151
|
Woodruff MC, Faliti CE, Sanz I. Systems biology of B cells in COVID-19. Semin Immunol 2024; 72:101875. [PMID: 38489999 PMCID: PMC11988200 DOI: 10.1016/j.smim.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
The integration of multi-'omic datasets into complex systems-wide assessments has become a mainstay in immunologic investigation. This focus on high-dimensional data collection and analysis was on full display in the investigation of COVID-19, the respiratory illness resulting from infection by the novel coronavirus SARS-CoV-2. Particularly in the area of B cell biology, tremendous efforts in both cellular and serologic investigation have resulted in an increasingly detailed mapping of the coordinated effector, memory, and antibody secreting cell responses that underpin the development of humoral immunity in response to primary viral infection. Further, the rapid development and deployment of effective vaccines has allowed for the assessment of developing memory responses across a wide variety of immune contexts, including in patients with compromised immune function. The result has been a period of rapid gains in the understanding of B cell biology unrestricted to the study of COVID-19. Here, we outline the systems-level technologies that have been routinely implemented in these investigations throughout the pandemic, and discuss how their use has led to clear and applicable gains in pursuance of the amelioration of human infectious disease and beyond.
Collapse
Affiliation(s)
- Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| | - Caterina E Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| |
Collapse
|
152
|
Bemark M, Pitcher MJ, Dionisi C, Spencer J. Gut-associated lymphoid tissue: a microbiota-driven hub of B cell immunity. Trends Immunol 2024; 45:211-223. [PMID: 38402045 PMCID: PMC11227984 DOI: 10.1016/j.it.2024.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
The diverse gut microbiota, which is associated with mucosal health and general wellbeing, maintains gut-associated lymphoid tissues (GALT) in a chronically activated state, including sustainment of germinal centers in a context of high antigenic load. This influences the rules for B cell engagement with antigen and the potential consequences. Recent data have highlighted differences between GALT and other lymphoid tissues. For example, GALT propagates IgA responses against glycans that show signs of having been generated in germinal centers. Other findings suggest that humans are among those species where GALT supports the diversification, propagation, and possibly selection of systemic B cells. Here, we review novel findings that identify GALT as distinctive, and able to support these processes.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, J Waldenströms gata 35, Malmö, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK.
| |
Collapse
|
153
|
Li S, Hu X, Wang M, Yu L, Zhang Q, Xiao J, Hong Z, Zhou D, Li J. Single-cell RNA sequencing reveals diverse B cell phenotypes in patients with anti-NMDAR encephalitis. Psychiatry Clin Neurosci 2024; 78:197-208. [PMID: 38063052 DOI: 10.1111/pcn.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUNDS Anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) is a severe autoimmune disorder characterized by prominent psychiatric symptoms. Although the role of NMDAR antibodies in the disease has been extensively studied, the phenotype of B cell subsets is still not fully understood. METHODS We utilized single-cell RNA sequencing, single-cell B cell receptor sequencing (scBCR-seq), bulk BCR sequencing, flow cytometry, and enzyme-linked immunosorbent assay to analyze samples from both NMDAR-E patients and control individuals. RESULTS The cerebrospinal fluid (CSF) of NMDAR-E patients showed significantly increased B cell counts, predominantly memory B (Bm) cells. CSF Bm cells in NMDAR-E patients exhibited upregulated expression of differential expression genes (DEGs) associated with immune regulatory function (TNFRSF13B and ITGB1), whereas peripheral B cells upregulated DEGs related to antigen presentation. Additionally, NMDAR-E patients displayed higher levels of IgD- CD27- double negative (DN) cells and DN3 cells in peripheral blood (PB). In vitro, DN1 cell subsets from NMDAR-E patients differentiated into DN2 and DN3 cells, while CD27+ and/or IgD+ B cells (non-DN) differentiated into antibody-secreting cells (ASCs) and DN cells. NR1-IgG antibodies were found in B cell culture supernatants from patients. Differential expression of B cell IGHV genes in CSF and PB of NMDAR-E patients suggests potential antigen class switching. CONCLUSION B cell subpopulations in the CSF and PB of NMDAR-E patients exhibit distinct compositions and transcriptomic features. In vitro, non-DN cells from NMDAR-E can differentiate into DN cells and ASCs, potentially producing NR1-IgG antibodies. Further research is necessary to investigate the potential contribution of DN cell subpopulations to NR1-IgG antibody production.
Collapse
Affiliation(s)
- Sisi Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiang Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinmei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
154
|
Hurabielle C, LaFlam TN, Gearing M, Ye CJ. Functional genomics in inborn errors of immunity. Immunol Rev 2024; 322:53-70. [PMID: 38329267 PMCID: PMC10950534 DOI: 10.1111/imr.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.
Collapse
Affiliation(s)
- Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Taylor N LaFlam
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Institute of Computational Health Sciences, UCSF, San Francisco, California, USA
- Gladstone Genomic Immunology Institute, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
155
|
Amano E, Sato W, Kimura Y, Kimura A, Lin Y, Okamoto T, Sato N, Yokota T, Yamamura T. CD11c high B Cell Expansion Is Associated With Severity and Brain Atrophy in Neuromyelitis Optica. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200206. [PMID: 38350043 DOI: 10.1212/nxi.0000000000200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Neuromyelitis optica (NMO) is an autoimmune astrocytopathy mediated by anti-AQP4 antibody-producing B cells. Recently, a B-cell subset highly expressing CD11c and T-bet, originally identified as age-associated B cells, has been shown to be involved in the pathogenesis of various autoimmune diseases. The objective of this study was to determine the relationship between the frequency of CD11chigh B cells per CD19+ B cells in the peripheral blood of patients with NMO and the clinical profiles including the brain volume. METHODS In this observational study, 45 patients with anti-AQP4 antibody-positive NMO in remission and 30 healthy control subjects (HCs) were enrolled. Freshly isolated peripheral blood mononuclear cells were analyzed for immune cell phenotypes. The frequency of CD11chigh B cells per CD19+ B cells was assessed by flow cytometry and was evaluated in association with the clinical profiles of patients. Brain MRI data from 26 patients were included in the study for the analysis on the correlation between CD11chigh B-cell frequency and brain atrophy. RESULTS We found that the frequency of CD11chigh B cells in CD19+ B cells was significantly increased in patients with NMO compared with HCs. The expansion of CD11chigh B cells significantly correlated with EDSS, past relapse numbers, and disease duration. In addition, a higher frequency of CD11chigh B cells negatively correlated with total brain, white matter, and gray matter volumes and positively correlated with T2/FLAIR high lesion volumes. When the past clinical relapse episodes of patients with or without the expansion of CD11chigh B cells were compared, relapses in the brain occurred more frequently in patients with CD11chigh B-cell expansion. CD11chigh B cells had distinct features including expression of chemokine receptors associated with migration into peripheral inflammatory tissues and antigen presentation. CD11chigh B-cell frequency was positively correlated with T peripheral helper-1 (Tph-1) cell frequency. DISCUSSION Even during the relapse-free period, CD11chigh B cells could expand in the long disease context, possibly through the interaction with Tph-1 cells. The increased frequency of CD11chigh B cells associated with brain atrophy and disease severity, indicating that this cell population could be involved in chronic neuroinflammation in NMO.
Collapse
Affiliation(s)
- Eiichiro Amano
- From the Department of Immunology (E.A., W.S., A.K., T. Yamamura), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo; Department of Neurology and Neurological Sciences (E.A., T. Yokota), Tokyo Medical and Dental University, Bunkyo; Department of Radiology (Y.K., N.S.); and Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Wakiro Sato
- From the Department of Immunology (E.A., W.S., A.K., T. Yamamura), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo; Department of Neurology and Neurological Sciences (E.A., T. Yokota), Tokyo Medical and Dental University, Bunkyo; Department of Radiology (Y.K., N.S.); and Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yukio Kimura
- From the Department of Immunology (E.A., W.S., A.K., T. Yamamura), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo; Department of Neurology and Neurological Sciences (E.A., T. Yokota), Tokyo Medical and Dental University, Bunkyo; Department of Radiology (Y.K., N.S.); and Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Atsuko Kimura
- From the Department of Immunology (E.A., W.S., A.K., T. Yamamura), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo; Department of Neurology and Neurological Sciences (E.A., T. Yokota), Tokyo Medical and Dental University, Bunkyo; Department of Radiology (Y.K., N.S.); and Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Youwei Lin
- From the Department of Immunology (E.A., W.S., A.K., T. Yamamura), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo; Department of Neurology and Neurological Sciences (E.A., T. Yokota), Tokyo Medical and Dental University, Bunkyo; Department of Radiology (Y.K., N.S.); and Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Okamoto
- From the Department of Immunology (E.A., W.S., A.K., T. Yamamura), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo; Department of Neurology and Neurological Sciences (E.A., T. Yokota), Tokyo Medical and Dental University, Bunkyo; Department of Radiology (Y.K., N.S.); and Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Noriko Sato
- From the Department of Immunology (E.A., W.S., A.K., T. Yamamura), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo; Department of Neurology and Neurological Sciences (E.A., T. Yokota), Tokyo Medical and Dental University, Bunkyo; Department of Radiology (Y.K., N.S.); and Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takanori Yokota
- From the Department of Immunology (E.A., W.S., A.K., T. Yamamura), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo; Department of Neurology and Neurological Sciences (E.A., T. Yokota), Tokyo Medical and Dental University, Bunkyo; Department of Radiology (Y.K., N.S.); and Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Yamamura
- From the Department of Immunology (E.A., W.S., A.K., T. Yamamura), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo; Department of Neurology and Neurological Sciences (E.A., T. Yokota), Tokyo Medical and Dental University, Bunkyo; Department of Radiology (Y.K., N.S.); and Department of Neurology (Y.L., T.O.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
156
|
Guo S, Mohan GS, Wang B, Li T, Daver N, Zhao Y, Reville PK, Hao D, Abbas HA. Paired single-B-cell transcriptomics and receptor sequencing reveal activation states and clonal signatures that characterize B cells in acute myeloid leukemia. J Immunother Cancer 2024; 12:e008318. [PMID: 38418394 PMCID: PMC10910691 DOI: 10.1136/jitc-2023-008318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is associated with a dismal prognosis. Immune checkpoint blockade (ICB) to induce antitumor activity in AML patients has yielded mixed results. Despite the pivotal role of B cells in antitumor immunity, a comprehensive assessment of B lymphocytes within AML's immunological microenvironment along with their interaction with ICB remains rather constrained. METHODS We performed an extensive analysis that involved paired single-cell RNA and B-cell receptor (BCR) sequencing on 52 bone marrow aspirate samples. These samples included 6 from healthy bone marrow donors (normal), 24 from newly diagnosed AML patients (NewlyDx), and 22 from 8 relapsed or refractory AML patients (RelRef), who underwent assessment both before and after azacitidine/nivolumab treatment. RESULTS We delineated nine distinct subtypes of B cell lineage in the bone marrow. AML patients exhibited reduced nascent B cell subgroups but increased differentiated B cells compared with healthy controls. The limited diversity of BCR profiles and extensive somatic hypermutation indicated antigen-driven affinity maturation within the tumor microenvironment of RelRef patients. We established a strong connection between the activation or stress status of naïve and memory B cells, as indicated by AP-1 activity, and their differentiation state. Remarkably, atypical memory B cells functioned as specialized antigen-presenting cells closely interacting with AML malignant cells, correlating with AML stemness and worse clinical outcomes. In the AML microenvironment, plasma cells demonstrated advanced differentiation and heightened activity. Notably, the clinical response to ICB was associated with B cell clonal expansion and plasma cell function. CONCLUSIONS Our findings establish a comprehensive framework for profiling the phenotypic diversity of the B cell lineage in AML patients, while also assessing the implications of immunotherapy. This will serve as a valuable guide for future inquiries into AML treatment strategies.
