151
|
Wiering L, Tacke F. Treating inflammation to combat non-alcoholic fatty liver disease. J Endocrinol 2023; 256:JOE-22-0194. [PMID: 36259984 DOI: 10.1530/joe-22-0194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) with its more progressive form non-alcoholic steatohepatitis (NASH) has become the most common chronic liver disease, thereby representing a great burden for patients and healthcare systems. Specific pharmacological therapies for NAFLD are still missing. Inflammation is an important driver in the pathogenesis of NASH, and the mechanisms underlying inflammation in NAFLD represent possible therapeutic targets. In NASH, various intra- and extrahepatic triggers involved in the metabolic injury typically lead to the activation of different immune cells. This includes hepatic Kupffer cells, i.e. liver-resident macrophages, which can adopt an inflammatory phenotype and activate other immune cells by releasing inflammatory cytokines. As inflammation progresses, Kupffer cells are increasingly replaced by monocyte-derived macrophages with a distinct lipid-associated and scar-associated phenotype. Many other immune cells, including neutrophils, T lymphocytes - such as auto-aggressive cytotoxic as well as regulatory T cells - and innate lymphoid cells balance the progression and regression of inflammation and subsequent fibrosis. The detailed understanding of inflammatory cell subsets and their activation pathways prompted preclinical and clinical exploration of potential targets in NAFLD/NASH. These approaches to target inflammation in NASH include inhibition of immune cell recruitment via chemokine receptors (e.g. cenicriviroc), neutralization of CD44 or galectin-3 as well as agonism to nuclear factors like peroxisome proliferator-activated receptors and farnesoid X receptor that interfere with the activation of immune cells. As some of these approaches did not demonstrate convincing efficacy as monotherapies, a rational and personalized combination of therapeutic interventions may be needed for the near future.
Collapse
Affiliation(s)
- Leke Wiering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
152
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 478] [Impact Index Per Article: 159.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
153
|
The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers (Basel) 2022; 14:cancers14246151. [PMID: 36551635 PMCID: PMC9776867 DOI: 10.3390/cancers14246151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
Collapse
|
154
|
Lei T, Zhang J, Zhang Q, Ma X, Xu Y, Zhao Y, Zhang L, Lu Z, Zhao Y. Defining newly formed and tissue-resident bone marrow-derived macrophages in adult mice based on lysozyme expression. Cell Mol Immunol 2022; 19:1333-1346. [PMID: 36348079 PMCID: PMC9708686 DOI: 10.1038/s41423-022-00936-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/08/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue-resident macrophages are derived from different precursor cells and display different phenotypes. Reconstitution of the tissue-resident macrophages of inflamed or damaged tissues in adults can be achieved by bone marrow-derived monocytes/macrophages. Using lysozyme (Lysm)-GFP-reporter mice, we found that alveolar macrophages (AMs), Kupffer cells, red pulp macrophages (RpMacs), and kidney-resident macrophages were Lysm-GFP-, whereas all monocytes in the fetal liver, adult bone marrow, and blood were Lysm-GFP+. Donor-derived Lysm-GFP+ resident macrophages gradually became Lysm-GFP- in recipients and developed gene expression profiles characteristic of tissue-resident macrophages. Thus, Lysm may be used to distinguish newly formed and long-term surviving tissue-resident macrophages that were derived from bone marrow precursor cells in adult mice under pathological conditions. Furthermore, we found that Irf4 might be essential for resident macrophage differentiation in all tissues, while cytokine and receptor pathways, mTOR signaling pathways, and fatty acid metabolic processes predominantly regulated the differentiation of RpMacs, Kupffer cells, and kidney macrophages, respectively. Deficiencies in ST2, mechanistic target of rapamycin (mTOR) and fatty acid-binding protein 5 (FABP5) differentially impaired the differentiation of tissue-resident macrophages from bone marrow-derived monocytes/macrophages in the lungs, liver, and kidneys. These results indicate that a combination of shared and unique signaling pathways coordinately shape tissue-resident macrophage differentiation in various tissues.
Collapse
Affiliation(s)
- Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
155
|
Abstract
Metabolic diseases, including obesity, diabetes mellitus and cardiovascular disease, are a major threat to health in the modern world, but efforts to understand the underlying mechanisms and develop rational treatments are limited by the lack of appropriate human model systems. Notably, advances in stem cell and organoid technology allow the generation of cellular models that replicate the histological, molecular and physiological properties of human organs. Combined with marked improvements in gene editing tools, human stem cells and organoids provide unprecedented systems for studying mechanisms of metabolic diseases. Here, we review progress made over the past decade in the generation and use of stem cell-derived metabolic cell types and organoids in metabolic disease research, especially obesity and liver diseases. In particular, we discuss the limitations of animal models and the advantages of stem cells and organoids, including their application to metabolic diseases. We also discuss mechanisms of drug action, understanding the efficacy and toxicity of existing therapies, screening for new treatments and pursuing personalized therapies. We highlight the potential of combining stem cell-derived organoids with gene editing and functional genomics to revolutionize the approach to finding treatments for metabolic diseases.
Collapse
Affiliation(s)
- Wenxiang Hu
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
156
|
Zhou T, Kiran M, Lui KO, Ding Q. Decoding liver fibrogenesis with single-cell technologies. LIFE MEDICINE 2022; 1:333-344. [PMID: 39872749 PMCID: PMC11749458 DOI: 10.1093/lifemedi/lnac040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 01/30/2025]
Abstract
Liver fibrogenesis is a highly dynamic and complex process that drives the progression of chronic liver disease toward liver failure and end-stage liver diseases. Despite decades of intense studies, the cellular and molecular mechanisms underlying liver fibrogenesis remain elusive, and no approved therapies to treat liver fibrosis are currently available. The rapid development of single-cell RNA sequencing (scRNA-seq) technologies allows the characterization of cellular alterations under healthy and diseased conditions at an unprecedented resolution. In this Review, we discuss how the scRNA-seq studies are transforming our understanding of the regulatory mechanisms of liver fibrosis. We specifically emphasize discoveries on disease-relevant cell subpopulations, molecular events, and cell interactions on cell types including hepatocytes, liver sinusoidal endothelial cells, myofibroblasts, and macrophages. These discoveries have uncovered critical pathophysiological changes during liver fibrogenesis. Further efforts are urged to fully understand the functional contributions of these changes to liver fibrogenesis, and to translate the new knowledge into effective therapeutic approaches.
Collapse
Affiliation(s)
- Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Musunuru Kiran
- Department of Medicine, and Department of Genetics, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy O Lui
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
157
|
Bai J, Liu F. The Yin-Yang functions of macrophages in metabolic disorders. LIFE MEDICINE 2022; 1:319-332. [PMID: 39872753 PMCID: PMC11749365 DOI: 10.1093/lifemedi/lnac035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2025]
Abstract
Macrophages are widely distributed in various metabolic tissues/organs and play an essential role in the immune regulation of metabolic homeostasis. Macrophages have two major functions: adaptive defenses against invading pathogens by triggering inflammatory cytokine release and eliminating damaged/dead cells via phagocytosis to constrain inflammation. The pro-inflammatory role of macrophages in insulin resistance and related metabolic diseases is well established, but much less is known about the phagocytotic function of macrophages in metabolism. In this review, we review our current understanding of the ontogeny, tissue distribution, and polarization of macrophages in the context of metabolism. We also discuss the Yin-Yang functions of macrophages in the regulation of energy homeostasis. Third, we summarize the crosstalk between macrophages and gut microbiota. Lastly, we raise several important but remain to be addressed questions with respect to the mechanisms by which macrophages are involved in immune regulation of metabolism.
Collapse
Affiliation(s)
- Juli Bai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
158
|
Xiang L, Li X, Luo Y, Zhou B, Liu Y, Li Y, Wu D, Jia L, Zhu PW, Zheng MH, Wang H, Lu Y. A multi-omic landscape of steatosis-to-NASH progression. LIFE METABOLISM 2022; 1:242-257. [PMID: 39872077 PMCID: PMC11749464 DOI: 10.1093/lifemeta/loac034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/20/2022] [Accepted: 11/16/2022] [Indexed: 01/29/2025]
Abstract
Nonalcoholic steatohepatitis (NASH) has emerged as a major cause of liver failure and hepatocellular carcinoma. Investigation into the molecular mechanisms that underlie steatosis-to-NASH progression is key to understanding the development of NASH pathophysiology. Here, we present comprehensive multi-omic profiles of preclinical animal models to identify genes, non-coding RNAs, proteins, and plasma metabolites involved in this progression. In particular, by transcriptomics analysis, we identified Growth Differentiation Factor 3 (GDF3) as a candidate noninvasive biomarker in NASH. Plasma GDF3 levels are associated with hepatic pathological features in patients with NASH, and differences in these levels provide a high diagnostic accuracy of NASH diagnosis (AUROC = 0.90; 95% confidence interval: 0.85-0.95) with a good sensitivity (90.7%) and specificity (86.4%). In addition, by developing integrated proteomic-metabolomic datasets and performing a subsequent pharmacological intervention in a mouse model of NASH, we show that ferroptosis may be a potential target to treat NASH. Moreover, by using competing endogenous RNAs network analysis, we found that several miRNAs, including miR-582-5p and miR-292a-3p, and lncRNAs, including XLOC-085738 and XLOC-041531, are associated with steatosis-to-NASH progression. Collectively, our data provide a valuable resource into the molecular characterization of NASH progression, leading to the novel insight that GDF3 may be a potential noninvasive diagnostic biomarker for NASH while further showing that ferroptosis is a therapeutic target for the disease.
