial products, was intentionally adulterated in a variety of starch-based foods and instigated food safety incidents in Asia. We aim to elucidate possible mechanisms of MA toxicity after repeated exposure by (1) determining the changes of metabolic profile using 1 H nuclear magnetic resonance spectroscopy and multivariate analysis, and (2) investigating the occurrence of oxidative stress using liquid chromatography tandem mass spectrometry by using Sprague-Dawley rat urine samples. Adult male rats were subjected to a 28 day subchronic study (0, 6, 20 and 60 mg kg-1 ) via oral gavage. Urine was collected twice a day on days 0, 7, 14, 21 and 28; organs underwent histopathological examination. Changes in body weight and relative kidney weights in medium- and high-dose groups were significantly different compared to controls. Morphological alterations were evident in the kidneys and liver. Metabolomic results demonstrated that MA exposure increases the urinary concentrations of 8-hydroxy-2'-deoxyguanosine, 8-nitroguanine and 8-iso-prostaglandin F2α ; levels of acetoacetate, hippurate, alanine and acetate demonstrated time- and dose-dependent variations in the treatment groups. Findings suggest that MA consumption escalates oxidative damage, membrane lipid destruction and disrupt energy metabolism. These aforementioned changes in biomarkers and endogenous metabolites elucidate and assist in characterizing the possible mechanisms by which MA induces nephro- and hepatotoxicity.
Collapse
Affiliation(s)
- Charlene Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17, ShiuJou Rd., Taipei, 10055, Taiwan
| | - Chi-Hung Chen
- Institute of Environmental Health, College of Public Health, National Taiwan University, No. 17, ShiuJou Rd., Taipei, 10055, Taiwan
| | - Hsin-Chang Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17, ShiuJou Rd., Taipei, 10055, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental Health, College of Public Health, National Taiwan University, No. 17, ShiuJou Rd., Taipei, 10055, Taiwan
| | - Shu-Ting Chen
- National Environmental Health Research Center, National Health Research Institutes, No. 35, Keyan Rd., Zhunan, Miaoli County, 35053, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17, ShiuJou Rd., Taipei, 10055, Taiwan
| | - Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17, ShiuJou Rd., Taipei, 10055, Taiwan
| | - Su-Yin Chiang
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, No. 17, ShiuJou Rd., Taipei, 10055, Taiwan
| |
Collapse
|
154
|
Mendonça R, Gning O, Di Cesaré C, Lachat L, Bennett NC, Helfenstein F, Glauser G. Sensitive and selective quantification of free and total malondialdehyde in plasma using UHPLC-HRMS. J Lipid Res 2017; 58:1924-1931. [PMID: 28694297 DOI: 10.1194/jlr.d076661] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
Quantification of malondialdehyde (MDA) as a marker of lipid peroxidation is relevant for many research fields. We describe a new sensitive and selective method to measure free and total plasmatic MDA using derivatization with 2,4-dinitrophenylhydrazine (DNPH) and ultra-HPLC-high-resolution MS. Free and total MDA were extracted from minute sample amounts (10 μl) using acidic precipitation and alkaline hydrolysis followed by acidic precipitation, respectively. Derivatization was completed within 10 min at room temperature, and the excess DNPH discarded by liquid-liquid extraction. Quantification was achieved by internal standardization using dideuterated MDA as internal standard. The method's lowest limit of quantification was 100 nM and linearity spanned greater than three orders of magnitude. Intra- and inter-day precisions for total MDA were 2.9% and 3.0%, respectively, and those for free MDA were 12.8% and 24.9%, respectively. Accuracy was 101% and 107% at low and high concentrations, respectively. In human plasma, free MDA levels were 120 nM (SD 36.26) and total MDA levels were 6.7 μM (SD 0.46). In addition, we show the applicability of this method to measure MDA plasma levels from a variety of animal species, making it invaluable to scientists in various fields.
Collapse
Affiliation(s)
- Rute Mendonça
- Laboratory of Evolutionary Ecophysiology, Institute of Biology University of Neuchâtel, 2000 Neuchâtel, Switzerland.,Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Ophélie Gning
- Laboratory of Evolutionary Ecophysiology, Institute of Biology University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Claudia Di Cesaré
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Laurence Lachat
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Fabrice Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
155
|
Kim B, Jung W, Kho Y. Quantification of Malondialdehyde in Human Urine by HPLC-DAD and Derivatization with 2,4-Dinitrophenylhydrazine. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Boyoung Kim
- Department of Health Environmental and Safety; Eulji University; Seongnam 13135 Republic of Korea
| | - Woong Jung
- Department of Emergency Medicine, School of Medicine; KyungHee University; Seoul 05278 Republic of Korea
| | - Younglim Kho
- Department of Health Environmental and Safety; Eulji University; Seongnam 13135 Republic of Korea
| |
Collapse
|
156
|
Melton CD, Luo R, Wong BJ, Spasojevic I, Wagenknecht LE, D'Agostino RB, Il'yasova D. Urinary F 2-isoprostanes and the risk of hypertension. Ann Epidemiol 2017; 27:391-396. [PMID: 28558917 DOI: 10.1016/j.annepidem.2017.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE There is strong biological plausibility for a causal role of reactive oxygen species in vascular pathology but no direct epidemiological evidence linking elevated reactive oxygen species levels to hypertension development. We examined cross-sectional and prospective associations between oxidative status (urinary F2-isoprostanes) and hypertension in the Insulin Resistance Atherosclerosis Study cohort (n = 831). METHODS The cohort included non-Hispanic white, Hispanic, and non-Hispanic black individuals, with 252 (30%) having prevalent hypertension and 579 participants normotensive at baseline, 122 (21%) of whom developed hypertension during the 5-year follow-up. Four urinary F2-isoprostane isomers were quantified in baseline specimens using LC/MS-MS and were summarized as a composite index. Examined outcomes included hypertension status (yes/no), systolic (SBP) and diastolic blood pressure (DBP), pulse pressure (PP), and mean arterial pressure (MAP). RESULTS Prevalent and incident hypertension were associated with greater age, Black race, impaired glucose tolerance, and greater BMI. F2-IsoP levels were lower among men and among non-Hispanic Blacks, were inversely associated with age, and were directly associated with BMI. No cross-sectional association was found between F2-isoprostanes and hypertension status (OR = 0.93, 0.77-0.12). Among the continuous measures of blood pressure only PP was associated with F2-isoprostanes at baseline (beta-coefficient = 0.99, 0.11-1.86). No prospective association was found between F2-isoprostanes and incident hypertension: OR = 0.98, 0.77-1.25. No prospective associations were found for systolic blood pressure and diastolic blood pressure, and pulse pressure. Mean arterial pressure showed an inverse association (beta-coefficient = -0.16, -0.31 to -0.01). CONCLUSIONS Elevated F2-isoprostane levels do not increase the risk of hypertension.
Collapse
Affiliation(s)
| | - Ruiyan Luo
- School of Public Health, Georgia State University, Atlanta
| | - Brett J Wong
- Department of Kinesiology & Health, Georgia State University, Atlanta
| | - Ivan Spasojevic
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC
| | - Ralph B D'Agostino
- Public Health Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC
| | - Dora Il'yasova
- School of Public Health, Georgia State University, Atlanta; Duke Cancer Institute, Duke University Medical Center, Durham, NC.
| |
Collapse
|
157
|
Choghakhori R, Abbasnezhad A, Hasanvand A, Amani R. Inflammatory cytokines and oxidative stress biomarkers in irritable bowel syndrome: Association with digestive symptoms and quality of life. Cytokine 2017; 93:34-43. [PMID: 28506572 DOI: 10.1016/j.cyto.2017.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
A growing body of evidence suggests a possible role for low-grade inflammation in the pathogenesis of irritable bowel syndrome (IBS). The objectives of this study were to measure serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-17, interleukin (IL)-10, malondialdehyde (MDA) and total antioxidant capacity (TAC) in IBS patients and healthy controls (HCs), and to evaluate possible correlations of such markers with gastrointestinal (GI) symptoms and quality of life (QoL). Ninety Rome III positive IBS patients and 90 sex and age matched HCs were recruited. GI symptoms, IBS-QoL, IBS severity score system (IBSSS), and the serum levels of inflammatory cytokines and oxidative stress biomarkers were evaluated. In IBS patients, TNFα, IL-17 and MDA cytokines were significantly (P<0.05) higher, and IL-10 cytokine and TAC were significantly (P<0.05) lower vs. HCs. When comparing IBS subtypes, TNFα and IL-17 were significantly (P<0.05) higher, and IL-10 was significantly (P<0.05) lower in diarrhea predominant IBS (IBS-D) compared to HCs, whereas the inflammatory cytokine profile of other subtypes more closely resembled that of HCs. The serum levels of MDA and TAC were significantly different (P<0.05) in all the subtypes vs. HCs. All the inflammatory cytokines had significant (P<0.05) correlations with GI symptoms, IBSSS and IBS-QoL, whereas no significant association was found between oxidative stress biomarkers and these symptoms. IBS-D patients display increased pro-inflammatory cytokines and decreased anti-inflammatory cytokines. Present study demonstrated a correlation between inflammatory cytokines and both IBS symptoms and QoL.
Collapse
Affiliation(s)
- Razieh Choghakhori
- Nutritional Health Research Center, Department of Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amir Abbasnezhad
- Nutritional Health Research Center, Department of Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran; Nutrition and Metabolic Diseases Researcher Center, Department of Nutrition, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amin Hasanvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Amani
- Health Research Institute, Diabetes Research Center, Department of Nutrition, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Food Security Research Center, Health Research Institute, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
158
|
Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health. Redox Biol 2017; 12:929-936. [PMID: 28478382 PMCID: PMC5426031 DOI: 10.1016/j.redox.2017.04.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100 g of the food used to inhibit lipid peroxidation of 200 g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS–rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. Absorption of diet MDA and ALEs in blood could induce risk factors for CVD and other diseases. Red-meat generated MDA and ALEs in SGF are defined as ePOSI. Reducing agents present in plant foods, reduced MDA and ALEs in SGF, are defined as rPOSI. Calculated plant reducing agents by rPOSI was found to highly predict the reducing of ePOSI. The POS index would help to quantify nutrition for promoting human health.
