151
|
Tamariz L, Bast E, Abad M, Klimas N, Caralis P, Palacio A. Letter to the editor: Post COVID-19 joint pain: Preliminary report of the relationship with antinuclear antibodies and inflammation. J Med Virol 2022; 94:3479-3481. [PMID: 35355291 PMCID: PMC9088578 DOI: 10.1002/jmv.27753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022]
Abstract
This case series of 15 patients shows in a cross-sectional design the association between antinuclear antibodies and joint pain in post covid syndrome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Leonardo Tamariz
- Department of Medicine, Miller School of Medicine at the University of Miami, Miami, FL.,the Veterans Affairs Medical Center, Miami, FL
| | | | - Maria Abad
- Universidad Catolica Santiago de Guayaquil
| | - Nancy Klimas
- the Veterans Affairs Medical Center, Miami, FL.,Neuroinmune institute, NOVA Southeastern University
| | - Pat Caralis
- Department of Medicine, Miller School of Medicine at the University of Miami, Miami, FL.,the Veterans Affairs Medical Center, Miami, FL
| | - Ana Palacio
- Department of Medicine, Miller School of Medicine at the University of Miami, Miami, FL.,the Veterans Affairs Medical Center, Miami, FL
| |
Collapse
|
152
|
Hennigs JK, Oqueka T, Harbaum L, Klose H. [Organ-specific sequelae of COVID-19 in adults]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:462-470. [PMID: 35294563 PMCID: PMC8925979 DOI: 10.1007/s00103-022-03513-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Organbezogene Folgeerscheinungen nach COVID-19 sind häufig und vielgestaltig. Ab 4 Wochen nach Akutinfektion mit SARS-CoV‑2 werden sie unter dem Begriff „Long-COVID“ zusammengefasst. Nach schweren Akutverläufen treten organbezogene Folgeerscheinungen häufiger auf. Dauer und Intensität variieren jedoch interindividuell stark. Die SARS-CoV-2-Spezifität der Folgeerscheinungen ist ebenfalls weiter unklar. Während sich in der Frühphase nach schweren Verläufen zumeist pulmonale Folgeerscheinungen einstellen, müssen diese nicht auf die Lunge begrenzt bleiben, sondern können prinzipiell jedes Organ betreffen. Die adäquate Diagnostik von COVID-19-Folgeerscheinungen stellt daher eine interdisziplinäre Herausforderung dar. Auch die Therapie richtet sich nach Art, Umfang und Ursache der jeweiligen Folgeerscheinung. Allgemeinmedikamentöse oder zielgerichtete Therapieoptionen gegen Long-COVID bestehen bisher nicht. Im vorliegenden Übersichtsartikel berichten wir über Häufigkeit, Dauer, Spezifität sowie Art und Umfang organspezifischer COVID-19-Folgeerscheinungen und geben einen Überblick über diagnostisches und therapeutisches Vorgehen (mit Datenstand November 2021).
Collapse
Affiliation(s)
- Jan K Hennigs
- Abteilung für Pneumologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland. .,II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland.
| | - Tim Oqueka
- Abteilung für Pneumologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.,II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Lars Harbaum
- Abteilung für Pneumologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.,II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Hans Klose
- Abteilung für Pneumologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.,II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| |
Collapse
|
153
|
Abstract
Considerable research effort has been made worldwide to decipher the immune response triggered upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, identify the drivers of severe and fatal COVID-19, and understand what leads to the prolongation of symptoms after disease resolution. We review the results of almost 2 years of COVID-19 immunology research and discuss definitive findings and remaining questions regarding our understanding of COVID-19 pathophysiology. We discuss emerging understanding of differences in immune responses seen in those with and without Long Covid syndrome, also known as post-acute sequelae of SARS-CoV-2. We hope that the knowledge gained from this COVID-19 research will be applied in studies of inflammatory processes involved in critical and chronic illnesses, which remain a major unmet need.
Collapse
Affiliation(s)
- Miriam Merad
- Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine A Blish
- Department of Medicine and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland.,Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
154
|
Cabral-Marques O, Halpert G, Schimke LF, Ostrinski Y, Vojdani A, Baiocchi GC, Freire PP, Filgueiras IS, Zyskind I, Lattin MT, Tran F, Schreiber S, Marques AHC, Plaça DR, Fonseca DLM, Humrich JY, Müller A, Giil LM, Graßhoff H, Schumann A, Hackel A, Junker J, Meyer C, Ochs HD, Lavi YB, Scheibenbogen C, Dechend R, Jurisica I, Schulze-Forster K, Silverberg JI, Amital H, Zimmerman J, Heidecke H, Rosenberg AZ, Riemekasten G, Shoenfeld Y. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun 2022; 13:1220. [PMID: 35264564 PMCID: PMC8907309 DOI: 10.1038/s41467-022-28905-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sao Paulo, Brazil.
| | - Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Saint Petersburg State University, Saint-Petersburg, Russia
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yuri Ostrinski
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Saint Petersburg State University, Saint-Petersburg, Russia
- Ariel University, Ariel, Israel
| | - Aristo Vojdani
- Department of Immunology, Immunosciences Laboratory, Inc., Los Angeles, CA, United States
- Cyrex Laboratories, LLC 2602S. 24th St., Phoenix, AZ, 85034, USA
| | - Gabriela Crispim Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York, NY, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Miriam T Lattin
- Department of Biology, Yeshiva University, Manhatten, NY, USA
| | - Florian Tran
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Alexandre H C Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dennyson Leandro M Fonseca
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jens Y Humrich
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Antje Müller
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Hanna Graßhoff
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Anja Schumann
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Alexander Hackel
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Juliane Junker
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Carlotta Meyer
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, USA
| | - Yael Bublil Lavi
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, a collaboration of Max Delbruck Center for Molecular Medicine and Charité Universitätsmedizin, and HELIOS Clinic, Department of Cardiology and Nephrology, Berlin, 13125, Germany
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN; Data Science Discovery Centre, Krembil Research Institute, UHN, Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Kai Schulze-Forster
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Jonathan I Silverberg
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Howard Amital
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Harry Heidecke
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.
- Saint Petersburg State University, Saint-Petersburg, Russia.
- Ariel University, Ariel, Israel.
| |
Collapse
|
155
|
Papadopoulos KI, Sutheesophon W, Aw TC. The influence of renin angiotensin aldosterone system (RAAS), endothelial nitric oxide synthase (eNOS) and erythropoietin (EPO) on COVID-19 complications. Chem Biol Interact 2022; 354:109834. [PMID: 35092718 PMCID: PMC8789551 DOI: 10.1016/j.cbi.2022.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023]
Abstract
Certain aspects of the renin-angiotensin-aldosterone system (RAAS) have eluded deserved attention such as the role of erythropoietin (EPO) and nitric oxide (NO) both of which appear to significantly modulate COVID-19 disease course. Furthermore, renin-angiotensin-aldosterone system (RAAS) and endothelial NO synthase (eNOS) genetic polymorphisms additionally impact on EPO and NO homeostasis and have extensive implications on pharmacological disease management.
Collapse
Affiliation(s)
- Konstantinos I Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Wangthonglang, Bangkok, 10310, Thailand.
| | - Warachaya Sutheesophon
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Wangthonglang, Bangkok, 10310, Thailand.
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889.
| |
Collapse
|
156
|
Jost K, Rodriguez B, Söll N, Hoepner R, Z'Graggen WJ. Tolerability of COVID-19 mRNA vaccines in patients with postural tachycardia syndrome: a cross-sectional study. F1000Res 2022; 11:215. [PMID: 37822957 PMCID: PMC10562791 DOI: 10.12688/f1000research.109373.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 10/13/2023] Open
Abstract
Background: Postural tachycardia syndrome (POTS) is a form of autonomic dysregulation. There is increasing evidence that the etiology may be immune-mediated in a subgroup of patients. Patients with POTS often experience an exacerbation of their symptoms associated with (viral) infections and often fear the same symptom aggravation after vaccination. In this report we describe the tolerability of messenger ribonucleic acid (mRNA) vaccines against coronavirus disease 19 (COVID-19) and the consequences of a COVID-19 infection on POTS symptoms in our cohort of patients with neuropathic POTS. Methods: We conducted a standardized, checklist-based interview with 23 patients and recorded the acute side effects of mRNA vaccination, acute symptoms of COVID-19 infection as well as the effects of vaccination and COVID-19 infection on POTS symptoms. Results: Of all included patients, 20 patients received two mRNA vaccines without having had a previous COVID-19 infection, and five patients in total had suffered a COVID-19 infection. Of these, three had COVID-19 without and two after being vaccinated. No increased frequency of side effects after both doses of mRNA vaccines was observed. Six patients reported a mild and short-term aggravation of their POTS symptoms beyond the duration of acute vaccine side effects. All five patients who suffered a COVID-19 infection subsequently reported a pronounced and persistent exacerbation of POTS symptoms. Conclusions: Our observations suggest that mRNA vaccines are not associated with a higher frequency of acute side effects in patients with POTS. Symptom exacerbation as a consequence of mRNA vaccination seems to be less frequent and of shorter duration compared to patients who suffered a COVID-19 infection.