Collapse
Affiliation(s)
- Liping Xiang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunchen Luo
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuejun Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duojiao Wu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Lijing Jia
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
159
|
Maladaptive consequences of inflammatory events shape individual immune identity. Nat Immunol 2022; 23:1675-1686. [PMID: 36411382 DOI: 10.1038/s41590-022-01342-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
The vertebrate immune system develops in layers, as modes of immunity have evolved on top of each other through time with the expansion of organismal complexity. The maturation timing of immune cell subsets, such as innate immune cells, innate-like cells and adaptive cells, corresponds to their physiological roles in protective immunity. While various cell subsets have specialized roles, they also complement each other to clear pathogens, resolve inflammation and maintain homeostasis, especially at barrier sites with high microbial density. Immune cells adapt to inflammatory insults through mechanisms including epigenetic and metabolic reprogramming, clonal expansion and enhanced communication with the surrounding tissue environment. Over time, these adaptations shape an individual immune identity, reflective of the overlay between the genetic predisposition and the antigenic and environmental exposures of each individual. While some aspects of this immune shaping are natural consequences of immune maturation over time, others are maladaptive and predispose to irreversible pathology. In this Perspective, we provide a framework for categorizing the shaping events of the immune response, in terms of mechanisms, contexts and functional outcomes. We aim to clarify how these terms can be appropriately applied to future findings that impact immune function.
Collapse
|
160
|
Roh PR, Kim SM, Kang BY, Mun KD, Park JG, Kang MW, Hur W, Han JW, Nam H, Yoon SK, Sung PS. Tenofovir alafenamide alleviates nonalcoholic steatohepatitis in mice by blocking the phosphorylation of AKT in intrahepatic mononuclear phagocytes. Biomed Pharmacother 2022; 156:113952. [PMID: 36411662 DOI: 10.1016/j.biopha.2022.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
161
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
|
162
|
Kaur S, Kidambi S, Ortega-Ribera M, Thuy LTT, Nieto N, Cogger VC, Xie WF, Tacke F, Gracia-Sancho J. In Vitro Models for the Study of Liver Biology and Diseases: Advances and Limitations. Cell Mol Gastroenterol Hepatol 2022; 15:559-571. [PMID: 36442812 PMCID: PMC9868680 DOI: 10.1016/j.jcmgh.2022.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In vitro models of liver (patho)physiology, new technologies, and experimental approaches are progressing rapidly. Based on cell lines, induced pluripotent stem cells or primary cells derived from mouse or human liver as well as whole tissue (slices), such in vitro single- and multicellular models, including complex microfluidic organ-on-a-chip systems, provide tools to functionally understand mechanisms of liver health and disease. The International Society of Hepatic Sinusoidal Research (ISHSR) commissioned this working group to review the currently available in vitro liver models and describe the advantages and disadvantages of each in the context of evaluating their use for the study of liver functionality, disease modeling, therapeutic discovery, and clinical applicability.
Collapse
Affiliation(s)
- Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Martí Ortega-Ribera
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Victoria C Cogger
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jordi Gracia-Sancho
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland.
| |
Collapse
|
163
|
Liu XH, Zhou JT, Yan CX, Cheng C, Fan JN, Xu J, Zheng Q, Bai Q, Li Z, Li S, Li X. Single-cell RNA sequencing reveals a novel inhibitory effect of ApoA4 on NAFL mediated by liver-specific subsets of myeloid cells. Front Immunol 2022; 13:1038401. [PMID: 36426356 PMCID: PMC9678944 DOI: 10.3389/fimmu.2022.1038401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 10/24/2023] Open
Abstract
The liver immune microenvironment is a key element in the development of hepatic inflammation in NAFLD. ApoA4 deficiency increases the hepatic lipid burden, insulin resistance, and metabolic inflammation. However, the effect of ApoA4 on liver immune cells and the precise immune cell subsets that exacerbate fatty liver remain elusive. The aim of this study was to profile the hepatic immune cells affected by ApoA4 in NAFL. We performed scRNA-seq on liver immune cells from WT and ApoA4-deficient mice administered a high-fat diet. Immunostaining and qRT-PCR analysis were used to validate the results of scRNA-seq. We identified 10 discrete immune cell populations comprising macrophages, DCs, granulocytes, B, T and NK&NKT cells and characterized their subsets, gene expression profiles, and functional modules. ApoA4 deficiency led to significant increases in the abundance of specific subsets, including inflammatory macrophages (2-Mφ-Cxcl9 and 4-Mφ-Cxcl2) and activated granulocytes (0-Gran-Wfdc17). Moreover, ApoA4 deficiency resulted in higher Lgals3, Ctss, Fcgr2b, Spp1, Cxcl2, and Elane levels and lower Nr4a1 levels in hepatic immune cells. These genes were consistent with human NAFLD-associated marker genes linked to disease severity. The expression of NE and IL-1β in granulocytes and macrophages as key ApoA4 targets were validate in the presence or absence of ApoA4 by immunostaining. The scRNA-seq data analyses revealed reprogramming of liver immune cells resulted from ApoA4 deficiency. We uncovered that the emergence of ApoA4-associated immune subsets (namely Cxcl9+ macrophage, Cxcl2+ macrophage and Wfdc17+ granulocyte), pathways, and NAFLD-related marker genes may promote the development of NAFL. These findings may provide novel therapeutic targets for NAFL and the foundations for further studying the effects of ApoA4 on immune cells in various diseases.
Collapse
Affiliation(s)
- Xiao-Huan Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jin-Ting Zhou
- Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi’an, China
| | - Chun-xia Yan
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Pathology, Bio-Evidence Sciences Academy, The Western China Science and Technology Innovation Port, Xi’an Jiaotong University, Xi’an, China
| | - Cheng Cheng
- Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi’an, China
| | - Jing-Na Fan
- Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi’an, China
| | - Jing Xu
- Division of Endocrinology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qiangsun Zheng
- Division of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qiang Bai
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Liège, Belgium
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shengbin Li
- Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi’an, China
| | - Xiaoming Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
164
|
Hendrikx T, Porsch F, Kiss MG, Rajcic D, Papac-Miličević N, Hoebinger C, Goederle L, Hladik A, Shaw LE, Horstmann H, Knapp S, Derdak S, Bilban M, Heintz L, Krawczyk M, Paternostro R, Trauner M, Farlik M, Wolf D, Binder CJ. Soluble TREM2 levels reflect the recruitment and expansion of TREM2 + macrophages that localize to fibrotic areas and limit NASH. J Hepatol 2022; 77:1373-1385. [PMID: 35750138 DOI: 10.1016/j.jhep.2022.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Previous single-cell RNA-sequencing analyses have shown that Trem2-expressing macrophages are present in the liver during obesity, non-alcoholic steatohepatitis (NASH) and cirrhosis. Herein, we aimed to functionally characterize the role of bone marrow-derived TREM2-expressing macrophage populations in NASH. METHODS We used bulk RNA sequencing to assess the hepatic molecular response to lipid-dependent dietary intervention in mice. Spatial mapping, bone marrow transplantation in two complementary murine models and single-cell sequencing were applied to functionally characterize the role of TREM2+ macrophage populations in NASH. RESULTS We found that the hepatic transcriptomic profile during steatohepatitis mirrors the dynamics of recruited bone marrow-derived monocytes that already acquire increased expression of Trem2 in the circulation. Increased Trem2 expression was reflected by elevated levels of systemic soluble TREM2 in mice and humans with NASH. In addition, soluble TREM2 levels were superior to traditionally used laboratory parameters for distinguishing between different fatty liver disease stages in two separate clinical cohorts. Spatial transcriptomics revealed that TREM2+ macrophages localize to sites of hepatocellular damage, inflammation and fibrosis in the steatotic liver. Finally, using multiple murine models and in vitro experiments, we demonstrate that hematopoietic Trem2 deficiency causes defective lipid handling and extracellular matrix remodeling, resulting in exacerbated steatohepatitis, cell death and fibrosis. CONCLUSIONS Our study highlights the functional properties of bone marrow-derived TREM2+ macrophages and implies the clinical relevance of systemic soluble TREM2 levels in the context of NASH. LAY SUMMARY Our study defines the origin and function of macrophages (a type of immune cell) that are present in the liver and express a specific protein called TREM2. We find that these cells have an important role in protecting against non-alcoholic steatohepatitis (a progressive form of fatty liver disease). We also show that the levels of soluble TREM2 in the blood could serve as a circulating marker of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tim Hendrikx
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria; Department of Molecular Genetics, NUTRIM, Maastricht University, Maastricht, the Netherlands.
| | - Florentina Porsch
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Máté G Kiss
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | | | - Constanze Hoebinger
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Laura Goederle
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University Vienna, Vienna, Austria
| | - Lisa E Shaw
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Hauke Horstmann
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sylvia Knapp
- Department of Medicine I, Laboratory of Infection Biology, Medical University Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Medical University Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria; Core Facilities, Medical University of Vienna, Medical University Vienna, Vienna, Austria
| | - Lena Heintz
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Laboratory of Metabolic Liver Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Rafael Paternostro
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University Vienna, Vienna, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Dennis Wolf
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph J Binder
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
165
|
Jiang J, Lyu P, Li J, Huang S, Tao J, Blackshaw S, Qian J, Wang J. IReNA: Integrated regulatory network analysis of single-cell transcriptomes and chromatin accessibility profiles. iScience 2022; 25:105359. [PMID: 36325073 PMCID: PMC9619378 DOI: 10.1016/j.isci.2022.105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) have been developed to separately measure transcriptomes and chromatin accessibility profiles at the single-cell resolution. However, few methods can reliably integrate these data to perform regulatory network analysis. Here, we developed integrated regulatory network analysis (IReNA) for network inference through the integrated analysis of scRNA-seq and scATAC-seq data, network modularization, transcription factor enrichment, and construction of simplified intermodular regulatory networks. Using public datasets, we showed that integrated network analysis of scRNA-seq data with scATAC-seq data is more precise to identify known regulators than scRNA-seq data analysis alone. Moreover, IReNA outperformed currently available methods in identifying known regulators. IReNA facilitates the systems-level understanding of biological regulatory mechanisms and is available at https://github.com/jiang-junyao/IReNA.