Collapse
|
159
|
Black CN, Bot M, Scheffer PG, Penninx BWJH. Oxidative stress in major depressive and anxiety disorders, and the association with antidepressant use; results from a large adult cohort. Psychol Med 2017; 47:936-948. [PMID: 27928978 DOI: 10.1017/s0033291716002828] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Oxidative stress has been implicated in the pathophysiology of major depressive disorder (MDD) and anxiety disorders and may be influenced by antidepressant use. This study investigated the association of oxidative stress, measured by plasma levels of F2-isoprostanes and 8-hydroxy-2'-deoxyguanosine (8-OHdG) reflecting oxidative lipid and DNA damage respectively, with MDD, anxiety disorders and antidepressant use in a large cohort. METHOD Data was derived from the Netherlands Study of Depression and Anxiety including patients with current (N = 1619) or remitted (N = 610) MDD and/or anxiety disorder(s) (of which N = 704 antidepressant users) and 612 controls. Diagnoses were established with the Composite International Diagnostic Interview. Plasma 8-OHdG and F2-isoprostanes were measured using LC-MS/MS. ANCOVA was performed adjusted for sampling, sociodemographic, health and lifestyle variables. RESULTS F2-isoprostanes did not differ between controls and patients, or by antidepressant use. Patients with current disorders had lower 8-OHdG (mean 42.1 pmol/l, 95% CI 40.4-43.8) compared to controls (45.0 pmol/l, 95% CI 42.9-47.2; p < 0.001) after adjustment for sampling, sociodemographics and lifestyle, but these differences disappeared after further adjustment for antidepressant use (p = 0.562). Antidepressant users had lower 8-OHdG levels (38.2 pmol/l, 95% CI 36.5-39.9) compared to controls (44.9 pmol/l, 95% CI 43.2-46.6; Cohen's d = 0.21, p < 0.001). Results for 8-OHdG were comparable across disorders (MDD and/or anxiety disorders), and all antidepressant types (SSRIs, TCAs, other antidepressants). CONCLUSION Contrary to previous findings this large-scale study found no increased oxidative stress in MDD and anxiety disorders. Antidepressant use was associated with lower oxidative DNA damage, suggesting antidepressants may have antioxidant effects.
Collapse
Affiliation(s)
- C N Black
- Department of Psychiatry and EMGO+ Institute for Health and Care Research,VU University Medical Center, and GGZ inGeest,Amsterdam,The Netherlands
| | - M Bot
- Department of Psychiatry and EMGO+ Institute for Health and Care Research,VU University Medical Center, and GGZ inGeest,Amsterdam,The Netherlands
| | - P G Scheffer
- Department of Clinical Chemistry,VU University Medical Center,Amsterdam,The Netherlands
| | - B W J H Penninx
- Department of Psychiatry and EMGO+ Institute for Health and Care Research,VU University Medical Center, and GGZ inGeest,Amsterdam,The Netherlands
| |
Collapse
|
160
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
161
|
Comparison of protective effect of ascorbic acid on redox and endocannabinoid systems interactions in in vitro cultured human skin fibroblasts exposed to UV radiation and hydrogen peroxide. Arch Dermatol Res 2017; 309:285-303. [PMID: 28285367 PMCID: PMC5387039 DOI: 10.1007/s00403-017-1729-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/27/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
The mechanisms of biological activity of commonly used natural compounds are constantly examined. Therefore, the aim of this study was to compare ascorbic acid efficacy in counteracting the consequences of UV and hydrogen peroxide treatment on lipid mediators and their regulative action on antioxidant abilities. Skin fibroblasts exposed to UVA and UVB irradiation, treated with hydrogen peroxide and ascorbic acid. The redox system was estimated through reactive oxygen species (ROS) generation (electron spin resonance spectrometer) and antioxidants level/activity (HPLC/spectrometry) which activity was evaluated by the level of phospholipid metabolites: 4-hydroxynonenal, malondialdehyde, 8-isoprostanes and endocannabinoids (GC/LC-MS) in the human skin fibroblasts. Protein and DNA oxidative modifications were also determined (LC). The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), its activators and inhibitors as well as pro/anti-apoptotic proteins and endocannabinoid receptors was examined (Western blot) and collagen metabolism was evaluated by collagen biosynthesis and prolidase activity (spectrometry). UVA and UVB irradiation and hydrogen peroxide treatment enhanced activity of xanthine and NADPH oxidases resulting in ROS generation as well as diminution of antioxidant phospholipid protection (glutathione peroxidase-glutathione-vitamin E), what led to increased lipid peroxidation and decreased endocannabinoids level. Dysregulation of cannabinoid receptors expression and environment of transcription factor Nrf2 caused apoptosis induction. Ascorbic acid partially prevented ROS generation, antioxidant capacity diminution and endocannabinoid systems disturbances but only slightly protected macromolecules such as phospholipid, protein and DNA against oxidative modifications. However, ascorbic acid significantly prevented decrease in collagen type I biosynthesis. Ascorbic acid in similar degree prevents UV (UVA and UVB) and hydrogen peroxide-dependent redox imbalance. However, this antioxidant cannot efficiently protect cellular macromolecules and avert metabolic dysregulation leading to apoptosis.
Collapse
|
162
|
Rivara MB, Yeung CK, Robinson-Cohen C, Phillips BR, Ruzinski J, Rock D, Linke L, Shen DD, Ikizler TA, Himmelfarb J. Effect of Coenzyme Q 10 on Biomarkers of Oxidative Stress and Cardiac Function in Hemodialysis Patients: The CoQ 10 Biomarker Trial. Am J Kidney Dis 2017; 69:389-399. [PMID: 27927588 PMCID: PMC5616172 DOI: 10.1053/j.ajkd.2016.08.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Oxidative stress is highly prevalent in patients with end-stage renal disease and is linked to excess cardiovascular risk. Identifying therapies that reduce oxidative stress has the potential to improve cardiovascular outcomes in patients undergoing maintenance dialysis. STUDY DESIGN Placebo-controlled, 3-arm, double-blind, randomized, clinical trial. SETTING & PARTICIPANTS 65 patients undergoing thrice-weekly maintenance hemodialysis. INTERVENTION Patients were randomly assigned in a 1:1:1 ratio to receive once-daily coenzyme Q10 (CoQ10; 600 or 1,200mg) or matching placebo for 4 months. OUTCOMES The primary outcome was plasma oxidative stress, defined as plasma concentration of F2-isoprotanes. Secondary outcomes included levels of plasma isofurans, levels of cardiac biomarkers, predialysis blood pressure, and safety/tolerability. MEASUREMENTS F2-isoprostanes and isofurans were measured as plasma markers of oxidative stress, and N-terminal pro-brain natriuretic peptide and troponin T were measured as cardiac biomarkers at baseline and 1, 2, and 4 months. RESULTS Of 80 randomly assigned patients, 15 were excluded due to not completing at least 1 postbaseline study visit and 65 were included in the primary intention-to-treat analysis. No treatment-related major adverse events occurred. Daily treatment with 1,200mg, but not 600mg, of CoQ10 significantly reduced plasma F2-isoprostanes concentrations at 4 months compared to placebo (adjusted mean changes of -10.7 [95% CI, -7.1 to -14.3] pg/mL [P<0.001] and -8.3 [95% CI, -5.5 to -11.0] pg/mL [P=0.1], respectively). There were no significant effects of CoQ10 treatment on levels of plasma isofurans, cardiac biomarkers, or predialysis blood pressures. LIMITATIONS Study not powered to detect small treatment effects; difference in baseline characteristics among randomized groups. CONCLUSIONS In patients undergoing maintenance hemodialysis, daily supplementation with 1,200mg of CoQ10 is safe and results in a reduction in plasma concentrations of F2-isoprostanes, a marker of oxidative stress. Future studies are needed to determine whether CoQ10 supplementation improves clinical outcomes for patients undergoing maintenance hemodialysis.
Collapse
Affiliation(s)
- Matthew B Rivara
- Kidney Research Institute, Seattle, WA; Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
| | - Catherine K Yeung
- Kidney Research Institute, Seattle, WA; Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Cassianne Robinson-Cohen
- Kidney Research Institute, Seattle, WA; Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
| | - Brian R Phillips
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA
| | | | | | | | - Danny D Shen
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA
| | - T Alp Ikizler
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan Himmelfarb
- Kidney Research Institute, Seattle, WA; Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA.
| |
Collapse
|
163
|
Peel AM, Crossman-Barnes CJ, Tang J, Fowler SJ, Davies GA, Wilson AM, Loke YK. Biomarkers in adult asthma: a systematic review of 8-isoprostane in exhaled breath condensate. J Breath Res 2017; 11:016011. [PMID: 28102831 DOI: 10.1088/1752-7163/aa5a8a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We aimed to assess the evidence for the use of 8-isoprostane in exhaled breath condensate (EBC) as a biomarker in adult asthma. DESIGN A systematic review and meta-analysis of EBC 8-isoprostane. METHODS We searched a number of online databases (including PubMed, Embase and Scopus) in January 2016. We included studies of adult non-smokers with EBC collection and asthma diagnosis conducted according to recognised guidelines. We aimed to pool data using random effects meta-analysis and assess heterogeneity using I 2. RESULTS We included twenty studies, the findings from which were inconsistent. Seven studies (n = 329) reported 8-isoprostane levels in asthma to be significantly higher than that of control groups, whilst six studies (n = 403) did not. Only four studies were appropriate for inclusion in a random effects meta-analysis of mean difference. This found a statistically significant between-groups difference of 22 pg ml-1. Confidence in the result is limited by the small number of studies and by substantial statistical heterogeneity (I 2 = 94). CONCLUSION The clinical value of EBC 8-isoprostane as a quantitative assessment of oxidative stress in asthma remains unclear due to variability in results and methodological heterogeneity. It is essential to develop a robust and standardised methodology if the use of EBC 8-isoprostane in asthma is to be properly evaluated.