Collapse
Affiliation(s)
- Shengnan Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Gopi S Mohan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bofei Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tianhao Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuting Zhao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Patrick K Reville
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dapeng Hao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
157
|
Mishra H, Schlack-Leigers C, Lim EL, Thieck O, Magg T, Raedler J, Wolf C, Klein C, Ewers H, Lee-Kirsch MA, Meierhofer D, Hauck F, Majer O. Disrupted degradative sorting of TLR7 is associated with human lupus. Sci Immunol 2024; 9:eadi9575. [PMID: 38207015 DOI: 10.1126/sciimmunol.adi9575] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Hyperactive TLR7 signaling has long been appreciated as driver of autoimmune disease in mouse models. Recently, gain-of-function mutations in TLR7 were identified as a monogenic cause of human lupus. TLR7 is an intracellular transmembrane receptor, sensing RNA breakdown products within late endosomes. Here, we show that endosome dysfunction leads to unrestricted TLR7 signaling and is associated with human lupus. The late endosomal BORC complex together with the small GTPase Arl8b controls intracellular TLR7 levels by regulating receptor turnover. This requires a direct interaction between the TLR7-associated trafficking factor Unc93b1 and Arl8b. We identified an UNC93B1 mutation in a patient with childhood-onset lupus, which results in reduced BORC interaction and endosomal TLR7 accumulation. Therefore, a failure to control TLR7 turnover is sufficient to break immunological tolerance to nucleic acids. Our results highlight the importance of an intact endomembrane system in preventing pathological TLR7 signaling and autoimmune disease.
Collapse
Affiliation(s)
- Harshita Mishra
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Claire Schlack-Leigers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Ee Lyn Lim
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Oliver Thieck
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Thomas Magg
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Johannes Raedler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Olivia Majer
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| |
Collapse
|
158
|
Wolf C, Lim EL, Mokhtari M, Kind B, Odainic A, Lara-Villacanas E, Koss S, Mages S, Menzel K, Engel K, Dückers G, Bernbeck B, Schneider DT, Siepermann K, Niehues T, Goetzke CC, Durek P, Minden K, Dörner T, Stittrich A, Szelinski F, Guerra GM, Massoud M, Bieringer M, de Oliveira Mann CC, Beltrán E, Kallinich T, Mashreghi MF, Schmidt SV, Latz E, Klughammer J, Majer O, Lee-Kirsch MA. UNC93B1 variants underlie TLR7-dependent autoimmunity. Sci Immunol 2024; 9:eadi9769. [PMID: 38207055 DOI: 10.1126/sciimmunol.adi9769] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.
Collapse
Affiliation(s)
- Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Ee Lyn Lim
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Mohammad Mokhtari
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Barbara Kind
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Alexandru Odainic
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eusebia Lara-Villacanas
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Sarah Koss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Simon Mages
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Katharina Menzel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Kerstin Engel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Gregor Dückers
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Benedikt Bernbeck
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Dominik T Schneider
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | | | - Tim Niehues
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Carl Christoph Goetzke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Kirsten Minden
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Anna Stittrich
- Labor Berlin Charité-Vivantes GmbH, Department of Human Genetics, Berlin 13353, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Mona Massoud
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Markus Bieringer
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin 13125, Germany
| | | | - Eduardo Beltrán
- Institute for Clinical Neuroimmunology, BioMedizinisches Zentrum, Ludwig-Maximilians-Universität Munich, Munich 82152, Germany
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
| | - Johanna Klughammer
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Olivia Majer
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
159
|
Dunstan IK, McLeod R, Radford-Smith DE, Xiong W, Pate T, Probert F, Anthony DC. Unique pathways downstream of TLR-4 and TLR-7 activation: sex-dependent behavioural, cytokine, and metabolic consequences. Front Cell Neurosci 2024; 18:1345441. [PMID: 38414751 PMCID: PMC10896997 DOI: 10.3389/fncel.2024.1345441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Post-infection syndromes are characterised by fatigue, muscle pain, anhedonia, and cognitive impairment; mechanistic studies exploring these syndromes have focussed on pathways downstream of Toll-like receptor (TLR) 4 activation. Here, we investigated the mechanistic interplay between behaviour, metabolism, and inflammation downstream of TLR-7 activation compared to TLR-4 activation in male and female CD1 mice. Methods Animals received either a TLR-4 (LPS; 0.83 mg/kg) or TLR-7 (R848, 5 mg/kg) agonist, or saline, and behaviour was analysed in an Open Field (OF) at 24 h (n = 20/group). Plasma, liver, and prefrontal cortex (PFC) were collected for gene expression analysis at 24 h and 1H-NMR metabolomics. Results TLR-4 and TLR-7 activation decreased distance travelled and rearing in the OF, but activation of each receptor induced distinct cytokine responses and metabolome profiles. LPS increased IL-1β expression and CXCL1 in the PFC, but TLR7 activation did not and strongly induced PFC CXCL10 expression. Thus, TLR7 induced sickness behaviour is independent of IL-1β expression. In both cases, the behavioural response to TLR activation was sexually dimorphic: females were more resilient. However, dissociation was observed between the resilient female mice behaviour and the levels of gene cytokine expression, which was, in general, higher in the female mice. However, the metabolic shifts induced by immune activation were better correlated with the sex-dependent behavioural dimorphisms; increased levels of antioxidant potential in the female brain are intrinsic male/female metabolome differences. A common feature of both TLR4 and TLR7 activation was an increase in N-acetyl aspartate (NAA) in the PFC, which is likely be an allostatic response to the challenges as sickness behaviour is inversely correlated with NAA levels. Discussion The results highlight how the cytokine profile induced by one PAMP cannot be extrapolated to another, but they do reveal how the manipulation of the conserved metabolome response might afford a more generic approach to the treatment of post-infection syndromes.
Collapse
Affiliation(s)
- Isobel K. Dunstan
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Mathematical, Physical and Life Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ross McLeod
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Mathematical, Physical and Life Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Daniel E. Radford-Smith
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Wenzheng Xiong
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Mathematical, Physical and Life Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Trinity Pate
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Fay Probert
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Mathematical, Physical and Life Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Daniel C. Anthony
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
160
|
Bracken SJ, Suthers AN, DiCioccio RA, Su H, Anand S, Poe JC, Jia W, Visentin J, Basher F, Jordan CZ, McManigle WC, Li Z, Hakim FT, Pavletic SZ, Bhuiya NS, Ho VT, Horwitz ME, Chao NJ, Sarantopoulos S. Heightened TLR7 signaling primes BCR-activated B cells in chronic graft-versus-host disease for effector functions. Blood Adv 2024; 8:667-680. [PMID: 38113462 PMCID: PMC10839617 DOI: 10.1182/bloodadvances.2023010362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT Chronic graft-versus-host disease (cGVHD) is a debilitating, autoimmune-like syndrome that can occur after allogeneic hematopoietic stem cell transplantation. Constitutively activated B cells contribute to ongoing alloreactivity and autoreactivity in patients with cGVHD. Excessive tissue damage that occurs after transplantation exposes B cells to nucleic acids in the extracellular environment. Recognition of endogenous nucleic acids within B cells can promote pathogenic B-cell activation. Therefore, we hypothesized that cGVHD B cells aberrantly signal through RNA and DNA sensors such as Toll-like receptor 7 (TLR7) and TLR9. We found that B cells from patients and mice with cGVHD had higher expression of TLR7 than non-cGVHD B cells. Using ex vivo assays, we found that B cells from patients with cGVHD also demonstrated increased interleukin-6 production after TLR7 stimulation with R848. Low-dose B-cell receptor (BCR) stimulation augmented B-cell responses to TLR7 activation. TLR7 hyperresponsiveness in cGVHD B cells correlated with increased expression and activation of the downstream transcription factor interferon regulatory factor 5. Because RNA-containing immune complexes can activate B cells through TLR7, we used a protein microarray to identify RNA-containing antigen targets of potential pathological relevance in cGVHD. We found that many of the unique targets of active cGVHD immunoglobulin G (IgG) were nucleic acid-binding proteins. This unbiased assay identified the autoantigen and known cGVHD target Ro-52, and we found that RNA was required for IgG binding to Ro-52. Herein, we find that BCR-activated B cells have aberrant TLR7 signaling responses that promote potential effector responses in cGVHD.
Collapse
Affiliation(s)
- Sonali J. Bracken
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Amy N. Suthers
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Rachel A. DiCioccio
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Hsuan Su
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sarah Anand
- Division of Hematology and Medical Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Jonathan C. Poe
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Wei Jia
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Jonathan Visentin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
- UMR CNRS 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Fahmin Basher
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Collin Z. Jordan
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham NC
| | - William C. McManigle
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham NC
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Frances T. Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Steven Z. Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Nazmim S. Bhuiya
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Vincent T. Ho
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mitchell E. Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
161
|
Tieck MP, Vasilenko N, Ruschil C, Kowarik MC. Peripheral memory B cells in multiple sclerosis vs. double negative B cells in neuromyelitis optica spectrum disorder: disease driving B cell subsets during CNS inflammation. Front Cell Neurosci 2024; 18:1337339. [PMID: 38385147 PMCID: PMC10879280 DOI: 10.3389/fncel.2024.1337339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
B cells are fundamental players in the pathophysiology of autoimmune diseases of the central nervous system, such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). A deeper understanding of disease-specific B cell functions has led to the differentiation of both diseases and the development of different treatment strategies. While NMOSD is strongly associated with pathogenic anti-AQP4 IgG antibodies and proinflammatory cytokine pathways, no valid autoantibodies have been identified in MS yet, apart from certain antigen targets that require further evaluation. Although both diseases can be effectively treated with B cell depleting therapies, there are distinct differences in the peripheral B cell subsets that influence CNS inflammation. An increased peripheral blood double negative B cells (DN B cells) and plasmablast populations has been demonstrated in NMOSD, but not consistently in MS patients. Furthermore, DN B cells are also elevated in rheumatic diseases and other autoimmune entities such as myasthenia gravis and Guillain-Barré syndrome, providing indirect evidence for a possible involvement of DN B cells in other autoantibody-mediated diseases. In MS, the peripheral memory B cell pool is affected by many treatments, providing indirect evidence for the involvement of memory B cells in MS pathophysiology. Moreover, it must be considered that an important effector function of B cells in MS may be the presentation of antigens to peripheral immune cells, including T cells, since B cells have been shown to be able to recirculate in the periphery after encountering CNS antigens. In conclusion, there are clear differences in the composition of B cell populations in MS and NMOSD and treatment strategies differ, with the exception of broad B cell depletion. This review provides a detailed overview of the role of different B cell subsets in MS and NMOSD and their implications for treatment options. Specifically targeting DN B cells and plasmablasts in NMOSD as opposed to memory B cells in MS may result in more precise B cell therapies for both diseases.