Collapse
Affiliation(s)
- Junyao Jiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Pin Lyu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jinlian Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Sunan Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiawang Tao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Corresponding author
| |
Collapse
|
166
|
Koda Y, Nakamoto N, Kanai T. Regulation of Progression and Resolution of Liver Fibrosis by Immune Cells. Semin Liver Dis 2022; 42:475-488. [PMID: 36208620 DOI: 10.1055/a-1957-6384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The excessive accumulation of extracellular matrix proteins results in fibrosis-a condition implicated in several diseased conditions, such as nonalcoholic steatohepatitis, viral hepatitis, and autoimmune hepatitis. Despite its prevalence, direct and effective treatments for fibrosis are lacking, warranting the development of better therapeutic strategies. Accumulating evidence has shown that liver fibrosis-a condition previously considered irreversible-is reversible in specific conditions. Immune cells residing in or infiltrating the liver (e.g., macrophages) are crucial in the pathogenesis of fibrosis. Given this background, the roles and action mechanisms of various immune cells and their subsets in the progression and recovery of liver fibrosis, particularly concerning nonalcoholic steatohepatitis, are discussed in this review. Furthermore, the development of better therapeutic strategies based on stage-specific properties and using advanced techniques as well as the mechanisms underlying recovery are elaborated. In conclusion, we consider the review comprehensively provides the present achievements and future possibilities revolving around fibrosis treatment.
Collapse
Affiliation(s)
- Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Agency for Medical Research and Development, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
167
|
Decoding Single-cell Landscape and Intercellular Crosstalk in the Transplanted Liver. Transplantation 2022; 107:890-902. [PMID: 36413145 DOI: 10.1097/tp.0000000000004365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Liver transplantation (LT) is the most effective treatment for various end-stage liver diseases. However, the cellular complexity and intercellular crosstalk of the transplanted liver have constrained analyses of graft reconstruction after LT. METHODS We established an immune-tolerated orthotopic LT mouse model to understand the physiological process of graft recovery and intercellular crosstalk. We employed single-cell RNA sequencing and cytometry by time-of-flight to comprehensively reveal the cellular landscape. RESULTS We identified an acute and stable phase during perioperative graft recovery. Using single-cell technology, we made detailed annotations of the cellular landscape of the transplanted liver and determined dynamic modifications of these cells during LT. We found that 96% of graft-derived immune cells were replaced by recipient-derived cells from the preoperative to the stable phase. However, CD206 + MerTK + macrophages and CD49a + CD49b - natural killer cells were composed of both graft and recipient sources even in the stable phase. Intriguingly, the transcriptional profiles of these populations exhibited tissue-resident characteristics, suggesting that recipient-derived macrophages and natural killer cells have the potential to differentiate into 'tissue-resident cells' after LT. Furthermore, we described the transcriptional characteristics of these populations and implicated their role in regulating the metabolic and immune remodeling of the transplanted liver. CONCLUSIONS In summary, this study delineated a cell atlas (type-proportion-source-time) of the transplanted liver and shed light on the physiological process of graft reconstruction and graft-recipient crosstalk.
Collapse
|
168
|
Liu X, Jiang Y, Ye J, Wang X. Helminth infection and helminth-derived products: A novel therapeutic option for non-alcoholic fatty liver disease. Front Immunol 2022; 13:999412. [PMID: 36263053 PMCID: PMC9573989 DOI: 10.3389/fimmu.2022.999412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to obesity, diabetes, and metabolic syndrome (MetS), and it has become the most common chronic liver disease. Helminths have co-evolved with humans, inducing multiple immunomodulatory mechanisms to modulate the host's immune system. By using their immunomodulatory ability, helminths and their products exhibit protection against various autoimmune and inflammatory diseases, including obesity, diabetes, and MetS, which are closely associated with NAFLD. Here, we review the pathogenesis of NAFLD from abnormal glycolipid metabolism, inflammation, and gut dysbiosis. Correspondingly, helminths and their products can treat or relieve these NAFLD-related diseases, including obesity, diabetes, and MetS, by promoting glycolipid metabolism homeostasis, regulating inflammation, and restoring the balance of gut microbiota. Considering that a large number of clinical trials have been carried out on helminths and their products for the treatment of inflammatory diseases with promising results, the treatment of NAFLD and obesity-related diseases by helminths is also a novel direction and strategy.
Collapse
Affiliation(s)
- Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
169
|
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77:1136-1160. [PMID: 35750137 DOI: 10.1016/j.jhep.2022.06.012] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).
Collapse
|
170
|
Kim K, Park SE, Park JS, Choi JH. Characteristics of plaque lipid-associated macrophages and their possible roles in the pathogenesis of atherosclerosis. Curr Opin Lipidol 2022; 33:283-288. [PMID: 35942822 PMCID: PMC9594140 DOI: 10.1097/mol.0000000000000842] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Recent findings from single-cell transcriptomic studies prompted us to revisit the role of plaque foamy macrophages in the pathogenesis of atherosclerosis. In this review, we compared the gene expression profile of plaque foamy macrophages with those of other disease-associated macrophages and discussed their functions in the pathogenesis of atherosclerosis. RECENT FINDINGS To understand the phenotypes of macrophages in atherosclerotic aorta, many research groups performed single-cell RNA sequencing analysis and found that there are distinct phenotypic differences among intimal foamy, nonfoamy and adventitial macrophages. Especially, the plaque foamy macrophages express triggering receptor expressed on myeloid cells 2 (TREM2), a key common feature of disease-associated macrophages in Alzheimer's disease, obesity, cirrhosis and nonalcoholic steatohepatitis. These TREM2 + macrophages seem to be protective against chronic inflammation. SUMMARY As the gene expression profile of plaque foamy macrophages is highly comparable to that of lipid-associated macrophages from obesity, we named the plaque foamy macrophages as plaque lipid-associated macrophages (PLAMs). PLAMs have a high level of gene expression related to phago/endocytosis, lysosome, lipid metabolism and oxidative phosphorylation. Considering the protective function of lipid-associated macrophages against adipose tissue inflammation, PLAMs may suppress atherosclerotic inflammation by removing modified lipids and cell debris in the plaque.
Collapse
Affiliation(s)
- Kyeongdae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang Institute of Bioscience and Biotechnology, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
171
|
Hoogerland JA, Staels B, Dombrowicz D. Immune-metabolic interactions in homeostasis and the progression to NASH. Trends Endocrinol Metab 2022; 33:690-709. [PMID: 35961913 DOI: 10.1016/j.tem.2022.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) has increased significantly over the past two decades. NAFLD ranges from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) and predisposes to fibrosis and hepatocellular carcinoma (HCC). The importance of the immune system in hepatic physiology and in the progression of NAFLD is increasingly recognized. At homeostasis, the liver participates in immune defense against pathogens and in tolerance of gut-derived microbial compounds. Hepatic immune cells also respond to metabolic stimuli and have a role in NAFLD progression to NASH. In this review, we discuss how metabolic perturbations affect immune cell phenotype and function in NAFL and NASH, and then focus on the role of immune cells in liver homeostasis and in the development of NASH.
Collapse
Affiliation(s)
- Joanne A Hoogerland
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
172
|
Guilliams M, Scott CL. Liver macrophages in health and disease. Immunity 2022; 55:1515-1529. [PMID: 36103850 DOI: 10.1016/j.immuni.2022.08.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022]
Abstract
Single-cell and spatial transcriptomic technologies have revealed an underappreciated heterogeneity of liver macrophages. This has led us to rethink the involvement of macrophages in liver homeostasis and disease. Identification of conserved gene signatures within these cells across species and diseases is enabling the correct identification of specific macrophage subsets and the generation of more specific tools to track and study the functions of these cells. Here, we discuss what is currently known about the definitions of these different macrophage populations, the markers that can be used to identify them, how they are wired within the liver, and their functional specializations in health and disease.