Collapse
Affiliation(s)
- Adam M Peel
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
164
|
Cervellati C, Bergamini CM. Oxidative damage and the pathogenesis of menopause related disturbances and diseases. Clin Chem Lab Med 2017; 54:739-53. [PMID: 26544103 DOI: 10.1515/cclm-2015-0807] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/18/2015] [Indexed: 12/24/2022]
Abstract
The postmenopausal phase of life is frequently associated in women with subjective symptoms (e.g. vasomotor) and real diseases (atherosclerosis with coronary ischemia, osteoporosis, Alzheimer-type neurodegeneration, urogenital dystrophy), which together determine the post-menopausal syndrome. Observations that oxidative damage by reactive oxygen/nitrogen species in experimental models can contribute to the pathogenesis of these disturbances stimulated research on the relationships between menopause, its endocrine deficiency, oxidative balance and the "wellness" in postmenopausal life. The connection among these events is probably due to the loss of protective actions exerted by estrogens during the fertile life. Most recent studies have revealed that estrogens exert an antioxidant action not by direct chemical neutralization of reactants as it was expected until recently but by modulating the expression of antioxidant enzymes that control levels of biological reducing agents. Also nutritional antioxidants apparently act by a similar mechanism. From this perspective it is conceivable that a cumulative control of body oxidant challenges and biological defenses could help in monitoring between "normal" and "pathological" menopause. However, as clinical studies failed to confirm this scenario in vivo, we have decided to review the existing literature to understand the causes of this discrepancy and whether this was due to methodologic reasons or to real failure of the basic hypothesis.
Collapse
|
165
|
Cuffe JS, Xu ZC, Perkins AV. Biomarkers of oxidative stress in pregnancy complications. Biomark Med 2017; 11:295-306. [PMID: 28157383 DOI: 10.2217/bmm-2016-0250] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pregnancy complications including pre-eclampsia, gestational-diabetes mellitus, preterm birth and intrauterine growth restriction can cause acute and chronic health problems for the mother and lead to fetal loss or dysregulation of infant physiology. The human placenta is susceptible to oxidative stress and oxidative damage in early gestation contributes to the onset of these conditions later in pregnancy. Current methods of predicting pregnancy complications are limited and although a large number of factors are associated with disease progression, few biomarkers have been used to aid in disease diagnosis early in gestation. This review discusses the detection of oxidative stress markers in biological fluids and highlights the need for further studies to validate their use in the prediction or diagnosis of pregnancy disorders.
Collapse
Affiliation(s)
- James Sm Cuffe
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Ziheng Calvin Xu
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Anthony V Perkins
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| |
Collapse
|
166
|
Lee JD, Cai Q, Shu XO, Nechuta SJ. The Role of Biomarkers of Oxidative Stress in Breast Cancer Risk and Prognosis: A Systematic Review of the Epidemiologic Literature. J Womens Health (Larchmt) 2017; 26:467-482. [PMID: 28151039 DOI: 10.1089/jwh.2016.5973] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxidative stress may play an important role in both initiation and progression of breast cancer. We conducted the first systematic epidemiologic review to summarize the published literature on oxidative stress biomarkers and breast cancer. MATERIALS AND METHODS We implemented systematic search strategies to identify published studies of oxidative stress biomarkers and (1) risk of developing breast cancer and (2) breast cancer prognosis using the PRISMA statement guidelines. RESULTS We identified eleven case-control studies of oxidative stress biomarkers and breast cancer. Biomarkers utilized varied and menopausal status was a key modifying factor. Across three nested case-control studies with biomarkers measured before diagnosis, one reported increased risk of postmenopausal breast cancer in association with 8-oxodG (DNA damage biomarker), while two (one of F2-isoprostanes and one of fluorescent oxidation products) reported inverse associations for premenopausal breast cancer only. We identified eight prognostic studies. Two reported associations for lipid peroxidation and breast cancer prognosis; results for other studies were null. CONCLUSIONS DNA damage may increase risk of breast cancer among postmenopausal women, while lipid peroxidation may be inversely associated with premenopausal breast cancer. Lipid peroxidation may be associated with survival after breast cancer diagnosis; however, results require evaluation in large, prospective cohort studies.
Collapse
Affiliation(s)
- Jasmine D Lee
- 1 Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center , Nashville, Tennessee.,2 Vanderbilt-Ingram Cancer Center , Vanderbilt School of Medicine, Nashville, Tennessee
| | - Qiuyin Cai
- 1 Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center , Nashville, Tennessee.,2 Vanderbilt-Ingram Cancer Center , Vanderbilt School of Medicine, Nashville, Tennessee
| | - Xiao Ou Shu
- 1 Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center , Nashville, Tennessee.,2 Vanderbilt-Ingram Cancer Center , Vanderbilt School of Medicine, Nashville, Tennessee
| | - Sarah J Nechuta
- 1 Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center , Nashville, Tennessee.,2 Vanderbilt-Ingram Cancer Center , Vanderbilt School of Medicine, Nashville, Tennessee
| |
Collapse
|
167
|
Lindqvist D, Dhabhar FS, James SJ, Hough CM, Jain FA, Bersani FS, Reus VI, Verhoeven JE, Epel ES, Mahan L, Rosser R, Wolkowitz OM, Mellon SH. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology 2017; 76:197-205. [PMID: 27960139 PMCID: PMC5272818 DOI: 10.1016/j.psyneuen.2016.11.031] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Increased inflammation and oxidative stress have been shown in Major Depressive Disorder (MDD), although there is significant heterogeneity across studies. Whether markers of inflammation and oxidative stress are associated with antidepressant treatment response in MDD is currently unclear. The goals of the present study are to investigate markers of inflammation and oxidative stress in unmedicated MDD subjects and controls and test the relationship between these markers and antidepressant response in MDD subjects. METHODS Interleukin (IL)-6, tumor necrosis factor (TNF)-α, C-reactive protein, F2-isoprostanes, 8-OH 2-deoxyguanosine (8-OHdG), glutathione peroxidase, glutathione, and vitamin C were quantified in blood samples from 50 unmedicated MDD subjects and 55 healthy controls. Depression symptom severity was rated with the 17-item Hamilton Depression Rating Scale (HDRS). All subjects were somatically healthy and free from medications that could interfere with inflammation and oxidative stress markers. A subgroup of 22 MDD subjects underwent open-label selective serotonin reuptake inhibitor (SSRI) antidepressant treatment for eight weeks, after which blood sampling and the HDRS were repeated. Antidepressant treatment "response" was defined as ≥50% decrease in HDRS ratings over 8 weeks of treatment. RESULTS After controlling for the effects of age, sex, body mass index and smoking, MDD subjects had significantly higher levels of IL-6 (p<0.001), TNF-α (p<0.001), 8-OHdG (p=0.018), and F2-isoprostanes (p=0.012). Compared to Responders, Non-responders to SSRI antidepressant treatment had higher levels of F2-isoprostanes at baseline (p=0.006), and after eight weeks of treatment (p=0.031). Non-responders showed a significant increase in 8-OHdG over the course of treatment (p=0.021), whereas Responders showed a significant decrease in IL-6 over the course of treatment (p=0.019). CONCLUSION Our results are in line with previous reports of increased levels of markers of inflammation and oxidative stress in MDD. Moreover, poorer antidepressant treatment response was related to higher baseline levels of the major oxidative stress marker, F2-isoprostanes, in vivo. Further, antidepressant response was associated with changes in oxidative (8-OHdG) and inflammatory (IL-6) markers.
Collapse
Affiliation(s)
- Daniel Lindqvist
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, United States; Lund University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund, Sweden.
| | - Firdaus S. Dhabhar
- Department of Psychiatry & Behavioral Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Florida, United States of America
| | - S. Jill James
- Arkansas Children's Research Institute, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Christina M. Hough
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America
| | - Felipe A. Jain
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America
| | - F. Saverio Bersani
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America,Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Victor I. Reus
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America
| | - Josine E. Verhoeven
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America,Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Elissa S. Epel
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America
| | - Laura Mahan
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America
| | - Rebecca Rosser
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America
| | - Owen M. Wolkowitz
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America
| | - Synthia H. Mellon
- Department of OB/GYN and Reproductive Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America
| |
Collapse
|
168
|
Lopez MG, Pandharipande P, Morse J, Shotwell MS, Milne GL, Pretorius M, Shaw AD, Roberts LJ, Billings FT. Intraoperative cerebral oxygenation, oxidative injury, and delirium following cardiac surgery. Free Radic Biol Med 2017; 103:192-198. [PMID: 28039082 PMCID: PMC5258679 DOI: 10.1016/j.freeradbiomed.2016.12.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Delirium affects 20-30% of patients after cardiac surgery and is associated with increased mortality and persistent cognitive decline. Hyperoxic reperfusion of ischemic tissues increases oxidative injury, but oxygen administration remains high during cardiac surgery. We tested the hypothesis that intraoperative hyperoxic cerebral reperfusion is associated with increased postoperative delirium and that oxidative injury mediates this association. METHODS We prospectively measured cerebral oxygenation with bilateral oximetry monitors in 310 cardiac surgery patients, quantified intraoperative hyperoxic cerebral reperfusion by measuring the magnitude of cerebral oxygenation above baseline after any ischemic event, and assessed patients for delirium twice daily in the ICU following surgery using the confusion assessment method for ICU (CAM-ICU). We examined the association between hyperoxic cerebral reperfusion and postoperative delirium, adjusted for the extent of cerebral hypoxia, the extent of cerebral hyperoxia prior to any ischemia, and additional potential confounders and risk factors for delirium. To assess oxidative injury mediation, we examined the association between hyperoxic cerebral reperfusion and delirium after further adjusting for plasma levels of F2-isoprostanes and isofurans at baseline and ICU admission, the association between hyperoxic cerebral reperfusion and these markers of oxidative injury, and the association between these markers and delirium. RESULTS Ninety of the 310 patients developed delirium following surgery. Every 10%·hour of intraoperative hyperoxic cerebral reperfusion was independently associated with a 65% increase in the odds of delirium (OR, 1.65 [95% CI, 1.12-2.44]; P=0.01). Hyperoxia prior to ischemia was also independently associated with delirium (1.10 [1.01-1.19]; P=0.02), but hypoxia was not (1.12 [0.97-1.29]; P=0.11). Increased hyperoxic cerebral reperfusion was associated with increased concentrations of F2-isoprostanes and isofurans at ICU admission, increased concentrations of these markers were associated with increased delirium, and the association between hyperoxic cerebral reperfusion and delirium was weaker after adjusting for these markers of oxidative injury. CONCLUSIONS Intraoperative hyperoxic cerebral reperfusion was associated with increased postoperative delirium, and increased oxidative injury following hyperoxic cerebral reperfusion may partially mediate this association. Further research is needed to assess the potential deleterious role of cerebral hyper-oxygenation during surgery.