Collapse
Affiliation(s)
| | | | | | - M. C. Kowarik
- Department of Neurology and Stroke, Center for Neurology, and Hertie-Institute for Clinical Brain Research Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
162
|
Ding Z, Wei X, Pan H, Shi H, Shi Y. Unveiling the intricacies of COVID-19: Autoimmunity, multi-organ manifestations and the role of autoantibodies. Scand J Immunol 2024; 99:e13344. [PMID: 39007954 DOI: 10.1111/sji.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 07/16/2024]
Abstract
COVID-19 is a severe infectious disease caused by a SARS-CoV-2 infection. It has caused a global pandemic and can lead to acute respiratory distress syndrome (ARDS). Beyond the respiratory system, the disease manifests in multiple organs, producing a spectrum of clinical symptoms. A pivotal factor in the disease's progression is autoimmunity, which intensifies its severity and contributes to multi-organ injuries. The intricate interaction between the virus' spike protein and human proteins may engender the generation of autoreactive antibodies through molecular mimicry. This can further convolute the immune response, with the potential to escalate into overt autoimmunity. There is also emerging evidence to suggest that COVID-19 vaccinations might elicit analogous autoimmune responses. Advanced technologies have pinpointed self-reactive antibodies that target diverse organs or immune-modulatory proteins. The interplay between autoantibody levels and multi-organ manifestations underscores the importance of regular monitoring of serum antibodies and proinflammatory markers. A combination of immunosuppressive treatments and antiviral therapy is crucial for managing COVID-19-associated autoimmune diseases. The review will focus on the generation of autoantibodies in the context of COVID-19 and their impact on organ health.
Collapse
Affiliation(s)
- Zetao Ding
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyi Wei
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Haoyu Pan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shi
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
163
|
Dou DR, Zhao Y, Belk JA, Zhao Y, Casey KM, Chen DC, Li R, Yu B, Srinivasan S, Abe BT, Kraft K, Hellström C, Sjöberg R, Chang S, Feng A, Goldman DW, Shah AA, Petri M, Chung LS, Fiorentino DF, Lundberg EK, Wutz A, Utz PJ, Chang HY. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 2024; 187:733-749.e16. [PMID: 38306984 PMCID: PMC10949934 DOI: 10.1016/j.cell.2023.12.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/03/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024]
Abstract
Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.
Collapse
Affiliation(s)
- Diana R Dou
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yanding Zhao
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Derek C Chen
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingfei Yu
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suhas Srinivasan
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian T Abe
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katerina Kraft
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ceke Hellström
- Autoimmunity and Serology Profiling, Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Ronald Sjöberg
- Autoimmunity and Serology Profiling, Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sarah Chang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel W Goldman
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ami A Shah
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Petri
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorinda S Chung
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - David F Fiorentino
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Emma K Lundberg
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden; Departments of Bioengineering and Pathology, Stanford University, Stanford, CA, USA
| | - Anton Wutz
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Zurich, Switzerland
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
164
|
Wang Q, Feng D, Jia S, Lu Q, Zhao M. B-Cell Receptor Repertoire: Recent Advances in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:76-98. [PMID: 38459209 DOI: 10.1007/s12016-024-08984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
In the field of contemporary medicine, autoimmune diseases (AIDs) are a prevalent and debilitating group of illnesses. However, they present extensive and profound challenges in terms of etiology, pathogenesis, and treatment. A major reason for this is the elusive pathophysiological mechanisms driving disease onset. Increasing evidence suggests the indispensable role of B cells in the pathogenesis of autoimmune diseases. Interestingly, B-cell receptor (BCR) repertoires in autoimmune diseases display a distinct skewing that can provide insights into disease pathogenesis. Over the past few years, advances in high-throughput sequencing have provided powerful tools for analyzing B-cell repertoire to understand the mechanisms during the period of B-cell immune response. In this paper, we have provided an overview of the mechanisms and analytical methods for generating BCR repertoire diversity and summarize the latest research progress on BCR repertoire in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), multiple sclerosis (MS), and type 1 diabetes (T1D). Overall, B-cell repertoire analysis is a potent tool to understand the involvement of B cells in autoimmune diseases, facilitating the creation of innovative therapeutic strategies targeting specific B-cell clones or subsets.
Collapse
Affiliation(s)
- Qian Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
165
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
166
|
Yuuki H, Itamiya T, Nagafuchi Y, Ota M, Fujio K. B cell receptor repertoire abnormalities in autoimmune disease. Front Immunol 2024; 15:1326823. [PMID: 38361948 PMCID: PMC10867955 DOI: 10.3389/fimmu.2024.1326823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
B cells play a crucial role in the immune response and contribute to various autoimmune diseases. Recent studies have revealed abnormalities in the B cell receptor (BCR) repertoire of patients with autoimmune diseases, with distinct features observed among different diseases and B cell subsets. Classically, BCR repertoire was used as an identifier of distinct antigen-specific clonotypes, but the recent advancement of analyzing large-scale repertoire has enabled us to use it as a tool for characterizing cellular biology. In this review, we provide an overview of the BCR repertoire in autoimmune diseases incorporating insights from our latest research findings. In systemic lupus erythematosus (SLE), we observed a significant skew in the usage of VDJ genes, particularly in CD27+IgD+ unswitched memory B cells and plasmablasts. Notably, autoreactive clones within unswitched memory B cells were found to be increased and strongly associated with disease activity, underscoring the clinical significance of this subset. Similarly, various abnormalities in the BCR repertoire have been reported in other autoimmune diseases such as rheumatoid arthritis. Thus, BCR repertoire analysis holds potential for enhancing our understanding of the underlying mechanisms involved in autoimmune diseases. Moreover, it has the potential to predict treatment effects and identify therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Hayato Yuuki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
167
|
Dai D, Gu S, Han X, Ding H, Jiang Y, Zhang X, Yao C, Hong S, Zhang J, Shen Y, Hou G, Qu B, Zhou H, Qin Y, He Y, Ma J, Yin Z, Ye Z, Qian J, Jiang Q, Wu L, Guo Q, Chen S, Huang C, Kottyan LC, Weirauch MT, Vinuesa CG, Shen N. The transcription factor ZEB2 drives the formation of age-associated B cells. Science 2024; 383:413-421. [PMID: 38271512 PMCID: PMC7616037 DOI: 10.1126/science.adf8531] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Age-associated B cells (ABCs) accumulate during infection, aging, and autoimmunity, contributing to lupus pathogenesis. In this study, we screened for transcription factors driving ABC formation and found that zinc finger E-box binding homeobox 2 (ZEB2) is required for human and mouse ABC differentiation in vitro. ABCs are reduced in ZEB2 haploinsufficient individuals and in mice lacking Zeb2 in B cells. In mice with toll-like receptor 7 (TLR7)-driven lupus, ZEB2 is essential for ABC formation and autoimmune pathology. ZEB2 binds to +20-kb myocyte enhancer factor 2b (Mef2b)'s intronic enhancer, repressing MEF2B-mediated germinal center B cell differentiation and promoting ABC formation. ZEB2 also targets genes important for ABC specification and function, including Itgax. ZEB2-driven ABC differentiation requires JAK-STAT (Janus kinase-signal transducer and activator of transcription), and treatment with JAK1/3 inhibitor reduces ABC accumulation in autoimmune mice and patients. Thus, ZEB2 emerges as a driver of B cell autoimmunity.
Collapse
Affiliation(s)
- Dai Dai
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaxia Han
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yang Jiang
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Soonmin Hong
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinsong Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiwei Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yuting Qin
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yuke He
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jie Qian
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leah C. Kottyan
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew T. Weirauch
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carola G. Vinuesa
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
- Francis Crick Institute, London, UK
| | - Nan Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
168
|
Thorarinsdottir K, McGrath S, Forslind K, Agelii ML, Ekwall AKH, Jacobsson LTH, Rudin A, Mårtensson IL, Gjertsson I. Cartilage destruction in early rheumatoid arthritis patients correlates with CD21 -/low double-negative B cells. Arthritis Res Ther 2024; 26:23. [PMID: 38225658 PMCID: PMC10789032 DOI: 10.1186/s13075-024-03264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Involvement of B cells in the pathogenesis of rheumatoid arthritis (RA) is supported by the presence of disease-specific autoantibodies and the efficacy of treatment directed against B cells. B cells that express low levels of or lack the B cell receptor (BCR) co-receptor CD21, CD21-/low B cells, have been linked to autoimmune diseases, including RA. In this study, we characterized the CD21+ and CD21-/low B cell subsets in newly diagnosed, early RA (eRA) patients and investigated whether any of the B cell subsets were associated with autoantibody status, disease activity and/or joint destruction. METHODS Seventy-six eRA patients and 28 age- and sex-matched healthy donors were recruited. Multiple clinical parameters were assessed, including disease activity and radiographic joint destruction. B cell subsets were analysed in peripheral blood (PB) and synovial fluid (SF) using flow cytometry. RESULTS Compared to healthy donors, the eRA patients displayed an elevated frequency of naïve CD21+ B cells in PB. Amongst memory B cells, eRA patients had lower frequencies of the CD21+CD27+ subsets and CD21-/low CD27+IgD+ subset. The only B cell subset found to associate with clinical factors was the CD21-/low double-negative (DN, CD27-IgD-) cell population, linked with the joint space narrowing score, i.e. cartilage destruction. Moreover, in SF from patients with established RA, the CD21-/low DN B cells were expanded and these cells expressed receptor activator of the nuclear factor κB ligand (RANKL). CONCLUSIONS Cartilage destruction in eRA patients was associated with an expanded proportion of CD21-/low DN B cells in PB. The subset was also expanded in SF from established RA patients and expressed RANKL. Taken together, our results suggest a role for CD21-/low DN in RA pathogenesis.
