151
|
Simpson AJ, Hekking PP, Shaw DE, Fleming LJ, Roberts G, Riley JH, Bates S, Sousa AR, Bansal AT, Pandis I, Sun K, Bakke PS, Caruso M, Dahlén B, Dahlén SE, Horvath I, Krug N, Montuschi P, Sandstrom T, Singer F, Adcock IM, Wagers SS, Djukanovic R, Chung KF, Sterk PJ, Fowler SJ. Treatable traits in the European U-BIOPRED adult asthma cohorts. Allergy 2019; 74:406-411. [PMID: 30307629 PMCID: PMC6587719 DOI: 10.1111/all.13629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andrew J. Simpson
- University of Manchester, and Manchester University NHS Foundation Trust; Manchester Academic Health Science Centre; Manchester UK
- Department of Sport, Health and Exercise Science; School of Life Sciences; The University of Hull; Hull UK
| | | | - Dominick E. Shaw
- Respiratory Research Unit; University of Nottingham; Nottingham UK
| | - Louise J. Fleming
- National Heart and Lung Institute; Imperial College; London UK
- Royal Brompton and Harefield NHS Trust; London UK
| | - Graham Roberts
- NIHR Southampton Respiratory Biomedical Research Unit; Clinical and Experimental Sciences and Human Development and Health; Southampton UK
| | | | | | | | | | | | - Kai Sun
- Data Science Institute; Imperial College; London UK
| | - Per S. Bakke
- Department of Clinical Science; University of Bergen; Bergen Norway
| | - Massimo Caruso
- Department of Clinical and Experimental Medicine; University of Catania; Catania Italy
| | - Barbro Dahlén
- Centre for Allergy Research; Karolinska Institutet; Stockholm Sweden
| | - Sven-Erik Dahlén
- Centre for Allergy Research; Karolinska Institutet; Stockholm Sweden
| | - Ildiko Horvath
- Department of Pulmonology; Semmelweis University; Budapest Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine; Hannover Germany
| | | | - Thomas Sandstrom
- Department of Public Health and Clinical Medicine; Umeå University; Umeå Sweden
| | - Florian Singer
- Inselspital; Bern University Hospital; University of Bern; Bern Switzerland
| | - Ian M. Adcock
- National Heart and Lung Institute; Imperial College; London UK
- Royal Brompton and Harefield NHS Trust; London UK
| | | | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit; Clinical and Experimental Sciences and Human Development and Health; Southampton UK
| | - Kian Fan Chung
- National Heart and Lung Institute; Imperial College; London UK
- Royal Brompton and Harefield NHS Trust; London UK
| | - Peter J. Sterk
- Respiratory Medicine; Academic Medical Centre; Amsterdam The Netherlands
| | - Stephen J. Fowler
- University of Manchester, and Manchester University NHS Foundation Trust; Manchester Academic Health Science Centre; Manchester UK
| | | |
Collapse
|
152
|
Roth M, Stolz D. Biomarkers and personalised medicine for asthma. Eur Respir J 2019; 53:53/1/1802094. [PMID: 30606766 DOI: 10.1183/13993003.02094-2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Michael Roth
- Pulmonary Care Division, Internal Medicine, University Hospital Basel, Basel, Switzerland.,Pulmonary Cell Research, Dept Biomedicine, University Basel, Basel, Switzerland
| | - Daiana Stolz
- Pulmonary Care Division, Internal Medicine, University Hospital Basel, Basel, Switzerland.,Pulmonary Cell Research, Dept Biomedicine, University Basel, Basel, Switzerland
| |
Collapse
|
153
|
Pavlidis S, Takahashi K, Ng Kee Kwong F, Xie J, Hoda U, Sun K, Elyasigomari V, Agapow P, Loza M, Baribaud F, Chanez P, Fowler SJ, Shaw DE, Fleming LJ, Howarth PH, Sousa AR, Corfield J, Auffray C, De Meulder B, Knowles R, Sterk PJ, Guo Y, Adcock IM, Djukanovic R, Fan Chung K. "T2-high" in severe asthma related to blood eosinophil, exhaled nitric oxide and serum periostin. Eur Respir J 2019; 53:13993003.00938-2018. [PMID: 30578390 DOI: 10.1183/13993003.00938-2018] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/26/2018] [Indexed: 11/05/2022]
Abstract
Type-2 (T2) immune responses in airway epithelial cells (AECs) classifies mild-moderate asthma into a T2-high phenotype. We examined whether currently available clinical biomarkers can predict AEC-defined T2-high phenotype within the U-BIOPRED cohort.The transcriptomic profile of AECs obtained from brushings of 103 patients with asthma and 44 healthy controls was obtained and gene set variation analysis used to determine the relative expression score of T2 asthma using a signature from interleukin (IL)-13-exposed AECs.37% of asthmatics (45% nonsmoking severe asthma, n=49; 33% of smoking or ex-smoking severe asthma, n=18; and 28% mild-moderate asthma, n=36) were T2-high using AEC gene expression. They were more symptomatic with higher exhaled nitric oxide fraction (F eNO) and blood and sputum eosinophils, but not serum IgE or periostin. Sputum eosinophilia correlated best with the T2-high signature. F eNO (≥30 ppb) and blood eosinophils (≥300 cells·µL-1) gave a moderate prediction of T2-high asthma. Sputum IL-4, IL-5 and IL-13 protein levels did not correlate with gene expression.T2-high severe asthma can be predicted to some extent from raised levels of F eNO, blood and sputum eosinophil counts, but serum IgE or serum periostin were poor predictors. Better bedside biomarkers are needed to detect T2-high.
Collapse
Affiliation(s)
- Stelios Pavlidis
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Kentaro Takahashi
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Research Centre for Allergy and Clinical Immunology, Asahi General Hospital, Asahi, Japan
| | - Francois Ng Kee Kwong
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Jiaxing Xie
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Uruj Hoda
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Kai Sun
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Vahid Elyasigomari
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Paul Agapow
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Matthew Loza
- Janssen Research and Development, High Wycombe, UK
| | | | - Pascal Chanez
- Assistance Publique des Hôpitaux de Marseille - Clinique des bronches, allergies et sommeil, Aix Marseille Université, Marseille, France
| | - Steve J Fowler
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Dominic E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Peter H Howarth
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, Southampton, UK
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GSK, Stockley Park, UK
| | - Julie Corfield
- AstraZeneca R&D, Molndal, Sweden.,Areteva R&D, Nottingham, UK
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | | | - Peter J Sterk
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Yike Guo
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, Southampton, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | | |
Collapse
|
154
|
Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic Predictors of Asthma Phenotypes and Treatment Response. Front Pediatr 2019; 7:6. [PMID: 30805318 PMCID: PMC6370703 DOI: 10.3389/fped.2019.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a complex respiratory disease considered as the most common chronic condition in children. A large genetic contribution to asthma susceptibility is predicted by the clustering of asthma and allergy symptoms among relatives and the large disease heritability estimated from twin studies, ranging from 55 to 90%. Genetic basis of asthma has been extensively investigated in the past 40 years using linkage analysis and candidate-gene association studies. However, the development of dense arrays for polymorphism genotyping has enabled the transition toward genome-wide association studies (GWAS), which have led the discovery of several unanticipated asthma genes in the last 11 years. Despite this, currently known risk variants identified using many thousand samples from distinct ethnicities only explain a small proportion of asthma heritability. This review examines the main findings of the last 2 years in genomic studies of asthma using GWAS and admixture mapping studies, as well as the direction of studies fostering integrative perspectives involving omics data. Additionally, we discuss the need for assessing the whole spectrum of genetic variation in association studies of asthma susceptibility, severity, and treatment response in order to further improve our knowledge of asthma genes and predictive biomarkers. Leveraging the individual's genetic information will allow a better understanding of asthma pathogenesis and will facilitate the transition toward a more precise diagnosis and treatment.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| |
Collapse
|
155
|