Collapse
Affiliation(s)
- Marcos G Lopez
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pratik Pandharipande
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer Morse
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew S Shotwell
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mias Pretorius
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew D Shaw
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frederic T Billings
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA; Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
169
|
African Ancestry Gradient Is Associated with Lower Systemic F 2-Isoprostane Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8319176. [PMID: 28250893 PMCID: PMC5307136 DOI: 10.1155/2017/8319176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/04/2017] [Indexed: 11/22/2022]
Abstract
Context. Low levels of systemic F2-isoprostanes (F2-IsoP) increase the risk of diabetes and weight gain and were found in African Americans. Low F2-IsoPs could reflect an unfavorable metabolic characteristic, namely, slow mitochondrial metabolism in individuals with African ancestry. Objective. To examine differences in plasma F2-IsoPs in three groups with a priori different proportion of African ancestry: non-Hispanic Whites (NHWs), US-born African Americans (AAs), and West African immigrants (WAI). Design. Cross-sectional study. Setting. Georgia residents recruited from church communities. Participants. 218 males and females 25–74 years of age, who are self-identified as NHW (n = 83), AA (n = 56), or WAI (n = 79). Main Outcome Measure(s). Plasma F2-IsoPs quantified by gas chromatography-mass spectrometry. Results. After adjustment for age, gender, obesity, and other comorbidities, WAI had lower levels of plasma F2-IsoP than AA (beta-coefficient = −9.8, p < 0.001) and AA had lower levels than NHW (beta-coefficient = −30.3, p < 0.001). Similarly, among healthy nonobese participants, F2-IsoP levels were lowest among WAI, followed by AA, and the highest levels were among NHW. Conclusion. Plasma F2-IsoPs are inversely associated with African ancestry gradient. Additional studies are required to test whether optimization of systemic F2-IsoP levels can serve as means to improve race-specific lifestyle and pharmacological intervention targeted to obesity prevention and treatment.
Collapse
|
170
|
Il'yasova D, Wong BJ, Waterstone A, Kinev A, Okosun IS. Systemic F 2-Isoprostane Levels in Predisposition to Obesity and Type 2 Diabetes: Emphasis on Racial Differences. DIVERSITY AND EQUALITY IN HEALTH AND CARE 2017; 14:91-101. [PMID: 32523692 DOI: 10.21767/2049-5471.100098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review focuses on racial differences in systemic levels of lipid peroxidation markers F2-isoprostanes as metabolic characteristics predisposing to obesity and type 2 diabetes. Elevated levels F2-isoprostanes were found in obesity, type 2 diabetes and their comorbidities. It was hypothesized that increased F2-isoprostane levels reflect the obesity-induced oxidative stress that promotes the development of type 2 diabetes. However, African Americans have lower levels of systemic F2-isoprostane levels despite their predisposition to obesity and type 2 diabetes. The review summarizes new findings from epidemiological studies and a novel interpretation of metabolic determinants of systemic F2-isoprostane levels as a favorable phenotype. Multiple observations indicate that systemic F2-isoprostane levels reflect intensity of oxidative metabolism, a major endogenous source of reactive oxygen species, and specifically, the intensity of fat utilization. Evidence from multiple human studies proposes that targeting fat metabolism can be a productive race-specific strategy to address the existing racial health disparities. Urinary F2-isoprostanes may provide the basis for targeted interventions to prevent obesity and type 2 diabetes among populations of African descent.
Collapse
Affiliation(s)
- Dora Il'yasova
- School of Public Health, Georgia State University, 140 Decatur St, Atlanta, GA, USA
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, 140 Decatur St, Atlanta, GA, USA
| | - Anna Waterstone
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | | | - Ike S Okosun
- School of Public Health, Georgia State University, 140 Decatur St, Atlanta, GA, USA
| |
Collapse
|
171
|
Neuroprotective effect of hypobaric hypoxic postconditioning is accompanied by dna protection and lipid peroxidation changes in rat hippocampus. Neurosci Lett 2016; 639:49-52. [PMID: 28025115 DOI: 10.1016/j.neulet.2016.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022]
Abstract
The present study was performed to explore the effect of severe hypobaric hypoxia (180Torr, 3h) and severe hypoxia followed by hypoxic postconditioning (360Torr, 2h, 3 episodes) on DNA fragmentation and dynamics of lipid peroxidation products in rat hippocampus. The severe hypoxia induced intense DNA fragmentation in the hippocampus. A persistent decrease of thiobarbituric acid reactive substances in the hippocampus was also detected in response to severe hypoxia while the levels of Schiff bases did not significantly change. The postconditioning prevented severe hypoxia-induced DNA fragmentation, returned the levels of thiobarbituric acid reactive substances to the baseline and decreased the levels of Schiff bases. These findings indicate that the neuroprotective effect of hypoxic postconditioning on hippocampal neurons detected as suppression of hypoxia-induced DNA fragmentation is accompanied by the changes in lipid peroxidation processes.
Collapse
|
172
|
Basu S. The enigma ofin vivooxidative stress assessment: isoprostanes as an emerging target. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [PMCID: PMC2607004 DOI: 10.1080/17482970701411642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Oxidative stress is believed to be one of the major factors behind several acute and chronic diseases, and may also be associated with ageing. Excess formation of free radicals in miscellaneous body environment may originate from endogenous response to cell injury, but also from exposure to a number of exogenous toxins. When the antioxidant defence system is overwhelmed, this leads to cell damage. However, the measurement of free radicals or their endproducts is tricky, since these compounds are reactive and short lived, and have diverse characteristics. Specific evidence for the involvement of free radicals in pathological situations has been difficult to obtain, partly owing to shortcomings in earlier described methods for the measurement of oxidative stress. Isoprostanes, which are prostaglandin-like bioactive compounds synthesized in vivo from oxidation of arachidonic acid, independently of cyclooxygenases, are involved in many human diseases, and their measurement therefore offers a way to assess oxidative stress. Elevated levels of F2-isoprostanes have also been seen in the normal human pregnancy, but their physiological role has not yet been defined. Large amounts of bioactive F2-isoprostanes are excreted in the urine in normal basal situations, with a wide interindividual variation. Their exact role in the regulation of normal physiological functions, however, needs to be explored further. Current understanding suggests that measurement of F2-isoprostanes in body fluids provides a reliable analytical tool to study oxidative stress-related diseases and experimental inflammatory conditions, and also in the evaluation of various dietary antioxidants, as well as drugs with radical-scavenging properties. However, assessment of isoprostanes in plasma or urine does not necessarily reflect any specific tissue damage, nor does it provide information on the oxidation of lipids other than arachidonic acid.
Collapse
Affiliation(s)
- Samar Basu
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Faculty of MedicineUppsala UniversityUppsalaSweden
| |
Collapse
|
173
|
Kant M, Akış M, Çalan M, Arkan T, Bayraktar F, Dizdaroglu M, İşlekel H. Elevated urinary levels of 8-oxo-2'-deoxyguanosine, (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines, and 8-iso-prostaglandin F 2α as potential biomarkers of oxidative stress in patients with prediabetes. DNA Repair (Amst) 2016; 48:1-7. [PMID: 27769710 PMCID: PMC11274812 DOI: 10.1016/j.dnarep.2016.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/31/2022]
Abstract
Prediabetes is the preclinical stage of type 2 diabetes mellitus (T2DM) with intermediate state of hyperglycemia. Hyperglycemia results in a state of oxidative stress, which may contribute to the production of insulin resistance, β-cell dysfunction and long-term complications of diabetes. Novel approaches are required for prevention and treatment of diabetes. New biomarkers that can be used in risk stratification and therapy control as supplementary to current parameters are needed. These biomarkers may facilitate a more individualized and sufficient treatment of diabetes. Therefore, the aim of this study was to investigate the levels of oxidatively induced DNA damage products, 8-oxo-2'-deoxyguanosine (8-oxo-dG) (also known as 8-OH-dG), (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines (R-cdA and S-cdA), and the lipid peroxidation product 8-iso-prostaglandin F2α (8-iso-PGF2α) as reliable oxidative stress markers in patients with prediabetes or T2DM in comparison with healthy volunteers. Urine samples were collected from these subjects. Absolute quantification of 8-oxo-dG, R-cdA, S-cdA and 8-iso-PGF2α was achieved by liquid chromatography-isotope dilution tandem mass spectrometry. The levels of 8-oxo-dG, S-cdA and 8-iso-PGF2α were significantly greater in prediabetes patients than those in healthy volunteers. T2DM patients also had higher levels of 8-oxo-dG than healthy volunteers. No statistically significant difference was observed for R-cdA levels. 8-Oxo-dG levels positively correlated with R-cdA and S-cdA levels for prediabetes and newly diagnosed T2DM. S-cdA levels and HbA1c were found negatively correlated in prediabetes patients. Also 8-iso-PGF2α levels and HbA1c were found negatively correlated in prediabetes patients. These results indicate that oxidatively induced macromolecular damage appears before the establishment of T2DM. Thus, our data suggest that oxidatively induced DNA damage and lipid peroxidation products that were found to be elevated in prediabetic stage may be used as early disease markers in patients at risk for T2DM.