Collapse
Affiliation(s)
- Katrin Thorarinsdottir
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Center for Rheumatology Research, University Hospital of Iceland, Reykjavík, Iceland
- Department of Immunology, University Hospital of Iceland, Reykjavík, Iceland
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Kristina Forslind
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University, Lund, Sweden
- Spenshult Research and Development Centre, Halmstad, Sweden
| | - Monica Leu Agelii
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lennart T H Jacobsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
169
|
Staniek J, Kalina T, Andrieux G, Boerries M, Janowska I, Fuentes M, Díez P, Bakardjieva M, Stancikova J, Raabe J, Neumann J, Schwenk S, Arpesella L, Stuchly J, Benes V, García Valiente R, Fernández García J, Carsetti R, Piano Mortari E, Catala A, de la Calle O, Sogkas G, Neven B, Rieux-Laucat F, Magerus A, Neth O, Olbrich P, Voll RE, Alsina L, Allende LM, Gonzalez-Granado LI, Böhler C, Thiel J, Venhoff N, Lorenzetti R, Warnatz K, Unger S, Seidl M, Mielenz D, Schneider P, Ehl S, Rensing-Ehl A, Smulski CR, Rizzi M. Non-apoptotic FAS signaling controls mTOR activation and extrafollicular maturation in human B cells. Sci Immunol 2024; 9:eadj5948. [PMID: 38215192 DOI: 10.1126/sciimmunol.adj5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Stancikova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Raabe
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julika Neumann
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Schwenk
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leonardo Arpesella
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Stuchly
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rodrigo García Valiente
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Jonatan Fernández García
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Albert Catala
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Oscar de la Calle
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Bénédicte Neven
- Pediatric Hematology-Immunology and Rheumatology Department, University Hospital Necker-Enfants Malades, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Aude Magerus
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Olaf Neth
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Peter Olbrich
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laia Alsina
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Department of Pediatric Allergy and Clinical Immunology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Luis M Allende
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis I Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Research Institute Hospital 12 Octubre (i+12), Madrid, Spain
- School of Medicine, Complutense University, Madrid, Spain
| | - Chiara Böhler
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus Fiebiger Zentrum, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Schneider
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristian Roberto Smulski
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
170
|
López-Domínguez R, Villatoro-García JA, Marañón C, Goldman D, Petri M, Carmona-Sáez P, Alarcón-Riquelme M, Toro-Dominguez D. Immune and molecular landscape behind non-response to Mycophenolate Mofetil and Azathioprine in lupus nephritis therapy. RESEARCH SQUARE 2024:rs.3.rs-3783877. [PMID: 38260685 PMCID: PMC10802741 DOI: 10.21203/rs.3.rs-3783877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lupus nephritis (LN) represents one of the most severe complications of systemic lupus erythematosus, leading to end-stage kidney disease in worst cases. Current first-line therapies for LN, including mycophenolate mofetil (MMF) and azathioprine (AZA), fail to induce long-term remission in 60-70% of the patients, evidencing the urgent need to delve into the molecular knowledge-gap behind the non-response to these therapies. A longitudinal cohort of treated LN patients including clinical, cellular and transcriptomic data, was analyzed. Gene-expression signatures behind non-response to different drugs were revealed by differential expression analysis. Drug-specific non-response mechanisms and cell proportion differences were identified. Blood cell subsets mediating non-response were described using single-cell RNASeq data. We show that AZA and MMF non-response implicates different cells and regulatory functions. Mechanistic models were used to suggest add-on therapies to improve their current performance. Our results provide new insights into the molecular mechanisms associated with treatment failures in LN.
Collapse
Affiliation(s)
- Raúl López-Domínguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada
| | - Juan Antonio Villatoro-García
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada
| | - Concepción Marañón
- Department of Medical Genomics, Center for Genomics and Oncological Research (GENYO)
| | | | | | - Pedro Carmona-Sáez
- Department of Bioinformatics, Center for Genomics and Oncological Research (GENYO)
| | | | - Daniel Toro-Dominguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada
| |
Collapse
|
171
|
Zhu DYD, Maurer DP, Castrillon C, Deng Y, Mohamed FAN, Ma M, Schmidt AG, Lingwood D, Carroll MC. Lupus-associated innate receptors drive extrafollicular evolution of autoreactive B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574739. [PMID: 38260501 PMCID: PMC10802414 DOI: 10.1101/2024.01.09.574739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In systemic lupus erythematosus, recent findings highlight the extrafollicular (EF) pathway as prominent origin of autoantibody-secreting cells (ASCs). CD21loCD11c+ B cells, associated with aging, infection, and autoimmunity, are contributors to autoreactive EF ASCs but have an obscure developmental trajectory. To study EF kinetics of autoreactive B cell in tissue, we adoptively transferred WT and gene knockout B cell populations into the 564Igi mice - an autoreactive host enriched with autoantigens and T cell help. Time-stamped analyses revealed TLR7 dependence in early escape of peripheral B cell tolerance and establishment of a pre-ASC division program. We propose CD21lo cells as precursors to EF ASCs due to their elevated TLR7 sensitivity and proliferative nature. Blocking receptor function reversed CD21 loss and reduced effector cell generation, portraying CD21 as a differentiation initiator and a possible target for autoreactive B cell suppression. Repertoire analysis further delineated proto-autoreactive B cell selection and receptor evolution toward self-reactivity. This work elucidates receptor and clonal dynamics in EF development of autoreactive B cells, and establishes modular, native systems to probe mechanisms of autoreactivity.
Collapse
Affiliation(s)
- Danni Yi-Dan Zhu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel P Maurer
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carlos Castrillon
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Yixiang Deng
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron G Schmidt
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Daniel Lingwood
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
172
|
Pattarabanjird T, Srikakulapu P, Ransegnola B, Marshall MA, Ghosheh Y, Gulati R, Durant C, Drago F, Taylor AM, Ley K, McNamara CA. Single-cell profiling of CD11c+ B cells in atherosclerosis. Front Immunol 2024; 14:1296668. [PMID: 38259450 PMCID: PMC10800418 DOI: 10.3389/fimmu.2023.1296668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Circulating CD11c+ B cells, a novel subset of activated B cells, have been linked to autoimmunity and shown to expand with age. Atherosclerosis is an age-associated disease that involves innate and adaptive immune responses to modified self-antigens. Yet, the expression of CD11c on specific B-cell subtypes and its link to atherosclerosis are poorly understood. In this study, we characterized the frequency of CD11c+ B cells in tissues in mice with aging. We observed an age-associated increase in CD11c+ B cells in the spleen and bone marrow of ApoE-/- mice, and this was associated with an increase in aortic plaque. In addition, we also utilized single-cell multi-omics profiling of 60 human subjects undergoing advanced imaging for coronary artery disease (CAD) to subtype CD11c+ B cells and determine their frequency in subjects with high and low severity of CAD. Using unsupervised clustering, we identified four distinct clusters of CD11c+ B cells, which include CD27 and IgD double negative 2 (DN2), age-associated (ABC), CD11c+ unswitched memory (USWM), and activated Naïve (aNav) B cells. We observed an increase in the frequency of both ABC B cells and DN2 B cells in patients with high CAD severity. Pathway analysis further demonstrated augmentation of autophagy, IFNg signaling, and TLR signaling in DN2 cells in high-severity CAD patients. On the other hand, an increase in the negative regulator of BCR signaling through CD72 was found in ABC cells in low-severity CAD patients. Through investigating scRNAseq of atheroma, these DN2 cells were also found to infiltrate human coronary atheroma.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Brett Ransegnola
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Melissa A. Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Rishab Gulati
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Fabrizio Drago
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Angela M. Taylor
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Klaus Ley
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
173
|
Liu Z, Wei W, Zhang J, Yang X, Feng Z, Zhang B, Hou X. Single-cell transcriptional profiling reveals aberrant gene expression patterns and cell states in autoimmune diseases. Mol Immunol 2024; 165:68-81. [PMID: 38159454 DOI: 10.1016/j.molimm.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis(MS), primary Sjögren syndrome (pSS), and systemic lupus erythematosus (SLE) share numerous clinical symptoms and serological characteristics. We analyzed 153550 cells of scRNA-seq data of 17 treatment-naive patients (5 MS, 5 pSS, and 7 SLE) and 10 healthy controls, and we examined the enrichment of biological processes, differentially expressed genes (DEGs), immune cell types, and their subpopulations, and cell-cell communication in peripheral blood mononuclear cells (PBMCs). The percentage of B cells, megakaryocytes, monocytes, and proliferating T cells presented significant changes in autoimmune diseases. The enrichment of cell types based on gene expression revealed an elevated monocyte. MIF, MK, and GALECTIN signaling networks were obvious differences in autoimmune diseases. Taken together, our analysis provides a comprehensive map of the cell types and states of ADs patients at the single-cell level to understand better the pathogenesis and treatment of these ADs.
Collapse
Affiliation(s)
- Zhenyu Liu
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Wujun Wei
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Junning Zhang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xueli Yang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhihui Feng
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Biao Zhang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xianliang Hou
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
174
|
So T. [Immune Regulation by TNF Receptor-associated Factor 5]. YAKUGAKU ZASSHI 2024; 144:489-496. [PMID: 38692922 DOI: 10.1248/yakushi.23-00154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular adaptors that regulate cellular signaling through members of the TNFR and Toll-like receptor superfamily. Mammals have seven TRAF molecules numbered sequentially from TRAF1 to TRAF7. Although TRAF5 was identified as a potential regulator of TNFR superfamily members, the in vivo function of TRAF5 has not yet been fully elucidated. We identified an unconventional role of TRAF5 in interleukin-6 (IL-6) receptor signaling involving CD4+ T cells. Moreover, TRAF5 binds to the signal-transducing glycoprotein 130 (gp130) receptor for IL-6 and inhibits the activity of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In addition, Traf5-deficient CD4+ T cells exhibit significantly enhanced IL-6-driven differentiation of T helper 17 (Th17) cells, which exacerbates neuroinflammation in experimental autoimmune encephalomyelitis. Furthermore, TRAF5 demonstrates a similar activity to gp130 for IL-27, another cytokine of the IL-6 family. Additionally, Traf5-deficient CD4+ T cells display significantly increased IL-27-mediated differentiation of Th1 cells, which increases footpad swelling in delayed-type hypersensitivity response. Thus, TRAF5 functions as a negative regulator of gp130 in CD4+ T cells. This review aimed to explain how TRAF5 controls the differentiation of CD4+ T cells and discuss how the expression of TRAF5 in T cells and other cell types can influence the development and progression of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
175
|
Belderbos RA, Corneth OBJ, Dumoulin D, Hendriks RW, Aerts JGJV, Willemsen M. Atypical B cells (CD21-CD27-IgD-) correlate with lack of response to checkpoint inhibitor therapy in NSCLC. Eur J Cancer 2024; 196:113428. [PMID: 38039777 DOI: 10.1016/j.ejca.2023.113428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION Checkpoint inhibitor (CI) therapy has revolutionized treatment for non-small cell lung cancer (NSCLC). However, a proportion of patients do not respond to CI therapy for unknown reasons. Although the current paradigm in anti-tumor immunity evolves around T cells, the presence of tertiary lymphoid structures and memory B cells has been positively correlated with response to CI therapy in NSCLC. In addition, double negative (DN) (CD27- IgD-) B cells have been shown to be abundant in NSCLC compared to healthy lung tissue and inversely correlate with the intratumoral presence of memory B cells. Nonetheless, no study has correlated DN B cells to survival in NSCLC. METHODS In this study, we evaluated the presence and phenotype of B cells in peripheral blood with flow cytometry of patients with NSCLC and mesothelioma before receiving CI therapy and correlated these with clinical outcome. RESULTS Non-responding patients showed decreased frequencies of B cells, yet increased frequencies of antigen-experienced CD21- DN (Atypical) B cells compared to responding patients and HC, which was confirmed in patients with mesothelioma treated with CI therapy. CONCLUSIONS These data show that the frequency of CD21- DN B cells correlates with lack of response to CI therapy in thoracic malignancies. The mechanism by which CD21- DN B cells hamper CI therapy remains unknown. Our findings support the hypothesis that CD21- DN B cells resemble phenotypically identical exhausted B cells that are seen in chronic infection or function as antigen presenting cells that induce regulatory T cells.
