151
|
Sidhu JK, Siggins MK, Liew F, Russell CD, Uruchurtu ASS, Davis C, Turtle L, Moore SC, Hardwick HE, Oosthuyzen W, Thomson EC, Semple MG, Baillie JK, Openshaw PJM, Thwaites RS. Delayed Mucosal Antiviral Responses Despite Robust Peripheral Inflammation in Fatal COVID-19. J Infect Dis 2024; 230:e17-e29. [PMID: 38134401 PMCID: PMC11272059 DOI: 10.1093/infdis/jiad590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND While inflammatory and immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished coronavirus disease 2019 (COVID-19) severity categories, and relate these to disease progression and peripheral inflammation. METHODS We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalized with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days after symptom onset) or late (6-20 days after symptom onset) phase. RESULTS Patients that survived severe COVID-19 showed interferon (IFN)-dominated mucosal immune responses (IFN-γ, CXCL10, and CXCL13) early in infection. These early mucosal responses were absent in patients who would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by interleukin 2 (IL-2), IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. CONCLUSIONS Defective early mucosal antiviral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19.
Collapse
Affiliation(s)
- Jasmin K Sidhu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew K Siggins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Felicity Liew
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clark D Russell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ashley S S Uruchurtu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christopher Davis
- Medical Research Council Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Lance Turtle
- Department of Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, United Kingdom
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool Health Partners, Liverpool, United Kingdom
| | - Shona C Moore
- Department of Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Hayley E Hardwick
- Department of Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Wilna Oosthuyzen
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emma C Thomson
- Medical Research Council Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Malcolm G Semple
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary, and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Respiratory Medicine, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Intensive Care Unit, Royal Infirmary Edinburgh, Edinburgh, United Kingdom
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
152
|
Yin T, He L, Du Y, Liu J, Peng L, Yang M, Sun S, Liu J, Li J, Cao J, Zhu H, Wang S. Macrophage WNK1 senses intracellular hypo-chlorine to regulate vulnerability to sepsis attack during hypochloremia. Int Immunopharmacol 2024; 139:112721. [PMID: 39033662 DOI: 10.1016/j.intimp.2024.112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Sepsis is one of the leading causes of death in critical patients worldwide and its occurrence is related to the excessive activation of macrophages. Chloride loss worsens the prognosis of patients with sepsis but the underlying mechanism is currently unclear. In this study, we founded that macrophages deficient in intracellular Cl- secrete more inflammatory cytokines such as IL-1β, IL-6 and TNF-α compared with control group. The intracellular chloride level decreased in WNK1 deficiency or activity inhibited macrophages with more severe inflammatory response after LPS treatment. Remimazolam, as classic GABAa receptor agonist, alleviates excessive inflammation cascade by promoting macrophage chloride influx during sepsis progression. Collectively, this study proves that macrophage WNK1 acts as a negative regulator of inflammatory response by sensing chloride to maintain intracellular chloride balance during sepsis coupled with hypochloremia.
Collapse
Affiliation(s)
- Tianyue Yin
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Lingwei He
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Yuhao Du
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Mengmeng Yang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, Anhui 230001, China
| | - Shuaijie Sun
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, Anhui 230001, China
| | - Jingya Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jun Li
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiangbing Cao
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, Anhui 230001, China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
153
|
Coman O, Grigorescu BL, Huțanu A, Bacârea A, Văsieșiu AM, Fodor RȘ, Stoica F, Azamfirei L. The Role of Programmed Cell Death 1/Programmed Death Ligand 1 (PD-1/PD-L1) Axis in Sepsis-Induced Apoptosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1174. [PMID: 39064603 PMCID: PMC11278887 DOI: 10.3390/medicina60071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Sepsis involves a dysregulated host response, characterized by simultaneous immunosuppression and hyperinflammation. Initially, there is the release of pro-inflammatory factors and immune system dysfunction, followed by persistent immune paralysis leading to apoptosis. This study investigates sepsis-induced apoptosis and its pathways, by assessing changes in PD-1 and PD-L1 serum levels, CD4+ and CD8+ T cells, and Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE II) severity scores. Materials and Methods: This prospective, observational, single-centre study enrolled 87 sepsis patients admitted to the intensive care unit at the County Emergency Clinical Hospital in Târgu Mureș, Romania. We monitored the parameters on day 1 (the day sepsis or septic shock was diagnosed as per the Sepsis-3 Consensus) and day 5. Results: Our study found a statistically significant variation in the SOFA score for the entirety of the patients between the studied days (p = 0.001), as well as for the studied patient groups: sepsis, septic shock, survivors, and non-survivors (p = 0.001, p = 0.003, p = 0.01, p = 0.03). On day 1, we found statistically significant correlations between CD8+ cells and PD-1 (p = 0.02) and PD-L1 (p = 0.04), CD4+ and CD8+ cells (p < 0.0001), SOFA and APACHE II scores (p < 0.0001), and SOFA and APACHE II scores and PD-L1 (p = 0.001 and p = 0.01). On day 5, we found statistically significant correlations between CD4+ and CD8+ cells and PD-L1 (p = 0.03 and p = 0.0099), CD4+ and CD8+ cells (p < 0.0001), and SOFA and APACHE II scores (p < 0.0001). Conclusions: The reduction in Th CD4+ and Tc CD8+ lymphocyte subpopulations were evident from day 1, indicating that apoptosis is a crucial factor in the progression of sepsis and septic shock. The increased expression of the PD-1/PD-L1 axis impairs costimulatory signalling, leading to diminished T cell responses and lymphopenia, thereby increasing the susceptibility to nosocomial infections.
Collapse
Affiliation(s)
- Oana Coman
- Department of Simulation Applied in Medicine, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania;
| | - Bianca-Liana Grigorescu
- Department of Anaesthesiology and Intensive Therapy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania; (R.Ș.F.); (L.A.)
| | - Adina Huțanu
- Department of Laboratory Medicine, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania;
- Center for Advanced Medical and Pharmaceutical Research, Immunology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania
| | - Anca Bacârea
- Department of Pathophysiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania;
| | - Anca Meda Văsieșiu
- Department of Infectious Disease, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania;
| | - Raluca Ștefania Fodor
- Department of Anaesthesiology and Intensive Therapy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania; (R.Ș.F.); (L.A.)
| | - Florin Stoica
- Clinic of Internal Medicine II, Emergency County Hospital, 540136 Targu Mures, Romania;
| | - Leonard Azamfirei
- Department of Anaesthesiology and Intensive Therapy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania; (R.Ș.F.); (L.A.)
| |
Collapse
|
154
|
Xin Q, Zhang S, Sun S, Song N, Zhe Y, Tian F, Zhang S, Guo M, Zhang XD, Zhang J, Wang H, Zhang R. Multienzyme Active Nanozyme for Efficient Sepsis Therapy through Modulating Immune and Inflammation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36047-36062. [PMID: 38978477 DOI: 10.1021/acsami.4c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yadong Zhe
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan 030032, China
| |
Collapse
|
155
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
156
|
Mun SJ, Cho E, Kim HK, Gil WJ, Yang CS. Enhancing acute inflammatory and sepsis treatment: superiority of membrane receptor blockade. Front Immunol 2024; 15:1424768. [PMID: 39081318 PMCID: PMC11286478 DOI: 10.3389/fimmu.2024.1424768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Conditions such as acute pancreatitis, ulcerative colitis, delayed graft function and infections caused by a variety of microorganisms, including gram-positive and gram-negative organisms, increase the risk of sepsis and therefore mortality. Immune dysfunction is a characterization of sepsis, so timely and effective treatment strategies are needed. The conventional approaches, such as antibiotic-based treatments, face challenges such as antibiotic resistance, and cytokine-based treatments have shown limited efficacy. To address these limitations, a novel approach focusing on membrane receptors, the initiators of the inflammatory cascade, is proposed. Membrane receptors such as Toll-like receptors, interleukin-1 receptor, endothelial protein C receptor, μ-opioid receptor, triggering receptor expressed on myeloid cells 1, and G-protein coupled receptors play pivotal roles in the inflammatory response, offering opportunities for rapid regulation. Various membrane receptor blockade strategies have demonstrated efficacy in both preclinical and clinical studies. These membrane receptor blockades act as early stage inflammation modulators, providing faster responses compared to conventional therapies. Importantly, these blockers exhibit immunomodulatory capabilities without inducing complete immunosuppression. Finally, this review underscores the critical need for early intervention in acute inflammatory and infectious diseases, particularly those posing a risk of progressing to sepsis. And, exploring membrane receptor blockade as an adjunctive treatment for acute inflammatory and infectious diseases presents a promising avenue. These novel approaches, when combined with antibiotics, have the potential to enhance patient outcomes, particularly in conditions prone to sepsis, while minimizing risks associated with antibiotic resistance and immune suppression.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Hyo Keun Kim
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Woo Jin Gil
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
157
|
Cui K, Feng S, Mao Y, Luo H, Yang J, Xu R, Bai L. The association between blood urea nitrogen to albumin ratio and the 28 day mortality in tuberculosis patients complicated by sepsis. Sci Rep 2024; 14:16430. [PMID: 39013924 PMCID: PMC11252304 DOI: 10.1038/s41598-024-65622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
The relationship between blood urea nitrogen to albumin ratio (BAR) and the prognosis of patients with tuberculosis (TB) complicated by sepsis remains unclear. This study aimed to explore the association between BAR and overall patient prognosis. This was a retrospective cohort study of patients with TB complicated by sepsis who were admitted to the intensive care unit (ICU) of the Public Health Clinical Center of Chengdu between January 2019 and February 2023. The relationship between BAR values and prognosis in these patients was investigated using multivariate Cox regression, stratified analysis with interaction, restricted cubic spline (RCS), and threshold effect analysis. Sensitivity analyses were conducted to assess the robustness of the results. Our study included 537 TB patients complicated by sepsis admitted in the ICU, with a median age of 63.0 (48.0, 72.0) years; 76.7% of whom were men. The multivariate-restricted cubic spline analysis showed a non-linear association between BAR and patient prognosis. In the threshold analysis, we found that TB patients complicated by sepsis and a BAR < 7.916 mg/g had an adjusted hazard ratio (HR) for prognosis of 1.163 (95% CI 1.038-1.303; P = 0.009). However, when the BAR was ≥ 7.916 mg/g, there was no significant increase in the risk of death. The results of the sensitivity analysis were stable.
Collapse
Affiliation(s)
- Kunping Cui
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuang Feng
- Ultrasonic Medicine, Public Health Clinical Center of Chengdu, Chengdu, 610000, Sichuan, China
| | - Yi Mao
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, 610000, Sichuan, China
| | - Haixia Luo
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, 610000, Sichuan, China
| | - Jiao Yang
- Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, 610000, Sichuan, China
| | - Ruyi Xu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
158
|
Zheng X, Wang Y, Wang Y, Wang X, Pei L, Zhao S, Gong F, Li R, Liu H, Liu W, Mao E, Yang Z, Chen E, Chen Y. Dissecting the mediating role of cytokines in the interaction between immune traits and sepsis: insights from comprehensive mendelian randomization. Front Immunol 2024; 15:1417716. [PMID: 39076981 PMCID: PMC11284126 DOI: 10.3389/fimmu.2024.1417716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infection, yet the potential causal relationship between the immunophenotype and sepsis remains unclear. Methods Genetic variants associated with the immunophenotype served as instrumental variables (IVs) in Mendelian randomization (MR) to elucidate the causal impact of the immunophenotype on three sepsis outcomes. Additionally, a two-step MR analysis was conducted to identify significant potential mediators between the immunophenotype and three sepsis outcomes. Results Our MR analysis demonstrated a significant association between the immunophenotype and sepsis outcome, with 36, 36, and 45 the immunophenotype associated with the susceptibility, severity, and mortality of sepsis, respectively. Specifically, our analysis highlighted the CD14+ CD16+ monocyte phenotype as a significant factor across all three sepsis outcomes, with odds ratios (ORs) and corresponding confidence intervals (CIs) indicating its impact on sepsis (OR = 1.047, CI: 1.001-1.096), sepsis in Critical Care Units (OR = 1.139, CI: 1.014-1.279), and sepsis-related 28-day mortality (OR = 1.218, CI: 1.104-1.334). Mediation analyses identified seven cytokines as significant mediators among 91 potential cytokines, including interleukin-5 (IL-5), S100A12, TNF-related apoptosis-inducing ligand (TRAIL), T-cell surface glycoprotein CD6 isoform, cystatin D, interleukin-18 (IL-18), and urokinase-type plasminogen activator (uPA). Furthermore, reverse MR analysis revealed no causal effect of sepsis outcomes on the immunophenotype. Conclusion Our MR study suggests that the immunophenotype is significantly associated with the susceptibility, severity, and mortality of patient with sepsis, providing, for the first time, robust evidence of significant associations between immune traits and their potential risks. This information is invaluable for clinicians and patients in making informed decisions and merits further attention.