Collapse
Affiliation(s)
- Melis Kant
- Department of Medical Biochemistry, Institute of Health Sciences, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey.
| | - Merve Akış
- Department of Medical Biochemistry, Institute of Health Sciences, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Mehmet Çalan
- Division of Endocrinology, Izmir Bozkaya Research and Education Hospital, 35170, Izmir, Turkey
| | - Tuğba Arkan
- Division of Endocrinology, Derince Research and Education Hospital, 41900, Kocaeli, Turkey
| | - Fırat Bayraktar
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Hüray İşlekel
- Department of Medical Biochemistry, Institute of Health Sciences, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey; Department of Molecular Medicine, Institute of Health Sciences, School of Medicine, Dokuz Eylul University, 35340, Izmir, Turkey
| |
Collapse
|
174
|
Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem 2016; 524:13-30. [PMID: 27789233 DOI: 10.1016/j.ab.2016.10.021] [Citation(s) in RCA: 1178] [Impact Index Per Article: 130.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022]
Abstract
Malondialdehyde (MDA), 4-hydroxy-nonenal (HNE) and the F2-isoprostane 15(S)-8-iso-prostaglandin F2α (15(S)-8-iso-PGF2α) are the best investigated products of lipid peroxidation. MDA, HNE and 15(S)-8-iso-PGF2α are produced from polyunsaturated fatty acids (PUFAs) both by chemical reactions and by reactions catalyzed by enzymes. 15(S)-8-iso-PGF2α and other F2-isoprostanes are derived exclusively from arachidonic acid (AA). The number of PUFAs that may contribute to MDA and HNE is much higher. MDA is the prototype of the so called thiobarbituric acid reactive substances (TBARS). MDA, HNE and 15(S)-8-iso-PGF2α are the most frequently measured biomarkers of oxidative stress, namely of lipid peroxidation. In many diseases, higher concentrations of MDA, HNE and 15(S)-8-iso-PGF2α are measured in biological samples as compared to health. Therefore, elevated oxidative stress is generally regarded as a pathological condition. Decreasing the concentration of biomarkers of oxidative stress by changing life style, by nutritional intake of antioxidants or by means of drugs is generally believed to be beneficial to health. Reliable assessment of oxidative stress by measuring MDA, HNE and 15(S)-8-iso-PGF2α in biological fluids is highly challenging for two important reasons: Because of the duality of oxidative stress, i.e., its origin from chemical and enzymatic reactions, and because of pre-analytical and analytical issues. This article focuses on these key issues. It reviews reported analytical methods and their principles for the quantitative measurement of MDA, HNE and 15(S)-8-iso-PGF2α in biological samples including plasma and urine, and critically discusses their biological and biomedical outcome which is rarely crystal clear and free of artefacts.
Collapse
|
175
|
Szmidt M, Sawosz E, Urbańska K, Jaworski S, Kutwin M, Hotowy A, Wierzbicki M, Grodzik M, Lipińska L, Chwalibog A. Toxicity of different forms of graphene in a chicken embryo model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19940-19948. [PMID: 27436378 DOI: 10.1007/s11356-016-7178-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
In the present work, the toxicity of three forms of graphene: pristine graphene (pG), graphene oxide (GO), and reduced graphene oxide (rGO) was investigated using a chicken embryo model. Fertilized chicken eggs were divided into the control group and groups administered with pG, GO, and rGO, in concentrations of 50, 500, and 5000 μg/ml. The experimental solutions were injected in ovo into the eggs, and at day 18 of incubation, the embryo survival, body and organ weights, the ultrastructure of liver samples, and the concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the livers were measured. Survival of embryos decreased significantly after treatment with all types of graphene, but not in a dose-dependent manner. The body weights were only slightly affected by the highest doses of graphene, while the organ weights were not different among treatment groups. In all experimental groups, atypical hepatocyte ultrastructure and mitochondrial damage were observed. The concentration of the marker of DNA damage 8-OHdG in the liver significantly decreased after pG and rGO treatments. Further in vivo studies with different animal models are necessary to clarify the level of toxicity of different types of graphene and to estimate the concentrations appropriate to evaluate their biomedical applications and environmental hazard.
Collapse
Affiliation(s)
- Maciej Szmidt
- Department of Morphological Sciences, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Kaja Urbańska
- Department of Morphological Sciences, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Anna Hotowy
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Ludwika Lipińska
- Institute of Electronic Materials Technology, 02-787, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
176
|
Basu S, Harris H, Wolk A, Rossary A, Caldefie-Chézet F, Vasson MP, Larsson A. Inflammatory F 2-isoprostane, prostaglandin F 2α, pentraxin 3 levels and breast cancer risk: The Swedish Mammography Cohort. Prostaglandins Leukot Essent Fatty Acids 2016; 113:28-32. [PMID: 27720037 DOI: 10.1016/j.plefa.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Breast cancer is a common cancer among women. Identifying cellular participation of F2-isoprostane, prostaglandin F2α (PGF2α) and pentraxin 3 (PTX3) in cancer we evaluated whether their prediagnostic systemic levels that originate from different inflammatory pathways were associated with breast cancer risk. METHODS Seventy-eight breast cancer cases diagnosed after blood collection and 797 controls from the Swedish Mammography Cohort were analysed for urinary F2-isoprostane, PGF2α and plasma PTX3 levels. RESULTS None of the biomarkers investigated were significantly associated with breast cancer risk. However, there was the suggestion of an inverse association with PTX3 with multivariable adjusted ORs (95% CI) of 0.56 (95% CI=0.29-1.06) and 0.67 (95% CI=0.35-1.28) for the second and third tertiles, respectively (ptrend=0.20). No associations were observed between F2-isoprostane (OR=0.87; 95% CI=0.48-1.57; ptrend=0.67) and PGF2α metabolite (OR=1.03; 95% CI=0.56-1.88; ptrend=0.91) comparing the top to bottom tertiles. CONCLUSIONS The systemic levels of F2-isoprostane, PGF2α and PTX3 witnessed in women who later developed breast cancer may not provide prognostic information regarding tumor development in spite of their known involvement in situ cellular context. These observations may indicate that other mechanisms exist in controlling cellular formation of F2-isoprostane, PGF2α and PTX3 and their systemic availability in breast cancer patients.
Collapse
Affiliation(s)
- Samar Basu
- Chaire d'Excellence Program, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, CRNH-Auvergne, INRA-UDA, Clermont-Ferrand, France; Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Holly Harris
- Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, Boston, MA, USA; Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alicja Wolk
- Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Adrien Rossary
- Chaire d'Excellence Program, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, CRNH-Auvergne, INRA-UDA, Clermont-Ferrand, France
| | - Florence Caldefie-Chézet
- Chaire d'Excellence Program, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, CRNH-Auvergne, INRA-UDA, Clermont-Ferrand, France
| | - Marie-Paule Vasson
- Chaire d'Excellence Program, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, CRNH-Auvergne, INRA-UDA, Clermont-Ferrand, France; Centre Jean Perrin, Unicancer, Clermont-Ferrand, France; CHU Clermont-Ferrand, Unité d'Exploration Nutritionnelle, Clermont-Ferrand, France
| | - Anders Larsson
- Department of Medical Science, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
177
|
Ishaka A, Imam MU, Ismail M, Mahmud R, Abu Bakar ZZ. Nanoemulsified gamma-oryzanol rich fraction blend regulates hepatic cholesterol metabolism and cardiovascular disease risk in hypercholesterolaemic rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
178
|
Gamboa JL, Billings FT, Bojanowski MT, Gilliam LA, Yu C, Roshanravan B, Roberts LJ, Himmelfarb J, Ikizler TA, Brown NJ. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Physiol Rep 2016; 4:4/9/e12780. [PMID: 27162261 PMCID: PMC4873632 DOI: 10.14814/phy2.12780] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/29/2022] Open
Abstract
Mitochondria abnormalities in skeletal muscle may contribute to frailty and sarcopenia, commonly present in patients with chronic kidney disease (CKD). Dysfunctional mitochondria are also a major source of oxidative stress and may contribute to cardiovascular disease in CKD. We tested the hypothesis that mitochondrial structure and function worsens with the severity of CKD. Mitochondrial volume density, mitochondrial DNA (mtDNA) copy number, BNIP3, and PGC1α protein expression were evaluated in skeletal muscle biopsies obtained from 27 subjects (17 controls and 10 with CKD stage 5 on hemodialysis). We also measured mtDNA copy number in peripheral blood mononuclear cells (PBMCs), plasma isofurans, and plasma F2‐isoprostanes in 208 subjects divided into three groups: non‐CKD (eGFR>60 mL/min), CKD stage 3–4 (eGFR 60–15 mL/min), and CKD stage 5 (on hemodialysis). Muscle biopsies from patients with CKD stage 5 revealed lower mitochondrial volume density, lower mtDNA copy number, and higher BNIP3 content than controls. mtDNA copy number in PBMCs was decreased with increasing severity of CKD: non‐CKD (6.48, 95% CI 4.49–8.46), CKD stage 3–4 (3.30, 95% CI 0.85–5.75, P = 0.048 vs. non‐CKD), and CKD stage 5 (1.93, 95% CI 0.27–3.59, P = 0.001 vs. non‐CKD). Isofurans were higher in patients with CKD stage 5 (median 59.21 pg/mL, IQR 41.76–95.36) compared to patients with non‐CKD (median 49.95 pg/mL, IQR 27.88–83.46, P = 0.001), whereas F2‐isoprostanes did not differ among groups. Severity of CKD is associated with mitochondrial dysfunction and markers of oxidative stress. Mitochondrial abnormalities, which are common in skeletal muscle from patients with CKD stage 5, may explain the muscle dysfunction associated with frailty and sarcopenia in CKD. Further studies are required to evaluate mitochondrial function in vivo in patients with different CKD stages.
Collapse
Affiliation(s)
- Jorge L Gamboa
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Frederic T Billings
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew T Bojanowski
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Laura A Gilliam
- Department of Physiology, East Carolina University, Greenville, North Carolina
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Baback Roshanravan
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - T Alp Ikizler
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nancy J Brown
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
179
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Going retro: Oxidative stress biomarkers in modern redox biology. Free Radic Biol Med 2016; 98:2-12. [PMID: 26855421 DOI: 10.1016/j.freeradbiomed.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/23/2022]
Abstract
The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece; Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - J N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - V Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - A A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece.