Shrine N, Portelli MA, John C, Soler Artigas M, Bennett N, Hall R, Lewis J, Henry AP, Billington CK, Ahmad A, Packer RJ, Shaw D, Pogson ZEK, Fogarty A, McKeever TM, Singapuri A, Heaney LG, Mansur AH, Chaudhuri R, Thomson NC, Holloway JW, Lockett GA, Howarth PH, Djukanovic R, Hankinson J, Niven R, Simpson A, Chung KF, Sterk PJ, Blakey JD, Adcock IM, Hu S, Guo Y, Obeidat M, Sin DD, van den Berge M, Nickle DC, Bossé Y, Tobin MD, Hall IP, Brightling CE, Wain LV, Sayers I. Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. THE LANCET. RESPIRATORY MEDICINE 2019; 7:20-34. [PMID: 30552067 PMCID: PMC6314966 DOI: 10.1016/s2213-2600(18)30389-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Few genetic studies that focus on moderate-to-severe asthma exist. We aimed to identity novel genetic variants associated with moderate-to-severe asthma, see whether previously identified genetic variants for all types of asthma contribute to moderate-to-severe asthma, and provide novel mechanistic insights using expression analyses in patients with asthma. METHODS In this genome-wide association study, we used a two-stage case-control design. In stage 1, we genotyped patient-level data from two UK cohorts (the Genetics of Asthma Severity and Phenotypes [GASP] initiative and the Unbiased BIOmarkers in PREDiction of respiratory disease outcomes [U-BIOPRED] project) and used data from the UK Biobank to collect patient-level genomic data for cases and controls of European ancestry in a 1:5 ratio. Cases were defined as having moderate-to-severe asthma if they were taking appropriate medication or had been diagnosed by a doctor. Controls were defined as not having asthma, rhinitis, eczema, allergy, emphysema, or chronic bronchitis as diagnosed by a doctor. For stage 2, an independent cohort of cases and controls (1:5) was selected from the UK Biobank only, with no overlap with stage 1 samples. In stage 1 we undertook a genome-wide association study of moderate-to-severe asthma, and in stage 2 we followed up independent variants that reached the significance threshold of p less than 1 × 10-6 in stage 1. We set genome-wide significance at p less than 5 × 10-8. For novel signals, we investigated their effect on all types of asthma (mild, moderate, and severe). For all signals meeting genome-wide significance, we investigated their effect on gene expression in patients with asthma and controls. FINDINGS We included 5135 cases and 25 675 controls for stage 1, and 5414 cases and 21 471 controls for stage 2. We identified 24 genome-wide significant signals of association with moderate-to-severe asthma, including several signals in innate or adaptive immune-response genes. Three novel signals were identified: rs10905284 in GATA3 (coded allele A, odds ratio [OR] 0·90, 95% CI 0·88-0·93; p=1·76 × 10-10), rs11603634 in the MUC5AC region (coded allele G, OR 1·09, 1·06-1·12; p=2·32 × 10-8), and rs560026225 near KIAA1109 (coded allele GATT, OR 1·12, 1·08-1·16; p=3·06 × 10-9). The MUC5AC signal was not associated with asthma when analyses included mild asthma. The rs11603634 G allele was associated with increased expression of MUC5AC mRNA in bronchial epithelial brush samples via proxy SNP rs11602802; (p=2·50 × 10-5) and MUC5AC mRNA was increased in bronchial epithelial samples from patients with severe asthma (in two independent analyses, p=0·039 and p=0·022). INTERPRETATION We found substantial shared genetic architecture between mild and moderate-to-severe asthma. We also report for the first time genetic variants associated with the risk of developing moderate-to-severe asthma that regulate mucin production. Finally, we identify candidate causal genes in these loci and provide increased insight into this difficult to treat population. FUNDING Asthma UK, AirPROM, U-BIOPRED, UK Medical Research Council, and Rosetrees Trust.
Collapse
Affiliation(s)
- Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael A Portelli
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Catherine John
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Neil Bennett
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Robert Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Jon Lewis
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Amanda P Henry
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Azaz Ahmad
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Richard J Packer
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Dominick Shaw
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Zara E K Pogson
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Andrew Fogarty
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Tricia M McKeever
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Amisha Singapuri
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK; Glenfield Hospital, Leicester, UK
| | - Liam G Heaney
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - Adel H Mansur
- Respiratory Medicine, Birmingham Heartlands Hospital and University of Birmingham, Birmingham, UK
| | - Rekha Chaudhuri
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John W Holloway
- Human Development and Health, Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, Southampton, University of Southampton, Southampton, UK
| | - Gabrielle A Lockett
- Human Development and Health, Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, Southampton, University of Southampton, Southampton, UK
| | - Peter H Howarth
- Human Development and Health, Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, Southampton, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Human Development and Health, Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, Southampton, University of Southampton, Southampton, UK
| | - Jenny Hankinson
- Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, UK
| | - Robert Niven
- Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, UK
| | - Angela Simpson
- Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, UK
| | - Kian Fan Chung
- The National Heart and Lung Institute, Imperial College, London, UK
| | - Peter J Sterk
- Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - John D Blakey
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Ian M Adcock
- The National Heart and Lung Institute, Imperial College, London, UK
| | - Sile Hu
- Data Science Institute, Imperial College, London, UK
| | - Yike Guo
- Data Science Institute, Imperial College, London, UK
| | - Maen Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital Vancouver, Vancouver, BC, Canada
| | - Don D Sin
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital Vancouver, Vancouver, BC, Canada; Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen Research Institute for Asthma and COPD Research Institute, Groningen, Netherlands
| | | | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian P Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Christopher E Brightling
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, UK; Glenfield Hospital, Leicester, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
156
|
Abstract
The recent Lancet commission has highlighted that "asthma" should be used to describe a clinical syndrome of wheeze, breathlessness, chest tightness, and sometimes cough. The next step is to deconstruct the airway into components of fixed and variable airflow obstruction, inflammation, infection and altered cough reflex, setting the airway disease in the context of extra-pulmonary co-morbidities and social and environmental factors. The emphasis is always on delineating treatable traits, including variable airflow obstruction caused by airway smooth muscle constriction (treated with short- and long-acting β-2 agonists), eosinophilic airway inflammation (treated with inhaled corticosteroids) and chronic bacterial infection (treated with antibiotics with benefit if it is driving the disease). It is also important not to over-treat the untreatable, such as fixed airflow obstruction. These can all be determined using simple, non-invasive tests such as spirometry before and after acute administration of a bronchodilator (reversible airflow obstruction); peripheral blood eosinophil count, induced sputum, exhaled nitric oxide (airway eosinophilia); and sputum or cough swab culture (bacterial infection). Additionally, the pathophysiology of risk domains must be considered: these are risk of an asthma attack, risk of poor airway growth, and in pre-school children, risk of progression to eosinophilic school age asthma. Phenotyping the airway will allow more precise diagnosis and targeted treatment, but it is important to move to endotypes, especially in the era of increasing numbers of biologicals. Advances in -omics technology allow delineation of pathways, which will be particularly important in TH2 low eosinophilic asthma, and also pauci-inflammatory disease. It is very important to appreciate the difficulties of cluster analysis; a patient may have eosinophilic airway disease because of a steroid resistant endotype, because of non-adherence to basic treatment, and a surge in environmental allergen burden. Sophisticated -omics approaches will be reviewed in this manuscript, but currently they are not being used in clinical practice. However, even while they are being evaluated, management of the asthmas can and should be improved by considering the pathophysiologies of the different airway diseases lumped under that umbrella term, using simple, non-invasive tests which are readily available, and treating accordingly.
Collapse
Affiliation(s)
- Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, United Kingdom
| |
Collapse
|
157
|
Grayson MH, Feldman S, Prince BT, Patel PJ, Matsui EC, Apter AJ. Advances in asthma in 2017: Mechanisms, biologics, and genetics. J Allergy Clin Immunol 2018; 142:1423-1436. [PMID: 30213625 DOI: 10.1016/j.jaci.2018.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
This review summarizes some of the most significant advances in asthma research over the past year. We first focus on novel discoveries in the mechanism of asthma development and exacerbation. This is followed by a discussion of potential new biomarkers, including the use of radiographic markers of disease. Several new biologics have become available to the clinician in the past year, and we summarize these advances and how they can influence the clinical delivery of asthma care. After this, important findings in the genetics of asthma and heterogeneity in phenotypes of the disease are explored, as is the role the environment plays in shaping the development and exacerbation of asthma. Finally, we conclude with a discussion of advances in health literacy and how they will affect asthma care.