Collapse
Affiliation(s)
- Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuming Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanzhi Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
159
|
Burnham KL, Milind N, Lee W, Kwok AJ, Cano-Gamez K, Mi Y, Geoghegan CG, Zhang P, McKechnie S, Soranzo N, Hinds CJ, Knight JC, Davenport EE. eQTLs identify regulatory networks and drivers of variation in the individual response to sepsis. CELL GENOMICS 2024; 4:100587. [PMID: 38897207 PMCID: PMC11293594 DOI: 10.1016/j.xgen.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection, for which disease heterogeneity is a major obstacle to developing targeted treatments. We have previously identified gene-expression-based patient subgroups (sepsis response signatures [SRS]) informative for outcome and underlying pathophysiology. Here, we aimed to investigate the role of genetic variation in determining the host transcriptomic response and to delineate regulatory networks underlying SRS. Using genotyping and RNA-sequencing data on 638 adult sepsis patients, we report 16,049 independent expression (eQTLs) and 32 co-expression module (modQTLs) quantitative trait loci in this disease context. We identified significant interactions between SRS and genotype for 1,578 SNP-gene pairs and combined transcription factor (TF) binding site information (SNP2TFBS) and predicted regulon activity (DoRothEA) to identify candidate upstream regulators. Overall, these approaches identified putative mechanistic links between host genetic variation, cell subtypes, and the individual transcriptomic response to infection.
Collapse
Affiliation(s)
- Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nikhil Milind
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; University of Cambridge, Cambridge, UK
| | - Wanseon Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew J Kwok
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kiki Cano-Gamez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuxin Mi
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Ping Zhang
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | | | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Charles J Hinds
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Julian C Knight
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
| | | |
Collapse
|
160
|
Wang S, Yin F, Sun W, Li R, Guo Z, Wang Y, Zhang Y, Sun C, Sun D. The causal relationship between gut microbiota and nine infectious diseases: a two-sample Mendelian randomization analysis. Front Immunol 2024; 15:1304973. [PMID: 39050854 PMCID: PMC11266007 DOI: 10.3389/fimmu.2024.1304973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Evidence from observational studies and clinical trials has associated gut microbiota with infectious diseases. However, the causal relationship between gut microbiota and infectious diseases remains unclear. Methods We identified gut microbiota based on phylum, class, order, family, and genus classifications, and obtained infectious disease datasets from the IEU OpenGWAS database. The two-sample Mendelian Randomization (MR) analysis was then performed to determine whether the gut microbiota were causally associated with different infectious diseases. In addition, we performed reverse MR analysis to test for causality. Results Herein, we characterized causal relationships between genetic predispositions in the gut microbiota and nine infectious diseases. Eight strong associations were found between genetic predisposition in the gut microbiota and infectious diseases. Specifically, the abundance of class Coriobacteriia, order Coriobacteriales, and family Coriobacteriaceae was found to be positively associated with the risk of lower respiratory tract infections (LRTIs). On the other hand, family Acidaminococcaceae, genus Clostridiumsensustricto1, and class Bacilli were positively associated with the risk of endocarditis, cellulitis, and osteomyelitis, respectively. We also discovered that the abundance of class Lentisphaeria and order Victivallales lowered the risk of sepsis. Conclusion Through MR analysis, we found that gut microbiota were causally associated with infectious diseases. This finding offers new insights into the microbe-mediated infection mechanisms for further clinical research.
Collapse
Affiliation(s)
- Song Wang
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Fangxu Yin
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Wei Sun
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Rui Li
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Zheng Guo
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Yuchao Wang
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Yiyuan Zhang
- Department of Reproductive Endocrinology, Second Hospital of Shandong University, Jinan, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| |
Collapse
|
161
|
Zhang X, Zhang Y, Yuan S, Zhang J. The potential immunological mechanisms of sepsis. Front Immunol 2024; 15:1434688. [PMID: 39040114 PMCID: PMC11260823 DOI: 10.3389/fimmu.2024.1434688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Sepsis is described as a life-threatening organ dysfunction and a heterogeneous syndrome that is a leading cause of morbidity and mortality in intensive care settings. Severe sepsis could incite an uncontrollable surge of inflammatory cytokines, and the host immune system's immunosuppression could respond to counter excessive inflammatory responses, characterized by the accumulated anti-inflammatory cytokines, impaired function of immune cells, over-proliferation of myeloid-derived suppressor cells and regulatory T cells, depletion of immune effector cells by different means of death, etc. In this review, we delve into the underlying pathological mechanisms of sepsis, emphasizing both the hyperinflammatory phase and the associated immunosuppression. We offer an in-depth exploration of the critical mechanisms underlying sepsis, spanning from individual immune cells to a holistic organ perspective, and further down to the epigenetic and metabolic reprogramming. Furthermore, we outline the strengths of artificial intelligence in analyzing extensive datasets pertaining to septic patients, showcasing how classifiers trained on various clinical data sources can identify distinct sepsis phenotypes and thus to guide personalized therapy strategies for the management of sepsis. Additionally, we provide a comprehensive summary of recent, reliable biomarkers for hyperinflammatory and immunosuppressive states, facilitating more precise and expedited diagnosis of sepsis.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
162
|
Chen D, Zhou K, Tian R, Wang R, Zhou Z. Predictive value of the dynamics of absolute lymphocyte counts for 90-day mortality in ICU sepsis patients: a retrospective big data study. BMJ Open 2024; 14:e084562. [PMID: 38960455 PMCID: PMC11227848 DOI: 10.1136/bmjopen-2024-084562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVES The objective of the study was to assess the clinical predictive value of the dynamics of absolute lymphocyte count (ALC) for 90-day all-cause mortality in sepsis patients in intensive care unit (ICU). DESIGN Retrospective cohort study using big data. SETTING This study was conducted using the Medical Information Mart for Intensive Care IV database V.2.0 database. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was 90-day all-cause mortality. PARTICIPANTS Patients were included if they were diagnosed with sepsis on the first day of ICU admission. Exclusion criteria were ICU stay under 24 hours; the absence of lymphocyte count on the first day; extremely high lymphocyte count (>10×109/L); history of haematolymphatic tumours, bone marrow or solid organ transplants; survival time under 72 hours and previous ICU admissions. The analysis ultimately included 17 329 sepsis patients. RESULTS The ALC in the non-survivors group was lower on days 1, 3, 5 and 7 after admission (p<0.001). The ALC on day 7 had the highest area under the curve (AUC) value for predicting 90-day mortality. The cut-off value of ALC on day 7 was 1.0×109/L. In the restricted cubic spline plot, after multivariate adjustments, patients with higher lymphocyte counts had a better prognosis. After correction, in the subgroups with Sequential Organ Failure Assessment score ≥6 or age ≥60 years, ALC on day 7 had the lowest HR value (0.79 and 0.81, respectively). On the training and testing set, adding the ALC on day 7 improved all prediction models' AUC and average precision values. CONCLUSIONS Dynamic changes of ALC are closely associated with 90-day all-cause mortality in sepsis patients. Furthermore, the ALC on day 7 after admission is a better independent predictor of 90-day mortality in sepsis patients, especially in severely ill or young sepsis patients.
Collapse
Affiliation(s)
- Daonan Chen
- Shanghai General Hospital, Department of Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Zhou
- Shanghai General Hospital, Department of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Tian
- Shanghai General Hospital, Department of Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruilan Wang
- Shanghai General Hospital, Department of Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhigang Zhou
- Shanghai General Hospital, Department of Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
163
|
Zhang T, Fu JN, Chen GB, Zhang X. Plac8-ERK pathway modulation of monocyte function in sepsis. Cell Death Discov 2024; 10:308. [PMID: 38961068 PMCID: PMC11222481 DOI: 10.1038/s41420-024-02012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Sepsis, a life-threatening condition caused by infection, is characterized by the dysregulation of immune responses and activation of monocytes. Plac8, a protein, has been implicated in various inflammatory conditions. This study aimed to investigate the effect of Plac8 upregulation on monocyte proliferation and activation in sepsis patients. Peripheral blood samples were collected from healthy individuals and sepsis patients. Monocytes were stimulated with lipopolysaccharide (LPS) to create an in vitro sepsis model, while a murine sepsis model was established using cecal ligation and puncture (CLP). The levels of monocyte markers, proliferation index (PI), and pro-inflammatory cytokines were assessed using flow cytometry and qPCR, respectively. Plac8 and phosphorylated ERK protein levels were determined by western blot, and TNF-α, IL-6, and IL-10 levels were quantified using ELISA. The CCK-8 assay was used to evaluate PBMC proliferation and activation. The results showed that Plac8 was highly expressed in sepsis models, promoting the survival, proliferation, and activation of monocytes. Plac8 upregulation activated the ERK pathway, leading to increased phosphorylation of ERK protein and elevated levels of CD14, CD16, TNF-α, IL-6, Plac8, and IL-10. In sepsis mice, Plac8 overexpression similarly activated the ERK pathway and promoted the survival, proliferation, and activation of monocytes. In conclusion, the upregulation of Plac8 enhances the activation of the ERK pathway and promotes monocyte proliferation and activation in sepsis patients.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300000, China.