| |
Collapse
|
180
|
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016; 119:e39-75. [PMID: 27418630 PMCID: PMC5446086 DOI: 10.1161/res.0000000000000110] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
Collapse
|
181
|
Mutlu E, Gao L, Collins LB, Walker NJ, Hartwell HJ, Olson JR, Sun W, Gold A, Ball LM, Swenberg JA. Polychlorinated Biphenyls Induce Oxidative DNA Adducts in Female Sprague-Dawley Rats. Chem Res Toxicol 2016; 29:1335-1344. [PMID: 27436759 PMCID: PMC5020703 DOI: 10.1021/acs.chemrestox.6b00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polychlorinated biphenyls (PCBs) are organic chemicals that were traditionally produced and widely used in industry as mixtures and are presently formed as byproducts of pigment and dye manufacturing. They are known to persist and bioaccumulate in the environment. Some have been shown to induce liver cancer in rodents. Although the mechanism of the toxicity of PCBs is unknown, it has been shown that they increase oxidative stress, including lipid peroxidation. We hypothesized that oxidative stress-induced DNA damage could be a contributor for PCB carcinogenesis and analyzed several DNA adducts in female Sprague-Dawley rats exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB 126), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and a binary mixture (PCB 126 + 153) for 14, 31, and 53 wks. Eight adducts were measured to profile oxidative DNA lesions, including 8-oxo-deoxyguanosine (8-oxo-dG), 1,N(6)-ethenodeoxyadenosine (1,N(6)-εdA), N(2),3-ethenoguanine (N(2),3-εG), 1,N(2)-ethenodeoxyguanosine (1,N(2)-εdG), as well as malondialdehyde (M1dG), acrolein (AcrdG), crotonaldehyde (CrdG), and 4-hydroxynonenal-derived dG adducts (HNEdG) by LC-MS/MS analysis. Statistically significant increases were observed for 8-oxo-dG and 1,N(6)-εdA concentrations in hepatic DNA of female rats exposed to the binary mixture (1000 ng/kg/day + 1000 μg/kg/day) but not in rats exposed to PCB 126 (1000 ng/kg/day) or PCB 153 (1000 μg/kg/day) for 14 and 31 wks. However, exposure to PCB 126 (1000 ng/kg/day) for 53 wks significantly increased 8-oxo-dG, 1,N(6)-εdA, AcrdG, and M1dG. Exposure to PCB 153 (1000 μg/kg/day) for 53 wks increased 8-oxo-dG, and 1,N(6)-εdA. Exposure to the binary mixture for 53 wks increased 8-oxo-dG, 1,N(6)-εdA, AcrdG, 1,N(2)-εdG, and N(2),3-εG significantly above control groups. Increased hepatic oxidative DNA adducts following exposure to PCB 126, PCB 153, or the binary mixture shows that an increase in DNA damage may play an important role in hepatic toxicity and carcinogenesis in female Sprague-Dawley rats.
Collapse
Affiliation(s)
- Esra Mutlu
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Lina Gao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leonard B. Collins
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nigel J. Walker
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Hadley J. Hartwell
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James R. Olson
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York 14214, United States
| | - Wei Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Louise M. Ball
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
182
|
Wang Y, Wan Y, Ye G, Wang P, Xue X, Wu G, Ye B. Hepatoprotective effects of AdipoRon against d-galactosamine-induced liver injury in mice. Eur J Pharm Sci 2016; 93:123-31. [PMID: 27516150 DOI: 10.1016/j.ejps.2016.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/08/2016] [Accepted: 08/07/2016] [Indexed: 12/20/2022]
Abstract
Adiponectin is an antidiabetic and antiatherogenic adipokine, which plays distinct roles in the balance of energy homoeostasis. As an insulin sensitizing hormone, adiponectin exerts multiple biological effects by the specific receptors (AdipoR1 and AdipoR2), through activation of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR)α pathways. AdipoRon, an orally active synthetic small-molecule AdipoR agonist, shows very similar effects to adiponectin in vitro and in vivo, which could be a promising therapeutic approach for obesity-related disorders. In view of the regulatory effects of adiponectin or AdipoRon on inflammatory response and energy metabolism, they might be endowed a curative potential for tissue damage. Hence, its effects and possible mechanism were investigated. In vitro studies on hepatocytes (L02) and macrophages (RAW264.7) suggested a protective and anti-inflammatory potential of AdipoRon. The effects were verified in acute hepatic injury mice induced by d-galactosamine (D-GalN): hepatic lesions were restored by AdipoRon or bicyclol (positive reference drug) pretreatment, which were characterized by a significant increase in serological and hepatic biomarkers (AST, ALT, MDA and NOSs). Besides, AdipoRon attenuated the inflammation in the liver, characterized by the dwindling proinflammatory macrophage infiltration, as well as the shrinkage of tumor necrosis factor-α (TNF-α), transforming growth factor beta 1 (TGF-β1), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6); meanwhile conversely promoted AMPK activation by phosphorylation. Combined with liver histopathology, these results demonstrated the hepatoprotective effects of AdipoRon against D-GalN-induced damage, which might be ascribed to the attenuation of inflammation, inhibition of free radical reactions, as well as enhancement of liver energy metabolism.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yumeng Wan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guihong Ye
- High School Affiliated To Nanjing Normal University, Nanjing 210003, PR China
| | - Pu Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaowen Xue
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guanzhong Wu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Boping Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
183
|
Fathi H, Ebrahimzadeh MA, Ziar A, Mohammadi H. Oxidative damage induced by retching; antiemetic and neuroprotective role of Sambucus ebulus L. Cell Biol Toxicol 2016; 31:231-9. [PMID: 26493312 DOI: 10.1007/s10565-015-9307-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Nausea and vomiting are the most common symptoms in different diseases. Medicinal plants are considered as a reliable source of new drugs to control these symptoms. In this study, we evaluated the antiemetic and neuroprotective effects of the methanolic extract of Sambucus ebulus L. fruit and relationship between emesis (retching) and oxidative stress biomarkers in the mitochondria brain of young chickens. Emesis was induced by ipecac and copper sulphate (60 and 600 mg/kg, orally), respectively, and the methanolic extracts (50, 100, 200 mg/kg) were injected intraperitoneally (i.p.). The extract showed a significant antiemetic activity against ipecac and copper sulphate-induced emesis at all doses (p<0.001; percentages of retching inhibition 46, 96.5 and 83% against ipecac and 73, 79.5 and 69.2% against copper sulphate, respectively). Lipid peroxidation (LPO) was significantly decreased (p<0.001) at all doses of extract in retching induced by copper sulphate, and catalase (CAT) activity significantly increased (p<0.05) in the extract (50 mg/kg) and metoclopromide groups in retching induced by ipecac in the chickens' brain mitochondria. Protein carbonyl (PC) contents significantly (p<0.05) decreased only in extract (100 mg/kg) group in retching induced by ipecac. Mitochondria function (MTT assay) significantly increased by extract (100 mg/kg) as compared to control group in retching induced by ipecac. The results of this study suggests that the extract has protective effects, possibly by central and peripheral mechanisms, and neuroprotective effect by increasing plasma antioxidants or scavenging of free radicals induced by retching. It seems that extract could prevent protein modification and improve oxidative stress in the early stages.
Collapse
|
184
|
Khoubnasabjafari M, Ansarin K, Jouyban A. Salivary malondialdehyde as an oxidative stress biomarker in oral and systemic diseases. J Dent Res Dent Clin Dent Prospects 2016; 10:71-4. [PMID: 27429721 PMCID: PMC4945998 DOI: 10.15171/joddd.2016.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Maryam Khoubnasabjafari
- Assistant Professor, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Khalil Ansarin
- Professor, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Abolghasem Jouyban
- Professor, Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| |
Collapse
|
185
|
Van't Erve TJ, Lih FB, Jelsema C, Deterding LJ, Eling TE, Mason RP, Kadiiska MB. Reinterpreting the best biomarker of oxidative stress: The 8-iso-prostaglandin F2α/prostaglandin F2α ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radic Biol Med 2016; 95:65-73. [PMID: 26964509 PMCID: PMC6626672 DOI: 10.1016/j.freeradbiomed.2016.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023]
Abstract
Oxidative stress is elevated in numerous environmental exposures and diseases. Millions of dollars have been spent to try to ameliorate this damaging process using anti-oxidant therapies. Currently, the best accepted biomarker of oxidative stress is the lipid oxidation product 8-iso-prostaglandin F2α (8-iso-PGF2α), which has been measured in over a thousand human and animal studies. 8-iso-PGF2α generation has been exclusively attributed to nonenzymatic chemical lipid peroxidation (CLP). However, 8-iso-PGF2α can also be produced enzymatically by prostaglandin-endoperoxide synthases (PGHS) in vivo. When failing to account for PGHS-dependent generation, 8-iso-PGF2α cannot be interpreted as a selective biomarker of oxidative stress. We investigated the formation of 8-iso-PGF2α in rats exposed to carbon tetrachloride (CCl4) or lipopolysaccharide (LPS) using the 8-iso-PGF2α/PGF2α ratio to quantitatively determine the source(s) of 8-iso-PGF2α. Upon exposure to a 120mg/kg dose of CCl4, the contribution of CLP accounted for only 55.6±19.4% of measured 8-iso-PGF2α, whereas in the 1200mg/kg dose, CLP was the predominant source of 8-iso-PGF2α (86.6±8.0% of total). In contrast to CCl4, exposure to 0.5mg/kg LPS was characterized by a significant increase in both the contribution of PGHS (59.5±7.0) and CLP (40.5±14.0%). In conclusion, significant generation of 8-iso-PGF2α occurs through enzymatic as well as chemical lipid peroxidation. The distribution of the contribution is dependent on the exposure agent as well as the dose. The 8-iso-PGF2α/PGF2α ratio accurately determines the source of 8-iso-PGF2α and provides an absolute measure of oxidative stress in vivo.
Collapse
Affiliation(s)
- Thomas J Van't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Fred B Lih
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Casey Jelsema
- Department of Statistics, West Virginia University, Morgantown, WV 26505, USA
| | - Leesa J Deterding
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Thomas E Eling
- Emeritus, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
186
|
Stable isotopes and LC-MS for monitoring metabolic disturbances in Friedreich's ataxia platelets. Bioanalysis 2016; 7:1843-55. [PMID: 26295986 DOI: 10.4155/bio.15.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Friedreich's ataxia (FRDA) is an autosomal recessive disease with metabolic abnormalities that have been proposed to play an important role in the resulting neurodegeneration and cardiomyopathy. The inability to access the highly affected neuronal and cardiac tissues has hampered metabolic evaluation and biomarker development. METHODS Employment of a LC-MS-based method to determine whether platelets isolated from patients with FRDA exhibit differentiable metabolism compared with healthy controls. RESULTS Isotopologue analysis showed a marked decrease in glucose incorporation with a concomitant increase in palmitate-derived acyl-CoA thioesters in FRDA platelets compared with controls. CONCLUSION Our findings demonstrate that platelets can be used as a surrogate tissue for in vivo biomarker studies to monitor new therapeutic approaches for the treatment of FRDA.