Collapse
Affiliation(s)
- Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio.
| | - Scott Feldman
- Section of Allergy and Immunology, Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio
| | - Priya J Patel
- Section of Allergy and Immunology, Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School, University of Texas-Austin, Austin, Tex
| | - Andrea J Apter
- Section of Allergy and Immunology, Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa
| |
Collapse
|
158
|
Implication of fraction of exhaled nitric oxide and blood eosinophil count in severe asthma. Allergol Int 2018; 67S:S3-S11. [PMID: 29754974 DOI: 10.1016/j.alit.2018.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe asthma is a complex disease with heterogeneous features and involves type 2 airway inflammation, including eosinophil accumulation. Surrogate biomarkers, fraction of exhaled nitric oxide (FeNO) and blood eosinophil count (b-EOS), may predict eosinophilic airway inflammation. Here we investigated clinical characteristics of severe asthma phenotype using a combined analysis of FeNO and b-EOS. METHODS This retrospective study examined clinical data of patients with severe asthma (N = 107; median age, 64 years) treated at Saitama Medical University Hospital from 2009 to 2016. Thresholds of FeNO and b-EOS for sputum eosinophil ratio ≥2% were determined using receiver operating characteristic curve (ROC) analysis. Clinical characteristics were analyzed after classifying patients into four subgroups according to these thresholds. RESULTS Of 39 induced sputum samples examined, ROC area under the curve for predicting sputum eosinophilia was 82.0% (p = 0.001) for b-EOS and 77.0% (p = 0.006) for FeNO at optimal cut-off values of ≥300/μL and ≥25 ppb, respectively. The number of sensitized allergens was higher in the high FeNO/low b-EOS and high FeNO/high b-EOS subgroups (p < 0.05). The prevalence of chronic sinusitis was higher in the low FeNO/high b-EOS and high FeNO/high b-EOS subgroups (p = 0.04). The high FeNO/high b-EOS subgroup included the largest proportion (approximately 40%) of patients experiencing frequent severe exacerbations. Both low FeNO/low b-EOS and high FeNO/low b-EOS subgroups showed less severe exacerbations. CONCLUSIONS Combined evaluation of FeNO and b-EOS can identify patients with frequent exacerbations and stratify the appropriate therapy for type 2 inflammation-predominant severe asthma.
Collapse
|
159
|
Abstract
PURPOSE OF REVIEW Asthma is a heterogeneous disease consisting of different phenotypes that are driven by different mechanistic pathways. The purpose of this review is to emphasize the important role of precision medicine in asthma management. RECENT FINDINGS Despite asthma heterogeneity, the approach to management has been on the basis of disease severity, with the most severe patients reserved for the maximum treatments with corticosteroids and bronchodilators. At the severe end, the recent availability of biologic therapies in the form of anti-IgE (omalizumab) and anti-IL5 therapies (mepolizumab and reslizumab) has driven the adaptation of precision medicine. These therapies are reserved for severe asthma with defined either allergic or eosinophilic background, respectively. SUMMARY Unbiased definition of phenotypes or endotypes (which are phenotypes defined by mechanisms) is an important step towards the use of precision medicine in asthma. Although T2-high asthma has been defined with targets becoming available for treating allergic or eosinophilic asthma, the definition of non-T2 phenotypes remains a priority. Precision medicine is also dependent on the definition of biomarkers that can help differentiate between these phenotypes and pinpoint patients suitable for specific-targeted therapies. Thus, precision medicine links phenotypes (endotypes) to targeted treatments for better outcomes.
Collapse
|
160
|
Translating Asthma: Dissecting the Role of Metabolomics, Genomics and Personalized Medicine. Indian J Pediatr 2018; 85:643-650. [PMID: 29185231 DOI: 10.1007/s12098-017-2520-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/27/2017] [Indexed: 01/26/2023]
Abstract
The management of asthma has largely stagnated over the last 25 years, but we are at the dawning of a new age wherein -omics technology can help us manage the disease objectively and rationally. Even in this new scientific age, getting the basics of asthma management right remains essential. The new technologies which can be applied to multiple biological samples include genomics (study of the genome), transcriptomics (gene transcription), lipidomics, proteomics and metabolomics (lipids, proteins and metabolites, respectively) and breathomics, using exhaled breath as a source of biomarkers, which is of particular interest in view of its non-invasive nature in pediatrics. Important applications will include the diagnosis of airways disease, including its components; the pathways driving airway pathology; monitoring the response to treatment; and measuring future risk (asthma attacks, poor lung growth trajectory). With the advent of a wide range of novel biologicals to treat asthma, -omics technology to personalize therapy will be especially important. The U-BIOPRED (Europe) and SARP (USA) groups have been most active in this field, especially using bronchoscopically obtained samples to perform cluster analyses to define new asthma endotypes. However, stability over time and consistency between investigators is imperfect. This is perhaps unsurprising; results of biomarker studies in asthma will be a composite of the underlying disease, the (variable) effects of adverse drivers such as allergen exposure and pollution, the effects of treatment, and the effects of adherence or otherwise to treatment. Ultimately, the aim should be an exhaled breath based tool with a rapid result that can be used as a routine in the clinic. However, at the moment, there are as yet no clinical applications in children of -omics technology.
Collapse
|
161
|
Bush A, Pavord ID. 'We can't diagnose asthma until <insert arbitrary age>'. Arch Dis Child 2018; 103:729-731. [PMID: 29305357 DOI: 10.1136/archdischild-2017-314180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Andrew Bush
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK.,Leukocyte Biology, Imperial College London, National Heart and Lung Institute, London, UK
| | - Ian Douglas Pavord
- Nuffield Department of Medicine, Mathematical Physical and Life Sciences Division, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
162
|
Abstract
The introduction of 16s ribosomal RNA sequencing as a nonculture technique has led to the discovery of the presence of microbiota in the lower airways of healthy individuals. These bacterial communities may originate from the mouth and nasopharynx or from the environment by inhalation. The microbial composition of the lower airways may be modulated by dietary factors, antibiotic therapy, and microbial infections, particularly in early life. In addition, circulatory products from gut microbiota may influence the lung microbiota to maintain mucosal immunity. Recent studies have revealed that, in asthma, the lower airway microbiota show reduced diversity and community composition that is linked to severity and inflammatory phenotype. There is also a greater prevalence of proteobacteria, including Haemophilus, in symptomatic asthma. Microbial dysbiosis may contribute to both the inception and progression of asthma in infants and children, and to corticosteroid resistance in asthma. A better understanding of the regulation of the lung and gut microbiota in asthma may pave the way for targeting microbiota to prevent and treat asthma.
Collapse
|
163
|
U-BIOPRED: evaluation of the value of a public-private partnership to industry. Drug Discov Today 2018; 23:1622-1634. [PMID: 29936248 DOI: 10.1016/j.drudis.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/24/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023]
Abstract
Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) was initiated in the first year of the Innovative Medicines Initiative (IMI). It was an ambitious plan to tackle the understanding of asthma through an integration of clinical and multi-'omics approaches that necessitated the bringing together of industry, academic, and patient representatives because it was too large to be managed by any one of the partners in isolation. It was a novel experience for all concerned. In this review, we describe the main features of the U-BIOPRED experience from the industry perspective. We list some of the key advantages and learnings from the perspective of the authors, and also improvements that we feel could be made in future projects.
Collapse
|
164
|
Jevnikar Z, Östling J, Ax E, Calvén J, Thörn K, Israelsson E, Öberg L, Singhania A, Lau LCK, Wilson SJ, Ward JA, Chauhan A, Sousa AR, De Meulder B, Loza MJ, Baribaud F, Sterk PJ, Chung KF, Sun K, Guo Y, Adcock IM, Payne D, Dahlen B, Chanez P, Shaw DE, Krug N, Hohlfeld JM, Sandström T, Djukanovic R, James A, Hinks TSC, Howarth PH, Vaarala O, van Geest M, Olsson H. Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation. J Allergy Clin Immunol 2018; 143:577-590. [PMID: 29902480 DOI: 10.1016/j.jaci.2018.05.026] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/15/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. OBJECTIVE We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. METHODS An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. RESULTS Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1β, IL-8, and IL-1β. CONCLUSIONS Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.