| | - Jing-Nan Fu
- Department of Minimally Invasive Surgery, Characteristics Medical Center of Chinese People Armed Police Force, Tianjin, China
| | - Gui-Bing Chen
- Department of General Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiu Zhang
- Department of Emergency, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| |
Collapse
|
164
|
Zhang J, Wu Y, Du Y, Du Y, Bao D, Lu H, Zhou X, Li R, Pei H, She H, Mao Q. Cuproptosis-Related Genes as Prognostic Biomarkers for Sepsis: Insights into Immune Function and Personalized Immunotherapy. J Inflamm Res 2024; 17:4229-4245. [PMID: 38979432 PMCID: PMC11228080 DOI: 10.2147/jir.s461766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Background This study aimed to discover diagnostic and prognostic biomarkers for sepsis immunotherapy through analyzing the novel cellular death process, cuproptosis. Methods We used transcriptome data from sepsis patients to identify key cuproptosis-related genes (CuRGs). We created a predictive model and used the CIBERSORT algorithm to observe the link between these genes and the septic immune microenvironment. We segregated sepsis patients into three subgroups, comparing immune function, immune cell infiltration, and differential analysis. Single-cell sequencing and real-time quantitative PCR were used to view the regulatory effect of CuRGs on the immune microenvironment and compare the mRNA levels of these genes in sepsis patients and healthy controls. We established a sepsis forecast model adapted to heart rate, body temperature, white blood cell count, and cuproptosis key genes. This was followed by a drug sensitivity analysis of cuproptosis key genes. Results Our results filtered three key genes (LIAS, PDHB, PDHA1) that impact sepsis prognosis. We noticed that the high-risk group had poorer immune cell function and lesser immune cell infiltration. We also discovered a significant connection between CuRGs and immune cell infiltration in sepsis. Through consensus clustering, sepsis patients were classified into three subgroups. The best immune functionality and prognosis was observed in subgroup B. Single-cell sequencing exposed that the key genes manage the immune microenvironment by affecting T cell activation. The qPCR results highlighted substantial mRNA level reduction of the three key genes in the SP compared to the HC. The prediction model, which combines CuRGs and traditional diagnostic indicators, performed better in accuracy than the other markers. The drug sensitivity analysis listed bisphenol A as highly sensitive to all the key genes. Conclusion Our study suggests these CuRGs may offer substantial potential for sepsis prognosis prediction and personalized immunotherapy.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yinyu Wu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yunxia Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Daiqin Bao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Haibin Lu
- Department of Intensive Care Unit, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiaoqiong Zhou
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Rui Li
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Haoyu Pei
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| |
Collapse
|
165
|
Zhang Y, Peng W, Zheng X. The prognostic value of the combined neutrophil-to-lymphocyte ratio (NLR) and neutrophil-to-platelet ratio (NPR) in sepsis. Sci Rep 2024; 14:15075. [PMID: 38956445 PMCID: PMC11219835 DOI: 10.1038/s41598-024-64469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Sepsis is a severe disease characterized by high mortality rates. Our aim was to develop an early prognostic indicator of adverse outcomes in sepsis, utilizing easily accessible routine blood tests. A retrospective analysis of sepsis patients from the MIMIC-IV database was conducted. We performed univariate and multivariate regression analyses to identify independent risk factors associated with in-hospital mortality within 28 days. Logistic regression was utilized to combine the neutrophil-to-lymphocyte ratio (NLR) and the neutrophil-to-platelet ratio (NPR) into a composite score, denoted as NLR_NPR. We used ROC curves to compare the prognostic performance of the models and Kaplan-Meier survival curves to assess the 28 day survival rate. Subgroup analysis was performed to evaluate the applicability of NLR_NPR in different subpopulations based on specific characteristics. This study included a total of 1263 sepsis patients, of whom 179 died within 28 days of hospitalization, while 1084 survived beyond 28 days. Multivariate regression analysis identified age, respiratory rate, neutrophil-to-lymphocyte ratio (NLR), neutrophil-to-platelet ratio (NPR), hypertension, and sequential organ failure assessment (SOFA) score as independent risk factors for 28 day mortality in septic patients (P < 0.05). Additionally, in the prediction model based on blood cell-related parameters, the combined NLR_NPR score exhibited the highest predictive value for 28 day mortality (AUC = 0.6666), followed by NLR (AUC = 0.6456) and NPR (AUC = 0.6284). Importantly, the performance of the NLR_NPR score was superior to that of the commonly used SOFA score (AUC = 0.5613). Subgroup analysis showed that NLR_NPR remained an independent risk factor for 28 day in-hospital mortality in the subgroups of age, respiratory rate, and SOFA, although not in the hypertension subgroup. The combined use of NLR and NPR from routine blood tests represents a readily available and reliable predictive marker for 28 day mortality in sepsis patients. These results imply that clinicians should prioritize patients with higher NLR_NPR scores for closer monitoring to reduce mortality rates.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Wang Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
166
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
167
|
Zhao LJ, Dai XY, Ye YW, Pang XF, Jiang M, Tan WY, Xu YH, Su JF, Shi B. MURAMYL DIPEPTIDE CAUSES MITOCHONDRIAL DYSFUNCTION AND INTESTINAL INFLAMMATORY CYTOKINE RESPONSES IN RATS. Shock 2024; 62:139-145. [PMID: 38546380 DOI: 10.1097/shk.0000000000002369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Introduction: Intestinal flora and the translocation of its products, such as muramyl dipeptide (MDP), are common causes of sepsis. MDP is a common activator of the intracellular pattern recognition receptor NOD2, and MDP translocation can cause inflammatory damage to the small intestine and systemic inflammatory responses in rats. Therefore, this study investigated the effects of MDP on the intestinal mucosa and distant organs during sepsis and the role of the NOD2/AMPK/LC3 pathway in MDP-induced mitochondrial dysfunction in the intestinal epithelium. Methods: Fifty male Sprague Dawley rats were randomly divided into five treatment groups: lipopolysaccharide (LPS) only, 1.5 and 15 mg/kg MDP+LPS, and 1.5 and 15 mg/kg MDP+short-peptide enteral nutrition (SPEN)+LPS. The total caloric intake was the same per group. The rats were euthanized 24 h after establishing the model, and peripheral blood and small intestinal mucosal and lung tissues were collected. Results: Compared to the LPS group, both MDP+LPS groups had aggravated inflammatory damage to the intestinal mucosal and lung tissues, increased IL-6 and MDP production, increased NOD2 expression, decreased AMPK and LC3 expression, increased mitochondrial reactive oxygen species production, and decreased mitochondrial membrane potential. Compared to the MDP+LPS groups, the MDP+SPEN+LPS groups had decreased IL-6 and MDP production, increased AMPK and LC3 protein expression, and protected mitochondrial and organ functions. Conclusions: MDP translocation reduced mitochondrial autophagy by regulating the NOD2/AMPK/LC3 pathway, causing mitochondrial dysfunction. SPEN protected against MDP-induced impairment of intestinal epithelial mitochondrial function during sepsis.
Collapse
Affiliation(s)
- Lu-Jia Zhao
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yong Dai
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - You-Wen Ye
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiu-Feng Pang
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Meng Jiang
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Wan-Yi Tan
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Ying-Hui Xu
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Ji-Feng Su
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Bin Shi
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
168
|
Wang Q, Tang J, Li Y, Lu J, Yang D, He C, Li T, Fu K, Liu R. EFFECT OF STRATIFIED DOSE OF NOREPINEPHRINE ON CELLULAR IMMUNE RESPONSE IN PATIENTS WITH SEPTIC SHOCK AND THE CONSTRUCTION OF A PROGNOSTIC RISK MODEL. Shock 2024; 62:32-43. [PMID: 38517239 DOI: 10.1097/shk.0000000000002363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Objective: To explore the effect of a stratified dose of norepinephrine (NE) on cellular immune response in patients with septic shock, and to construct a prognostic model of septic shock. Methods: A total of 160 patients with septic shock (B group) and 58 patients with sepsis (A group) were given standard cluster therapy. Patients with septic shock were divided into four groups (B1-B4 groups: 0.01-0.2, 0.2-0.5, 0.5-1.0, and >1 μg/kg/min) according to the quartile method of the early (72 h) time-weighted average dose of NE and clinical application. The cellular immune indexes at 24 h (T0) and 4-7 days (T1) after admission were collected. The difference method was used to explore the effect of NE stratified dose on cellular immune effect in patients with septic shock. A multivariate COX proportional risk regression model was used to analyze the independent prognostic risk factors, and a prognostic risk model was constructed. Results: The differences of ΔIL-1β, ΔIL-6, ΔIL-10, absolute value difference of T lymphocyte (ΔCD3+/CD45+#) and Th helper T cell (ΔCD3+ CD4+/CD45+#), CD64 infection index difference, ΔmHLA-DR, regulatory T lymphocyte ratio difference (ΔTregs%) between group A, B1, B2, B3, and B4 were statistically significant ( P < 0.05). There was a nonlinear relation between the stratified dose of NE and ΔIL-6, ΔIL-10, ΔCD3+/CD45+#, ΔmHLA-DR%. The threshold periods of NE-induced proinflammatory and anti-inflammatory immune changes were 0.3-0.5 μg/kg/min. Multivariate COX model regression analysis showed that age, nutritional patterns, weighted average dose of norepinephrine, IL-6, absolute value of T lymphocytes, and mHLA-DR were independent risk factors affecting the prognosis of patients with septic shock ( P < 0.05). The prognostic risk model was constructed (AUC value = 0.813, 95% CI: 0.752-0.901). Conclusion: NE has a certain inhibitory effect on cellular immune function in patients with septic shock. A prognostic risk model was constructed with stronger prediction efficiency for the prognosis of patients with septic shock.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medicine Center, Kunming, China
| | - Jiefu Tang
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medicine Center, Kunming, China
| | - Yao Li
- Stomatology Research Center, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jiafei Lu
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medicine Center, Kunming, China
| | - Dexing Yang
- Department of Emergency Medicine, Yunnan First People's Hospital, Kunming, China
| | - Chen He
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medicine Center, Kunming, China
| | - Ting Li
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medicine Center, Kunming, China
| | - Kai Fu
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medicine Center, Kunming, China
| | - Rong Liu
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medicine Center, Kunming, China
| |
Collapse
|
169
|
Chen J, Ding W, Zhang Z, Li Q, Wang M, Feng J, Zhang W, Cao L, Ji X, Nie S, Sun Z. Shenfu injection targets the PI3K-AKT pathway to regulate autophagy and apoptosis in acute respiratory distress syndrome caused by sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155627. [PMID: 38696924 DOI: 10.1016/j.phymed.2024.155627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction caused by an exaggerated response to infection. In the lungs, one of the most susceptible organs, this can manifest as acute respiratory distress syndrome (ARDS). Shenfu (SF) injection is a prominent traditional Chinese medicine used to treat sepsis. However, the exact mechanism of its action has rarely been reported in the literature. PURPOSE In the present study, we detected the protective effect of SF injection on sepsis-induced ARDS and explored its underlying mechanism. METHODS We investigated the potential targets and regulatory mechanisms of SF injections using a combination of network pharmacology and RNA sequencing. This study was conducted both in vivo and in vitro using a mouse model of ARDS and lipopolysaccharide (LPS)-stimulated MLE-12 cells, respectively. RESULTS The results showed that SF injection could effectively inhibit inflammation, oxidative stress, and apoptosis to alleviate LPS-induced ARDS. SF inhibited the PI3K-AKT pathway, which controls autophagy and apoptosis. Subsequently, MLE-12 cells were treated with 3-methyladenine to assess its effects on autophagy and apoptosis. Additional experiments were conducted by adding rapamycin, an mTOR antagonist, or SC79, an AKT agonist, to investigate the effects of SF injection on autophagy, apoptosis, and the PI3K-AKT pathway. CONCLUSION Overall, we found that SF administration could enhance autophagic activity, reduce apoptosis, suppress inflammatory responses and oxidative stress, and inhibit the PI3K-AKT pathway, thus ameliorating sepsis-induced ARDS.
Collapse
Affiliation(s)
- Juan Chen
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China; Department of Emergency Medicine, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province 221000, PR China
| | - Weichao Ding
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China; Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Zhe Zhang
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Medical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Quan Li
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Jing Feng
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Xiaohang Ji
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China.