Collapse
Affiliation(s)
- Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, County Limerick, Ireland.
| |
Collapse
|
173
|
Zhang P, Chen Z, Kuang H, Liu T, Zhu J, Zhou L, Wang Q, Xiong X, Meng Z, Qiu X, Jacks R, Liu L, Li S, Lumeng CN, Li Q, Zhou X, Lin JD. Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment. Cell Metab 2022; 34:1359-1376.e7. [PMID: 35973424 PMCID: PMC9458631 DOI: 10.1016/j.cmet.2022.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022]
Abstract
The mammalian liver comprises heterogeneous cell types within its tissue microenvironment that undergo pathophysiological reprogramming in disease states, such as non-alcoholic steatohepatitis (NASH). Patients with NASH are at an increased risk for the development of hepatocellular carcinoma (HCC). However, the molecular and cellular nature of liver microenvironment remodeling that links NASH to liver carcinogenesis remains obscure. Here, we show that diet-induced NASH is characterized by the induction of tumor-associated macrophage (TAM)-like macrophages and exhaustion of cytotoxic CD8+ T cells in the liver. The adipocyte-derived endocrine factor Neuregulin 4 (NRG4) serves as a hormonal checkpoint that restrains this pathological reprogramming during NASH. NRG4 deficiency exacerbated the induction of tumor-prone liver immune microenvironment and NASH-related HCC, whereas transgenic NRG4 overexpression elicited protective effects in mice. In a therapeutic setting, recombinant NRG4-Fc fusion protein exhibited remarkable potency in suppressing HCC and prolonged survival in the treated mice. These findings pave the way for therapeutic intervention of liver cancer by targeting the NRG4 hormonal checkpoint.
Collapse
Affiliation(s)
- Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Henry Kuang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiaqiang Zhu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xuelian Xiong
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziyi Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ramiah Jacks
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lu Liu
- Department of Internal Medicine and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Qing Li
- Department of Internal Medicine and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
174
|
Calcagno D, Chu A, Gaul S, Taghdiri N, Toomu A, Leszczynska A, Kaufmann B, Papouchado B, Wree A, Geisler L, Hoffman HM, Feldstein AE, King KR. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH. Hepatology 2022; 76:727-741. [PMID: 34997987 PMCID: PMC10176600 DOI: 10.1002/hep.32320] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS The NOD-like receptor protein 3 (NLRP3) inflammasome is a central contributor to human acute and chronic liver disease, yet the molecular and cellular mechanisms by which its activation precipitates injury remain incompletely understood. Here, we present single cell transcriptomic profiling of livers from a global transgenic tamoxifen-inducible constitutively activated Nlrp3A350V mutant mouse, and we investigate the changes in parenchymal and nonparenchymal liver cell gene expression that accompany inflammation and fibrosis. APPROACH AND RESULTS Our results demonstrate that NLRP3 activation causes chronic extramedullary myelopoiesis marked by myeloid progenitors that differentiate into proinflammatory neutrophils, monocytes, and monocyte-derived macrophages. We observed prominent neutrophil infiltrates with increased Ly6gHI and Ly6gINT cells exhibiting transcriptomic signatures of granulopoiesis typically found in the bone marrow. This was accompanied by a marked increase in Ly6cHI monocytes differentiating into monocyte-derived macrophages that express transcriptional programs similar to macrophages of NASH models. NLRP3 activation also down-regulated metabolic pathways in hepatocytes and shifted hepatic stellate cells toward an activated profibrotic state based on expression of collagen and extracellular matrix regulatory genes. CONCLUSIONS These results define the single cell transcriptomes underlying hepatic inflammation and fibrosis precipitated by NLRP3 activation. Clinically, our data support the notion that NLRP3-induced mechanisms should be explored as therapeutic target in NASH-like inflammation.
Collapse
Affiliation(s)
- David Calcagno
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | - Angela Chu
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Susanne Gaul
- University of California San Diego, Department of Pediatrics, San Diego, United States
- Leipzig University, Clinic and Polyclinic of Cardiology, Leipzig, Germany
| | - Nika Taghdiri
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | - Avinash Toomu
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | | | - Benedikt Kaufmann
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Bettina Papouchado
- Department of Pathology, University of California San Diego, La Jolla, USA
| | - Alexander Wree
- Charité University Medicine, Department of Hepatology and Gastroenterology, Berlin, Germany
| | - Lukas Geisler
- Charité University Medicine, Department of Hepatology and Gastroenterology, Berlin, Germany
| | - Hal M. Hoffman
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Ariel E. Feldstein
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Kevin R. King
- University of California San Diego, Department of Bioengineering, San Diego, United States
- University of California San Diego, School of Medicine, San Diego, United States
| |
Collapse
|
175
|
Modulating hepatic macrophages with annexin A1 in non-alcoholic steatohepatitis. Clin Sci (Lond) 2022; 136:1111-1115. [PMID: 35913023 PMCID: PMC9366860 DOI: 10.1042/cs20220258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Non-alcoholic steatohepatitis (NASH) and associated end-stage liver disease is a growing cause of concern throughout the Western world. It constitutes a significant clinical burden for which therapeutic approaches are very limited. Over the last years, considerable attention has therefore been paid to identifying potential therapeutic strategies to reduce this burden. Annexin A1 (AnxA1), a calcium-phospholipid binding protein, has been proposed to be a negative regulator of inflammation in the context of NASH. In a recent publication, Gadipudi, Ramavath, Provera et al. investigated the therapeutic potential of Annexin A1 treatment in preventing the progression of NASH. They demonstrate that treatment of mice with NASH with recombinant human AnxA1 can reduce inflammation and fibrosis without affecting steatosis or metabolic syndrome. This was proposed to be achieved through the modulation of the macrophage populations present in the liver. Here, we discuss the main findings of this work and raise some outstanding questions regarding the possible mechanisms involved and the functions of distinct macrophage populations in NASH.
Collapse
|
176
|
Cobo I, Tanaka TN, Chandra Mangalhara K, Lana A, Yeang C, Han C, Schlachetzki J, Challcombe J, Fixsen BR, Sakai M, Li RZ, Fields H, Mokry M, Tsai RG, Bejar R, Prange K, de Winther M, Shadel GS, Glass CK. DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Immunity 2022; 55:1386-1401.e10. [PMID: 35931086 PMCID: PMC9718507 DOI: 10.1016/j.immuni.2022.06.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Deleterious somatic mutations in DNA methyltransferase 3 alpha (DNMT3A) and TET mehtylcytosine dioxygenase 2 (TET2) are associated with clonal expansion of hematopoietic cells and higher risk of cardiovascular disease (CVD). Here, we investigated roles of DNMT3A and TET2 in normal human monocyte-derived macrophages (MDM), in MDM isolated from individuals with DNMT3A or TET2 mutations, and in macrophages isolated from human atherosclerotic plaques. We found that loss of function of DNMT3A or TET2 resulted in a type I interferon response due to impaired mitochondrial DNA integrity and activation of cGAS signaling. DNMT3A and TET2 normally maintained mitochondrial DNA integrity by regulating the expression of transcription factor A mitochondria (TFAM) dependent on their interactions with RBPJ and ZNF143 at regulatory regions of the TFAM gene. These findings suggest that targeting the cGAS-type I IFN pathway may have therapeutic value in reducing risk of CVD in patients with DNMT3A or TET2 mutations.
Collapse
Affiliation(s)
- Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tiffany N Tanaka
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | - Addison Lana
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Calvin Yeang
- University of California San Diego, Sulpizio Cardiovascular Center, La Jolla, CA, USA
| | - Claudia Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Johannes Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jean Challcombe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bethany R Fixsen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Rick Z Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hannah Fields
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 EA Utrecht, the Netherlands
| | - Randy G Tsai
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Rafael Bejar
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Koen Prange
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
177
|
Gao H, Jin Z, Bandyopadhyay G, Wang G, Zhang D, Rocha KCE, Liu X, Zhao H, Kisseleva T, Brenner DA, Karin M, Ying W. Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis. Cell Metab 2022; 34:1201-1213.e5. [PMID: 35921818 PMCID: PMC9365100 DOI: 10.1016/j.cmet.2022.07.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/11/2022] [Accepted: 07/13/2022] [Indexed: 12/11/2022]
Abstract
Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases.
Collapse
Affiliation(s)
- Hong Gao
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Zhongmou Jin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Dinghong Zhang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Karina Cunha E Rocha
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiao Liu
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Huayi Zhao
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - David A Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| | - Wei Ying
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
178
|
Zahr T, Sun K, Qiang L. The polarizable and reprogrammable identity of Kupffer cells in Nonalcoholic Steatohepatitis. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:324-327. [PMID: 37724329 PMCID: PMC10388795 DOI: 10.1515/mr-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 09/20/2023]
Abstract
Kupffer cells (KCs) are the resident macrophages of the liver with similar origins to myeloid-derived macrophages. Once differentiated, KCs exhibit distinct cellular machinery capable of longevity and self-renewal, making them a crucial player in promoting effective intrahepatic communication. However, this gets compromised in disease states like Nonalcoholic Steatohepatitis (NASH), where the loss of embryo-derived KCs (EmKCs) is observed. Despite this, other KC-like and KC-derived populations start to form and contribute to a variety of roles in NASH pathogenesis, often adopting a NASH-associated molecular signature. Here we offer a brief overview of recent reports describing KC polarization and reprogramming in the liver. We describe the complexities of KC cellular identity, their proposed ability to reprogram to fibroblast-like and endothelial-like cells, and the potential implications in NASH.