Collapse
Affiliation(s)
- Zala Jevnikar
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Jörgen Östling
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Ax
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Calvén
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kristofer Thörn
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Israelsson
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lisa Öberg
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Akul Singhania
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom
| | - Laurie C K Lau
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom
| | - Susan J Wilson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan A Ward
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anoop Chauhan
- Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom
| | - Ana R Sousa
- Discovery Medicine, GlaxoSmithKline, Brentford, United Kingdom
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | | | | | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London UK & Royal Brompton Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Kai Sun
- Department of Computing & Data Science Institute, Imperial College London, London, United Kingdom
| | - Yike Guo
- Department of Computing & Data Science Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London UK & Royal Brompton Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Debbie Payne
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, United Kingdom
| | - Barbro Dahlen
- Karolinska University Hospital & Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | | | - Dominick E Shaw
- Respiratory Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Norbert Krug
- Fraunhofer Institute of Toxicology and Experimental Medicine, Member of the German Center for Lung Research, Hannover, Germany
| | - Jens M Hohlfeld
- Fraunhofer Institute of Toxicology and Experimental Medicine, Member of the German Center for Lung Research, Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom
| | - Anna James
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Timothy S C Hinks
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom; Respiratory Medicine Unit, NDM Experimental Medicine, University of OxfordJohn Radcliffe Hospital, Oxford, United Kingdom
| | - Peter H Howarth
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom
| | - Outi Vaarala
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marleen van Geest
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
165
|
Marshall LJ, Austin CP, Casey W, Fitzpatrick SC, Willett C. Recommendations toward a human pathway-based approach to disease research. Drug Discov Today 2018; 23:1824-1832. [PMID: 29870792 DOI: 10.1016/j.drudis.2018.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
Failures in the current paradigm for drug development have resulted in soaring research and development costs and reduced numbers of new drug approvals. Over 90% of new drug programs fail, the majority terminated at the level of Phase 2/3 clinical trials, largely because of efficacy failures or unexplained toxicity. A recent workshop brought together members from research institutions, regulatory agencies, industry, academia, and nongovernmental organizations to discuss how existing programs could be better applied to understanding human biology and improving drug discovery. Recommendations include increased emphasis on human relevance, better access and curation of data, and improved interdisciplinary and international collaboration.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA.
| | - Christopher P Austin
- Office of the Director, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20817, USA
| | - Warren Casey
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, USA; National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Suzanne C Fitzpatrick
- Center for Food Safety and Applied Nutrition, FDA, Harvey W. Wiley Building, 5100 Paint Branch Parkway, College Park, MD 20740, USA
| | - Catherine Willett
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA
| |
Collapse
|
166
|
De Meulder B, Lefaudeux D, Bansal AT, Mazein A, Chaiboonchoe A, Ahmed H, Balaur I, Saqi M, Pellet J, Ballereau S, Lemonnier N, Sun K, Pandis I, Yang X, Batuwitage M, Kretsos K, van Eyll J, Bedding A, Davison T, Dodson P, Larminie C, Postle A, Corfield J, Djukanovic R, Chung KF, Adcock IM, Guo YK, Sterk PJ, Manta A, Rowe A, Baribaud F, Auffray C. A computational framework for complex disease stratification from multiple large-scale datasets. BMC SYSTEMS BIOLOGY 2018; 12:60. [PMID: 29843806 PMCID: PMC5975674 DOI: 10.1186/s12918-018-0556-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.
Collapse
Affiliation(s)
- Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France.
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, CB4 OWS, UK
| | - Alexander Mazein
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Amphun Chaiboonchoe
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Hassan Ahmed
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Irina Balaur
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Mansoor Saqi
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Johann Pellet
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Stéphane Ballereau
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Nathanaël Lemonnier
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Kai Sun
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, SW7 2AZ, UK.,Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | - Xian Yang
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | | | | | | | | | - Timothy Davison
- Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | - Paul Dodson
- AstraZeneca Ltd, Alderley Park, Macclesfield, SK10 4TG, UK
| | | | - Anthony Postle
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julie Corfield
- AstraZeneca R & D, 43150, Mölndal, Sweden.,Arateva R & D Ltd, Nottingham, NG1 1GF, UK
| | - Ratko Djukanovic
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kian Fan Chung
- National Hearth and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Ian M Adcock
- National Hearth and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Yi-Ke Guo
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, AZ1105, The Netherlands
| | - Alexander Manta
- Research Informatics, Roche Diagnostics GmbH, 82008, Unterhaching, Germany
| | - Anthony Rowe
- Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | | | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France.
| | | |
Collapse
|
167
|
Kasaian MT, Lee J, Brennan A, Danto SI, Black KE, Fitz L, Dixon AE. Proteomic analysis of serum and sputum analytes distinguishes controlled and poorly controlled asthmatics. Clin Exp Allergy 2018; 48:814-824. [PMID: 29665127 DOI: 10.1111/cea.13151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/11/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND A major goal of asthma therapy is to achieve disease control, with maintenance of lung function, reduced need for rescue medication, and prevention of exacerbation. Despite current standard of care, up to 70% of patients with asthma remain poorly controlled. Analysis of serum and sputum biomarkers could offer insights into parameters associated with poor asthma control. OBJECTIVE To identify signatures as determinants of asthma disease control, we performed proteomics using Olink proximity extension analysis. METHODS Up to 3 longitudinal serum samples were collected from 23 controlled and 25 poorly controlled asthmatics. Nine of the controlled and 8 of the poorly controlled subjects also provided 2 longitudinal sputum samples. The study included an additional cohort of 9 subjects whose serum was collected within 48 hours of asthma exacerbation. Two separate pre-defined Proseek Multiplex panels (INF and CVDIII) were run to quantify 181 separate protein analytes in serum and sputum. RESULTS Panels consisting of 9 markers in serum (CCL19, CCL25, CDCP1, CCL11, FGF21, FGF23, Flt3L, IL-10Rβ, IL-6) and 16 markers in sputum (tPA, KLK6, RETN, ADA, MMP9, Chit1, GRN, PGLYRP1, MPO, HGF, PRTN3, DNER, PI3, Chi3L1, AZU1, and OPG) distinguished controlled and poorly controlled asthmatics. The sputum analytes were consistent with a pattern of neutrophil activation associated with poor asthma control. The serum analyte profile of the exacerbation cohort resembled that of the controlled group rather than that of the poorly controlled asthmatics, possibly reflecting a therapeutic response to systemic corticosteroids. CONCLUSIONS AND CLINICAL RELEVANCE Proteomic profiles in serum and sputum distinguished controlled and poorly controlled asthmatics, and were maintained over time. Findings support a link between sputum neutrophil markers and loss of asthma control.
Collapse
Affiliation(s)
- M T Kasaian
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - J Lee
- Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA
| | - A Brennan
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - S I Danto
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - K E Black
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - L Fitz
- Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA
| | - A E Dixon
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
168
|
Amaral R, Fonseca JA, Jacinto T, Pereira AM, Malinovschi A, Janson C, Alving K. Having concomitant asthma phenotypes is common and independently relates to poor lung function in NHANES 2007-2012. Clin Transl Allergy 2018; 8:13. [PMID: 29755730 PMCID: PMC5934840 DOI: 10.1186/s13601-018-0201-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Background Evidence for distinct asthma phenotypes and their overlap is becoming increasingly relevant to identify personalized and targeted therapeutic strategies. In this study, we aimed to describe the overlap of five commonly reported asthma phenotypes in US adults with current asthma and assess its association with asthma outcomes. Methods Data from the National Health and Nutrition Examination Surveys (NHANES) 2007-2012 were used (n = 30,442). Adults with current asthma were selected. Asthma phenotypes were: B-Eos-high [if blood eosinophils (B-Eos) ≥ 300/mm3]; FeNO-high (FeNO ≥ 35 ppb); B-Eos&FeNO-low (B-Eos < 150/mm3 and FeNO < 20 ppb); asthma with obesity (AwObesity) (BMI ≥ 30 kg/m2); and asthma with concurrent COPD. Data were weighted for the US population and analyses were stratified by age (< 40 and ≥ 40 years old). Results Of the 18,619 adults included, 1059 (5.6% [95% CI 5.1-5.9]) had current asthma. A substantial overlap was observed both in subjects aged < 40 years (44%) and ≥ 40 years (54%). The more prevalent specific overlaps in both age groups were AwObesity associated with either B-Eos-high (15 and 12%, respectively) or B-Eos&FeNO-low asthma (13 and 11%, respectively). About 14% of the current asthma patients were "non-classified". Regardless of phenotype classification, having concomitant phenotypes was significantly associated with (adjusted OR, 95% CI) ≥ 2 controller medications (2.03, 1.16-3.57), and FEV1 < LLN (3.21, 1.74-5.94), adjusted for confounding variables. Conclusions A prevalent overlap of commonly reported asthma phenotypes was observed among asthma patients from the general population, with implications for objective asthma outcomes. A broader approach may be required to better characterize asthma patients and prevent poor asthma outcomes.