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China.
| |
Collapse
|
170
|
León-Lara X, Fichtner AS, Willers M, Yang T, Schaper K, Riemann L, Schöning J, Harms A, Almeida V, Schimrock A, Janssen A, Ospina-Quintero L, von Kaisenberg C, Förster R, Eberl M, Richter MF, Pirr S, Viemann D, Ravens S. γδ T cell profiling in a cohort of preterm infants reveals elevated frequencies of CD83+ γδ T cells in sepsis. J Exp Med 2024; 221:e20231987. [PMID: 38753245 PMCID: PMC11098939 DOI: 10.1084/jem.20231987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
Preterm infants are at high risk of developing neonatal sepsis. γδ T cells are thought to be an important set of effector cells in neonates. Here, γδ T cells were investigated in a longitudinal cohort of preterm neonates using next-generation sequencing, flow cytometry, and functional assays. During the first year of life, the Vγ9Vδ2 T cell subset showed dynamic phenotypic changes and elevated levels of fetal-derived Vγ9Vδ2 T cells were evident in infants with sepsis. Single-cell transcriptomics identified HLA-DRhiCD83+ γδ T cells in neonatal sepsis, which expressed genes related to antigen presentation. In vitro assays showed that CD83 was expressed on activated Vγ9Vδ2 T cells in preterm and term neonates, but not in adults. In contrast, activation of adult Vγ9Vδ2 T cells enhanced CD86 expression, which was presumably the key receptor to induce CD4 T cell proliferation. Together, we provide a map of the maturation of γδ T cells after preterm birth and highlight their phenotypic diversity in infections.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Infant
- Infant, Newborn
- Male
- Antigens, CD/metabolism
- Antigens, CD/genetics
- CD83 Antigen
- Cohort Studies
- Infant, Premature/immunology
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Neonatal Sepsis/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Ximena León-Lara
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tao Yang
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Lennart Riemann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jennifer Schöning
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna Harms
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Vicente Almeida
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | | | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- PRIMAL (Priming IMmunity at the Beginning of Life) Consortium, Lübeck, Germany
- Center for Infection Research, University Würzburg, Würzburg, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
171
|
Xie L, Zhang G, Wu Y, Hua Y, Ding W, Han X, Liu B, Zhou C, Li A. Protective effects of Wenqingyin on sepsis-induced acute lung injury through regulation of the receptor for advanced glycation end products pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155654. [PMID: 38723525 DOI: 10.1016/j.phymed.2024.155654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Wenqingyin (WQY), an ancient Chinese medicinal agent, has been extensively used in treating infectious ailments throughout history. However, the anti-sepsis mechanism remains unknown. PURPOSE This study investigated the diverse mechanisms of WQY in mitigating sepsis-induced acute lung injury (ALI). Additionally, the effects of WQY were validated using biological experiments. METHODS This study combined UHPLC-Orbitrap-HRMS analysis and network pharmacology to predict the potential anti-sepsis mechanism of WQY. Sepsis-induced ALI models were established in vivo via intraperitoneal lipopolysaccharide (LPS) administration and in vitro by LPS-stimulated RAW 264.7 macrophages. Various techniques, including hematoxylin-eosin staining, TUNEL, qPCR, and ELISA, were used to assess lung damage and quantify inflammatory cytokines. Inflammatory cell infiltration was visualized through immunohistochemistry. Hub targets and signaling pathways were identified using Western blotting, immunohistochemistry, and immunofluorescence staining. RESULTS Seventy-five active components and 237 associated targets were acquired, with 145 of these targets overlapping with processes related to sepsis. Based on the comprehensive protein-protein interaction network analysis, JUN, AKT1, TP53, IL-6, HSP90AA1, CASP3, VEGFA, IL-1β, RELA, and EGFR may be targets of WQY for sepsis. Analysis of the Kyoto Gene and Genome Encyclopedia revealed that WQY is implicated in the advanced glycation end products/receptor for advanced glycation end products (AGE/RAGE) signaling pathway. In vivo, WQY alleviated sepsis-induced ALI, suppressing proinflammatory cytokines and inhibiting macrophage/neutrophil infiltration. In vitro, WQY reduced TNF-α, IL-6, and IL-1β in LPS-induced RAW 264.7 macrophages. Furthermore, we verified that WQY protected against sepsis-induced ALI by regulating the RAGE pathway for the first time. Baicalin, coptisine, and paeoniflorin may be the effective components of WQY that inhibit RAGE. CONCLUSION The primary mechanism of WQY in combating sepsis-induced ALI involves controlling RAGE levels and the PI3K/AKT pathway, suppressing inflammation, and mitigating lung damage. This study establishes a scientific foundation for understanding the mechanism of WQY and its clinical use in treating sepsis.
Collapse
Affiliation(s)
- Lingpeng Xie
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| | - Guoyong Zhang
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou 256603, China
| | - Yue Hua
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjun Ding
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xin Han
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, China.
| | - Chuying Zhou
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Aimin Li
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
172
|
Nicolaes GAF, Soehnlein O. Targeting extranuclear histones to alleviate acute and chronic inflammation. Trends Pharmacol Sci 2024; 45:651-662. [PMID: 38853103 DOI: 10.1016/j.tips.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Extracellular histones instigate an inflammatory triad - centered on cytotoxicity, immune cell stimulation, and coagulation - ultimately shaping the dynamics and outcome of various inflammatory pathologies. Given the virtual absence of beneficial functions of histones in the extracellular space, in recent years a number of interference strategies have emerged. In this review we summarize pathogenic functions of extracellular histones and highlight current developments of therapeutic interference. Finally, we elaborate on the current status of preclinical attempts to interfere with extracellular histones in the context of a focus on sepsis and cardiovascular diseases, both of which are leading causes of mortality worldwide.
Collapse
Affiliation(s)
- Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, The Netherlands.
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
173
|
Xu F, Xu J, Ma J, Xu W, Gu S, Lu G, Wang J. Early versus delayed enteral nutrition in ICU patients with sepsis: a propensity score-matched analysis based on the MIMIC-IV database. Front Nutr 2024; 11:1370472. [PMID: 38978696 PMCID: PMC11228309 DOI: 10.3389/fnut.2024.1370472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Background Early enteral nutrition (EN) is recommended for sepsis management, but its optimal timing and clinical benefits remain uncertain. This study evaluates whether early EN improves outcomes compared to delayed EN in patients with sepsis. Methods We analyzed data of septic patients from the MIMIC-IV 2.2 database, focusing on those in the Medical Intensive Care Unit (MICU) and Surgical Intensive Care Unit (SICU). Patients who initiated EN within 3 days were classified into the early EN group, while those who started EN between 3 and 7 days were classified into the delayed EN group. Propensity score matching was used to compare outcomes between the groups. Results Among 1,111 patients, 786 (70.7%) were in the early EN group and 325 (29.3%) were in the delayed EN group. Before propensity score matching, the early EN group demonstrated lower mortality (crude OR = 0.694; 95% CI: 0.514-0.936; p = 0.018) and shorter ICU stays (8.3 [5.2, 12.3] vs. 10.0 [7.5, 14.2] days; p < 0.001). After matching, no significant difference in mortality was observed. However, the early EN group had shorter ICU stays (8.3 [5.2, 12.4] vs. 10.1 [7.5, 14.2] days; p < 0.001) and a lower incidence of AKI stage 3 (49.3% vs. 55.5%; p = 0.030). Subgroup analysis revealed that early EN significantly reduced the 28-day mortality rate in sepsis patients with lactate levels ≤4 mmol/L, with an adjusted odds ratio (aOR) of 0.579 (95% CI: 0.361, 0.930; p = 0.024). Conclusion Early enteral nutrition may not significantly reduce overall mortality in sepsis patients but may shorten ICU stays and decrease the incidence of AKI stage 3. Further research is needed to identify specific patient characteristics that benefit most from early EN.
Collapse
Affiliation(s)
- Fuchao Xu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jianxin Xu
- Department of Emergency Medicine, Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Jinjin Ma
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenbo Xu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuangshuang Gu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Geng Lu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jun Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing, China
- Department of Emergency Medicine, Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
174
|
Waalders N, van Lier D, Gerretsen J, Moran L, Stegmann KA, Twigger W, Blanco-Andujar C, Frodsham G, Kox M, Pickkers P. Preclinical and first-in-human safety studies on a novel magnetism-based haemofiltration method. Sci Rep 2024; 14:14077. [PMID: 38890397 PMCID: PMC11189386 DOI: 10.1038/s41598-024-64379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Extracorporeal haemofiltration devices that selectively remove cytokines could represent an adjunctive treatment in inflammatory diseases. One such device is the "IL-6-Sieve", wherein magnetic Anti-IL-6 Beads are introduced into an extracorporeal circuit via a Bead Adapter and then removed along with any surface-bound interleukin (IL)-6 by a Filter deployed in a Magnet, before the blood is returned to the patient. We report here on a series of animal studies, and a first-in-human study, on the safety of the IL-6-Sieve. Evaluations focused on the: (a) safety of Filter and Magnet placed in an extracorporeal circuit in sheep; (b) safety of Anti-IL-6 Beads-directly infused intravenously as worst case scenario of misuse; or injected into an extracorporeal circuit using the Bead Adapter, Filter, and Magnet as intended-in sheep; (c) biodistribution of Anti-IL-6 Beads intravenously infused in mice; and (d) safety of Filter and Magnet placed in an extracorporeal circuit in healthy volunteers. No serious adverse events or significant changes in vital signs or routine laboratory parameters occurred in any of the animals or humans. Although safety of the IL-6-Sieve requires further study, these initial evaluations represent a promising start for the translation of this new blood purification modality into clinical use.
Collapse
Affiliation(s)
- Nicole Waalders
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Dirk van Lier
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | | | | | | | | | | | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands.
| |
Collapse
|
175
|
Shi Y, Wu D, Wang Y, Shao Y, Zeng F, Zhou D, Zhang H, Miao C. Treg and neutrophil extracellular trap interaction contributes to the development of immunosuppression in sepsis. JCI Insight 2024; 9:e180132. [PMID: 38888975 PMCID: PMC11383165 DOI: 10.1172/jci.insight.180132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
The excessive formation and release of neutrophil extracellular traps (NETs) in sepsis may represent a substantial mechanism contributing to multiorgan damage, which is associated with a poor prognosis. However, the precise role of NETs in mediating the transition from innate immunity to adaptive immunity during the progression of inflammation and sepsis remains incompletely elucidated. In this study, we provide evidence that, despite a reduction in the number of CD4+ T cells in the late stage of sepsis, there is a notable upregulation in the proportion of Tregs. Mechanistically, we have identified that NETs can induce metabolic reprogramming of naive CD4+ T cells through the Akt/mTOR/SREBP2 pathway, resulting in enhanced cholesterol metabolism, thereby promoting their conversion into Tregs and augmenting their functional capacity. Collectively, our findings highlight the potential therapeutic strategy of targeting intracellular cholesterol normalization for the management of immunosuppressed patients with sepsis.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
176
|
Tang J, Shang C, Chang Y, Jiang W, Xu J, Zhang L, Lu L, Chen L, Liu X, Zeng Q, Cao W, Li T. Peripheral PD-1 +NK cells could predict the 28-day mortality in sepsis patients. Front Immunol 2024; 15:1426064. [PMID: 38953031 PMCID: PMC11215063 DOI: 10.3389/fimmu.2024.1426064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Unbalanced inflammatory response is a critical feature of sepsis, a life-threatening condition with significant global health burdens. Immune dysfunction, particularly that involving different immune cells in peripheral blood, plays a crucial pathophysiological role and shows early warning signs in sepsis. The objective is to explore the relationship between sepsis and immune subpopulations in peripheral blood, and to identify patients with a higher risk of 28-day mortality based on immunological subtypes with machine-learning (ML) model. Methods Patients were enrolled according to the sepsis-3 criteria in this retrospective observational study, along with age- and sex-matched healthy controls (HCs). Data on clinical characteristics, laboratory tests, and lymphocyte immunophenotyping were collected. XGBoost and k-means clustering as ML approaches, were employed to analyze the immune profiles and stratify septic patients based on their immunological subtypes. Cox regression survival analysis was used to identify potential biomarkers and to assess their association with 28-day mortality. The accuracy of biomarkers for mortality was determined by the area under the receiver operating characteristic (ROC) curve (AUC) analysis. Results The study enrolled 100 septic patients and 89 HCs, revealing distinct lymphocyte profiles between the two groups. The XGBoost model discriminated sepsis from HCs with an area under the receiver operating characteristic curve of 1.0 and 0.99 in the training and testing set, respectively. Within the model, the top three highest important contributions were the percentage of CD38+CD8+T cells, PD-1+NK cells, HLA-DR+CD8+T cells. Two clusters of peripheral immunophenotyping of septic patients by k-means clustering were conducted. Cluster 1 featured higher proportions of PD1+ NK cells, while cluster 2 featured higher proportions of naïve CD4+T cells. Furthermore, the level of PD-1+NK cells was significantly higher in the non-survivors than the survivors (15.1% vs 8.6%, P<0.01). Moreover, the levels of PD1+ NK cells combined with SOFA score showed good performance in predicting the 28-day mortality in sepsis (AUC=0.91,95%CI 0.82-0.99), which is superior to PD1+ NK cells only(AUC=0.69, sensitivity 0.74, specificity 0.64, cut-off value of 11.25%). In the multivariate Cox regression, high expression of PD1+ NK cells proportion was related to 28-day mortality (aHR=1.34, 95%CI 1.19 to 1.50; P<0.001). Conclusion The study provides novel insights into the association between PD1+NK cell profiles and prognosis of sepsis. Peripheral immunophenotyping could potentially stratify the septic patients and identify those with a high risk of 28-day mortality.