Collapse
Affiliation(s)
- Tarik Zahr
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Kevin Sun
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
179
|
Sun X, Wu J, Liu L, Chen Y, Tang Y, Liu S, Chen H, Jiang Y, Liu Y, Yuan H, Lu Y, Chen Z, Cai J. Transcriptional switch of hepatocytes initiates macrophage recruitment and T-cell suppression in endotoxemia. J Hepatol 2022; 77:436-452. [PMID: 35276271 DOI: 10.1016/j.jhep.2022.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The liver plays crucial roles in the regulation of immune defense during acute systemic infections. However, the roles of liver cellular clusters and intercellular communication in the progression of endotoxemia have not been well-characterized. METHODS Single-cell RNA sequencing analysis was performed, and the transcriptomes of 19,795 single liver cells from healthy and endotoxic mice were profiled. The spatial and temporal changes in hepatocytes and non-parenchymal cell types were validated by multiplex immunofluorescence staining, bulk transcriptomic sequencing, or flow cytometry. Furthermore, we used an adeno-associated virus delivery system to confirm the major mechanisms mediating myeloid cell infiltration and T-cell suppression in septic murine liver. RESULTS We identified a proinflammatory hepatocyte (PIH) subpopulation that developed primarily from periportal hepatocytes and to a lesser extent from pericentral hepatocytes and played key immunoregulatory roles in endotoxemia. Multicellular cluster modeling of ligand-receptor interactions revealed that PIHs play a crucial role in the recruitment of macrophages via the CCL2-CCR2 interaction. Recruited macrophages (RMs) released cytokines (e.g., IL6, TNFα, and IL17) to induce the expression of inhibitory ligands, such as PD-L1, on hepatocytes. Subsequently, RM-stimulated hepatocytes led to the suppression of CD4+ and memory T-cell subsets partly via the PD-1/PD-L1 interaction in endotoxemia. Furthermore, sinusoidal endothelial cells expressed the highest levels of proapoptotic and inflammatory genes around the periportal zone. This pattern of gene expression facilitated increases in the number of fenestrations and infiltration of immune cells in the periportal zone. CONCLUSIONS Our study elucidates unanticipated aspects of the cellular and molecular effects of endotoxemia on liver cells at the single-cell level and provides a conceptual framework for the development of novel therapeutic approaches for acute infection. LAY SUMMARY The liver plays a crucial role in the regulation of immune defense during acute systemic infections. We identified a proinflammatory hepatocyte subpopulation and demonstrated that the interactions of this subpopulation with recruited macrophages are pivotal in the immune response during endotoxemia. These novel findings provide a conceptual framework for the discovery of rational therapeutic targets in acute infection.
Collapse
Affiliation(s)
- Xuejing Sun
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Junru Wu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lun Liu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Chen
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yan Tang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Suzhen Liu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Youxiang Jiang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Liu
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hong Yuan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yao Lu
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhaoyang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
180
|
Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD - more than inflammation. Nat Rev Endocrinol 2022; 18:461-472. [PMID: 35534573 DOI: 10.1038/s41574-022-00675-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 01/07/2023]
Abstract
Macrophages have diverse phenotypes and functions due to differences in their origin, location and pathophysiological context. Although their main role in the liver has been described as immunoregulatory and detoxifying, changes in macrophage phenotypes, diversity, dynamics and function have been reported during obesity-related complications such as non-alcoholic fatty liver disease (NAFLD). NAFLD encompasses multiple disease states from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocarcinoma. Obesity and insulin resistance are prominent risk factors for NASH, a disease with a high worldwide prevalence and no approved treatment. In this Review, we discuss the turnover and function of liver-resident macrophages (Kupffer cells) and monocyte-derived hepatic macrophages. We examine these populations in both steady state and during NAFLD, with an emphasis on NASH. The explosion in high-throughput gene expression analysis using single-cell RNA sequencing (scRNA-seq) within the last 5 years has revolutionized the study of macrophage heterogeneity, substantially increasing our understanding of the composition and diversity of tissue macrophages, including in the liver. Here, we highlight scRNA-seq findings from the last 5 years on the diversity of liver macrophages in homeostasis and metabolic disease, and reveal hepatic macrophage function beyond their classically described inflammatory role in the progression of NAFLD and NASH pathogenesis.
Collapse
Affiliation(s)
- Emelie Barreby
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ping Chen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Myriam Aouadi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
181
|
Abstract
The human liver is a complex organ made up of multiple specialized cell types that carry out key physiological functions. An incomplete understanding of liver biology limits our ability to develop therapeutics to prevent chronic liver diseases, liver cancers, and death as a result of organ failure. Recently, single-cell modalities have expanded our understanding of the cellular phenotypic heterogeneity and intercellular cross-talk in liver health and disease. This review summarizes these findings and looks forward to highlighting new avenues for the application of single-cell genomics to unravel unknown pathogenic pathways and disease mechanisms for the development of new therapeutics targeting liver pathology. As these technologies mature, their integration into clinical data analysis will aid in patient stratification and in developing treatment plans for patients suffering from liver disease.
Collapse
Affiliation(s)
- Jawairia Atif
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Cornelia Thoeni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ian D. McGilvray
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sonya A. MacParland
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
182
|
Wallace SJ, Tacke F, Schwabe RF, Henderson NC. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Rep 2022; 4:100524. [PMID: 35845296 PMCID: PMC9284456 DOI: 10.1016/j.jhepr.2022.100524] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions, with a global prevalence of 25% in the adult population. Non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis, has become the leading indication for liver transplantation in both Europe and the USA. Liver fibrosis is the consequence of sustained, iterative liver injury, and the main determinant of outcomes in NASH. The liver possesses remarkable inherent plasticity, and liver fibrosis can regress when the injurious agent is removed, thus providing opportunities to alter long-term outcomes through therapeutic interventions. Although hepatocyte injury is a key driver of NASH, multiple other cell lineages within the hepatic fibrotic niche play major roles in the perpetuation of inflammation, mesenchymal cell activation, extracellular matrix accumulation as well as fibrosis resolution. The constituents of this cellular interactome, and how the various subpopulations within the fibrotic niche interact to drive fibrogenesis is an area of active research. Important cellular components of the fibrotic niche include endothelial cells, macrophages, passaging immune cell populations and myofibroblasts. In this review, we will describe how rapidly evolving technologies such as single-cell genomics, spatial transcriptomics and single-cell ligand-receptor analyses are transforming our understanding of the cellular interactome in NAFLD/NASH, and how this new, high-resolution information is being leveraged to develop rational new therapies for patients with NASH.
Collapse
Key Words
- BAs, bile acids
- CCL, C-C motif chemokine ligand
- CCR, C-C motif chemokine receptor
- CLD, chronic liver disease
- CTGF, connective tissue growth factor
- CXCL, C-X-C motif chemokine ligand
- CXCR, C-X-C motif chemokine receptor
- DAMP, damage-associated molecular pattern
- ECM, extracellular matrix
- ER, endoplasmic reticulum
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- HSCs, hepatic stellate cells
- IL, interleukin
- ILC, innate lymphoid cell
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MAIT, mucosal-associated invariant T
- MAMPS, microbiota-associated molecular patterns
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NK(T), natural killer (T)
- NLR, Nod like receptors
- Non-alcoholic fatty liver disease (NAFLD)
- PDGF, platelet-derived growth factor
- PFs, portal fibroblasts
- SASP, senescence-associated secretory phenotype
- TGF, transforming growth factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- VEGF, vascular endothelial growth factor
- antifibrotic therapies
- cellular interactome
- cirrhosis
- fibrosis
- single-cell genomics
Collapse
Affiliation(s)
- Sebastian J. Wallace
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Robert F. Schwabe
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| |
Collapse
|
183
|
Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases. J Clin Med 2022; 11:jcm11154358. [PMID: 35955975 PMCID: PMC9369133 DOI: 10.3390/jcm11154358] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.
Collapse
|
184
|
Ilieva M, Dao J, Miller HE, Madsen JH, Bishop AJR, Kauppinen S, Uchida S. Systematic Analysis of Long Non-Coding RNA Genes in Nonalcoholic Fatty Liver Disease. Noncoding RNA 2022; 8:ncrna8040056. [PMID: 35893239 PMCID: PMC9332188 DOI: 10.3390/ncrna8040056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
The largest solid organ in humans, the liver, performs a variety of functions to sustain life. When damaged, cells in the liver can regenerate themselves to maintain normal liver physiology. However, some damage is beyond repair, which necessitates liver transplantation. Increasing rates of obesity, Western diets (i.e., rich in processed carbohydrates and saturated fats), and cardiometabolic diseases are interlinked to liver diseases, including non-alcoholic fatty liver disease (NAFLD), which is a collective term to describe the excess accumulation of fat in the liver of people who drink little to no alcohol. Alarmingly, the prevalence of NAFLD extends to 25% of the world population, which calls for the urgent need to understand the disease mechanism of NAFLD. Here, we performed secondary analyses of published RNA sequencing (RNA-seq) data of NAFLD patients compared to healthy and obese individuals to identify long non-coding RNAs (lncRNAs) that may underly the disease mechanism of NAFLD. Similar to protein-coding genes, many lncRNAs are dysregulated in NAFLD patients compared to healthy and obese individuals, suggesting that understanding the functions of dysregulated lncRNAs may shed light on the pathology of NAFLD. To demonstrate the functional importance of lncRNAs in the liver, loss-of-function experiments were performed for one NAFLD-related lncRNA, LINC01639, which showed that it is involved in the regulation of genes related to apoptosis, TNF/TGF, cytokine signaling, and growth factors as well as genes upregulated in NAFLD. Since there is no lncRNA database focused on the liver, especially NAFLD, we built a web database, LiverDB, to further facilitate functional and mechanistic studies of hepatic lncRNAs.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
- Correspondence: (M.I.); (S.U.)
| | - James Dao
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (J.D.); (H.E.M.)
| | - Henry E. Miller
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (J.D.); (H.E.M.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA;
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Jens Hedelund Madsen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
| | - Alexander J. R. Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA;
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- May’s Cancer Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (J.D.); (H.E.M.)