Collapse
Affiliation(s)
- R A Belderbos
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands.
| | | | - D Dumoulin
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands
| | - R W Hendriks
- Department of Pulmonary Medicine, the Netherlands
| | - J G J V Aerts
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands.
| | - M Willemsen
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
176
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
177
|
Ottens K, Schneider J, Satterthwaite AB. B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice. Immunohorizons 2024; 8:47-56. [PMID: 38189742 PMCID: PMC10835670 DOI: 10.4049/immunohorizons.2300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Mice deficient in Lyn, a tyrosine kinase that limits B cell activation, develop a lupus-like autoimmune disease characterized by the accumulation of splenic plasma cells and the production of autoantibodies. Lyn-/- mice have reduced numbers of marginal zone (MZ) B cells, a B cell subset that is enriched in autoreactivity and prone to plasma cell differentiation. We hypothesized that this is due to unchecked terminal differentiation of this potentially pathogenic B cell subpopulation. However, impairing MZ B cell development in Lyn-/- mice did not reduce plasma cell accumulation or autoantibodies, and preventing plasma cell differentiation did not restore MZ B cell numbers. Instead, Lyn-/- mice accumulated B-1a cells when plasma cell differentiation was impaired. Similar to MZ B cells, B-1a cells tend to be polyreactive or weakly autoreactive and are primed for terminal differentiation. Our results implicate B-1a cells, but not MZ B cells, as contributors to the autoreactive plasma cell pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
178
|
Olivieri G, Cotugno N, Palma P. Emerging insights into atypical B cells in pediatric chronic infectious diseases and immune system disorders: T(o)-bet on control of B-cell immune activation. J Allergy Clin Immunol 2024; 153:12-27. [PMID: 37890706 PMCID: PMC10842362 DOI: 10.1016/j.jaci.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.
Collapse
Affiliation(s)
- Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
179
|
Rubinstein A, Kudryavtsev I, Malkova A, Mammedova J, Isakov D, Isakova-Sivak I, Kudlay D, Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front Med (Lausanne) 2023; 10:1271198. [PMID: 38179278 PMCID: PMC10765615 DOI: 10.3389/fmed.2023.1271198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Currently, there are a large number of reports about the development of autoimmune conditions after COVID-19. Also, there have been cases of sarcoid-like granulomas in convalescents as a part of the post-COVID-19 syndrome. Since one of the etiological theories of sarcoidosis considers it to be an autoimmune disease, we decided to study changes in the adaptive humoral immune response in sarcoidosis and SARS-CoV-2 infection and to find out whether COVID-19 can provoke the development of sarcoidosis. This review discusses histological changes in lymphoid organs in sarcoidosis and COVID-19, changes in B cell subpopulations, T-follicular helper cells (Tfh), and T-follicular regulatory cells (Tfr), and analyzes various autoantibodies detected in these pathologies. Based on the data studied, we concluded that SARS-CoV-2 infection may cause the development of autoimmune pathologies, in particular contributing to the onset of sarcoidosis in convalescents.
Collapse
Affiliation(s)
- Artem Rubinstein
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Annа Malkova
- Ariel University Faculty of Natural Sciences, Ariel, Israel
| | | | - Dmitry Isakov
- First Saint Petersburg State I. Pavlov Medical University, Saint Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology, Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
180
|
Reyes RA, Batugedara G, Dutta P, Reers AB, Garza R, Ssewanyana I, Jagannathan P, Feeney ME, Greenhouse B, Bol S, Ay F, Bunnik EM. Atypical B cells consist of subsets with distinct functional profiles. iScience 2023; 26:108496. [PMID: 38098745 PMCID: PMC10720271 DOI: 10.1016/j.isci.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Atypical B cells are a population of activated B cells that are commonly enriched in individuals with chronic immune activation but are also part of a normal immune response to infection or vaccination. To better define the role of atypical B cells in the human adaptive immune response, we performed single-cell sequencing of transcriptomes, cell surface markers, and B cell receptors in individuals with chronic exposure to the malaria parasite Plasmodium falciparum, a condition known to lead to accumulation of circulating atypical B cells. We identified three previously uncharacterized populations of atypical B cells with distinct transcriptional and functional profiles and observed marked differences among these three subsets in their ability to produce immunoglobulin G upon T-cell-dependent activation. Our findings help explain the conflicting observations in prior studies regarding the function of atypical B cells and highlight their different roles in the adaptive immune response in chronic inflammatory conditions.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gayani Batugedara
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Paramita Dutta
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ashley B. Reers
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rolando Garza
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Isaac Ssewanyana
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Margaret E. Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ferhat Ay
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
181
|
Tilstra JS, Kim M, Gordon RA, Leibler C, Cosgrove HA, Bastacky S, Nickerson KM, Shlomchik MJ. B cell-intrinsic Myd88 regulates disease progression in murine lupus. J Exp Med 2023; 220:e20230263. [PMID: 37787782 PMCID: PMC10541815 DOI: 10.1084/jem.20230263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Nucleic acid-specific Toll-like receptors (TLRs) have been implicated in promoting disease pathogenesis in systemic lupus erythematosus (SLE). Whether such TLRs mediate disease onset, progression, or both remains undefined; yet the answer to this question has important therapeutic implications. MyD88 is an essential adaptor that acts downstream of IL-1 family receptors and most TLRs. Both global and B cell-specific Myd88 deficiency ameliorated disease in lupus-prone mice when constitutively deleted. To address whether Myd88 was needed to sustain ongoing disease, we induced B cell-specific deletion of Myd88 after disease onset in MRL.Faslpr mice using an inducible Cre recombinase. B cell-specific deletion of Myd88 starting after disease onset resulted in ameliorated glomerulonephritis and interstitial inflammation. Additionally, treated mice had reduced autoantibody formation and an altered B cell compartment with reduced ABC and plasmablast numbers. These experiments demonstrate the role of MyD88 in B cells to sustain disease in murine lupus. Therefore, targeting MyD88 or its upstream activators may be a viable therapeutic option in SLE.
Collapse
Affiliation(s)
- Jeremy S. Tilstra
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minjung Kim
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachael A. Gordon
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claire Leibler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haylee A. Cosgrove
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin M. Nickerson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
182
|
Nouri N, Cao RG, Bunsow E, Nehar-Belaid D, Marches R, Xu Z, Smith B, Heinonen S, Mertz S, Leber A, Smits G, van der Klis F, Mejías A, Banchereau J, Pascual V, Ramilo O. Young infants display heterogeneous serological responses and extensive but reversible transcriptional changes following initial immunizations. Nat Commun 2023; 14:7976. [PMID: 38042900 PMCID: PMC10693608 DOI: 10.1038/s41467-023-43758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Infants necessitate vaccinations to prevent life-threatening infections. Our understanding of the infant immune responses to routine vaccines remains limited. We analyzed two cohorts of 2-month-old infants before vaccination, one week, and one-month post-vaccination. We report remarkable heterogeneity but limited antibody responses to the different antigens. Whole-blood transcriptome analysis in an initial cohort showed marked overexpression of interferon-stimulated genes (ISGs) and to a lesser extent of inflammation-genes at day 7, which normalized one month post-vaccination. Single-cell RNA sequencing in peripheral blood mononuclear cells from a second cohort identified at baseline a predominantly naive immune landscape including ISGhi cells. On day 7, increased expression of interferon-, inflammation-, and cytotoxicity-related genes were observed in most immune cells, that reverted one month post-vaccination, when a CD8+ ISGhi and cytotoxic cluster and B cells expanded. Antibody responses were associated with baseline frequencies of plasma cells, B-cells, and monocytes, and induction of ISGs at day 7.
Collapse
Affiliation(s)
- Nima Nouri
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Precision Medicine and Computational Biology, Sanofi, 350 Water Street, Cambridge, MA, 02141, USA
| | - Raquel Giacomelli Cao
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eleonora Bunsow
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Zhaohui Xu
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bennett Smith
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Santtu Heinonen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sara Mertz
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Leber
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gaby Smits
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona van der Klis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Asunción Mejías
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Immunai, New York, NY, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Octavio Ramilo
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
183
|
Sullivan KA, Chapman C, Lu L, Ashbrook DG, Wang Y, Alduraibi FK, Lu C, Sun CW, Liu S, Williams RW, Mountz JD, Hsu HC. Increased development of T-bet +CD11c + B cells predisposes to lupus in females: Analysis in BXD2 mouse and genetic crosses. Clin Immunol 2023; 257:109842. [PMID: 37981105 PMCID: PMC10799694 DOI: 10.1016/j.clim.2023.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Cardinal features of lupus include elevated B cell activation and autoantibody production with a female sex preponderance. We quantified interactions of sex and genetic variation on the development of autoimmune B-cell phenotypes and autoantibodies in the BXD2 murine model of lupus using a cohort of backcrossed progeny (BXD2 x C57BL/6J) x BXD2. Sex was the key factor leading to increased total IgG, IgG2b, and autoantibodies. The percentage of T-bet+CD11c+ IgD+ activated naive B cells (aNAV) was higher in females and was associated with increased T-bet+CD11c+ IgD- age-related B cells, Fas+GL7+ germinal center B cells, Cxcr5-Icos+ peripheral T-helper cells, and Cxcr5+Icos+ follicular T-helper cells. IFN-β was elevated in females. Variation in aNAV cells was mapped to Chr 7 in a locus that shows significant interactions between the female sex and heterozygous B/D variant. Our results suggest that activation of naive B cells forms the basis for the female-predominant development of autoantibodies in lupus-susceptible BXD2 mice.