Collapse
Affiliation(s)
- Jia Tang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chenming Shang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yue Chang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Jiang
- Department of Medical ICU, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Xu
- Department of Emergency Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Leidan Zhang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Chen
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaosheng Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Qingjia Zeng
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
177
|
Zhao T, Guo Y, Li J. Identification and experimental validation of cuproptosis regulatory program in a sepsis immune microenvironment through a combination of single-cell and bulk RNA sequencing. Front Immunol 2024; 15:1336839. [PMID: 38947313 PMCID: PMC11211538 DOI: 10.3389/fimmu.2024.1336839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Background In spite of its high mortality rate and poor prognosis, the pathogenesis of sepsis is still incompletely understood. This study established a cuproptosis-based risk model to diagnose and predict the risk of sepsis. In addition, the cuproptosis-related genes were identified for targeted therapy. Methods Single-cell sequencing analyses were used to characterize the cuproptosis activity score (CuAS) and intercellular communications in sepsis. Differential cuproptosis-related genes (CRGs) were identified in conjunction with single-cell and bulk RNA sequencing. LASSO and Cox regression analyses were employed to develop a risk model. Three external cohorts were conducted to assess the model's accuracy. Differences in immune infiltration, immune cell subtypes, pathway enrichment, and the expression of immunomodulators were further evaluated in distinct groups. Finally, various in-vitro experiments, such as flow cytometry, Western blot, and ELISA, were used to explore the role of LST1 in sepsis. Results ScRNA-seq analysis demonstrated that CuAS was highly enriched in monocytes and was closely related to the poor prognosis of sepsis patients. Patients with higher CuAS exhibited prominent strength and numbers of cell-cell interactions. A total of five CRGs were identified based on the LASSO and Cox regression analyses, and a CRG-based risk model was established. The lower riskScore cohort exhibited enhanced immune cell infiltration, elevated immune scores, and increased expression of immune modulators, indicating the activation of an antibacterial response. Ultimately, in-vitro experiments demonstrated that LST1, a key gene in the risk model, was enhanced in the macrophage in response to LPS, which was closely related to the decrease of macrophage survival rate, the enhancement of apoptosis and oxidative stress injury, and the imbalance of the M1/M2 phenotype. Conclusions This study constructed a cuproptosis-related risk model to accurately predict the prognosis of sepsis. We further characterized the cuproptosis-related gene LST1 to provide a theoretical framework for sepsis therapy.
Collapse
Affiliation(s)
- Tingru Zhao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | |
Collapse
|
178
|
Li BR, Zhuo Y, Jiang YY, Zhang SY. Random forest differentiation of Escherichia coli in elderly sepsis using biomarkers and infectious sites. Sci Rep 2024; 14:12973. [PMID: 38839818 PMCID: PMC11153632 DOI: 10.1038/s41598-024-63944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
This study addresses the challenge of accurately diagnosing sepsis subtypes in elderly patients, particularly distinguishing between Escherichia coli (E. coli) and non-E. coli infections. Utilizing machine learning, we conducted a retrospective analysis of 119 elderly sepsis patients, employing a random forest model to evaluate clinical biomarkers and infection sites. The model demonstrated high diagnostic accuracy, with an overall accuracy of 87.5%, and impressive precision and recall rates of 93.3% and 87.5%, respectively. It identified infection sites, platelet distribution width, reduced platelet count, and procalcitonin levels as key predictors. The model achieved an F1 Score of 90.3% and an area under the receiver operating characteristic curve of 88.0%, effectively differentiating between sepsis subtypes. Similarly, logistic regression and least absolute shrinkage and selection operator analysis underscored the significance of infectious sites. This methodology shows promise for enhancing elderly sepsis diagnosis and contributing to the advancement of precision medicine in the field of infectious diseases.
Collapse
Affiliation(s)
- Bu-Ren Li
- Department of Clinical Laboratory, Fuding Hospital, Fujian University of Traditional Chinese Medicine, 120 South Road of Old City, Fuding, 355200, Fujian, China
| | - Ying Zhuo
- Department of Clinical Laboratory, Fuding Hospital, Fujian University of Traditional Chinese Medicine, 120 South Road of Old City, Fuding, 355200, Fujian, China
| | - Ying-Ying Jiang
- Department of Clinical Laboratory, Fuding Hospital, Fujian University of Traditional Chinese Medicine, 120 South Road of Old City, Fuding, 355200, Fujian, China
| | - Shi-Yan Zhang
- Department of Clinical Laboratory, Fuding Hospital, Fujian University of Traditional Chinese Medicine, 120 South Road of Old City, Fuding, 355200, Fujian, China.
| |
Collapse
|
179
|
Mi Y, Burnham KL, Charles PD, Heilig R, Vendrell I, Whalley J, Torrance HD, Antcliffe DB, May SM, Neville MJ, Berridge G, Hutton P, Geoghegan CG, Radhakrishnan J, Nesvizhskii AI, Yu F, Davenport EE, McKechnie S, Davies R, O'Callaghan DJP, Patel P, Del Arroyo AG, Karpe F, Gordon AC, Ackland GL, Hinds CJ, Fischer R, Knight JC. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response. Sci Transl Med 2024; 16:eadh0185. [PMID: 38838133 DOI: 10.1126/scitranslmed.adh0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.
Collapse
Affiliation(s)
- Yuxin Mi
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Katie L Burnham
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Justin Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Hew D Torrance
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
| | - David B Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Shaun M May
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Georgina Berridge
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Paula Hutton
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Cyndi G Geoghegan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Jayachandran Radhakrishnan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma E Davenport
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Stuart McKechnie
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Roger Davies
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
| | - David J P O'Callaghan
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Parind Patel
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Ana G Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Charles J Hinds
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
180
|
Xiong W, Chai J, Wu J, Li J, Lu W, Tian M, Jmel MA, Ippel JH, Kotsyfakis M, Dijkgraaf I, Liu S, Xu X. Cathelicidin-HG Alleviates Sepsis-Induced Platelet Dysfunction by Inhibiting GPVI-Mediated Platelet Activation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0381. [PMID: 38840901 PMCID: PMC11151873 DOI: 10.34133/research.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
Platelet activation contributes to sepsis development, leading to microthrombosis and increased inflammation, which results in disseminated intravascular coagulation and multiple organ dysfunction. Although Cathelicidin can alleviate sepsis, its role in sepsis regulation remains largely unexplored. In this study, we identified Cath-HG, a novel Cathelicidin from Hylarana guentheri skin, and analyzed its structure using nuclear magnetic resonance spectroscopy. The modulatory effect of Cath-HG on the symptoms of mice with sepsis induced by cecal ligation and puncture was evaluated in vivo, and the platelet count, degree of organ damage, and microthrombosis were measured. The antiplatelet aggregation activity of Cath-HG was studied in vitro, and its target was verified. Finally, we further investigated whether Cath-HG could regulate thrombosis in vivo in a FeCl3 injury-induced carotid artery model. The results showed that Cath-HG exhibited an α-helical structure in sodium dodecyl sulfate solution and effectively reduced organ inflammation and damage, improving survival in septic mice. It alleviated sepsis-induced thrombocytopenia and microthrombosis. In vitro, Cath-HG specifically inhibited collagen-induced platelet aggregation and modulated glycoprotein VI (GPVI) signaling pathways. Dot blotting, enzyme-linked immunosorbent assay, and pull-down experiments confirmed GPVI as the target of Cath-HG. Molecular docking and amino acid residue truncations/mutations identified crucial sites of Cath-HG. These findings suggest that GPVI represents a promising therapeutic target for sepsis, and Cath-HG may serve as a potential treatment for sepsis-related thrombocytopenia and thrombotic events. Additionally, identifying Cath-HG as a GPVI inhibitor provides insights for developing novel antithrombotic therapies targeting platelet activation mediated by GPVI.
Collapse
Affiliation(s)
- Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jiali Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Wancheng Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Maolin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Mohamed Amine Jmel
- Institute of Parasitology,
Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
| | - Johannes H. Ippel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM),
Maastricht University, 6229 ER Maastricht, Netherlands
| | - Michail Kotsyfakis
- Institute of Parasitology,
Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
- Institute of Molecular Biology and Biotechnology,
Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM),
Maastricht University, 6229 ER Maastricht, Netherlands
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
181
|
Tang Y, Chen L, Yang J, Zhang S, Jin J, Wei Y. Gut microbes improve prognosis of Klebsiella pneumoniae pulmonary infection through the lung-gut axis. Front Cell Infect Microbiol 2024; 14:1392376. [PMID: 38903943 PMCID: PMC11188585 DOI: 10.3389/fcimb.2024.1392376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Background The gut microbiota plays a vital role in the development of sepsis and in protecting against pneumonia. Previous studies have demonstrated the existence of the gut-lung axis and the interaction between the gut and the lung, which is related to the prognosis of critically ill patients; however, most of these studies focused on chronic lung diseases and influenza virus infections. The purpose of this study was to investigate the effect of faecal microbiota transplantation (FMT) on Klebsiella pneumoniae-related pulmonary infection via the gut-lung axis and to compare the effects of FMT with those of traditional antibiotics to identify new therapeutic strategies. Methods We divided the mice into six groups: the blank control (PBS), pneumonia-derived sepsis (KP), pneumonia-derived sepsis + antibiotic (KP + PIP), pneumonia-derived sepsis + faecal microbiota transplantation(KP + FMT), antibiotic treatment control (KP+PIP+PBS), and pneumonia-derived sepsis+ antibiotic + faecal microbiota transplantation (KP + PIP + FMT) groups to compare the survival of mice, lung injury, inflammation response, airway barrier function and the intestinal flora, metabolites and drug resistance genes in each group. Results Alterations in specific intestinal flora can occur in the gut of patients with pneumonia-derived sepsis caused by Klebsiella pneumoniae. Compared with those in the faecal microbiota transplantation group, the antibiotic treatment group had lower levels of proinflammatory factors and higher levels of anti-inflammatory factors but less amelioration of lung pathology and improvement of airway epithelial barrier function. Additionally, the increase in opportunistic pathogens and drug resistance-related genes in the gut of mice was accompanied by decreased production of favourable fatty acids such as acetic acid, propionic acid, butyric acid, decanoic acid, and secondary bile acids such as chenodeoxycholic acid 3-sulfate, isodeoxycholic acid, taurodeoxycholic acid, and 3-dehydrocholic acid; the levels of these metabolites were restored by faecal microbiota transplantation. Faecal microbiota transplantation after antibiotic treatment can gradually ameliorate gut microbiota disorder caused by antibiotic treatment and reduce the number of drug resistance genes induced by antibiotics. Conclusion In contrast to direct antibiotic treatment, faecal microbiota transplantation improves the prognosis of mice with pneumonia-derived sepsis caused by Klebsiella pneumoniae by improving the structure of the intestinal flora and increasing the level of beneficial metabolites, fatty acids and secondary bile acids, thereby reducing systemic inflammation, repairing the barrier function of alveolar epithelial cells, and alleviating pathological damage to the lungs. The combination of antibiotics with faecal microbiota transplantation significantly alleviates intestinal microbiota disorder, reduces the selection for drug resistance genes caused by antibiotics, and mitigates lung lesions; these effects are superior to those following antibiotic monotherapy.