Collapse
Affiliation(s)
- Rita Amaral
- 1CINTESIS- Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Edifício Nascente, Piso 2, Rua Dr. Plácido da Costa, s/n, 4200-450 Porto, Portugal.,Department of Cardiovascular and Respiratory Sciences, Porto Health School, Porto, Portugal
| | - João A Fonseca
- 1CINTESIS- Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Edifício Nascente, Piso 2, Rua Dr. Plácido da Costa, s/n, 4200-450 Porto, Portugal.,3MEDCIDS- Department of Community Medicine, Information, and Health Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Allergy, Instituto & Hospital CUF, Porto, Portugal
| | - Tiago Jacinto
- 1CINTESIS- Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Edifício Nascente, Piso 2, Rua Dr. Plácido da Costa, s/n, 4200-450 Porto, Portugal.,Department of Cardiovascular and Respiratory Sciences, Porto Health School, Porto, Portugal.,Department of Allergy, Instituto & Hospital CUF, Porto, Portugal
| | - Ana M Pereira
- 1CINTESIS- Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Edifício Nascente, Piso 2, Rua Dr. Plácido da Costa, s/n, 4200-450 Porto, Portugal.,Department of Allergy, Instituto & Hospital CUF, Porto, Portugal
| | - Andrei Malinovschi
- 5Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- 6Department of Medical Sciences: Respiratory Medicine and Allergology, Uppsala University, Uppsala, Sweden
| | - Kjell Alving
- 7Department of Women's and Children's Health: Paediatric Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
169
|
Takahashi K, Pavlidis S, Ng Kee Kwong F, Hoda U, Rossios C, Sun K, Loza M, Baribaud F, Chanez P, Fowler SJ, Horvath I, Montuschi P, Singer F, Musial J, Dahlen B, Dahlen SE, Krug N, Sandstrom T, Shaw DE, Lutter R, Bakke P, Fleming LJ, Howarth PH, Caruso M, Sousa AR, Corfield J, Auffray C, De Meulder B, Lefaudeux D, Djukanovic R, Sterk PJ, Guo Y, Adcock IM, Chung KF. Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J 2018; 51:13993003.02173-2017. [PMID: 29650557 DOI: 10.1183/13993003.02173-2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes.The U-BIOPRED cohort of severe asthma patients, containing current-smokers (CSA), ex-smokers (ESA), nonsmokers and healthy nonsmokers was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed.Colony-stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants, with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene set variation analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated.Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level, with CSA patients having increased CSF2 expression and ESA patients showing sustained loss of epithelial barrier processes.
Collapse
Affiliation(s)
- Kentaro Takahashi
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Research Centre for Allergy and Clinical Immunology, Asahi General Hospital, Matsudo, Japan
| | - Stelios Pavlidis
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Francois Ng Kee Kwong
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Uruj Hoda
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Christos Rossios
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Kai Sun
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Matthew Loza
- Janssen Research and Development, High Wycombe, UK
| | | | - Pascal Chanez
- Assistance Publique des Hôpitaux de Marseille, Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Steve J Fowler
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | | | | | - Florian Singer
- Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jacek Musial
- Dept of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Barbro Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Eric Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrom
- Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominic E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Rene Lutter
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Bakke
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Peter H Howarth
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, Southampton, UK
| | - Massimo Caruso
- Dept Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GSK, Stockley Park, UK
| | - Julie Corfield
- AstraZeneca R&D, Molndal, Sweden.,Areteva R&D, Nottingham, UK
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, Southampton, UK
| | - Peter J Sterk
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Yike Guo
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | | |
Collapse
|
170
|
Hastie AT, Steele C, Dunaway CW, Moore WC, Rector BM, Ampleford E, Li H, Denlinger LC, Jarjour N, Meyers DA, Bleecker ER. Complex association patterns for inflammatory mediators in induced sputum from subjects with asthma. Clin Exp Allergy 2018. [PMID: 29520864 DOI: 10.1111/cea.13129] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The release of various inflammatory mediators into the bronchial lumen is thought to reflect both the type and degree of airway inflammation, eosinophilic Th2, and Th9, or neutrophilic Th1, and Th17, in patients with asthma. AIMS We investigated whether cytokines and chemokines differed in sputum from subjects with more severe compared with milder asthma and whether unbiased factor analysis of cytokine and chemokine groupings indicates specific inflammatory pathways. METHODS Cell-free supernatants from induced sputum were obtained from subjects with a broad range of asthma severity (n = 158) and assessed using Milliplex® Cytokines/Chemokine kits I, II and III, measuring 75 individual proteins. Each cytokine, chemokine or growth factor concentration was examined for differences between asthma severity groups, for association with leucocyte counts, and by factor analysis. RESULTS Severe asthma subjects had 9 increased and 4 decreased proteins compared to mild asthma subjects and fewer differences compared to moderate asthma. Twenty-six mediators were significantly associated with an increasing single leucocyte type: 16 with neutrophils (3 interleukins [IL], 3 CC chemokines, 4 CXC chemokines, 4 growth factors, TNF-α and CX3CL1/Fractalkine); 5 with lymphocytes (IL-7, IL-16, IL-23, IFN-α2 and CCL4/MIP1β); IL-15 and CCL15/MIP1δ with macrophages; IL-5 with eosinophils; and IL-4 and TNFSF10/TRAIL with airway epithelial cells. Factor analysis grouped 43 cytokines, chemokines and growth factors which had no missing data onto the first 10 factors, containing mixes of Th1, Th2, Th9 and Th17 inflammatory and anti-inflammatory proteins. CONCLUSIONS Sputum cytokines, chemokines and growth factors were increased in severe asthma, primarily with increased neutrophils. Factor analysis identified complex inflammatory protein interactions, suggesting airway inflammation in asthma is characterized by overlapping immune pathways. Thus, focus on a single specific inflammatory mediator or pathway may limit understanding the complexity of inflammation underlying airway changes in asthma and selection of appropriate therapy.
Collapse
Affiliation(s)
- A T Hastie
- Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - C Steele
- Lung Immunology of Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C W Dunaway
- Lung Immunology of Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W C Moore
- Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - B M Rector
- Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - E Ampleford
- Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - H Li
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - L C Denlinger
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - N Jarjour
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - D A Meyers
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - E R Bleecker
- University of Arizona College of Medicine, Tucson, AZ, USA
| | | |
Collapse
|
171
|
van Bragt JJMH, Vijverberg SJH, Weersink EJM, Richards LB, Neerincx AH, Sterk PJ, Bel EHD, Maitland-van der Zee AH. Blood biomarkers in chronic airways diseases and their role in diagnosis and management. Expert Rev Respir Med 2018; 12:361-374. [PMID: 29575948 DOI: 10.1080/17476348.2018.1457440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The complexity and heterogeneous nature of asthma and chronic obstructive pulmonary disease (COPD) results in difficulties in diagnosing and treating patients. Biomarkers that can identify underlying mechanisms, identify patient phenotypes and to predict treatment response could be of great value for adequate treatment. Areas covered: Biomarkers play an important role for the development of novel targeted therapies in airways disease. Blood biomarkers are relatively non-invasive, easy to obtain and easy to apply in routine care. Several blood biomarkers are being used to diagnose and monitor chronic airways diseases, as well as to predict response to treatment and long-term prognosis. Blood eosinophils are the best studied biomarker, the most applied in clinical practice, and until now the most promising of all blood biomarkers. Other blood biomarkers, including serum periostin, IgE and ECP and plasma fibrinogen are less studied and less relevant in clinical practice. Recent developments include the use of antibody assays of many different cytokines at the same time, and 'omics' techniques and systems medicine. Expert commentary: With the exception of blood eosinophils, the use of blood biomarkers in asthma and COPD has been rather disappointing. Future research using new technologies like big-data analysis of blood samples from real-life patient cohorts will probably gain better insight into underlying mechanisms of different disease phenotypes. Identification of specific molecular pathways and associated biomarkers will then allow the development of new targets for precision medicine.
Collapse
Affiliation(s)
- Job J M H van Bragt
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Susanne J H Vijverberg
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Els J M Weersink
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Levi B Richards
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Anne H Neerincx
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Peter J Sterk
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Elisabeth H D Bel
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Anke H Maitland-van der Zee
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
172
|
Porsbjerg C, Sverrild A, Baines KJ, Searles A, Maltby S, Foster PS, Brightling C, Gibson PG. Advancing the management of obstructive airways diseases through translational research. Clin Exp Allergy 2018; 48:493-501. [PMID: 29412485 DOI: 10.1111/cea.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Obstructive airways diseases (OAD) represent a huge burden of illness world-wide, and in spite of the development of effective therapies, significant morbidity and mortality related to asthma and COPD still remains. Over the past decade, our understanding of OAD has improved vastly, and novel treatments have evolved. This evolution is the result of successful translational research, which has connected clinical presentations of OAD and underlying disease mechanisms, thereby enabling the development of targeted treatments. The next challenge of translational research will be to position these novel treatments for OAD for optimal clinical use. At the same time, there is great potential in these treatments providing even better insights into disease mechanisms in OAD by studying the effects of blocking individual immunological pathways. To optimize this potential, there is a need to ensure that translational aspects are added to randomized clinical trials, as well as real-world studies, but also to use other trial designs such as platform studies, which allow for simultaneous assessment of different interventions. Furthermore, demonstrating clinical impact, that is research translation, is an increasingly important component of successful translational research. This review outlines concepts of translational research, exemplifying how translational research has moved management of obstructive airways diseases into the next century, with the introduction of targeted, individualized therapy. Furthermore, the review describes how these therapies may be used as research tools to further our understanding of disease mechanisms in OAD, through translational, mechanistic studies. We underline the current need for implementing basic immunological concepts into clinical care in order to optimize the use of novel targeted treatments and to further the clinical understanding of disease mechanisms. Finally, potential barriers to adoption of novel targeted therapies into routine practice and how these may be overcome are described.