Collapse
Affiliation(s)
- Kathryn A Sullivan
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey Chapman
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yong Wang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fatima K Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Changming Lu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao-Wang Sun
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shanrun Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Mountz
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
184
|
Maehara T, Koga R, Nakamura S. Immune dysregulation in immunoglobulin G4-related disease. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:1-7. [PMID: 36654676 PMCID: PMC9841035 DOI: 10.1016/j.jdsr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/10/2023] Open
Abstract
(IgG4-RD) is an immune-mediated fibrotic disorder characterized by severe resolution of inflammation and dysregulation of wound healing. IgG4-RD has been considered a unique disease since 2003, and significant progress has been achieved in the understanding of its essential features. The central role of B cells in IgG4-RD has been demonstrated by the robust clinical responsiveness of IgG4-RD to B cell depletion and the identification of multiple self-antigens that promote B cell expansion. Studies have increasingly revealed critical roles of these B cells and T cells in the pathogenesis of IgG4-RD, and we and other authors further identified CD4+ cytotoxic T lymphocytes as the main tissue-infiltrating CD4+ T cell subset in IgG4-RD tissues. Additionally, T follicular helper cell subsets that play a role in IgG4 isotype switching have been identified. In this review, we discuss research on IgG4-RD and the roles of B cell and T cell subsets, as well as the functions of CD4+ cytotoxic T cells in IgG4-RD pathogenesis. We highlight our findings from ongoing research using single-cell analysis of infiltrating CD4+ cytotoxic T cells, CD4+ follicular helper T cells, and infiltrating B cells in IgG4-RD and propose a model for the pathogenesis of IgG4-RD.
Collapse
Affiliation(s)
- Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan,Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan,Correspondence to: Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3–1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan.
| | - Risako Koga
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
185
|
Moleón J, González-Correa C, Miñano S, Robles-Vera I, de la Visitación N, Barranco AM, Gómez-Guzmán M, Sánchez M, Riesco P, Guerra-Hernández E, Toral M, Romero M, Duarte J. Protective effect of microbiota-derived short chain fatty acids on vascular dysfunction in mice with systemic lupus erythematosus induced by toll like receptor 7 activation. Pharmacol Res 2023; 198:106997. [PMID: 37972724 DOI: 10.1016/j.phrs.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Our objective was to investigate whether short-chain fatty acids (SCFAs), specifically acetate and butyrate, could prevent vascular dysfunction and elevated blood pressure (BP) in mice with systemic lupus erythematosus (SLE) induced by TLR7 activation using imiquimod (IMQ). Treatment with both SCFAs and dietary fibers rich in resistant starch (RS) or inulin-type fructans (ITF) effectively prevented the development of hypertension and cardiac hypertrophy. Additionally, these treatments improved aortic relaxation induced by acetylcholine and mitigated vascular oxidative stress. Acetate and butyrate treatments also contributed to the maintenance of colonic integrity, reduced endotoxemia, and decreased the proportion of helper T (Th)17 cells in mesenteric lymph nodes (MLNs), blood, and aorta in TLR7-induced SLE mice. The observed changes in MLNs were correlated with increased levels of GPR43 mRNA in mice treated with acetate and increased GPR41 levels along with decreased histone deacetylase (HDAC)- 3 levels in mice treated with butyrate. Notably, the effects attributed to acetate, but not butyrate, were nullified when co-administered with the GPR43 antagonist GLPG-0974. T cell priming and differentiation into Th17 cells in MLNs, as well as increased Th17 cell infiltration, were linked to aortic endothelial dysfunction and hypertension subsequent to the transfer of faecal microbiota from IMQ-treated mice to germ-free (GF) mice. These effects were counteracted in GF mice through treatment with either acetate or butyrate. To conclude, these findings underscore the potential of SCFA consumption in averting hypertension by restoring balance to the interplay between the gut, immune system, and vascular wall in SLE induced by TLR7 activation.
Collapse
Affiliation(s)
- Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Antonio Manuel Barranco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Pedro Riesco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | | | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
186
|
Al-Aubodah TA, Aoudjit L, Pascale G, Perinpanayagam MA, Langlais D, Bitzan M, Samuel SM, Piccirillo CA, Takano T. The extrafollicular B cell response is a hallmark of childhood idiopathic nephrotic syndrome. Nat Commun 2023; 14:7682. [PMID: 37996443 PMCID: PMC10667257 DOI: 10.1038/s41467-023-43504-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The efficacy of the B cell-targeting drug rituximab (RTX) in childhood idiopathic nephrotic syndrome (INS) suggests that B cells may be implicated in disease pathogenesis. However, B cell characterization in children with INS remains limited. Here, using single-cell RNA sequencing, we demonstrate that a B cell transcriptional program poised for effector functions represents the major immune perturbation in blood samples from children with active INS. This transcriptional profile was associated with an extrafollicular B cell response marked by the expansion of atypical B cells (atBCs), marginal zone-like B cells, and antibody-secreting cells (ASCs). Flow cytometry of blood from 13 children with active INS and 24 healthy donors confirmed the presence of an extrafollicular B cell response denoted by the expansion of proliferating RTX-sensitive extrafollicular (CXCR5-) CD21low T-bet+ CD11c+ atBCs and short-lived T-bet+ ASCs in INS. Together, our study provides evidence for an extrafollicular origin for humoral immunity in active INS.
Collapse
Affiliation(s)
- Tho-Alfakar Al-Aubodah
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Lamine Aoudjit
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Giuseppe Pascale
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Maneka A Perinpanayagam
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David Langlais
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University Genome Centre, Montréal, Québec, Canada
| | - Martin Bitzan
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Kidney Centre of Excellence, Al Jalila Children's Hospital, and Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Susan M Samuel
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Tomoko Takano
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
187
|
Kim HJ, Kim H, Lee JH, Hwangbo C. Toll-like receptor 4 (TLR4): new insight immune and aging. Immun Ageing 2023; 20:67. [PMID: 38001481 PMCID: PMC10668412 DOI: 10.1186/s12979-023-00383-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
TLR4, a transmembrane receptor, plays a central role in the innate immune response. TLR4 not only engages with exogenous ligands at the cellular membrane's surface but also interacts with intracellular ligands, initiating intricate intracellular signaling cascades. Through MyD88, an adaptor protein, TLR4 activates transcription factors NF-κB and AP-1, thereby facilitating the upregulation of pro-inflammatory cytokines. Another adapter protein linked to TLR4, known as TRIF, autonomously propagates signaling pathways, resulting in heightened interferon expression. Recently, TLR4 has garnered attention as a significant factor in the regulation of symptoms in aging-related disorders. The persistent inflammatory response triggered by TLR4 contributes to the onset and exacerbation of these disorders. In addition, alterations in TLR4 expression levels play a pivotal role in modifying the manifestations of age-related diseases. In this review, we aim to consolidate the impact of TLR4 on cellular senescence and aging-related ailments, highlighting the potential of TLR4 as a novel therapeutic target that extends beyond immune responses.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyemin Kim
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon, 24414, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
188
|
Liu Y, Zhu E, Lei Y, Luo A, Yan Y, Cai M, Liu S, Huang Y, Guan H, Zhong M, Li W, Lin L, Hultstöm M, Lai E, Zheng Z, Liu X, Tang C. Diagnostic Values of METTL1-Related Genes and Immune Characteristics in Systemic Lupus Erythematosus. J Inflamm Res 2023; 16:5367-5383. [PMID: 38026241 PMCID: PMC10661937 DOI: 10.2147/jir.s431628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Methyltransferase like 1 (METTL1) regulates epitranscriptomes via the m7G modification in mammalian mRNA and microRNA. Systemic lupus erythematosus (SLE) is caused by abnormal immune reactivity and has diverse clinical manifestations. RNA methylation as a mechanism to regulate gene expression is widely implicated in immune regulation. However, the role of m7G in immune response of SLE has not been extensively studied. Patients and Methods Expression of METTL1 was identified in the public dataset GSE122459 and validated in an independent cohort of SLE patients. We investigated the association between METTL1-expression and clinical manifestations of SLE. Subsequently, differentially expressed genes (DEG) that were correlated with METTL1-expression in GSE122459 were used for functional enrichment analysis. The correlation between infiltrating immune cells and METTL1, as well as candidate biomarkers identified to be correlated with either METTL1 or immune cell infiltration were assessed by single-sample GSEA. Potential mechanisms were explored with Gene ontology and KEGG pathway enrichment. Diagnostic performances of candidate biomarkers in SLE were analyzed. Results The mRNA and protein expression of METTL1 in SLE patients were significantly decreased in both datasets. METTL1-coexpressed DEGs were enriched in several key immune-related pathways. Activated CD8 T cells, activated CD4 T cells, memory B cells and type 2 helper T cells were different between patients with high and low METTL1 expression. Further, activated CD8 T-cells, activated CD4 T-cells, memory B-cells were correlated with METTL1. The genes of LAMP3, CD83, PDCD1LG2, IGKVD3D-20, IGKV5-2, IGKV2D-30, IGLV3-19 and IGLV4-60 were identified as candidate targets that were correlated with immune cell proportion. Moreover, LAMP3, CD83, and PDCD1LG2 expression were of diagnostic value in SLE as indicated by ROC analysis. Conclusion Our findings suggested that METTL1 and its candidate targets LAMP3, CD83, PDCD1LG2 may be used for diagnosing SLE and could be explored for developing targeted molecular therapy for SLE.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Yaping Yan
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Mansi Cai
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Shanshan Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Yan Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Hui Guan
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Weinian Li
- Department of Rheumatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510623, People’s Republic of China
| | - Lian Lin
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Michael Hultstöm
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Unit for Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Enyin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, People’s Republic of China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| |
Collapse
|
189
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Ye CJ, Kim S, Gartner Z, Sirota M, Neely J. Coordinated immune dysregulation in Juvenile Dermatomyositis revealed by single-cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566033. [PMID: 37986917 PMCID: PMC10659396 DOI: 10.1101/2023.11.07.566033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I interferon response and autoantibodies. Treatment options are limited due to incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of JDM patients at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment towards an immature naive state as a hallmark of JDM. Furthermore, we find that these changes in B cells are paralleled by signatures of Th2-mediated inflammation. Additionally, our work identified SIGLEC-1 expression in monocytes as a composite measure of heterogeneous type I interferon activity in disease. We applied network analysis to reveal that hyperactivation of the type I interferon response in all immune populations is coordinated with dysfunctional protein processing and regulation of cell death programming. This analysis separated the ubiquitously expressed type I interferon response into a central hub and revealed previously masked cell states. Together, these findings reveal the coordinated immune dysregulation underpinning JDM and provide novel insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, UCSF, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Emily Flynn
- CoLabs, UCSF, San Francisco, California, USA
| | - George C. Hartoularos
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, California, USA
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Yang Sun
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Zev Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
190
|
Ota M, Nakano M, Nagafuchi Y, Kobayashi S, Hatano H, Yoshida R, Akutsu Y, Itamiya T, Ban N, Tsuchida Y, Shoda H, Yamamoto K, Ishigaki K, Okamura T, Fujio K. Multimodal repertoire analysis unveils B cell biology in immune-mediated diseases. Ann Rheum Dis 2023; 82:1455-1463. [PMID: 37468219 DOI: 10.1136/ard-2023-224421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVES Despite the involvement of B cells in the pathogenesis of immune-mediated diseases (IMDs), biological mechanisms underlying their function are scarcely understood. To overcome this gap, here we constructed and investigated a large-scale repertoire catalogue of five B cell subsets of patients with IMDs. METHODS We mapped B cell receptor regions from RNA sequencing data of sorted B cell subsets. Our dataset consisted of 595 donors under IMDs and health. We characterised the repertoire features from various aspects, including their association with immune cell transcriptomes and clinical features and their response to belimumab treatment. RESULTS Heavy-chain complementarity-determining region 3 (CDR-H3) length among naïve B cells was shortened among autoimmune diseases. Strong negative correlation between interferon signature strength and CDR-H3 length was observed in naïve B cells and suggested the role for interferon in premature B cell development. VDJ gene usage was skewed especially in plasmablasts and unswitched-memory B cells of patients with systemic lupus erythematosus (SLE). We developed a scoring system to quantify this skewing, and it positively correlated with peripheral helper T cell transcriptomic signatures and negatively correlated with the amount of somatic hyper mutations in plasmablasts, suggesting the association of extrafollicular pathway. Further, this skewing led to high usage of IGHV4-34 gene with 9G4 idiotypes in unswitched-memory B cells, which showed a prominent positive correlation with disease activity in SLE. Gene usage skewing in unswitched-memory B cells was ameliorated after belimumab treatment. CONCLUSIONS Our multimodal repertoire analysis enabled us the system-level understanding of B cell abnormality in diseases.