Collapse
Affiliation(s)
- Yuxiu Tang
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liquan Chen
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Yang
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Suqing Zhang
- Department of School of Biology & Basic Medicine Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Jin
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Wei
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
182
|
Li B, Jiao K, Wang B, Gou H, Chai C, Lu Y, Liu J. Sulfur Dioxide Alleviates Organ Damage and Inflammatory Response in Cecal Ligation and Puncture-Induced Sepsis Rat. Mol Biotechnol 2024:10.1007/s12033-024-01168-9. [PMID: 38829503 DOI: 10.1007/s12033-024-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 06/05/2024]
Abstract
The study aimed to elucidate the mechanisms by which sulfur dioxide (SO2) alleviates organ damage during sepsis using RNA-Seq technology. A cecal ligation and puncture (CLP) sepsis model was established in rats, and the effects of SO2 treatment on organ damage were assessed through histopathological examinations. RNA-Seq was performed to analyze differentially expressed genes (DEGs), and subsequent functional annotations and enrichment analyses were conducted. The CLP model successfully induced sepsis symptoms in rats. Histopathological evaluation revealed that SO2 treatment considerably reduced tissue damage across the heart, kidney, liver, and lungs. RNA-Seq identified 950 DEGs between treated and untreated groups, with significant enrichment in genes associated with ribosomal and translational activities, amino acid metabolism, and PI3K-Akt signaling. Furthermore, gene set enrichment analysis (GSEA) showcased enrichments in pathways related to transcriptional regulation, cellular migration, proliferation, and calcium-ion binding. In conclusion, SO2 effectively mitigates multi-organ damage induced by CLP sepsis, potentially through modulating gene expression patterns related to critical biological processes and signaling pathways. These findings highlight the therapeutic promise of SO2 in managing sepsis-induced organ damage.
Collapse
Affiliation(s)
- Bin Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 73000, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Keping Jiao
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, 73000, Gansu, China
| | - Binsheng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Hongzhong Gou
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Chen Chai
- Department of General Surgery, The People's Hospital of Suzhou New District, Suzhou, 215000, Jiangsu, China
| | - Yan Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 73000, Gansu, China
| | - Jian Liu
- Department of Intensive Care Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, Gansu, China.
- Gansu Province Maternal and Child Health Hospital/Gansu Province Central Hospital, Lanzhou, 73000, Gansu, China.
- , No.1 Donggang West Road, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
183
|
Trifi A, Tlili B, Kallel Sellami M, Feki M, Mehdi A, Seghir E, Messaoud L, Abdellatif S, Ben Lakhal S. Immunologic effect and clinical impact of erythromycin in septic patients: A randomized clinical trial. J Crit Care 2024; 81:154533. [PMID: 38359518 DOI: 10.1016/j.jcrc.2024.154533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
To investigate the potential regulatory effect of erythromycin added to standard care in septic patients on sepsis biomarkers and clinical outcome. It was a single-blind randomized trial including critical septic patients. The primary endpoint was the change in the TNF/IL-10 ratio between days 0 and 6. Changes in other biomarkers, vasopressor use, and 28-day mortality were secondary endpoints. One hundred and ten patients were examined (erythromycin group, n = 55 versus placebo group, n = 55). Clinical features of the groups were well matched. Erythromycin addition had no beneficial effects on the TNF/IL-10 ratio or mortality (51% vs. 47%, p = 0.62). Both groups' serum TNF/IL-10 ratios did not significantly rise (from 0.48 [0.34-1.18] to 0.59 [0.21-1.10] vs. 0.65 [0.25-1.14] to 0.93 [0.24-1.88] in the erythromycin and placebo groups, respectively; p values = 0.86 and 0.12). Serum Procalcitonin (PCT) and CRP dropped considerably in the Erythromycin group, whereas only PCT showed a drop in the placebo group. On day 6, the non-survivors' serum TNF/IL-10 ratio was lower than that of the survivors (0.55 [0.17-1.04] vs 1.08 [0.4-2.28], p = 0.029). Neither the pro/anti-inflammatory imbalance nor the mortality were impacted by the addition of erythromycin to standard care in septic patients (ClinicalTrials.gov ID: NCT04665089 (11/12/2020)).
Collapse
Affiliation(s)
- Ahlem Trifi
- Medical Intensive Care Unit, La Rabta Teaching Hospital, Rue Jabbari, 1007 Tunis, Tunisia.
| | - Badis Tlili
- Medical Intensive Care Unit, La Rabta Teaching Hospital, Rue Jabbari, 1007 Tunis, Tunisia
| | | | - Moncef Feki
- Biochemistry Laboratory, La Rabta Teaching Hospital, Rue Jabbari, 1007 Tunis, Tunisia
| | - Asma Mehdi
- Medical Intensive Care Unit, La Rabta Teaching Hospital, Rue Jabbari, 1007 Tunis, Tunisia
| | - Eya Seghir
- Medical Intensive Care Unit, La Rabta Teaching Hospital, Rue Jabbari, 1007 Tunis, Tunisia
| | - Lynda Messaoud
- Medical Intensive Care Unit, La Rabta Teaching Hospital, Rue Jabbari, 1007 Tunis, Tunisia
| | - Sami Abdellatif
- Medical Intensive Care Unit, La Rabta Teaching Hospital, Rue Jabbari, 1007 Tunis, Tunisia
| | - Salah Ben Lakhal
- Medical Intensive Care Unit, La Rabta Teaching Hospital, Rue Jabbari, 1007 Tunis, Tunisia
| |
Collapse
|
184
|
Shi W, Lin Q, Zhang M, Ouyang N, Zhang Y, Yang Z. HERPES SIMPLEX VIRUS-1 SUSCEPTIBILITY AS A RISK FACTOR FOR SEPSIS, WITH CYTOMEGALOVIRUS SUSCEPTIBILITY ELEVATING SEVERITY: INSIGHTS FROM A BIDIRECTIONAL MENDELIAN RANDOMIZATION STUDY. Shock 2024; 61:894-904. [PMID: 38662585 DOI: 10.1097/shk.0000000000002351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Objective: We conducted a two-sample bidirectional Mendelian randomization (MR) study to investigate the causal relationships between herpes viruses and sepsis. Methods: Publicly available genome-wide association study data were used. Four viruses, HSV-1, HSV-2, EBV, and CMV, were selected, with serum positivity and levels of antibody in serum as the herpes virus data. Results: In forward MR, susceptibility to HSV-1 was a risk factor for sepsis. The susceptibility to CMV showed a severity-dependent effect on sepsis and was a risk factor for the 28-day mortality from sepsis, and was also a risk factor for 28-day sepsis mortality in critical care admission. The EBV EA-D antibody level after EBV infection was a protective factor for 28-day sepsis mortality in critical care admission, and CMV pp28 antibody level was a risk factor for 28-day sepsis mortality in critical care admission. No statistically significant causal relationships between HSV-2 and sepsis were found. No exposures having statistically significant association with sepsis critical care admission as an outcome were found. In reverse MR, the sepsis critical care admission group manifested a decrease in CMV pp52 antibody levels. No causal relationships with statistical significance between sepsis exposure and other herpes virus outcomes were found. Conclusion: Our study identifies HSV-1 susceptibility as a sepsis risk, with CMV susceptibility elevating severity. Varied effects of EBV and CMV antibodies on sepsis severity are noted. Severe sepsis results in a decline in CMV antibody levels. Our results help prognostic and predictive enrichment and offer valuable information for precision sepsis treatment.
Collapse
Affiliation(s)
- Wenjun Shi
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao Lin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Zhang
- Department of General Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
185
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
186
|
Pham TPT, Le THT, Pham HTX, Tran TT, Pham VT, Mafruhah OR, Ha HA. Comparative efficacy of antioxidant therapies for sepsis and septic shock in the intensive care unit: A frequentist network meta-analysis. Heliyon 2024; 10:e31447. [PMID: 38807867 PMCID: PMC11130736 DOI: 10.1016/j.heliyon.2024.e31447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Background Antioxidant therapy is gaining traction in managing sepsis and septic shock, owing to its perceived positive impact on patient outcomes. This study sought to compare the efficacy of five antioxidant therapies (melatonin, vitamin C, vitamin E, selenium, and N-acetylcysteine, both individually and in combination with other compounds such as vitamin B1, hydrocortisone, propolis, and glutamine) in treating sepsis or septic shock in the intensive care unit (ICU). Methods The study involved randomized and multi-arm trials with sepsis or septic shock patients using melatonin, vitamin C, vitamin E, selenium, or N-acetylcysteine. Studies were sourced from PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and WHO - Clinical Trials Registry Platform for the frequentist network meta-analysis on 28-day mortality and Sequential Organ Failure Assessment (SOFA) scores. The risk of bias was assessed using the Physiotherapy Evidence Database scale. Therapies were compared directly and indirectly using R software. Results The study of 56 trials involving 9,366 patients was included. Bias assessment revealed that 89.3 % of trials achieved excellent or good quality. Based on treatment ranking and pairwise comparisons, melatonin with propolis (SUCRA = 93.29 %) is effective in improving SOFA scores, statistically significant, with no publication bias (p= 0.73). High-dose vitamin C (SUCRA = 83.97 %), vitamin C with vitamin B1 (SUCRA = 78.72 %), and melatonin (SUCRA = 67.03 %) are potential therapies for organ dysfunction. Melatonin (SUCRA = 88.22 %) and high-dose vitamin C (SUCRA = 80.75 %) were the most effective in reducing 28-day mortality rates. However, analysis indicated that the results for 28-day mortality rates were not statistically significant. Also, these results contained publication bias (p= 0.02). Conclusion The study offers fresh perspectives on antioxidant therapy treatments for sepsis or septic shock in ICU, emphasizing the combination of melatonin and propolis notably reduces SOFA scores for those patients.
Collapse
Affiliation(s)
- Thi-Phuong-Thao Pham
- Research and Development Department, HerbiTech Co. Ltd, Ha Noi, 100000, Viet Nam
| | - Thi-Hoai-Thu Le
- K25YDH3, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| | - Huynh-Thien-Xuan Pham
- K26YDH2, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| | - Thanh-Thien Tran
- K27YDH1, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| | - Van-Truong Pham
- Intensive Care Unit - Hospital 199 - Ministry of Public Security, Danang 550000, Viet Nam
| | - Okti Ratna Mafruhah
- Department of Pharmacy, Universitas Islam Indonesia, Daerah Istimewa Yogyakarta, 55584, Indonesia
| | - Hai-Anh Ha
- Faculty of Pharmacy, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
- Da Nang Pharmaceutical Association, Da Nang, 550000, Viet Nam
| |
Collapse
|
187
|
Burton RJ, Raffray L, Moet LM, Cuff SM, White DA, Baker SE, Moser B, O’Donnell VB, Ghazal P, Morgan MP, Artemiou A, Eberl M. Conventional and unconventional T-cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients. Clin Exp Immunol 2024; 216:293-306. [PMID: 38430552 PMCID: PMC11097916 DOI: 10.1093/cei/uxae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/04/2024] Open
Abstract
Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters.