- Correspondence: (M.I.); (S.U.)
| |
Collapse
|
185
|
Do TH, Ma F, Andrade PR, Teles R, de Andrade Silva BJ, Hu C, Espinoza A, Hsu JE, Cho CS, Kim M, Xi J, Xing X, Plazyo O, Tsoi LC, Cheng C, Kim J, Bryson BD, O'Neill AM, Colonna M, Gudjonsson JE, Klechevsky E, Lee JH, Gallo RL, Bloom BR, Pellegrini M, Modlin RL. TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci Immunol 2022; 7:eabo2787. [PMID: 35867799 PMCID: PMC9400695 DOI: 10.1126/sciimmunol.abo2787] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acne affects 1 in 10 people globally, often resulting in disfigurement. The disease involves excess production of lipids, particularly squalene, increased growth of Cutibacterium acnes, and a host inflammatory response with foamy macrophages. By combining single-cell and spatial RNA sequencing as well as ultrahigh-resolution Seq-Scope analyses of early acne lesions on back skin, we identified TREM2 macrophages expressing lipid metabolism and proinflammatory gene programs in proximity to hair follicle epithelium expressing squalene epoxidase. We established that the addition of squalene induced differentiation of TREM2 macrophages in vitro, which were unable to kill C. acnes. The addition of squalene to macrophages inhibited induction of oxidative enzymes and scavenged oxygen free radicals, providing an explanation for the efficacy of topical benzoyl peroxide in the clinical treatment of acne. The present work has elucidated the mechanisms by which TREM2 macrophages and unsaturated lipids, similar to their involvement in atherosclerosis, may contribute to the pathogenesis of acne.
Collapse
Affiliation(s)
- Tran H Do
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Priscila R Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Rosane Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Bruno J de Andrade Silva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Chanyue Hu
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Espinoza
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jer-En Hsu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jingyue Xi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol Cheng
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Jenny Kim
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Barry R Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matteo Pellegrini
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
186
|
Novo E, Cappon A, Villano G, Quarta S, Cannito S, Bocca C, Turato C, Guido M, Maggiora M, Protopapa F, Sutti S, Provera A, Ruvoletto M, Biasiolo A, Foglia B, Albano E, Pontisso P, Parola M. SerpinB3 as a Pro-Inflammatory Mediator in the Progression of Experimental Non-Alcoholic Fatty Liver Disease. Front Immunol 2022; 13:910526. [PMID: 35874657 PMCID: PMC9304805 DOI: 10.3389/fimmu.2022.910526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease worldwide. In 20-30% of patients, NAFLD can progress into non-alcoholic steatohepatitis (NASH), eventually leading to fibrosis, cirrhosis and hepatocellular carcinoma development. SerpinB3 (SB3), a hypoxia-inducible factor-2α dependent cysteine protease inhibitor, is up-regulated in hepatocytes during progressive NAFLD and proposed to contribute to disease progression. In this study we investigated the pro-inflammatory role of SB3 by employing phorbol-myristate acetate-differentiated human THP-1 macrophages exposed in vitro to human recombinant SB3 (hrSB3) along with mice overexpressing SB3 in hepatocytes (TG/SB3) or knockout for SB3 (KO/SB3) in which NASH was induced by feeding methionine/choline deficient (MCD) or a choline-deficient, L-amino acid defined (CDAA) diets. In vivo experiments showed that the induction of NASH in TG/SB3 mice was characterized by an impressive increase of liver infiltrating macrophages that formed crown-like aggregates and by an up-regulation of hepatic transcript levels of pro-inflammatory cytokines. All these parameters and the extent of liver damage were significantly blunted in KO/SB3 mice. In vitro experiments confirmed that hrSB3 stimulated macrophage production of M1-cytokines such as TNFα and IL-1β and reactive oxygen species along with that of TGFβ and VEGF through the activation of the NF-kB transcription factor. The opposite changes in liver macrophage activation observed in TG/SB3 or KO/SB3 mice with NASH were associated with a parallel modulation in the expression of triggering receptor expressed on myeloid cells-2 (TREM2), CD9 and galectin-3 markers, recently detected in NASH-associated macrophages. From these results we propose that SB3, produced by activated/injured hepatocytes, may operate as a pro-inflammatory mediator in NASH contributing to the disease progression.
Collapse
Affiliation(s)
- Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Andrea Cappon
- Department of Medicine, University of Padova, Padova, Italy
| | - Gianmarco Villano
- Department of Surgical, Oncological and Gastroenterological Sciences – DISCOG, University of Padova, Padova, Italy
| | - Santina Quarta
- Department of Medicine, University of Padova, Padova, Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Claudia Bocca
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Guido
- Department of Medicine, University of Padova, Padova, Italy
| | - Marina Maggiora
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Francesca Protopapa
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Salvatore Sutti
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alessia Provera
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | | | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Emanuele Albano
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, Padova, Italy
- *Correspondence: Patrizia Pontisso, ; Maurizio Parola,
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
- *Correspondence: Patrizia Pontisso, ; Maurizio Parola,
| |
Collapse
|
187
|
Gao H, Jin Z, Bandyopadhyay G, Cunha E Rocha K, Liu X, Zhao H, Zhang D, Jouihan H, Pourshahian S, Kisseleva T, Brenner DA, Ying W, Olefsky JM. MiR-690 treatment causes decreased fibrosis and steatosis and restores specific Kupffer cell functions in NASH. Cell Metab 2022; 34:978-990.e4. [PMID: 35700738 PMCID: PMC9262870 DOI: 10.1016/j.cmet.2022.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/07/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a liver disease associated with significant morbidity. Kupffer cells (KCs) produce endogenous miR-690 and, via exosome secretion, shuttle this miRNA to other liver cells, such as hepatocytes, recruited hepatic macrophages (RHMs), and hepatic stellate cells (HSCs). miR-690 directly inhibits fibrogenesis in HSCs, inflammation in RHMs, and de novo lipogenesis in hepatocytes. When an miR-690 mimic is administered to NASH mice in vivo, all the features of the NASH phenotype are robustly inhibited. During the development of NASH, KCs become miR-690 deficient, and miR-690 levels are markedly lower in mouse and human NASH livers than in controls. KC-specific KO of miR-690 promotes NASH pathogenesis. A primary target of miR-690 is NADK mRNA, and NADK levels are inversely proportional to the cellular miR-690 content. These studies show that KCs play a central role in the etiology of NASH and raise the possibility that miR-690 could emerge as a therapeutic for this condition.
Collapse
Affiliation(s)
- Hong Gao
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhongmou Jin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karina Cunha E Rocha
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiao Liu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huayi Zhao
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dinghong Zhang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hani Jouihan
- Janssen Research & Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19477, USA
| | - Soheil Pourshahian
- Janssen Pharmaceutical Companies of Johnson & Johnson, San Francisco, CA 94080, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David A Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Ying
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
188
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards non-alcoholic steatohepatitis (NASH), cirrhosis or even hepatocellular carcinoma. NAFLD is a major health burden, and its incidence is increasing worldwide. Although it is primarily a disease of disturbed metabolism, NAFLD involves several immune cell-mediated inflammatory processes, particularly when reaching the stage of NASH, at which point inflammation becomes integral to the progression of the disease. The hepatic immune cell landscape is diverse at steady state and it further evolves during NASH with direct consequences for disease severity. In this Review, we discuss current concepts related to the role of immune cells in the onset and progression of NASH. A better understanding of the mechanisms by which immune cells contribute to NASH pathogenesis should aid the design of innovative drugs to target NASH, for which current therapeutic options are limited.
Collapse
Affiliation(s)
- Thierry Huby
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR-S 1166), Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR-S 1166), Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
189
|
Torres A, Pedersen B, Cobo I, Ai R, Coras R, Murillo-Saich J, Nygaard G, Sanchez-Lopez E, Murphy A, Wang W, Firestein GS, Guma M. Epigenetic Regulation of Nutrient Transporters in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Arthritis Rheumatol 2022; 74:1159-1171. [PMID: 35128827 PMCID: PMC9246826 DOI: 10.1002/art.42077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/21/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Since previous studies indicate that metabolism is altered in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), we undertook this study to determine if changes in the genome-wide chromatin and DNA states in genes associated with nutrient transporters could help to identify activated metabolic pathways in RA FLS. METHODS Data from a previous comprehensive epigenomic study in FLS were analyzed to identify differences in genome-wide states and gene transcription between RA and osteoarthritis. We utilized the single nearest genes to regions of interest for pathway analyses. Homer promoter analysis was used to identify enriched motifs for transcription factors. The role of solute carrier transporters and glutamine metabolism dependence in RA FLS was determined by small interfacing RNA knockdown, functional assays, and incubation with CB-839, a glutaminase inhibitor. We performed 1 H nuclear magnetic resonance to quantify metabolites. RESULTS The unbiased pathway analysis demonstrated that solute carrier-mediated transmembrane transport was one pathway associated with differences in at least 4 genome-wide states or gene transcription. Thirty-four transporters of amino acids and other nutrients were associated with a change in at least 4 epigenetic marks. Functional assays revealed that solute carrier family 4 member 4 (SLC4A4) was critical for invasion, and glutamine was sufficient as an alternate source of energy to glucose. Experiments with CB-839 demonstrated decreased RA FLS invasion and proliferation. Finally, we found enrichment of motifs for c-Myc in several nutrient transporters. CONCLUSION Our findings demonstrate that changes in the epigenetic landscape of genes are related to nutrient transporters, and metabolic pathways can be used to identify RA-specific targets, including critical solute carrier transporters, enzymes, and transcription factors, to develop novel therapeutic agents.