Collapse
Affiliation(s)
- C Porsbjerg
- Department of Respiratory Medicine, Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark
| | - A Sverrild
- Department of Respiratory Medicine, Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark
| | - K J Baines
- Centre for Asthma and Respiratory Disease Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - A Searles
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - S Maltby
- Centre for Asthma and Respiratory Disease Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - P S Foster
- Centre for Asthma and Respiratory Diseases, and Hunter Medical Research Institute, The University of Newcastle/Royal Newcastle Hospital, Newcastle, Australia
| | - C Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR BRU Respiratory Medicine, University of Leicester, Leicester, UK
| | - P G Gibson
- Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, John Hunter Hospital, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
173
|
Low K, Bardin PG. Targeted Therapy for Severe Asthma: Identifying the Right Patients. Mol Diagn Ther 2018; 21:235-247. [PMID: 28044257 DOI: 10.1007/s40291-016-0252-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Asthma affects over 300 million people worldwide. Most asthmatics are well controlled with inhaled corticosteroids and long-acting beta-agonists; however, a proportion of patients are unresponsive and attain limited disease control. This group represents a considerable healthcare and financial burden, particularly patients who experience frequent exacerbations and require hospital admission. Development of new biological agents and disease biomarkers has provided novel avenues for treatment. These treatments have been highly successful, reducing exacerbations and yielding modest improvements in quality of life and lung function. However, only a proportion of severe asthmatics respond to this targeted treatment, highlighting the heterogeneity of severe asthma. One of the first biological therapies targeted immunoglobulin E (IgE) and demonstrated modest benefit but could only be used in a subgroup of patients. Recent research has shown that treatment aimed at the T helper-2-(Th2)-high pathways and cytokines such as interleukin (IL)-5, IL-4, and IL-13 may also be effective in another partially overlapping subgroup. A blood eosinophil count over a defined threshold (generally ≥300 cells/μl) was a reliable biomarker and identified the majority of responders in this group. Further discovery and validation of biological markers to define asthmatic phenotypes that may benefit from biological treatments remain an area of intense interest and research. We review the latest information pertaining to biological agents and demonstrate how patient responders may potentially be identified for treatment.
Collapse
Affiliation(s)
- Kathy Low
- Lung and Sleep Medicine, Monash University and Medical Centre, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia
| | - Philip G Bardin
- Lung and Sleep Medicine, Monash University and Medical Centre, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia. .,Hudson Institute, Melbourne, VIC, Australia.
| |
Collapse
|
174
|
Yung JA, Fuseini H, Newcomb DC. Hormones, sex, and asthma. Ann Allergy Asthma Immunol 2018; 120:488-494. [PMID: 29410216 DOI: 10.1016/j.anai.2018.01.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To summarize the current literature on the sex disparity in asthma and the role of sex hormone signaling in allergic and neutrophilic airway inflammation. DATA SOURCES PubMed and Centers for Disease Control and Prevention health surveys were searched. STUDY SELECTIONS Clinical and epidemiologic studies in children and adults as well as animal models of asthma were included in this review. RESULTS Compared with males, females have an increase in asthma prevalence starting around puberty, and fluctuations in hormones during menstruation, pregnancy, and menopause are associated with changes in asthma symptoms. Animal studies using genetic deletions of estrogen receptors or androgen receptors have shown that estrogen signaling promotes and androgen signaling attenuates allergen-mediated type 2 airway inflammation. Furthermore, animal studies have found that ovarian hormones are important for interleukin 17A-mediated airway inflammation. CONCLUSION Sex hormones are important in regulating asthma pathogenesis. However, additional studies need to be conducted to further elucidate how sex hormones are initiating and driving the inflammatory response(s) in asthma. Determining these pathways will provide the foundation necessary for the development of treatment strategies and potentially new therapeutics for patients, in particular females, with asthma.
Collapse
Affiliation(s)
- Jeffrey A Yung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hubaida Fuseini
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
175
|
Severe Asthma Phenotypes - How Should They Guide Evaluation and Treatment? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 5:901-908. [PMID: 28689840 DOI: 10.1016/j.jaip.2017.05.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/22/2022]
Abstract
Although patients with "severe" asthma tend to be characterized by ongoing symptoms and airway inflammation despite treatment with high doses of inhaled and systemic corticosteroids, there is increasing recognition of marked phenotypic heterogeneity within affected patients. Although "precision medicine" approaches for patients with severe asthma are needed, there are many hurdles that must be overcome in daily practice. The National Heart, Lung and Blood Institute's Severe Asthma Research Program (SARP) has been at the forefront of phenotype discovery in severe asthma for the past decade. SARP, along with other international groups, has described clinical severe asthma phenotypes in both adults and children that can be evaluated in the clinical setting. Although these clinical phenotypes provide a good "starting point" for addressing disease heterogeneity in severe asthma in everyday practice, more efforts are needed to understand how these phenotypes relate to underlying disease mechanisms and pharmacological treatment responses. This review highlights the clinical asthma phenotypes identified to date, their associations with underlying endotypes and potential biomarkers, and remaining knowledge gaps that must be addressed before precision medicine can become a reality for patients with severe asthma.
Collapse
|
176
|
Fowler SJ. Breath analysis for label-free characterisation of airways disease. Eur Respir J 2018; 51:51/1/1702586. [DOI: 10.1183/13993003.02586-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/12/2023]
|
177
|
Park SY, Kim JH, Kim HJ, Seo B, Kwon OY, Chang HS, Kwon HS, Kim TB, Kim H, Park CS, Moon HB, Cho YS. High Prevalence of Asthma in Elderly Women: Findings From a Korean National Health Database and Adult Asthma Cohort. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:387-396. [PMID: 29949835 PMCID: PMC6021593 DOI: 10.4168/aair.2018.10.4.387] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/29/2018] [Accepted: 04/20/2018] [Indexed: 01/06/2023]
Abstract
Purpose The prevalence and burden of asthma is increasing worldwide. In this study, we analyzed 3 different Korean national health survey datasets to determine the general features of adult asthma in Korea and to obtain basic information that would support future strategies for better management of adult asthma. Methods The surveys used in this study included the Korea National Health and Nutrition Examination Survey (KNHANES), Korea Community Health Survey (KCHS) and National Health Insurance Service-National Sample Cohort (NHIS-NSC). We investigated annual asthma prevalence, evaluating the rate and risk factors of asthma exacerbation by age and sex, and clinical data of 1,832 patients with asthma who were registered in the Cohort for Reality and Evolution of Adult Asthma in Korea (COREA) were analyzed to elucidate risk factors for asthma exacerbation. We also analyzed another asthma cohort and added it as replication data. Results In the KNHANES database, annual asthma prevalence rates varied from 1.2% to 3.1%. In the KCHS database, overall prevalence increased, with significant regional differences (1.6%–2.1%). The NHIS-NSC indicated a gradual increase in annual asthma prevalence from 4.5% to 6.2%. Interestingly, all 3 surveys indicated the highest prevalence of asthma among elderly women. In addition, elderly women with asthma had a significantly higher risk of asthma exacerbation (odds ratio [OR], 1.87; 95% confidence interval [CI], 1.19–2.93; P=0.006). Approximately 11% of patients were classified as having severe asthma. An asthma cohort analysis identified female sex, low baseline pulmonary function, longer treatment duration, high variability in pulmonary function and significant changes in Asthma Control Test scores as risk factors for asthma exacerbation. Conclusions The prevalence of asthma in Korea is consistently high among elderly and female populations. These results should lay the foundation for strategies for effective asthma prevention and management; elderly female patients with asthma should receive particular attention.