Collapse
Affiliation(s)
- Ross J Burton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Adult Critical Care, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Loïc Raffray
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Department of Internal Medicine, Félix Guyon University Hospital of La Réunion, Saint Denis, Réunion Island, France
| | - Linda M Moet
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Simone M Cuff
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Daniel A White
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah E Baker
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Valerie B O’Donnell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Peter Ghazal
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matt P Morgan
- Adult Critical Care, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Andreas Artemiou
- School of Mathematics, Cardiff University, Cardiff, UK
- Department of Information Technologies, University of Limassol, 3025 Limassol, Cyprus
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
188
|
Wu Z, Liu X, Huang W, Chen J, Li S, Chao J, Xie J, Liu L, Yang Y, Wu X, Qiu H. CIRP increases Foxp3 + regulatory T cells and inhibits development of Th17 cells by enhancing TLR4-IL-2 signaling in the late phase of sepsis. Int Immunopharmacol 2024; 132:111924. [PMID: 38531201 DOI: 10.1016/j.intimp.2024.111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND T helper (Th) cell imbalances have been associated with the pathophysiology of sepsis, including the Th1/Th2 and Th17/T regulatory cells (Treg) paradigms. Cold-inducible RNA-binding protein (CIRP), a novel damage-associated molecular pattern (DAMP) was reported that could induce T cell activation, and skew CD4+ T cells towards a Th1 profile. However, the effect and underlying mechanisms of CIRP on Th17/Treg differentiation in sepsis still remains unknown. METHODS A prospective exploratory study including patients with sepsis was conducted. Blood samples were collected from patients on days 0, 3 and 7 on admission. The serum CIRP and peripheral blood Treg/Th17 percentage was determined by ELISA and flow cytometry. CD4+ T cells from the spleen and lymph nodes of mice with experimental sepsis were collected after treatment with normal saline (NS), recombinant murine CIRP (rmCIRP) and C23 (an antagonist for CIRP-TLR4) at late stage of sepsis. RNA-seq was conducted to reveal the pivotal molecular mechanism of CIRP on Treg/Th17 differentiation. Naïve CD4+ T cell was isolated from the Tlr4 null and wildtype mice in the presence or absence rmCIRP and C23 to confirmed above findings. RESULTS A total of 19 patients with sepsis finally completed the study. Serum CIRP levels remained high in the majority of patients up to 1 week after admittance was closely associated with high Treg/Th17 ratio of peripheral blood and poor outcome. A univariate logistic analysis demonstrated that higher CIRP concentration at Day 7 is an independent risk factor for Treg/Th17 ratio increasing. CIRP promotes Treg development and suppresses Th17 differentiation was found both in vivo and in vitro. Pretreated with C23 not only alleviated the majority of negative effect of CIRP on Th17 differentiation, but also inhibited Treg differentiation, to some extent. Tlr4 deficiency could abolish almost all downstream effects of rmCIRP. Furthermore, IL-2 is proved a key downstream molecules of the effect CIRP, which also could amplify the activated CD4+ T lymphocytes. CONCLUSIONS Persistent high circulating CIRP level may lead to Treg/Th17 ratio elevated through TLR4 and subsequent active IL-2 signaling which contribute to immunosuppression during late phases of sepsis.
Collapse
Affiliation(s)
- Zongsheng Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jing Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Songli Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaojing Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
189
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
190
|
Liu X, Ou X, Zhang T, Li X, Qiao Q, Jia L, Xu Z, Zhang F, Tian T, Lan H, Yang C, Kong L, Zhang Z. In situ neutrophil apoptosis and macrophage efferocytosis mediated by Glycyrrhiza protein nanoparticles for acute inflammation therapy. J Control Release 2024; 369:215-230. [PMID: 38508529 DOI: 10.1016/j.jconrel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In the progression of acute inflammation, the activation and recruitment of macrophages and neutrophils are mutually reinforcing, leading to amplified inflammatory response and severe tissue damage. Therefore, to regulate the axis of neutrophils and macrophages is essential to avoid tissue damage induced from acute inflammatory. Apoptotic neutrophils can regulate the anti-inflammatory activity of macrophages through the efferocytosis. The strategy of in situ targeting and inducing neutrophil apoptosis has the potential to modulate macrophage activity and transfer anti-inflammatory drugs. Herein, a natural glycyrrhiza protein nanoparticle loaded with dexamethasone (Dex@GNPs) was constructed, which could simultaneously regulate neutrophil and macrophage function during acute inflammation treatment by combining in situ neutrophil apoptosis and macrophage efferocytosis. Dex@GNPs can be rapidly and selectively internalized by neutrophils and subsequently induce neutrophils apoptosis through a ROS-dependent mechanism. The efferocytosis of apoptotic neutrophils not only promoted the polarization of macrophages into anti-inflammatory state, but also facilitated the transfer of Dex@GNPs to macrophages. This enabled dexamethasone to further modulate macrophage function. In mouse models of acute respiratory distress syndrome and sepsis, Dex@GNPs significantly ameliorated the disordered immune microenvironment and alleviated tissue injury. This study presents a novel strategy for drug delivery and inflammation regulation to effectively treat acute inflammatory diseases.
Collapse
Affiliation(s)
- Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiantian Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liyuan Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangxi Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fangming Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
191
|
Shi M, Zhang S, Rong J, Heng Z, Xu Y, Wang Y, Zhang Z. Identification of 18β-glycyrrhetinic acid as an AGT inhibitor against LPS-induced myocardial dysfunction via high throughput screening. Biochem Pharmacol 2024; 223:116127. [PMID: 38490519 DOI: 10.1016/j.bcp.2024.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Sepsis induced myocardial dysfunction (SIMD) is a serious complication of sepsis. There is increasing evidence that the renin-angiotensin system (RAS) is activated in SIMD. Angiotensinogen (AGT) is a precursor of the RAS, and the inhibition of AGT may have significant cardiovascular benefits. But until now, there have been no reports of small molecule drugs targeting AGT. In this study, we designed a promoter-luciferase based system to screen for novel AGT inhibitors to alleviate SIMD. As a result of high-throughput screening, a total of 5 compounds from 351 medicinal herb-derived natural compounds were found inhibiting AGT. 18β-glycyrrhetinic acid (18βGA) was further identified as a potent suppressor of AGT. In vitro experiments, 18βGA could inhibit the secretion of AGT by HepG2 cells and alleviate the elevated level of mitochondrial oxidative stress in cardiomyocytes co-cultured with HepG2 supernatants. In vivo, 18βGA prolonged the survival rate of SIMD mice, enhanced cardiac function, and inhibited the damage of mitochondrial function and inflammation. In addition, the results showed that 18βGA may reduce AGT transcription by downregulating hepatocyte nuclear factor 4 (HNF4) and that further alleviated SIMD. In conclusion, we provided a more efficient screening strategy for AGT inhibitors and expanded the novel role of 18βGA as a promising lead compound in rescuing cardiovascular disease associated with RAS overactivation.
Collapse
Affiliation(s)
- Mengying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shujing Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiabing Rong
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zetao Heng
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Zhaocai Zhang
- Department of Intensive Care Unit, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
192
|
Huang S, Liu D, Han L, Deng J, Wang Z, Jiang J, Zeng L. Decoding the potential role of regulatory T cells in sepsis-induced immunosuppression. Eur J Immunol 2024; 54:e2350730. [PMID: 38430202 DOI: 10.1002/eji.202350730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Sepsis, a multiorgan dysfunction with high incidence and mortality, is caused by an imbalanced host-to-infection immune response. Organ-support therapy improves the early survival rate of sepsis patients. In the long term, those who survive the "cytokine storm" and its secondary damage usually show higher susceptibility to secondary infections and sepsis-induced immunosuppression, in which regulatory T cells (Tregs) are evidenced to play an essential role. However, the potential role and mechanism of Tregs in sepsis-induced immunosuppression remains elusive. In this review, we elucidate the role of different functional subpopulations of Tregs during sepsis and then review the mechanism of sepsis-induced immunosuppression from the aspects of regulatory characteristics, epigenetic modification, and immunometabolism of Tregs. Thoroughly understanding how Tregs impact the immune system during sepsis may shed light on preclinical research and help improve the translational value of sepsis immunotherapy.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lei Han
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
193
|
Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomed Pharmacother 2024; 174:116512. [PMID: 38574617 DOI: 10.1016/j.biopha.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
GPX4 (Glutathione peroxidase 4) serves as a crucial intracellular regulatory factor, participating in various physiological processes and playing a significant role in maintaining the redox homeostasis within the body. Ferroptosis, a form of iron-dependent non-apoptotic cell death, has gained considerable attention in recent years due to its involvement in multiple pathological processes. GPX4 is closely associated with ferroptosis and functions as the primary inhibitor of this process. Together, GPX4 and ferroptosis contribute to the pathophysiology of several diseases, including sepsis, nervous system diseases, ischemia reperfusion injury, cardiovascular diseases, and cancer. This review comprehensively explores the regulatory roles and impacts of GPX4 and ferroptosis in the development and progression of these diseases, with the aim of providing insights for identifying potential therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yang Liu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
194
|
Pei H, Qu J, Chen JM, Zhang YL, Zhang M, Zhao GJ, Lu ZQ. The effects of antioxidant supplementation on short-term mortality in sepsis patients. Heliyon 2024; 10:e29156. [PMID: 38644822 PMCID: PMC11033118 DOI: 10.1016/j.heliyon.2024.e29156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background The occurrence and development of sepsis are related to the excessive production of oxygen free radicals and the weakened natural clearance mechanism. Further dependable evidence is required to clarify the effectiveness of antioxidant therapy, especially its impact on short-term mortality. Objectives The purpose of this systematic review and meta-analysis was to evaluate the effect of common antioxidant therapy on short-term mortality in patients with sepsis. Methods According to PRISMA guidelines, a systematic literature search on antioxidants in adults sepsis patients was performed on PubMed/Medline, Embase, and the Cochrane Library from the establishment of the database to November 2023. Antioxidant supplements can be a single-drug or multi-drug combination: HAT (hydrocortisone, ascorbic acid, and thiamine), ascorbic acid, thiamine, N-acetylcysteine and selenium. The primary outcome was the effect of antioxidant treatment on short-term mortality, which included 28-day mortality, in-hospital mortality, intensive care unit mortality, and 30-day mortality. Subgroup analyses of short-term mortality were used to reduce statistical heterogeneity and publication bias. Results Sixty studies of 130,986 sepsis patients fulfilled the predefined criteria and were quantified and meta-analyzed. Antioxidant therapy reduces the risk of short-term death in sepsis patients by multivariate meta-analysis of current data, including a reduction of in-hospital mortality (OR = 0.81, 95% CI 0.67 to 0.99; P = 0.040) and 28-day mortality (OR = 0.81, 95% CI 0.69 to 0.95]; P = 0.008). Particularly in subgroup analyses, ascorbic acid treatment can reduce in-hospital mortality (OR = 0.66, 95% CI 0.90 to 0.98; P = 0.006) and 28-day mortality (OR = 0.43, 95% CI 0.24 to 0.75; P = 0.003). However, the meta-analysis of RCTs found that antioxidant therapy drugs, especially ascorbic acid, did substantially reduce short-term mortality(OR = 0.78, 95% CI 0.62 to 0.98; P = 0.030; OR = 0.57, 95% CI 0.36 to 0.91; P = 0.020). Conclusions According to current data of RCTs, antioxidant therapy, especially ascorbic acid, has a trend of improving short-term mortality in patients with sepsis, but the evidence remains to be further demonstrated.
Collapse
Affiliation(s)
- Hui Pei
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jie Qu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian-Ming Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao-Lu Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Min Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Guang-Ju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Zhong-Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| |
Collapse
|
195
|
Chen S, Bao J, Hu Z, Liu X, Cheng S, Zhao W, Zhao C. Porous Microspheres as Pathogen Traps for Sepsis Therapy: Capturing Active Pathogens and Alleviating Inflammatory Reactions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38682663 DOI: 10.1021/acsami.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by pathogen infection, while the current antibiotics mainly utilized in clinical practice to combat infection result in the release of pathogen-associated molecular patterns (PAMPs) in the body. Herein, we provide an innovative strategy for controlling sepsis, namely, capturing active pathogens by means of extracorporeal blood purification. Carbon nanotubes (CNTs) were modified with dimethyldiallylammonium chloride (DDA) through γ-ray irradiation-induced graft polymerization to confer a positive charge. Then, CNT-DDAs are blended with polyurethane (PU) to prepare porous microspheres using the electro-spraying method. The obtained microspheres with a pore diameter of 2 μm served as pathogen traps and are termed as PU-CNT-DDA microspheres. Even at a high flow rate of 50 mL·min-1, the capture efficiencies of the PU-CNT-DDAs for Escherichia coli and Staphylococcus aureus remained 94.7% and 98.8%, respectively. This approach circumvents pathogen lysis and mortality, significantly curtails the release of PAMPs, and hampers the production of pro-inflammatory cytokines. Therefore, hemoperfusion using porous PU-CNT-DDAs as pathogen traps to capture active pathogens and alleviate inflammation opens a new route for sepsis therapy.