Collapse
Affiliation(s)
- Alyssa Torres
- Division of Rheumatology, Allergy and Immunology and, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Brian Pedersen
- Division of Rheumatology, Allergy and Immunology and, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Isidoro Cobo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Rizi Ai
- Department of Chemistry and Biochemistry, Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Roxana Coras
- Division of Rheumatology, Allergy and Immunology and, School of Medicine, University of California, San Diego, CA 92093, USA
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
| | - Jessica Murillo-Saich
- Division of Rheumatology, Allergy and Immunology and, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Gyrid Nygaard
- Division of Rheumatology, Allergy and Immunology and, School of Medicine, University of California, San Diego, CA 92093, USA
| | | | | | - Wei Wang
- Department of Chemistry and Biochemistry, Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology and, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology and, School of Medicine, University of California, San Diego, CA 92093, USA
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
- VA Medical Center, San Diego, California
| |
Collapse
|
190
|
Abstract
PURPOSE OF REVIEW Myeloid cells - granulocytes, monocytes, macrophages and dendritic cells (DCs) - are innate immune cells that play key roles in pathogen defense and inflammation, as well as in tissue homeostasis and repair. Over the past 5 years, in part due to more widespread use of single cell omics technologies, it has become evident that these cell types are significantly more heterogeneous than was previously appreciated. In this review, we consider recent studies that have demonstrated heterogeneity among neutrophils, monocytes, macrophages and DCs in mice and humans. We also discuss studies that have revealed the sources of their heterogeneity. RECENT FINDINGS Recent studies have confirmed that ontogeny is a key determinant of diversity, with specific subsets of myeloid cells arising from distinct progenitors. However, diverse microenvironmental cues also strongly influence myeloid fate and function. Accumulating evidence therefore suggests that a combination of these mechanisms underlies myeloid cell diversity. SUMMARY Consideration of the heterogeneity of myeloid cells is critical for understanding their diverse activities, such as the role of macrophages in tissue damage versus repair, or tumor growth versus elimination. Insights into these mechanisms are informing the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Yáñez
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Cristina Bono
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
191
|
Wang Y, Wang J. Intravital Imaging of Inflammatory Response in Liver Disease. Front Cell Dev Biol 2022; 10:922041. [PMID: 35837329 PMCID: PMC9274191 DOI: 10.3389/fcell.2022.922041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The healthy liver requires a strictly controlled crosstalk between immune and nonimmune cells to maintain its function and homeostasis. A well-conditioned immune system can effectively recognize and clear noxious stimuli by a self-limited, small-scale inflammatory response. This regulated inflammatory process enables the liver to cope with daily microbial exposure and metabolic stress, which is beneficial for hepatic self-renewal and tissue remodeling. However, the failure to clear noxious stimuli or dysregulation of immune response can lead to uncontrolled liver inflammation, liver dysfunction, and severe liver disease. Numerous highly dynamic circulating immune cells and sessile resident immune and parenchymal cells interact and communicate with each other in an incredibly complex way to regulate the inflammatory response in both healthy and diseased liver. Intravital imaging is a powerful tool to visualize individual cells in vivo and has been widely used for dissecting the behavior and interactions between various cell types in the complex architecture of the liver. Here, we summarize some new findings obtained with the use of intravital imaging, which enhances our understanding of the complexity of immune cell behavior, cell–cell interaction, and spatial organization during the physiological and pathological liver inflammatory response.
Collapse
|
192
|
Li W, Chang N, Li L. Heterogeneity and Function of Kupffer Cells in Liver Injury. Front Immunol 2022; 13:940867. [PMID: 35833135 PMCID: PMC9271789 DOI: 10.3389/fimmu.2022.940867] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Kupffer cells (KCs) are key regulators of liver immunity composing the principal part of hepatic macrophages even body tissue macrophages. They reside in liver sinusoids towards portal vein. The micro-environment shapes KCs unique immunosuppressive features and functions. KCs express specific surface markers that distinguish from other liver macrophages. By engulfing gut-derived foreign products and apoptotic cells without triggering excessive inflammation, KCs maintain homeostasis of liver and body. Heterogeneity of KCs has been identified in different studies. In terms of the origin, adult KCs are derived from progenitors of both embryo and adult bone marrow. Embryo-derived KCs compose the majority of KCs in healthy and maintain by self-renewal. Bone marrow monocytes replenish massively when embryo-derived KC proliferation are impaired. The phenotype of KCs is also beyond the traditional dogma of M1-M2. Functionally, KCs play central roles in pathogenesis of acute and chronic liver injury. They contribute to each pathological stage of liver disease. By initiating inflammation, regulating fibrosis, cirrhosis and tumor cell proliferation, KCs contribute to the resolution of liver injury and restoration of tissue architecture. The underlying mechanism varied by damage factors and pathology. Understanding the characteristics and functions of KCs may provide opportunities for the therapy of liver injury. Herein, we attempt to afford insights on heterogeneity and functions of KCs in liver injury using the existing findings.
Collapse
|
193
|
Endo-Umeda K, Kim E, Thomas DG, Liu W, Dou H, Yalcinkaya M, Abramowicz S, Xiao T, Antonson P, Gustafsson JÅ, Makishima M, Reilly MP, Wang N, Tall AR. Myeloid LXR (Liver X Receptor) Deficiency Induces Inflammatory Gene Expression in Foamy Macrophages and Accelerates Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:719-731. [PMID: 35477277 PMCID: PMC9162499 DOI: 10.1161/atvbaha.122.317583] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cholesterol loaded macrophage foam cells are a prominent feature of atherosclerotic plaques. Single-cell RNA sequencing has identified foam cells as TREM2 (triggering receptor expressed on myeloid cells 2) positive populations with low expression of inflammatory genes, resembling the TREM2 positive microglia of neurodegenerative diseases. Cholesterol loading of macrophages in vitro results in activation of LXR (liver X receptor) transcription factors and suppression of inflammatory genes. METHODS To test the hypothesis that LXRs mediate anti-inflammatory effects in Trem2 expressing atherosclerotic plaque foam cells, we performed RNA profiling on plaque cells from hypercholesterolemic mice with myeloid LXR deficiency. RESULTS Myeloid LXR deficiency led to a dramatic increase in atherosclerosis with increased monocyte entry, foam cell formation, and plaque inflammation. Bulk cell-RNA profiling of plaque myeloid cells showed prominent upregulation of inflammatory mediators including oxidative, chemokine, and chemotactic genes. Single-cell RNA sequencing revealed increased numbers of foamy TREM2-expressing macrophages; however, these cells had reduced expression of the Trem2 gene expression module, including phagocytic and cholesterol efflux genes, and had switched to a proinflammatory and proliferative phenotype. Expression of Trem2 was suppressed by inflammatory signals but not directly affected by LXR activation in bone marrow-derived macrophages. CONCLUSIONS Our current studies reveal the key role of macrophage LXRs in promoting the Trem2 gene expression program and in suppressing inflammation in foam cells of atherosclerotic plaques.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
- Division of Biochemistry, Department of Biomedical
Sciences, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Eunyoung Kim
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
- Division of Cardiology, Department of Medicine, Columbia
University, New York, NY 10032, USA
| | - David G. Thomas
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
- Present Address: Department of Medicine, New York
Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Huijuan Dou
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska
Institute, Huddinge, SE-14157, Sweden
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska
Institute, Huddinge, SE-14157, Sweden
- Center for Nuclear Receptors and Cell Signaling, University
of Houston, Houston, TX 77204, USA
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical
Sciences, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia
University, New York, NY 10032, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| |
Collapse
|
194
|
Sugimoto S, Mena HA, Sansbury BE, Kobayashi S, Tsuji T, Wang CH, Yin X, Huang TL, Kusuyama J, Kodani SD, Darcy J, Profeta G, Pereira N, Tanzi RE, Zhang C, Serwold T, Kokkotou E, Goodyear LJ, Cypess AM, Leiria LO, Spite M, Tseng YH. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat Metab 2022; 4:775-790. [PMID: 35760872 PMCID: PMC9792164 DOI: 10.1038/s42255-022-00590-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/18/2022] [Indexed: 12/30/2022]
Abstract
Obesity induces chronic inflammation resulting in insulin resistance and metabolic disorders. Cold exposure can improve insulin sensitivity in humans and rodents, but the mechanisms have not been fully elucidated. Here, we find that cold resolves obesity-induced inflammation and insulin resistance and improves glucose tolerance in diet-induced obese mice. The beneficial effects of cold exposure on improving obesity-induced inflammation and insulin resistance depend on brown adipose tissue (BAT) and liver. Using targeted liquid chromatography with tandem mass spectrometry, we discovered that cold and β3-adrenergic stimulation promote BAT to produce maresin 2 (MaR2), a member of the specialized pro-resolving mediators of bioactive lipids that play a role in the resolution of inflammation. Notably, MaR2 reduces inflammation in obesity in part by targeting macrophages in the liver. Thus, BAT-derived MaR2 could contribute to the beneficial effects of BAT activation in resolving obesity-induced inflammation and may inform therapeutic approaches to combat obesity and its complications.