Collapse
Affiliation(s)
- So Young Park
- Department of Allergy and Respiratory Medicine, Konkuk University Hospital, Seoul, Korea
| | - Jung Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyo Jung Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University, Busan, Korea
| | - Bomi Seo
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Oh Young Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Asan, Korea
| | - Hyouk Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Kim
- Graduated School of Public Health, Seoul National University, Seoul, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hee Bom Moon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
178
|
Haughney J, Morice A, Blyth KG, Lee AJ, Coutts A, McKnight E, Pavord I. A retrospective cohort study in severe asthma describing commonly measured biomarkers: Eosinophil count and IgE levels. Respir Med 2017; 134:117-123. [PMID: 29413497 DOI: 10.1016/j.rmed.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/23/2017] [Accepted: 12/02/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Identifying asthma patients suitable for biologic therapy includes the assessment of blood biomarkers (IgE and eosinophils (EOS)). How they relate to each other is unclear. METHODS This retrospective, database study used routinely collected clinical data to identify and evaluate an asthma cohort (classification code for asthma; ≥ 18 years; ≥1 prescription for asthma; ≥1 estimation of serum IgE, in 2 years prior to index date). Distribution into high and low IgE and EOS groups (IgE cut-point: > or ≤75 kU/L; EOS cut point: >or ≤400 μ/L), and characteristics by group are described. FINDINGS In patients with severe asthma (British Thoracic Society Step (BTS) ≥4; N = 884), using maximum recorded IgE/EOS, 33% had high IgE/high EOS, 28% low IgE/low EOS and approximately a fifth each had high IgE/low EOS or low IgE/high EOS. Proportions were similar when EOS values measured 2 or 4 weeks before an exacerbation were excluded. Using EOS/IgE 'same day' measurements (N = 578) only identified half of the high EOS group. Patients in high IgE groups were more likely to be younger males without comorbid COPD; those in high EOS groups were more likely to be on BTS treatment Step 5 vs 4. The low IgE/low EOS group had the lowest incidence of asthma-related hospital attendances, the highest incidence was observed in the high EOS groups. CONCLUSION Maximum available EOS measurement irrespective of exacerbations may be relevant when considering therapy. These data showed low IgE/Low EOS to be more benign and high EOS groups at increased risk of frequent, severe exacerbations.
Collapse
Affiliation(s)
- John Haughney
- Centre of Academic Primary Care, University of Aberdeen, UK; Clinical Research & Development, Greater Glasgow & Clyde Health Board, Glasgow, UK.
| | - Alyn Morice
- Respiratory Medicine, Hull York Medical School, University of Hull, UK
| | - Kevin G Blyth
- Department of Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK; Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Amanda J Lee
- Medical Statistics Team, University of Aberdeen, UK
| | - Alasdair Coutts
- Research Applications and Data Management Team, University of Aberdeen, UK
| | | | - Ian Pavord
- Respiratory Medicine Unit and Oxford Respiratory BRC, Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|
179
|
Bonini M, Scichilone N. Tiotropium in asthma: back to the future of anticholinergic treatment. Clin Mol Allergy 2017; 15:20. [PMID: 29213218 PMCID: PMC5713051 DOI: 10.1186/s12948-017-0076-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023] Open
Abstract
Asthma is among the most common chronic diseases worldwide; however, despite progresses in the understanding of the patho-physiological mechanisms and advances in the development of new therapeutic options and strategies, the disease remains uncontrolled in a not trivial proportion of subjects. Thus, the need of new molecules to treat the underlying biological and functional abnormalities and to control symptoms is strongly advocated by clinicians. In this scenario, the most recent GINA guidelines have included the use of tiotropium bromide in the most severe and uncontrolled forms of the disease, in addition to treatment with inhaled corticosteroid plus long acting beta adrenergic agents. Indeed, a large body of evidence has accumulated to support the use of tiotropium bromide in asthma. The current review paper provides a state of the art systematic revision of findings on the efficacy and safety of tiotropium in the adult and paediatric asthma population. To this aim, electronic searches were undertaken in the most common scientific databases from the date of inception to March 2017. Robust and high quality evidence showed that tiotropium is effective and safe in both adults and children/adolescents. Predictive markers of response have been also suggested, as well as cost–benefit analyses reported. The tiotropium bronchodilator effect seems to be not solely related to the reduction of the smooth muscle tone. However, the observations on anti-inflammatory properties or reduction in mucus production, despite highly interesting, have been only demonstrated in in vitro studies and animal models, therefore advocating for further specifically designed investigations.
Collapse
Affiliation(s)
- Matteo Bonini
- Airways Division, Airways Disease Section, National Heart and Lung Institute (NHLI), Royal Brompton Hospital & Imperial College, Dovehouse Street, London, SW3 6LY UK
| | - Nicola Scichilone
- Department of Biomedicine and Internal and Specialistic Medicine (DIBIMIS), University of Palermo, Palermo, Italy
| |
Collapse
|
180
|
Agache I, Strasser DS, Pierlot GM, Farine H, Izuhara K, Akdis CA. Monitoring inflammatory heterogeneity with multiple biomarkers for multidimensional endotyping of asthma. J Allergy Clin Immunol 2017; 141:442-445. [PMID: 28987809 DOI: 10.1016/j.jaci.2017.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | - Daniel S Strasser
- Department of Translational Science, Idorsia Pharmaceuticals Ltd, Basel, Switzerland
| | - Gabin M Pierlot
- Department of Translational Science, Idorsia Pharmaceuticals Ltd, Basel, Switzerland
| | - Hervé Farine
- Department of Translational Science, Idorsia Pharmaceuticals Ltd, Basel, Switzerland
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Cezmi A Akdis
- Swiss Institute for Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
181
|
Chung KF. Personalised medicine in asthma: time for action: Number 1 in the Series "Personalised medicine in respiratory diseases" Edited by Renaud Louis and Nicolas Roche. Eur Respir Rev 2017; 26:26/145/170064. [PMID: 28954768 DOI: 10.1183/16000617.0064-2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 11/05/2022] Open
Abstract
Asthma is a heterogeneous disease comprising several phenotypes driven by different pathways. To define these phenotypes or endotypes (phenotypes defined by mechanisms), an unbiased approach to clustering of various omics platforms will yield molecular phenotypes from which composite biomarkers can be obtained. Biomarkers can help differentiate between these phenotypes and pinpoint patients suitable for specific targeted therapies - the basis for personalised medicine. Biomarkers need to be linked to point-of-care biomarkers that may be measured readily in exhaled breath, blood or urine. The potential for using mobile healthcare approaches will help patient enpowerment, an essential tool for personalised medicine. Personalised medicine in asthma is not far off - it is already here, but we need more tools and implements to carry it out for the benefit of our patients.
Collapse
Affiliation(s)
- Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK .,Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| |
Collapse
|
182
|
Svenningsen S, Nair P. Asthma Endotypes and an Overview of Targeted Therapy for Asthma. Front Med (Lausanne) 2017; 4:158. [PMID: 29018800 PMCID: PMC5622943 DOI: 10.3389/fmed.2017.00158] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/12/2017] [Indexed: 12/04/2022] Open
Abstract
Guidelines for the management of severe asthma do not emphasize the measurement of the inflammatory component of airway disease to indicate appropriate treatments or to monitor response to treatment. Inflammation is a central component of asthma and contributes to symptoms, physiological, and structural abnormalities. It can be assessed by a number of endotyping strategies based on “omics” technology such as proteomics, transcriptomics, and metabolomics. It can also be assessed using simple cellular responses by quantitative cytometry in sputum. Bronchitis may be eosinophilic, neutrophilic, mixed-granulocytic, or paucigranulocytic (eosinophils and neutrophils not elevated). Eosinophilic bronchitis is usually a Type 2 (T2)-driven process and therefore a sputum eosinophilia of greater than 3% usually indicates a response to treatment with corticosteroids or novel therapies directed against T2 cytokines such as IL-4, IL-5, and IL-13. Neutrophilic bronchitis represents a non-T2-driven disease, which is generally a predictor of response to antibiotics and may be a predictor to therapies targeted at pathways that lead to neutrophil recruitment such as TNF, IL-1, IL-6, IL-8, IL-23, and IL-17. Paucigranulocytic disease may not warrant anti-inflammatory therapy. These patients, whose symptoms may be driven largely by airway hyper-responsiveness may benefit from smooth muscle-directed therapies such as bronchial thermoplasty or mast-cell directed therapies. This review will briefly summarize the current knowledge regarding “omics-based signatures” and cellular endotyping of severe asthma and give an overview of segmentation of asthma therapeutics guided by the endotype.