Collapse
Affiliation(s)
- Shifan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianxu Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Hu
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, PR China
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
196
|
Steinacher E, Lenz M, Krychtiuk KA, Hengstenberg C, Huber K, Wojta J, Heinz G, Niessner A, Speidl WS, Koller L. Decreased percentages of plasmacytoid dendritic cells predict survival in critically ill patients. J Leukoc Biol 2024; 115:902-912. [PMID: 38180532 DOI: 10.1093/jleuko/qiae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Critically ill patients admitted to intensive care units (ICUs) experience a broad variety of life-threatening conditions. Irrespective of the initial cause of hospitalization, many experience systemic immune dysregulation. Dendritic cells (DCs) are the most potent antigen-presenting cells and play a pivotal role in regulating the immune response by linking the innate to the adaptive immune system. The aim of this study was to analyze whether DCs or their respective subsets are associated with 30-d mortality in an unselected patient cohort admitted to a medical ICU with a cardiovascular focus. A total of 231 patients were included in this single-center prospective observational study. Blood was drawn at admission and after 72 h. Subsequently, flow cytometry was utilized for the analysis of DCs and their respective subsets. In the total cohort, low percentages of DCs were significantly associated with sepsis, respiratory failure, and septic shock. In particular, a significantly lower percentage of circulating plasmacytoid DCs (pDCs) was found to be a strong and independent predictor of 30-d mortality after adjustment for demographic and clinical variables with an hazard ratio of 4.2 (95% confidence interval: 1.3-13.3, P = 0.015). Additionally, low percentages of pDCs were correlated with additional markers of inflammation and organ dysfunction. In conclusion, we observed low percentages of DCs in patients admitted to an ICU experiencing sepsis, respiratory failure, and cardiogenic shock, suggesting their depletion as a contributing mechanism for the development of immune paralysis. In our cohort, pDCs were identified as the most robust subset to predict 30-d mortality.
Collapse
Affiliation(s)
- Eva Steinacher
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Max Lenz
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Konstantin A Krychtiuk
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria
- 3rd Medical Department for Cardiology and Emergency Medicine, Wilhelminenhospital, Montleartstrasse 37, 1160 Vienna, Austria
- Medical Faculty, Sigmund Freud University, Freudplatz 1, 1020 Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gottfried Heinz
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alexander Niessner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter S Speidl
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lorenz Koller
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
197
|
Li F, Qu H, Li Y, Liu J, Fu H. Establishment and assessment of mortality risk prediction model in patients with sepsis based on early-stage peripheral lymphocyte subsets. Aging (Albany NY) 2024; 16:7460-7473. [PMID: 38669099 PMCID: PMC11087126 DOI: 10.18632/aging.205772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
This study is aimed to explore the value of lymphocyte subsets in evaluating the severity and prognosis of sepsis. The counts of lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and NK cells significantly decreased between day 1 and day 3 in both the survivor and the non-survivor groups. The peripheral lymphocyte subsets (PLS) at day 1 were not significantly different between the survivor and the non-survivor groups. However, at day 3, the counts of lymphocytes, CD3+ T cells, CD4+ T cells, and NK cells were remarkably lower in the non-survivor group. No significant differences in CD8+ T cells, or CD19+ B cells were observed. The PLS index was independently and significantly associated with the 28-day mortality risk in septic patients (OR: 3.08, 95% CI: 1.18-9.67). Based on these clinical parameters and the PLS index, we developed a nomograph for evaluating the individual mortality risk in sepsis. The area under the curve of prediction with the PLS index was significantly higher than that from the model with only clinical parameters (0.912 vs. 0.817). Our study suggests that the decline of PLS occurred in the early stage of sepsis. The new novel PLS index can be an independent predictor of 28-day mortality in septic patients. The prediction model based on clinical parameters and the PLS index has relatively high predicting ability.
Collapse
Affiliation(s)
- Fuzhu Li
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Hongtao Qu
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Yimin Li
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Jie Liu
- Department of Emergency, Shenzhen United Family Hospital, Shenzhen, Guangdong 518048, China
| | - Hongyun Fu
- The Affiliated Nanhua Hospital, Department of Docimasiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, China
| |
Collapse
|
198
|
Zhou Y, Yang Y, Yi L, Pan M, Tang W, Duan H. Propofol and Dexmedetomidine Ameliorate Endotoxemia-Associated Encephalopathy via Inhibiting Ferroptosis. Drug Des Devel Ther 2024; 18:1349-1368. [PMID: 38681208 PMCID: PMC11055548 DOI: 10.2147/dddt.s458013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background Sepsis is recognized as a multiorgan and systemic damage caused by dysregulated host response to infection. Its acute systemic inflammatory response highly resembles that of lipopolysaccharide (LPS)-induced endotoxemia. Propofol and dexmedetomidine are two commonly used sedatives for mechanical ventilation in critically ill patients and have been reported to alleviate cognitive impairment in many diseases. In this study, we aimed to explore and compare the effects of propofol and dexmedetomidine on the encephalopathy induced by endotoxemia and to investigate whether ferroptosis is involved, finally providing experimental evidence for multi-drug combination in septic sedation. Methods A total of 218 C57BL/6J male mice (20-25 g, 6-8 weeks) were used. Morris water maze (MWM) tests were performed to evaluate whether propofol and dexmedetomidine attenuated LPS-induced cognitive deficits. Brain injury was evaluated using Nissl and Fluoro-Jade C (FJC) staining. Neuroinflammation was assessed by dihydroethidium (DHE) and DCFH-DA staining and by measuring the levels of three cytokines. The number of Iba1+ and GFAP+ cells was used to detect the activation of microglia and astrocytes. To explore the involvement of ferroptosis, the levels of ptgs2 and chac1; the content of iron, malondialdehyde (MDA), and glutathione (GSH); and the expression of ferroptosis-related proteins were investigated. Conclusion The single use of propofol and dexmedetomidine mitigated LPS-induced cognitive impairment, while the combination showed poor performance. In alleviating endotoxemic neural loss and degeneration, the united sedative group exhibited the most potent capability. Both propofol and dexmedetomidine inhibited neuroinflammation, while propofol's effect was slightly weaker. All sedative groups reduced the neural apoptosis, inhibited the activation of microglia and astrocytes, and relieved neurologic ferroptosis. The combined group was most prominent in combating genetic and biochemical alterations of ferroptosis. Fpn1 may be at the core of endotoxemia-related ferroptosis activation.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Yangliang Yang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Liang Yi
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Mengzhi Pan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Weiqing Tang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Hongwei Duan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| |
Collapse
|
199
|
Tang G, Luo Y, Song H, Liu W, Huang Y, Wang X, Zou S, Sun Z, Hou H, Wang F. The immune landscape of sepsis and using immune clusters for identifying sepsis endotypes. Front Immunol 2024; 15:1287415. [PMID: 38707899 PMCID: PMC11066285 DOI: 10.3389/fimmu.2024.1287415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Background The dysregulated immune response to sepsis still remains unclear. Stratification of sepsis patients into endotypes based on immune indicators is important for the future development of personalized therapies. We aimed to evaluate the immune landscape of sepsis and the use of immune clusters for identifying sepsis endotypes. Methods The indicators involved in innate, cellular, and humoral immune cells, inhibitory immune cells, and cytokines were simultaneously assessed in 90 sepsis patients and 40 healthy controls. Unsupervised k-means cluster analysis of immune indicator data were used to identify patient clusters, and a random forest approach was used to build a prediction model for classifying sepsis endotypes. Results We depicted that the impairment of innate and adaptive immunity accompanying increased inflammation was the most prominent feature in patients with sepsis. However, using immune indicators for distinguishing sepsis from bacteremia was difficult, most likely due to the considerable heterogeneity in sepsis patients. Cluster analysis of sepsis patients identified three immune clusters with different survival rates. Cluster 1 (36.7%) could be distinguished from the other clusters as being an "effector-type" cluster, whereas cluster 2 (34.4%) was a "potential-type" cluster, and cluster 3 (28.9%) was a "dysregulation-type" cluster, which showed the lowest survival rate. In addition, we established a prediction model based on immune indicator data, which accurately classified sepsis patients into three immune endotypes. Conclusion We depicted the immune landscape of patients with sepsis and identified three distinct immune endotypes with different survival rates. Cluster membership could be predicted with a model based on immune data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
200
|
Gao Y, Liu L, Cui Y, Zhang J, Wu X. The causality of gut microbiota on onset and progression of sepsis: a bi-directional Mendelian randomization analysis. Front Immunol 2024; 15:1266579. [PMID: 38698853 PMCID: PMC11063379 DOI: 10.3389/fimmu.2024.1266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Background Several observational studies have proposed a potential link between gut microbiota and the onset and progression of sepsis. Nevertheless, the causality of gut microbiota and sepsis remains debatable and warrants more comprehensive exploration. Methods We conducted a two-sample Mendelian randomization (MR) analysis to test the causality between gut microbiota and the onset and progression of sepsis. The genome-wide association study (GWAS) summary statistics for 196 bacterial traits were extracted from the MiBioGen consortium, whereas the GWAS summary statistics for sepsis and sepsis-related outcomes came from the UK Biobank. The inverse-variance weighted (IVW) approach was the primary method used to examine the causal association. To complement the IVW method, we utilized four additional MR methods. We performed a series of sensitivity analyses to examine the robustness of the causal estimates. Results We assessed the causality of 196 bacterial traits on sepsis and sepsis-related outcomes. Genus Coprococcus2 [odds ratio (OR) 0.81, 95% confidence interval (CI) (0.69-0.94), p = 0.007] and genus Dialister (OR 0.85, 95% CI 0.74-0.97, p = 0.016) had a protective effect on sepsis, whereas genus Ruminococcaceae UCG011 (OR 1.10, 95% CI 1.01-1.20, p = 0.024) increased the risk of sepsis. When it came to sepsis requiring critical care, genus Anaerostipes (OR 0.49, 95% CI 0.31-0.76, p = 0.002), genus Coprococcus1 (OR 0.65, 95% CI 0.43-1.00, p = 0.049), and genus Lachnospiraceae UCG004 (OR 0.51, 95% CI 0.34-0.77, p = 0.001) emerged as protective factors. Concerning 28-day mortality of sepsis, genus Coprococcus1 (OR 0.67, 95% CI 0.48-0.94, p = 0.020), genus Coprococcus2 (OR 0.48, 95% CI 0.27-0.86, p = 0.013), genus Lachnospiraceae FCS020 (OR 0.70, 95% CI 0.52-0.95, p = 0.023), and genus Victivallis (OR 0.82, 95% CI 0.68-0.99, p = 0.042) presented a protective effect, whereas genus Ruminococcus torques group (OR 1.53, 95% CI 1.00-2.35, p = 0.049), genus Sellimonas (OR 1.25, 95% CI 1.04-1.50, p = 0.019), and genus Terrisporobacter (OR 1.43, 95% CI 1.02-2.02, p = 0.040) presented a harmful effect. Furthermore, genus Coprococcus1 (OR 0.42, 95% CI 0.19-0.92, p = 0.031), genus Coprococcus2 (OR 0.34, 95% CI 0.14-0.83, p = 0.018), and genus Ruminiclostridium6 (OR 0.43, 95% CI 0.22-0.83, p = 0.012) were associated with a lower 28-day mortality of sepsis requiring critical care. Conclusion This MR analysis unveiled a causality between the 21 bacterial traits and sepsis and sepsis-related outcomes. Our findings may help the development of novel microbiota-based therapeutics to decrease the morbidity and mortality of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Wu
- Department of Anesthesia, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|