Collapse
|
187
|
Bonaccorsi G, Romani A, Cremonini E, Bergamini CM, Castaldini MC, Fila E, Hanau S, Massari L, Cervellati C. Oxidative stress and menopause-related hot flashes may be independent events. Taiwan J Obstet Gynecol 2016; 54:290-3. [PMID: 26166343 DOI: 10.1016/j.tjog.2014.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE At present, there is growing demand for alternative, or additional, treatments to hormone replacement therapy for menopause-related hot flashes (HF). Antioxidant supplements have been recently proposed as possible candidates for this purpose, regardless of the absence of clear evidence in support of a link between these vasomotor symptoms and oxidative stress (OxS). The aim of our study was to evaluate the association between HF and OxS serum markers in a large sample of middle-aged women. MATERIALS AND METHODS We conducted a cross-sectional study on 245 perimenopausal and early postmenopausal women (age 45-60 years). The variables examined were presence of self-reported HF and levels of 8-iso-prostaglandin F2α, 8-OH-deoxy-2'-guanosine, advanced oxidation protein products, total antioxidant power, uric acid, thiols, and paroxonase-1. RESULTS Seventy-six women (31%) reported to suffer from HF (either medium or high intensity). None of the peripheral markers of OxS examined was found to be significantly associated with the presence of HF. CONCLUSION Taken together, our data suggest that systemic OxS might not be implicated with the onset of the climacteric vasomotor symptoms that most commonly affect women experiencing perimenopause and early postmenopause.
Collapse
Affiliation(s)
- Gloria Bonaccorsi
- Department of Morphology, Surgery and Experimental Medicine, Menopause and Osteoporosis Centre, University of Ferrara, Ferrara, Italy; Department of Morphology, Surgery and Experimental Medicine, Section of Gynaecology and Obstetrics, University of Ferrara, Ferrara, Italy
| | - Arianna Romani
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Eleonora Cremonini
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Carlo M Bergamini
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Maria Cristina Castaldini
- Department of Morphology, Surgery and Experimental Medicine, Menopause and Osteoporosis Centre, University of Ferrara, Ferrara, Italy
| | - Enrica Fila
- Department of Morphology, Surgery and Experimental Medicine, Menopause and Osteoporosis Centre, University of Ferrara, Ferrara, Italy; Department of Morphology, Surgery and Experimental Medicine, Section of Gynaecology and Obstetrics, University of Ferrara, Ferrara, Italy
| | - Stefania Hanau
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Leo Massari
- Department of Morphology, Surgery and Experimental Medicine, Menopause and Osteoporosis Centre, University of Ferrara, Ferrara, Italy; Department of Morphology, Surgery and Experimental Medicine, Section of Orthopaedic Clinic, University of Ferrara, Ferrara, Italy
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, Menopause and Osteoporosis Centre, University of Ferrara, Ferrara, Italy; Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
188
|
Lee SG, Yim J, Lim Y, Kim JH. Validation of a liquid chromatography tandem mass spectrometry method to measure oxidized and reduced forms of glutathione in whole blood and verification in a mouse model as an indicator of oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:45-50. [DOI: 10.1016/j.jchromb.2015.10.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
|
189
|
Teppner M, Boess F, Ernst B, Pähler A. Biomarkers of Flutamide-Bioactivation and Oxidative Stress In Vitro and In Vivo. Drug Metab Dispos 2016; 44:560-9. [PMID: 26817949 DOI: 10.1124/dmd.115.066522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/06/2016] [Indexed: 02/13/2025] Open
Abstract
The nonsteroidal androgen-receptor antagonist flutamide is associated with hepatic injury. Oxidative stress and reactive metabolite formation are considered contributing factors to liver toxicity. Here we have used flutamide as a model drug to study the generation of reactive drug metabolites that undergo redox cycling to induce oxidative stress (OS) in vitro and in vivo. Lipid peroxidation (LPO) markers, as well as genes regulated by the redox-sensitive Nrf2 pathway, have been identified as surrogates for the characterization of OS. These markers and metabolism biomarkers for drug bioactivation have been investigated to characterize drug-induced hepatic damage. Rat hepatocytes and in vivo studies showed that several LPO markers, namely the isoprostanes 15R-PD2, dihydro keto PE2, and iPF(2α)-VI, as well as hydroxynonenal mercapturic acid metabolites, had increased significantly by 24 hours after flutamide treatment from 4.9 to 15.3-fold in hepatocytes and from 2.6 to 31.0-fold in rat plasma. Induction of mRNA expression levels for Nrf2-regulated genes was evident as well, with heme oxygenase 1, glutathione-S-transferase π1 and NAD(P)H dehydrogenase showing a 3.6-, 4.1-, and 1.9-fold increase in hepatocytes and 5.6-, 7.5-, and 94.1-fold in rat liver. All effects were observed at drug concentrations that did not show overt liver toxicity. Addition of an in situ hydrogen peroxide-generating system to in vitro experiments demonstrated the formation of a reactive di-imine intermediate as the responsible metabolic pathway for the generation of OS. The dataset suggests that hepatic oxidative stress conditions can be mediated via metabolic activation and can be monitored with suitable biomarkers preceding the terminal damage.
Collapse
Affiliation(s)
- Marieke Teppner
- Roche Pharmaceutical Research and Early Development pRED, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Franziska Boess
- Roche Pharmaceutical Research and Early Development pRED, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Beat Ernst
- Roche Pharmaceutical Research and Early Development pRED, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Axel Pähler
- Roche Pharmaceutical Research and Early Development pRED, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
190
|
Mangum LC, Mangum LH, Chambers JE, Ross MK, Meek EC, Wills RW, Crow JA. The association of serum trans-nonachlor levels with atherosclerosis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:210-220. [PMID: 26953872 PMCID: PMC4902318 DOI: 10.1080/15287394.2016.1143901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent epidemiological studies suggest a strong association between exposure to environmental contaminants, including organochlorine (OC) insecticides or their metabolites, and development of pathologies, such as atherosclerosis, in which oxidative stress plays a significant etiological role. Biomarkers of systemic oxidative stress have the potential to link production of reactive oxygen species (ROS), which are formed as a result of exposure to xenobiotic toxicants, and underlying pathophysiological states. Measurement of F2-isoprostane concentrations in body fluids is the most accurate and sensitive method currently available for assessing in vivo steady-state oxidative stress levels. In the current study, urinary concentrations of F2-isoprostanes and serum levels of persistent OC compounds p,p'-dichlorodiphenyldichloroethene (DDE), trans-nonachlor (a component of the technical chlordane mixture), and oxychlordane (a chlordane metabolite) were quantified in a cross-sectional study sample and the association of these factors with a clinical diagnosis of atherosclerosis determined. Urinary isoprostane levels were not associated with atherosclerosis or serum concentrations of OC compounds in this study sample. However, occurrence of atherosclerosis was found to be associated with serum trans-nonachlor levels. DDE and oxychlordane were not associated with atherosclerosis. This finding supports current evidence that exposure to environmental factors is a risk factor for atherosclerosis, in addition to other known risk factors.
Collapse
Affiliation(s)
- Lee C. Mangum
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Lauren H. Mangum
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Janice E. Chambers
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Matthew K. Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Edward C. Meek
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Robert W. Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - J. Allen Crow
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
191
|
Black CN, Penninx BWJH, Bot M, Odegaard AO, Gross MD, Matthews KA, Jacobs DR. Oxidative stress, anti-oxidants and the cross-sectional and longitudinal association with depressive symptoms: results from the CARDIA study. Transl Psychiatry 2016; 6:e743. [PMID: 26905415 PMCID: PMC4872434 DOI: 10.1038/tp.2016.5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/02/2015] [Accepted: 12/25/2015] [Indexed: 02/07/2023] Open
Abstract
Depression may be accompanied by increased oxidative stress and decreased circulating anti-oxidants. This study examines the association between depressive symptoms, F2-isoprostanes and carotenoids in a US community sample. The study includes 3009 participants (mean age 40.3, 54.2% female) from CARDIA (Coronary Artery Risk Development in Young Adults). Cross-sectional analyses were performed on data from the year 15 examination (2000-2001) including subjects whose depressive symptoms were assessed with the Center for Epidemiologic Studies Depression Scale (CES-D) and had measurements of plasma F2-isoprostanes (gas chromatography/mass spectrometry) or serum carotenoids (high-performance liquid chromatography). Carotenoids zeaxanthin/lutein, β-cryptoxanthin, lycopene, α-carotene, β-carotene were standardized and summed. Longitudinal analyses were conducted using the data from other examinations at 5-year intervals. Cross-lagged analyses investigated whether CES-D predicted F2-isoprostanes or carotenoids at the following exam, and vice versa. Regression analyses were controlled for sociodemographics, health and lifestyle factors. F2-isoprostanes were higher in subjects with depressive symptoms (CES-D ⩾ 16) after adjustment for sociodemographics (55.7 vs 52.0 pg ml(-1); Cohen's d = 0.14, P < 0.001). There was no difference in F2-isoprostanes after further adjustment for health and lifestyle factors. Carotenoids were lower in those with CES-D scores ⩾ 16, even after adjustment for health and lifestyle factors (standardized sum 238.7 vs 244.0, Cohen's d = -0.16, P < 0.001). Longitudinal analyses confirmed that depression predicts subsequent F2-isoprostane and carotenoid levels. Neither F2-isoprostanes nor carotenoids predicted subsequent depression. In conclusion, depressive symptoms were cross-sectionally and longitudinally associated with increased F2-isoprostanes and decreased carotenoids. The association with F2-isoprostanes can largely be explained by lifestyle factors, but lower carotenoids were independently associated with depressive symptoms.
Collapse
Affiliation(s)
- C N Black
- Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - B W J H Penninx
- Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - M Bot
- Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - A O Odegaard
- Department of Epidemiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - M D Gross
- Department of Laboratory Medicine and Pathology University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - K A Matthews
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
192
|
Bioanalytical techniques for detecting biomarkers of response to human asbestos exposure. Bioanalysis 2016; 7:1157-73. [PMID: 26039812 DOI: 10.4155/bio.15.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Asbestos exposure is known to cause lung cancer and mesothelioma and its health and economic impacts have been well documented. The exceptionally long latency periods of most asbestos-related diseases have hampered preventative and precautionary steps thus far. We aimed to summarize the state of knowledge on biomarkers of response to asbestos exposure. Asbestos is not present in human biological fluids; rather it is inhaled and trapped in lung tissue. Biomarkers of response, which reflect a change in biologic function in response to asbestos exposure, are analyzed. Several classes of molecules have been studied and evaluated for their potential utility as biomarkers of asbestos exposure. These studies range from small molecule oxidative stress biomarkers to proteins involved in immune responses.