Collapse
Affiliation(s)
- Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Masahiro Nakano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Satomi Kobayashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ryochi Yoshida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Yuko Akutsu
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Nobuhiro Ban
- Research Division, Chugai Pharmaceutical Co Ltd, Yokohama, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
191
|
Garrett-Sinha LA. An update on the roles of transcription factor Ets1 in autoimmune diseases. WIREs Mech Dis 2023; 15:e1627. [PMID: 37565573 PMCID: PMC10842644 DOI: 10.1002/wsbm.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Transcription factors are crucial to regulate gene expression in immune cells and in other cell types. In lymphocytes, there are a large number of different transcription factors that are known to contribute to cell differentiation and the balance between quiescence and activation. One such transcription factor is E26 oncogene homolog 1 (Ets1). Ets1 expression is high in quiescent B and T lymphocytes and its levels are decreased upon activation. The human ETS1 gene has been identified as a susceptibility locus for many autoimmune and inflammatory diseases. In accord with this, gene knockout of Ets1 in mice leads to development of a lupus-like autoimmune disease, with enhanced activation and differentiation of both B cells and T cells. Prior reviews have summarized functional roles for Ets1 based on studies of Ets1 knockout mice. In recent years, numerous additional studies have been published that further validate ETS1 as a susceptibility locus for human diseases where immune dysregulation plays a causative role. In this update, new information that further links Ets1 to human autoimmune diseases is organized and collated to serve as a resource. This update also describes recent studies that seek to understand molecularly how Ets1 regulates immune cell activation, either using human cells and tissues or mouse models. This resource is expected to be useful to investigators seeking to understand how Ets1 may regulate the human immune response, particularly in terms of its roles in autoimmunity and inflammation. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| |
Collapse
|
192
|
Acencio ML, Ostaszewski M, Mazein A, Rosenstiel P, Aden K, Mishra N, Andersen V, Sidiropoulos P, Banos A, Filia A, Rahmouni S, Finckh A, Gu W, Schneider R, Satagopam V. The SYSCID map: a graphical and computational resource of molecular mechanisms across rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease. Front Immunol 2023; 14:1257321. [PMID: 38022524 PMCID: PMC10646502 DOI: 10.3389/fimmu.2023.1257321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic inflammatory diseases (CIDs), including inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are thought to emerge from an impaired complex network of inter- and intracellular biochemical interactions among several proteins and small chemical compounds under strong influence of genetic and environmental factors. CIDs are characterised by shared and disease-specific processes, which is reflected by partially overlapping genetic risk maps and pathogenic cells (e.g., T cells). Their pathogenesis involves a plethora of intracellular pathways. The translation of the research findings on CIDs molecular mechanisms into effective treatments is challenging and may explain the low remission rates despite modern targeted therapies. Modelling CID-related causal interactions as networks allows us to tackle the complexity at a systems level and improve our understanding of the interplay of key pathways. Here we report the construction, description, and initial applications of the SYSCID map (https://syscid.elixir-luxembourg.org/), a mechanistic causal interaction network covering the molecular crosstalk between IBD, RA and SLE. We demonstrate that the map serves as an interactive, graphical review of IBD, RA and SLE molecular mechanisms, and helps to understand the complexity of omics data. Examples of such application are illustrated using transcriptome data from time-series gene expression profiles following anti-TNF treatment and data from genome-wide associations studies that enable us to suggest potential effects to altered pathways and propose possible mechanistic biomarkers of treatment response.
Collapse
Affiliation(s)
- Marcio Luis Acencio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Vibeke Andersen
- Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Prodromos Sidiropoulos
- Rheumatology and Clinical Immunology, Medical School, University of Crete, Heraklion, Greece
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB-FORTH), Heraklion, Greece
| | - Aggelos Banos
- Autoimmunity and Inflammation Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Anastasia Filia
- Autoimmunity and Inflammation Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Souad Rahmouni
- Unit of Animal Genomics, GIGA-Institute, University of Liège, Liège, Belgium
| | - Axel Finckh
- Rheumatology Division, Geneva University Hospital (HUG), Geneva, Switzerland
- Geneva Center for Inflammation Research (GCIR), University of Geneva (UNIGE), Geneva, Switzerland
| | - Wei Gu
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
193
|
Haas KM. Noncanonical B Cells: Characteristics of Uncharacteristic B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1257-1265. [PMID: 37844278 PMCID: PMC10593487 DOI: 10.4049/jimmunol.2200944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/12/2023] [Indexed: 10/18/2023]
Abstract
B lymphocytes were originally described as a cell type uniquely capable of secreting Abs. The importance of T cell help in Ab production was revealed soon afterward. Following these seminal findings, investigators made great strides in delineating steps in the conventional pathway that B cells follow to produce high-affinity Abs. These studies revealed generalized, or canonical, features of B cells that include their developmental origin and paths to maturation, activation, and differentiation into Ab-producing and memory cells. However, along the way, examples of nonconventional B cell populations with unique origins, age-dependent development, tissue localization, and effector functions have been revealed. In this brief review, features of B-1a, B-1b, marginal zone, regulatory, killer, NK-like, age-associated, and atypical B cells are discussed. Emerging work on these noncanonical B cells and functions, along with the study of their significance for human health and disease, represents an exciting frontier in B cell biology.
Collapse
Affiliation(s)
- Karen M Haas
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
194
|
Pellerin A, Tan Y, Lu S, Bonegio RG, Rifkin IR. Genetic Reduction of IRF5 Expression after Disease Initiation Reduces Disease in a Mouse Lupus Model by Impacting Systemic and End-Organ Pathogenic Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1308-1319. [PMID: 37721418 PMCID: PMC11681929 DOI: 10.4049/jimmunol.2300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Gain-of-function polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing systemic lupus erythematosus. Global homozygous or heterozygous deficiency of IRF5 from birth confers protection in many lupus mouse models. However, less is known about the effects of IRF5 targeting after autoimmunity has already developed. This is an important point to clarify when considering IRF5 as a potential therapeutic target in lupus. In this study, we demonstrate that genetic reduction of IRF5 expression after disease initiation reduces disease severity in the FcγRIIB-/- Y-linked autoimmune accelerating mouse lupus model. Reduction of IRF5 expression resulted in a decrease in splenomegaly and lymphadenopathy and a reduction in splenic B cell activation and plasmablast numbers. Splenic T cell activation and differentiation were also impacted as demonstrated by an increase in the number of naive CD4+ and CD8+ T cells and a reduction in the number of memory/effector CD4+ and CD8+ T cells. Although serum antinuclear autoantibody levels were not altered, reduction in IRF5 expression led to decreased immune complex deposition and complement activation, diminished glomerular and interstitial disease, and a reduction in immune cell infiltrate in the kidney. Mechanistically, myeloid cells in the kidney produced less inflammatory cytokines after TLR7 and TLR9 activation. Overall, we demonstrate that genetic reduction of IRF5 expression during an active autoimmune process is sufficient to reduce disease severity. Our data support consideration of IRF5 as a therapeutic target and suggest that approaches targeting IRF5 in systemic lupus erythematosus may need to impact IRF5 activity both systemically and in target organs.
Collapse
Affiliation(s)
- Alex Pellerin
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Ying Tan
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Simon Lu
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Ramon G. Bonegio
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
- Renal Section, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Ian R. Rifkin
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
- Renal Section, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| |
Collapse
|
195
|
Zhang Z, Xie X, Cai Y, Liu P, Liu S, Chen R, Wang J, Wang Y, Zhao Y, Zhu Z, Zhang X, Wu J. Abnormal immune function of B lymphocyte in peripheral blood of Parkinson's disease. Parkinsonism Relat Disord 2023; 116:105890. [PMID: 37839276 DOI: 10.1016/j.parkreldis.2023.105890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is associated with peripheral inflammation and abnormal peripheral blood lymphocyte immune responses. Peripheral blood B-lymphocyte subset distributions and whether they are associated with PD are unclear. METHODS Sixty-one PD patients and sixty-one one-to-one paired healthy controls (HCs) were enrolled. We used flow cytometry to perform immunophenotyping of peripheral B-lymphocyte, in vitro stimulation and measured serum cytokine. The relationship between variables and PD were assessed. RESULTS The percentage of naive B cells in blood of PD patients was decreased, whereas the percentages of regulatory B cells (Bregs), plasma blast cells (PBCs), and double-negative (DN) B cells were increased. The absolute counts of B-lymphocyte and naive B cells in blood of PD patients were decreased. Regression analysis revealed that alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells were associated with PD. After stimulation, the percentages of Bregs, PBCs, and switched memory (SwM) B cells increased in PD patients. Additionally, increases in GM-CSF-producing B-cell, IFN-γ-producing B-cell, and TNF-α-producing B-cell percentages were noted in PD. Serum levels of a proliferation-inducing ligand (APRIL), B-cell activating factor (BAFF) and soluble CD40 ligand (sCD40L) were elevated in PD and correlated negatively with the UPDRS III score. CONCLUSIONS Abnormal B-lymphocyte immune responses in peripheral blood may contribute to PD development. Alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells are associated with PD. Furthermore, APRIL, BAFF, and sCD40L could be potential targets for intervention in PD.