Collapse
Affiliation(s)
| | - Parameswaran Nair
- Department of Medicine, McMaster University, Hamilton, ON, Canada.,St Joseph's Healthcare, Hamilton, ON, Canada
| |
Collapse
|
183
|
Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol 2017; 139:1736-1751. [PMID: 28583446 PMCID: PMC5457128 DOI: 10.1016/j.jaci.2017.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
The bronchial epithelium is continuously exposed to a multitude of noxious challenges in inhaled air. Cellular contact with most damaging agents is reduced by the action of the mucociliary apparatus and by formation of a physical barrier that controls passage of ions and macromolecules. In conjunction with these defensive barrier functions, immunomodulatory cross-talk between the bronchial epithelium and tissue-resident immune cells controls the tissue microenvironment and barrier homeostasis. This is achieved by expression of an array of sensors that detect a wide variety of viral, bacterial, and nonmicrobial (toxins and irritants) agents, resulting in production of many different soluble and cell-surface molecules that signal to cells of the immune system. The ability of the bronchial epithelium to control the balance of inhibitory and activating signals is essential for orchestrating appropriate inflammatory and immune responses and for temporally modulating these responses to limit tissue injury and control the resolution of inflammation during tissue repair. In asthmatic patients abnormalities in many aspects of epithelial barrier function have been identified. We postulate that such abnormalities play a causal role in immune dysregulation in the airways by translating gene-environment interactions that underpin disease pathogenesis and exacerbation.
Collapse
Affiliation(s)
- Matthew Loxham
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
184
|
Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases. Respir Res 2017; 18:149. [PMID: 28774304 PMCID: PMC5543452 DOI: 10.1186/s12931-017-0631-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Omics approaches are high-throughput unbiased technologies that provide snapshots of various aspects of biological systems and include: 1) genomics, the measure of DNA variation; 2) transcriptomics, the measure of RNA expression; 3) epigenomics, the measure of DNA alterations not involving sequence variation that influence RNA expression; 4) proteomics, the measure of protein expression or its chemical modifications; and 5) metabolomics, the measure of metabolite levels. Our understanding of pulmonary diseases has increased as a result of applying these omics approaches to characterize patients, uncover mechanisms underlying drug responsiveness, and identify effects of environmental exposures and interventions. As more tissue- and cell-specific omics data is analyzed and integrated for diverse patients under various conditions, there will be increased identification of key mechanisms that underlie pulmonary biological processes, disease endotypes, and novel therapeutics that are efficacious in select individuals. We provide a synopsis of how omics approaches have advanced our understanding of asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and pulmonary arterial hypertension (PAH), and we highlight ongoing work that will facilitate pulmonary disease precision medicine.
Collapse
Affiliation(s)
- Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| |
Collapse
|
185
|
Pathway discovery using transcriptomic profiles in adult-onset severe asthma. J Allergy Clin Immunol 2017; 141:1280-1290. [PMID: 28756296 DOI: 10.1016/j.jaci.2017.06.037] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/08/2017] [Accepted: 06/21/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Adult-onset severe asthma is characterized by highly symptomatic disease despite high-intensity asthma treatments. Understanding of the underlying pathways of this heterogeneous disease is needed for the development of targeted treatments. Gene set variation analysis is a statistical technique used to identify gene profiles in heterogeneous samples. OBJECTIVE We sought to identify gene profiles associated with adult-onset severe asthma. METHODS This was a cross-sectional, observational study in which adult patients with adult-onset of asthma (defined as starting at age ≥18 years) as compared with childhood-onset severe asthma (<18 years) were selected from the U-BIOPRED cohort. Gene expression was assessed on the total RNA of induced sputum (n = 83), nasal brushings (n = 41), and endobronchial brushings (n = 65) and biopsies (n = 47) (Affymetrix HT HG-U133+ PM). Gene set variation analysis was used to identify differentially enriched predefined gene signatures of leukocyte lineage, inflammatory and induced lung injury pathways. RESULTS Significant differentially enriched gene signatures in patients with adult-onset as compared with childhood-onset severe asthma were identified in nasal brushings (5 signatures), sputum (3 signatures), and endobronchial brushings (6 signatures). Signatures associated with eosinophilic airway inflammation, mast cells, and group 3 innate lymphoid cells were more enriched in adult-onset severe asthma, whereas signatures associated with induced lung injury were less enriched in adult-onset severe asthma. CONCLUSIONS Adult-onset severe asthma is characterized by inflammatory pathways involving eosinophils, mast cells, and group 3 innate lymphoid cells. These pathways could represent useful targets for the treatment of adult-onset severe asthma.
Collapse
|
186
|
Ciprandi G, Tosca MA, Silvestri M, Ricciardolo FLM. Inflammatory biomarkers for asthma endotyping and consequent personalized therapy. Expert Rev Clin Immunol 2017; 13:715-721. [PMID: 28347164 DOI: 10.1080/1744666x.2017.1313117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION We argue that asthma be considered a syndrome caused by multiple inflammatory pathogenic processes. Bronchial hyperresponsiveness, reversible airflow limitation, and chronic airway inflammation characterize asthma pathophysiology. Personalized Medicine, i.e. a tailored management approach, is appropriate for asthma management and is based on the identification of discrete phenotypes and endotypes. Biomarkers can help define phenotypes and endotypes. Several biomarkers have been described in asthma, but most of them are not commonly available or still need external validation. Areas covered: This review presents useful pragmatic biomarkers available in daily clinical practice for assessing airway inflammation in asthmatic patients. Expert commentary: Eosinophil counts and serum allergen-specific IgE assessments are the most reliable biomarkers. Lung function, mainly concerning FEF25-75, and nasal cytology may be envisaged as ancillary biomarkers in asthma management. In conclusion, biomarkers have a clinical relevance in asthma in identifying asthma endotypes to direct personalized therapy.
Collapse
Affiliation(s)
- Giorgio Ciprandi
- a Respiratory Allergy, Department of Medicine , IRCCS - Azienda Ospedaliera Universitaria San Martino-IST , Genoa , Italy
| | - Maria Angela Tosca
- b Pediatric Pneumology and Allergy Unit and Cystic Fibrosis Center , IRCCS Istituto Giannina Gaslini , Genoa , Italy
| | - Michela Silvestri
- b Pediatric Pneumology and Allergy Unit and Cystic Fibrosis Center , IRCCS Istituto Giannina Gaslini , Genoa , Italy
| | | |
Collapse
|
187
|
Airway microbial dysbiosis in asthmatic patients: A target for prevention and treatment? J Allergy Clin Immunol 2017; 139:1071-1081. [DOI: 10.1016/j.jaci.2017.02.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/22/2017] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
|
188
|
Papi A, Saetta M, Fabbri L. Severe asthma: phenotyping to endotyping or vice versa? Eur Respir J 2017; 49:49/2/1700053. [PMID: 28179445 DOI: 10.1183/13993003.00053-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Alberto Papi
- Research Centre on Asthma and COPD, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marina Saetta
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Leonardo Fabbri
- Department of Medicine Endocrinology Geriatrics and Metabolism, University of Modena Reggio Emilia, Modena, Italy
| |
Collapse
|
189
|
Inflammasomes in the lung. Mol Immunol 2017; 86:44-55. [PMID: 28129896 DOI: 10.1016/j.molimm.2017.01.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
Innate immune responses act as first line defences upon exposure to potentially noxious stimuli. The innate immune system has evolved numerous intracellular and extracellular receptors that undertake surveillance for potentially damaging particulates. Inflammasomes are intracellular innate immune multiprotein complexes that form and are activated following interaction with these stimuli. Inflammasome activation leads to the cleavage of pro-IL-1β and release of the pro-inflammatory cytokine, IL-1β, which initiates acute phase pro-inflammatory responses, and other responses are also involved (IL-18, pyroptosis). However, excessive activation of inflammasomes can result in chronic inflammation, which has been implicated in a range of chronic inflammatory diseases. The airways are constantly exposed to a wide variety of stimuli. Inflammasome activation and downstream responses clears these stimuli. However, excessive activation may drive the pathogenesis of chronic respiratory diseases such as severe asthma and chronic obstructive pulmonary disease. Thus, there is currently intense interest in the role of inflammasomes in chronic inflammatory lung diseases and in their potential for therapeutic targeting. Here we review the known associations between inflammasome-mediated responses and the development and exacerbation of chronic lung diseases.
Collapse
|