Collapse
|
193
|
Lung extracellular matrix and redox regulation. Redox Biol 2016; 8:305-15. [PMID: 26938939 PMCID: PMC4777985 DOI: 10.1016/j.redox.2016.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention.
Collapse
|
194
|
Jump DB, Depner CM, Tripathy S, Lytle KA. Impact of dietary fat on the development of non-alcoholic fatty liver disease in Ldlr-/- mice. Proc Nutr Soc 2016; 75:1-9. [PMID: 26282529 PMCID: PMC4720541 DOI: 10.1017/s002966511500244x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity and is now the most common chronic liver disease in developed countries. NAFLD is defined as excessive accumulation of lipid in the liver, i.e. hepatosteatosis. The severity of NAFLD ranges from simple fatty liver (steatosis) to non-alcoholic steatohepatitis (NASH). Simple steatosis is relatively benign until it progresses to NASH, which is characterised by hepatic injury, inflammation, oxidative stress and fibrosis. Hepatic fibrosis is a risk factor for cirrhosis and primary hepatocellular carcinoma. Our studies have focused on the impact of diet on the onset and progression of NASH. We developed a mouse model of NASH by feeding Ldlr-/- mice a western diet (WD), a diet moderately high in saturated and trans-fat, sucrose and cholesterol. The WD induced a NASH phenotype in Ldlr-/- mice that recapitulates many of the clinical features of human NASH. We also assessed the capacity of the dietary n-3 PUFA, i.e. EPA (20 : 5,n-3) and DHA (22 : 6,n-3), to prevent WD-induced NASH in Ldlr-/- mice. Histologic, transcriptomic, lipidomic and metabolomic analyses established that DHA was equal or superior to EPA at attenuating WD-induced dyslipidemia and hepatic injury, inflammation, oxidative stress and fibrosis. Dietary n-3 PUFA, however, had no significant effect on WD-induced changes in body weight, body fat or blood glucose. These studies provide a molecular and metabolic basis for understanding the strengths and weaknesses of using dietary n-3 PUFA to prevent NASH in human subjects.
Collapse
Affiliation(s)
- Donald B. Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| | - Christopher M. Depner
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| | - Sasmita Tripathy
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| | - Kelli A. Lytle
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| |
Collapse
|
195
|
Quantitative profiling of prostaglandins as oxidative stress biomarkers in vitro and in vivo by negative ion online solid phase extraction - Liquid chromatography-tandem mass spectrometry. Anal Biochem 2016; 498:68-77. [PMID: 26808647 DOI: 10.1016/j.ab.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
Abstract
Free radical-mediated oxidation of arachidonic acid to prostanoids has been implicated in a variety of pathophysiological conditions such as oxidative stress. Here, we report on the development of a liquid chromatography-mass spectrometry method to measure several classes of prostaglandin derivatives based on regioisomer-specific mass transitions down to levels of 20 pg/ml applied to the measurement of prostaglandin biomarkers in primary hepatocytes. The quantitative profiling of prostaglandin derivatives in rat and human hepatocytes revealed the increase of several isomers on stress response. In addition to the well-established markers for oxidative stress such as 8-iso-prostaglandin F2α and the prostaglandin isomers PE2 and PD2, this method revealed a significant increase of 15R-prostaglandin D2 from 236.1 ± 138.0 pg/1E6 cells in untreated rat hepatocytes to 2001 ± 577.1 pg/1E6 cells on treatment with ferric NTA (an Fe(3+) chelate with nitrilotriacetic acid causing oxidative stress in vitro as well as in vivo). Like 15R-prostaglandin D2, an unassigned isomer that revealed a more significant increase than commonly analyzed prostaglandin derivatives was identified. Mass spectrometric detection on a high-resolution instrument enabled high-quality quantitative analysis of analytes in plasma levels from rat experiments, where increased concentrations up to 23-fold change treatment with Fe(III)NTA were observed.
Collapse
|
196
|
Exercise at lunchtime: effect on glycemic control and oxidative stress in middle-aged men with type 2 diabetes. Eur J Appl Physiol 2015; 116:573-82. [DOI: 10.1007/s00421-015-3317-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/13/2015] [Indexed: 02/05/2023]
|
197
|
Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Eur J Pharmacol 2015; 770:85-91. [PMID: 26668000 DOI: 10.1016/j.ejphar.2015.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
Abstract
Mangiferin, a glucosylxanthone from Mangifera indica, has been reported to have anti-inflammatory effects. However, the protective effects and mechanisms of mangiferin on liver injury remain unclear. This study aimed to determine the protective effects and mechanisms of mangiferin on lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced acute liver injury. Mangiferin was given 1h after LPS and D-GalN treatment. The results showed that mangiferin inhibited the levels of serum ALT, AST, IL-1β, TNF-α, MCP-1, and RANTES, as well as hepatic malondialdehyde (MDA) and ROS levels. Moreover, mangiferin significantly inhibited IL-1β and TNF-α production in LPS-stimulated primary hepatocytes. Mangiferin was found to up-regulate the expression of Nrf2 and HO-1 in a dose-dependent manner. Furthermore, mangiferin inhibited LPS/d-GalN-induced hepatic NLRP3, ASC, caspase-1, IL-1β and TNF-α expression. In conclusion, mangiferin protected against LPS/GalN-induced liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation.
Collapse
|
198
|
Abstract
Through detailed interrogation of the molecular pathways that contribute to the development of pulmonary arterial hypertension (PAH), the separate but related processes of oxidative stress and cellular metabolic dysfunction have emerged as being critical pathogenic mechanisms that are as yet relatively untargeted therapeutically. In this review, we have attempted to summarize some of the important existing studies, to point out areas of overlap between oxidative stress and metabolic dysfunction, and to do so under the unifying heading of redox biology. We discuss the importance of precision in assessing oxidant signaling versus oxidant injury and why this distinction matters. We endeavor to advance the discussion of carbon-substrate metabolism beyond a focus on glucose and its fate in the cell to encompass other carbon substrates and some of the murkiness surrounding our understanding of how they are handled in different cell types. Finally, we try to bring these ideas together at the level of the mitochondrion and to point out some additional points of possible cognitive dissonance that warrant further experimental probing. The body of beautiful science regarding the molecular and cellular details of redox biology in PAH points to a future that includes clinically useful therapies that target these pathways. To fully realize the potential of these future interventions, we hope that some of the issues raised in this review can be addressed proactively.
Collapse
Affiliation(s)
- Joshua P Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - James D West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
199
|
Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HHHW, Ghezzi P. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid Redox Signal 2015; 23:1144-70. [PMID: 26415143 PMCID: PMC4657513 DOI: 10.1089/ars.2015.6317] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. RECENT ADVANCES An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. FUTURE DIRECTIONS Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.
Collapse
Affiliation(s)
- Jeroen Frijhoff
- 1 Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Paul G Winyard
- 2 University of Exeter Medical School , Exeter, United Kingdom
| | | | - Sean S Davies
- 4 Department of Medicine, Vanderbilt University , Nashville, Tennessee.,5 Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University , Nashville, Tennessee
| | - Roland Stocker
- 6 Vascular Biology Division, Victor Chang Cardiac Research Institute , Darlinghurst, New South Wales, Australia .,7 School of Medical Sciences, University of New South Wales , Sydney, New South Wales, Australia
| | - David Cheng
- 6 Vascular Biology Division, Victor Chang Cardiac Research Institute , Darlinghurst, New South Wales, Australia
| | - Annie R Knight
- 2 University of Exeter Medical School , Exeter, United Kingdom
| | | | - Jeannette Oettrich
- 1 Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Tatjana Ruskovska
- 8 Faculty of Medical Sciences, Goce Delcev University , Stip, Macedonia
| | | | - Antonio Cuadrado
- 9 Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , ISCIII, Madrid, Spain .,10 Instituto de Investigaciones Biomedicas "Alberto Sols" UAM-CSIC , Madrid, Spain .,11 Instituto de Investigacion Sanitaria La Paz (IdiPaz) , Madrid, Spain .,12 Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| | - Daniela Weber
- 13 Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) , Nuthetal, Germany
| | - Henrik Enghusen Poulsen
- 14 Faculty of Health Science, University of Copenhagen , Copenhagen, Denmark .,15 Bispebjerg-Frederiksberg Hospital , Copenhagen, Denmark
| | - Tilman Grune
- 13 Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) , Nuthetal, Germany
| | - Harald H H W Schmidt
- 1 Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Pietro Ghezzi
- 16 Brighton and Sussex Medical School , Brighton, United Kingdom
| |
Collapse
|
200
|
Higher Urinary Levels of 8-Hydroxy-2'-deoxyguanosine Are Associated with a Worse RANKL/OPG Ratio in Postmenopausal Women with Osteopenia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6038798. [PMID: 26635910 PMCID: PMC4655257 DOI: 10.1155/2016/6038798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 12/20/2022]
Abstract
Postmenopausal osteoporosis (PO) is a major public health issue which affects a large fraction of elderly women. Emerging in vitro evidence suggests a central role of oxidative stress (OxS) in postmenopausal osteoporosis (PO) development. Contrariwise, the human studies on this topic are still scarce and inconclusive. In the attempt to address this issue, we sought to determine if OxS, as assessed by 8-hydroxy-2-deoxyguanosine (8-OHdG), may influence the level of receptor activator of nuclear factor-κb ligand (RANKL)/osteoprotegerin (OPG) ratio (a central regulator of bone metabolism) in a sample (n = 124), including postmenopausal women with osteoporosis, osteopenia and normal bone mass density (BMD). The most striking result that emerged in our study was the independent and positive (beta = 0.449, p = 0.004, and R2 = 0.185) association between the OxS marker and RANKL/OPG ratio which was found in osteopenic but not in the other 2 sample groups. If confirmed by longitudinal studies, our findings would suggest that OxS is implicated in the derangement of bone homeostasis which precedes PO development. In line with these considerations, antioxidant treatment of postmenopausal women with moderately low BMD might contribute to preventing PO and related complications.
Collapse
|