Collapse
Affiliation(s)
- Satoru Sugimoto
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hebe Agustina Mena
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian E Sansbury
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shio Kobayashi
- Section of Immunobiology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Xuanzhi Yin
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joji Kusuyama
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sean D Kodani
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Justin Darcy
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Gerson Profeta
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nayara Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Serwold
- Section of Immunobiology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Efi Kokkotou
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Luiz Osório Leiria
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
195
|
Rui L, Lin JD. Reprogramming of Hepatic Metabolism and Microenvironment in Nonalcoholic Steatohepatitis. Annu Rev Nutr 2022; 42:91-113. [PMID: 35584814 PMCID: PMC10122183 DOI: 10.1146/annurev-nutr-062220-105200] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a spectrum of metabolic liver disease associated with obesity, ranges from relatively benign hepatic steatosis to nonalcoholic steatohepatitis (NASH). The latter is characterized by persistent liver injury, inflammation, and liver fibrosis, which collectively increase the risk for end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. Recent work has shed new light on the pathophysiology of NAFLD/NASH, particularly the role of genetic, epigenetic, and dietary factors and metabolic dysfunctions in other tissues in driving excess hepatic fat accumulation and liver injury. In parallel, single-cell RNA sequencing studies have revealed unprecedented details of the molecular nature of liver cell heterogeneity, intrahepatic cross talk, and disease-associated reprogramming of the liver immune and stromal vascular microenvironment. This review covers the recent advances in these areas, the emerging concepts of NASH pathogenesis, and potential new therapeutic opportunities. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrated Physiology and Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| |
Collapse
|
196
|
Abstract
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases.
Collapse
Affiliation(s)
- Kyeong-Jin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
197
|
Zhang C, Liu S, Yang M. The Role of Interferon Regulatory Factors in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. GASTROENTEROLOGY INSIGHTS 2022; 13:148-161. [DOI: 10.3390/gastroent13020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease with many metabolic comorbidities, such as obesity, diabetes, and cardiovascular diseases. Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, accompanies the progression of hepatic steatosis, inflammation, cell death, and varying degree of liver fibrosis. Interferons (IFNs) have been shown to play important roles in the pathogenesis of NAFLD and NASH. Their regulating transcriptional factors such as interferon regulatory factors (IRFs) can regulate IFN expression, as well as genes involved in macrophage polarization, which are implicated in the pathogenesis of NAFLD and advanced liver disease. In this review, the roles of IRF-involved signaling pathways in hepatic inflammation, insulin resistance, and immune cell activation are reviewed. IRFs such as IRF1 and IRF4 are also involved in the polarization of macrophages that contribute to critical roles in NAFLD or NASH pathogenesis. In addition, IRFs have been shown to be regulated by treatments including microRNAs, PPAR modulators, anti-inflammatory agents, and TLR agonists or antagonists. Modulating IRF-mediated factors through these treatments in chronic liver disease can ameliorate the progression of NAFLD to NASH. Furthermore, adenoviruses and CRISPR activation plasmids can also be applied to regulate IRF-mediated effects in chronic liver disease. Pre-clinical and clinical trials for evaluating IRF regulators in NAFLD treatment are essential in the future direction.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
198
|
Lan T, Qian S, Tang C, Gao J. Role of Immune Cells in Biliary Repair. Front Immunol 2022; 13:866040. [PMID: 35432349 PMCID: PMC9005827 DOI: 10.3389/fimmu.2022.866040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The biliary system is comprised of cholangiocytes and plays an important role in maintaining liver function. Under normal conditions, cholangiocytes remain in the stationary phase and maintain a very low turnover rate. However, the robust biliary repair is initiated in disease conditions, and different repair mechanisms can be activated depending on the pathological changes. During biliary disease, immune cells including monocytes, lymphocytes, neutrophils, and mast cells are recruited to the liver. The cellular interactions between cholangiocytes and these recruited immune cells as well as hepatic resident immune cells, including Kupffer cells, determine disease outcomes. However, the role of immune cells in the initiation, regulation, and suspension of biliary repair remains elusive. The cellular processes of cholangiocyte proliferation, progenitor cell differentiation, and hepatocyte-cholangiocyte transdifferentiation during biliary diseases are reviewed to manifest the underlying mechanism of biliary repair. Furthermore, the potential role of immune cells in crucial biliary repair mechanisms is highlighted. The mechanisms of biliary repair in immune-mediated cholangiopathies, inherited cholangiopathies, obstructive cholangiopathies, and cholangiocarcinoma are also summarized. Additionally, novel techniques that could clarify the underlying mechanisms of biliary repair are displayed. Collectively, this review aims to deepen the understanding of the mechanisms of biliary repair and contributes potential novel therapeutic methods for treating biliary diseases.
Collapse
Affiliation(s)
- Tian Lan
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
199
|
Annexin A1 treatment prevents the evolution to fibrosis of experimental nonalcoholic steatohepatitis (NASH). Clin Sci (Lond) 2022; 136:643-656. [PMID: 35438166 DOI: 10.1042/cs20211122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Annexin A1 (AnxA1) is an important effector in the resolution of inflammation which is involved in modulating hepatic inflammation in nonalcoholic steatohepatitis (NASH). In this study we have investigated the possible effects of treatment with AnxA1 for counteracting the progression of experimental NASH. NASH was induced in C57BL/6 mice by feeding methionine-choline deficient (MCD) or Western diets and the animals were treated for 4-6 weeks with human recombinant AnxA1 (hrAnxA1; 1µg, daily IP) or saline once NASH was established. In both experimental models, treatment with hrAnxA1 improved parenchymal injury and lobular inflammation without interfering with the extension of steatosis. Furthermore, administration of hrAnxA1 significantly attenuated the hepatic expression of α1-procollagen and TGF-ß1 and reduced collagen deposition, as evaluated by collagen Sirius Red staining. Flow cytometry and immunohistochemistry showed that hrAnxA1 did not affect the liver recruitment of macrophages, but strongly interfered with the formation of crown-like macrophage aggregates and reduced their capacity of producing pro-fibrogenic mediators like osteopontin (OPN) and galectin-3 (Gal-3). This effect was related to an interference with the acquisition of a specific macrophage phenotype characterized by the expression of the Triggering Receptor Expressed on Myeloid cells 2 (TREM-2), CD9 and CD206, previously associated with NASH evolution to cirrhosis. Collectively, these results indicate that, beside ameliorating hepatic inflammation, AnxA1 is specifically effective in preventing NASH-associated fibrosis by interfering with macrophage pro-fibrogenic features. Such a novel function of AnxA1 gives the rational for the development of AnxA1 analogues for the therapeutic control of NASH evolution.
Collapse
|
200
|
Sanin DE, Ge Y, Marinkovic E, Kabat AM, Castoldi A, Caputa G, Grzes KM, Curtis JD, Thompson EA, Willenborg S, Dichtl S, Reinhardt S, Dahl A, Pearce EL, Eming SA, Gerbaulet A, Roers A, Murray PJ, Pearce EJ. A common framework of monocyte-derived macrophage activation. Sci Immunol 2022; 7:eabl7482. [PMID: 35427180 DOI: 10.1126/sciimmunol.abl7482] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages populate every organ during homeostasis and disease, displaying features of tissue imprinting and heterogeneous activation. The disconnected picture of macrophage biology that has emerged from these observations is a barrier for integration across models or with in vitro macrophage activation paradigms. We set out to contextualize macrophage heterogeneity across mouse tissues and inflammatory conditions, specifically aiming to define a common framework of macrophage activation. We built a predictive model with which we mapped the activation of macrophages across 12 tissues and 25 biological conditions, finding a notable commonality and finite number of transcriptional profiles, in particular among infiltrating macrophages, which we modeled as defined stages along four conserved activation paths. These activation paths include a "phagocytic" regulatory path, an "inflammatory" cytokine-producing path, an "oxidative stress" antimicrobial path, or a "remodeling" extracellular matrix deposition path. We verified this model with adoptive cell transfer experiments and identified transient RELMɑ expression as a feature of monocyte-derived macrophage tissue engraftment. We propose that this integrative approach of macrophage classification allows the establishment of a common predictive framework of monocyte-derived macrophage activation in inflammation and homeostasis.
Collapse
Affiliation(s)
- David E Sanin
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Emilija Marinkovic
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Angela Castoldi
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - George Caputa
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan D Curtis
- Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth A Thompson
- Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sebastian Willenborg
- Department of Dermatology, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Stefanie Dichtl
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, TU Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, TU Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Peter J Murray
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| |
Collapse
|