Collapse
Affiliation(s)
- Zhuo Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xin Xie
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Shoufeng Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Rongjie Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yanan Zhao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jialing Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
196
|
Baxter RM, Wang CS, Garcia-Perez JE, Kong DS, Coleman BM, Larchenko V, Schuyler RP, Jackson C, Ghosh T, Rudra P, Paul D, Claassen M, Rochford R, Cambier JC, Ghosh D, Cooper JC, Smith MJ, Hsieh EWY. Expansion of extrafollicular B and T cell subsets in childhood-onset systemic lupus erythematosus. Front Immunol 2023; 14:1208282. [PMID: 37965329 PMCID: PMC10641733 DOI: 10.3389/fimmu.2023.1208282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Most childhood-onset SLE patients (cSLE) develop lupus nephritis (cLN), but only a small proportion achieve complete response to current therapies. The prognosis of children with LN and end-stage renal disease is particularly dire. Mortality rates within the first five years of renal replacement therapy may reach 22%. Thus, there is urgent need to decipher and target immune mechanisms that drive cLN. Despite the clear role of autoantibody production in SLE, targeted B cell therapies such as rituximab (anti-CD20) and belimumab (anti-BAFF) have shown only modest efficacy in cLN. While many studies have linked dysregulation of germinal center formation to SLE pathogenesis, other work supports a role for extrafollicular B cell activation in generation of pathogenic antibody secreting cells. However, whether extrafollicular B cell subsets and their T cell collaborators play a role in specific organ involvement in cLN and/or track with disease activity remains unknown. Methods We analyzed high-dimensional mass cytometry and gene expression data from 24 treatment naïve cSLE patients at the time of diagnosis and longitudinally, applying novel computational tools to identify abnormalities associated with clinical manifestations (cLN) and disease activity (SLEDAI). Results cSLE patients have an extrafollicular B cell expansion signature, with increased frequency of i) DN2, ii) Bnd2, iii) plasmablasts, and iv) peripheral T helper cells. Most importantly, we discovered that this extrafollicular signature correlates with disease activity in cLN, supporting extrafollicular T/B interactions as a mechanism underlying pediatric renal pathogenesis. Discussion This study integrates established and emerging themes of extrafollicular B cell involvement in SLE by providing evidence for extrafollicular B and peripheral T helper cell expansion, along with elevated type 1 IFN activation, in a homogeneous cohort of treatment-naïve cSLE patients, a point at which they should display the most extreme state of their immune dysregulation.
Collapse
Affiliation(s)
- Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Christine S. Wang
- Department of Pediatrics, Section of Rheumatology, School of Medicine, University of Colorado, Children’s Hospital Colorado, Aurora, CO, United States
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Daniel S. Kong
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Brianne M. Coleman
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Valentyna Larchenko
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Ronald P. Schuyler
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Conner Jackson
- Center for Innovative Design and Analysis, School of Public Health, University of Colorado, Aurora, CO, United States
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, United States
| | - Pratyaydipta Rudra
- Department of Statistics, Oklahoma State University, Stillwater, OK, United States
| | - Debdas Paul
- Clinical Bioinformatics & Machine Learning in Translational Single-Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Manfred Claassen
- Clinical Bioinformatics & Machine Learning in Translational Single-Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Rosemary Rochford
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, United States
| | - Jennifer C. Cooper
- Department of Pediatrics, Section of Rheumatology, School of Medicine, University of Colorado, Children’s Hospital Colorado, Aurora, CO, United States
| | - Mia J. Smith
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Pediatrics, Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Elena W. Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
197
|
Abstract
Systemic lupus erythematosus (SLE) is a severe multisystem autoimmune disease that can cause injury in almost every body system. While considered a classic example of autoimmunity, it is still relatively poorly understood. Treatment with immunosuppressive agents is challenging, as many agents are relatively non-specific, and the underlying disease is characterized by unpredictable flares and remissions. This State of The Art Review provides a comprehensive current summary of systemic lupus erythematosus based on recent literature. In basic and translational science, this summary includes the current state of genetics, epigenetics, differences by ancestry, and updates about the molecular and immunological pathogenesis of systemic lupus erythematosus. In clinical science, the summary includes updates in diagnosis and classification, clinical features and subphenotypes, and current guidelines and strategies for treatment. The paper also provides a comprehensive review of the large number of recent clinical trials in systemic lupus erythematosus. Current knowns and unknowns are presented, and potential directions for the future are suggested. Improved knowledge of immunological pathogenesis and the molecular differences that exist between patients should help to personalize treatment, minimize side effects, and achieve better outcomes in this difficult disease.
Collapse
Affiliation(s)
- Eric F Morand
- School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Rheumatology, Monash Health, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
198
|
Heath J, Chen D, Xie J, Choi J, Ng R, Zhang R, Li S, Edmark R, Zheng H, Solomon B, Campbell K, Medina E, Ribas A, Khatri P, Lanier L, Mease P, Goldman J, Su Y. An NKG2A biased immune response confers protection for infection, autoimmune disease, and cancer. RESEARCH SQUARE 2023:rs.3.rs-3413673. [PMID: 37886475 PMCID: PMC10602172 DOI: 10.21203/rs.3.rs-3413673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Infection, autoimmunity, and cancer are the principal human health challenges of the 21st century and major contributors to human death and disease. Often regarded as distinct ends of the immunological spectrum, recent studies have hinted there may be more overlap between these diseases than appears. For example, pathogenic inflammation has been demonstrated as conserved between infection and autoimmune settings. T resident memory (TRM) cells have been highlighted as beneficial for infection and cancer. However, these findings are limited by patient number and disease scope; exact immunological factors shared across disease remain elusive. Here, we integrate large-scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against disease severity, mortality, and autoimmune and post-acute chronic disease. We reveal that NKG2A+ CD8+ T cells correlate with reduced inflammation, increased humoral immunity, and resemble TRM cells. Our results suggest that an NKG2A+ bias is a pan-disease immunological factor of protection and thus supports recent suggestions that there is immunological overlap between infection, autoimmunity, and cancer. Our findings underscore the promotion of an NKG2A+ biased response as a putative therapeutic strategy.
Collapse
|
199
|
Yasaka K, Yamazaki T, Sato H, Shirai T, Cho M, Ishida K, Ito K, Tanaka T, Ogasawara K, Harigae H, Ishii T, Fujii H. Phospholipase D4 as a signature of toll-like receptor 7 or 9 signaling is expressed on blastic T-bet + B cells in systemic lupus erythematosus. Arthritis Res Ther 2023; 25:200. [PMID: 37840148 PMCID: PMC10577954 DOI: 10.1186/s13075-023-03186-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND In systemic lupus erythematosus (SLE), autoreactive B cells are thought to develop by-passing immune checkpoints and contribute to its pathogenesis. Toll-like receptor (TLR) 7 and 9 signaling have been implicated in their development and differentiation. Although some B cell subpopulations such as T-bet + double negative 2 (DN2) cells have been identified as autoreactive in the past few years, because the upregulated surface markers of those cells are not exclusive to them, it is still challenging to specifically target autoreactive B cells in SLE patients. METHODS Our preliminary expression analysis revealed that phospholipase D4 (PLD4) is exclusively expressed in plasmacytoid dendritic cells (pDCs) and B cells in peripheral blood mononuclear cells (PBMCs) samples. Monoclonal antibodies against human PLD4 were generated, and flow cytometry analyses were conducted for PBMCs from 23 healthy donors (HDs) and 40 patients with SLE. In vitro cell culture was also performed to study the conditions that induce PLD4 in B cells from HDs. Finally, recombinant antibodies were synthesized from subpopulations of PLD4 + B cells from a patient with SLE, and their antinuclear activity was measured through enzyme-linked immunosorbent assay. RESULTS pDCs from both groups showed comparable frequency of surface PLD4 expression. PLD4 + B cells accounted for only a few percent of HD B cells, whereas they were significantly expanded in patients with SLE (2.1% ± 0.4% vs. 10.8% ± 1.2%, P < 0.005). A subpopulation within PLD4 + B cells whose cell size was comparable to CD38 + CD43 + plasmablasts was defined as "PLD4 + blasts," and their frequencies were significantly correlated with those of plasmablasts (P < 0.005). PLD4 + blasts phenotypically overlapped with double negative 2 (DN2) cells, and, in line with this, their frequencies were significantly correlated with several clinical markers of SLE. In vitro assay using healthy PBMCs demonstrated that TLR7 or TLR9 stimulation was sufficient to induce PLD4 on the surface of the B cells. Finally, two out of three recombinant antibodies synthesized from PLD4 + blasts showed antinuclear activity. CONCLUSION PLD4 + B cells, especially "blastic" ones, are likely autoreactive B cells undergoing TLR stimulation. Therefore, PLD4 is a promising target marker in SLE treatment.
Collapse
Affiliation(s)
- Ken Yasaka
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Tomohide Yamazaki
- Research and Development Department, Ginkgo Biomedical Research Institute, SBI Biotech Co., Ltd., Tokyo, Japan
| | - Hiroko Sato
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Tsuyoshi Shirai
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Minkwon Cho
- Research and Development Department, Ginkgo Biomedical Research Institute, SBI Biotech Co., Ltd., Tokyo, Japan
| | - Koji Ishida
- Research and Development Department, Ginkgo Biomedical Research Institute, SBI Biotech Co., Ltd., Tokyo, Japan
| | - Koyu Ito
- Department of Immunobiology, Institute of Development Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Hypertension, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hideo Harigae
- Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomonori Ishii
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroshi Fujii
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
200
|
Yi P, Cao P, Yang M, Xiong F, Jiang J, Mei Y, Xin Y, Zhao M, Wu H, Lu Q. Overexpressed CD44 is associated with B-cell activation via the HA-CD44-AIM2 pathway in lupus B cells. Clin Immunol 2023; 255:109710. [PMID: 37499961 DOI: 10.1016/j.clim.2023.109710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/17/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by aberrant development of B cells and excess production of autoantibodies. Our team previously reported that absent in melanoma 2 (AIM2) regulates B-cell differentiation via the Bcl-6-Blimp-1 axis. Notably, in keyhole limpet hemocyanin (KLH)-immunized CD19creAim2f/f mice, the frequency of CD19+CD44+ B cells was decreased, accompanied by a weakened KLH response, indicating that AIM2 deficiency suppressed the antigen-induced B-cell immune response by downregulating the expression of CD44. CD44, a surface marker of T-cell activation and memory, was overexpressed in T cells of SLE patients, but its roles and mechanism in B cells have not been elucidated. In the current work, we revealed that CD44 expression was upregulated in the B cells of SLE patients and MRL/lpr mice, accompanied by elevated AIM2 expression in CD19+CD44+ B-cell subsets, and that its ligand hyaluronan (HA) was also abnormally increased in the serum of SLE patients. Notably, the extrafollicular (EF) region serves as an important site of B-cell activation and differentiation separate from the germinal center, while CD44 expression is concentrated in EF B cells. In addition, in vitro experiments demonstrated that the HA-CD44 interaction stimulated B-cell activation and upregulated the expression of AIM2 and the transcription factor STAT3. Either blocking CD44, knocking down AIM2 expression or suppressing the activity of STAT3 in B cells suppressed B-cell activation and proliferation. Moreover, blocking CD44 downregulated the expression of STAT3 and AIM2, while suppressing the activity of STAT3 decreased the expression of CD44 and AIM2. In summary, overexpressed CD44 in B cells might participate in B-cell activation and proliferation in the EF region via the HA-CD44-AIM2 pathway, providing potential targets for SLE therapy.
Collapse
Affiliation(s)
- Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pengpeng Cao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Feng Xiong
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yang Mei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yue Xin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Mingming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|