Collapse
Affiliation(s)
- Karin Jost
- Department of Neurology, Inselspital, University Hospital Bern, Bern, Bern, 3010, Switzerland
| | - Belén Rodriguez
- Department of Neurosurgery, Inselspital, University Hospital Bern, Bern, Bern, 3010, Switzerland
| | - Nicole Söll
- Department of Neurosurgery, Inselspital, University Hospital Bern, Bern, Bern, 3010, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, University Hospital Bern, Bern, Bern, 3010, Switzerland
| | - Werner J. Z'Graggen
- Department of Neurology, Inselspital, University Hospital Bern, Bern, Bern, 3010, Switzerland
- Department of Neurosurgery, Inselspital, University Hospital Bern, Bern, Bern, 3010, Switzerland
| |
Collapse
|
157
|
Stefanou MI, Palaiodimou L, Bakola E, Smyrnis N, Papadopoulou M, Paraskevas GP, Rizos E, Boutati E, Grigoriadis N, Krogias C, Giannopoulos S, Tsiodras S, Gaga M, Tsivgoulis G. Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis 2022; 13:20406223221076890. [PMID: 35198136 PMCID: PMC8859684 DOI: 10.1177/20406223221076890] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence points toward a very high prevalence of prolonged neurological symptoms among coronavirus disease 2019 (COVID-19) survivors. To date, there are no solidified criteria for 'long-COVID' diagnosis. Nevertheless, 'long-COVID' is conceptualized as a multi-organ disorder with a wide spectrum of clinical manifestations that may be indicative of underlying pulmonary, cardiovascular, endocrine, hematologic, renal, gastrointestinal, dermatologic, immunological, psychiatric, or neurological disease. Involvement of the central or peripheral nervous system is noted in more than one-third of patients with antecedent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, while an approximately threefold higher incidence of neurological symptoms is recorded in observational studies including patient-reported data. The most frequent neurological manifestations of 'long-COVID' encompass fatigue; 'brain fog'; headache; cognitive impairment; sleep, mood, smell, or taste disorders; myalgias; sensorimotor deficits; and dysautonomia. Although very limited evidence exists to date on the pathophysiological mechanisms implicated in the manifestation of 'long-COVID', neuroinflammatory and oxidative stress processes are thought to prevail in propagating neurological 'long-COVID' sequelae. In this narrative review, we sought to present a comprehensive overview of our current understanding of clinical features, risk factors, and pathophysiological processes of neurological 'long-COVID' sequelae. Moreover, we propose diagnostic and therapeutic algorithms that may aid in the prompt recognition and management of underlying causes of neurological symptoms that persist beyond the resolution of acute COVID-19. Furthermore, as causal treatments for 'long-COVID' are currently unavailable, we propose therapeutic approaches for symptom-oriented management of neurological 'long-COVID' symptoms. In addition, we emphasize that collaborative research initiatives are urgently needed to expedite the development of preventive and therapeutic strategies for neurological 'long-COVID' sequelae.
Collapse
Affiliation(s)
- Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Palaiodimou
- Second Department of Neurology, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Bakola
- Second Department of Neurology, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Physiotherapy, University of West Attica, Athens, Greece
| | - George P. Paraskevas
- Second Department of Neurology, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Boutati
- Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, ‘AHEPA’ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Krogias
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr University Bochum, Bochum, Germany
| | - Sotirios Giannopoulos
- Second Department of Neurology, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital ‘Sotiria’, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece. Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
158
|
Trinkmann F, Herth FJF. Long- und Post-COVID: Was bisher zum Krankheitsbild bekannt ist. PNEUMO NEWS 2022; 14:27-29. [PMID: 35194468 PMCID: PMC8853409 DOI: 10.1007/s15033-022-2804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frederik Trinkmann
- Thoraxklinik am Universitätsklinikum Heidelberg, Universitätsklinikum Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Deutschland
| | - Felix J. F. Herth
- Innere Medizin und Pneumologie, Thoraxklinik Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Deutschland
| |
Collapse
|
159
|
Gerhard A, Prüß H, Franke C. [Manifestations of the central nervous system after COVID-19]. DER NERVENARZT 2022; 93:769-778. [PMID: 35552466 PMCID: PMC9096778 DOI: 10.1007/s00115-022-01294-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Numerous diseases of the central nervous system (CNS), especially in the postacute phase after an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described. These include neuroimmunologically mediated diseases, such as encephalopathy, encephalitis, myelitis, acute disseminated encephalomyelitis (ADEM), acute necrotizing hemorrhagic leukoencephalitis (ANHLE) and neuromyelitis optica spectrum disorder (NMOSD) as well as others, such as posterior reversible encephalopathy syndrome (PRES), opsoclonus myoclonus ataxia (OMA) and cerebrovascular diseases. A parainfectious or postinfectious association is discussed but the pathophysiological mechanisms are so far unknown. Underlying mechanisms could be a virus-triggered overactivation of the immune system with hyperinflammation and cytokine storm but possibly also the development of specific autoantibodies against CNS tissue. Direct damage due to the invasion of SARS-CoV‑2 into the brain or spinal cord does not seem to play a relevant role. An exact clinical phenotyping and initiation of additional diagnostics are recommended, also to rule out other causes. To date no medicinal treatment options for CNS manifestations of long COVID exist; however, first results regarding inflammation and autoimmunity are promising and could lead to new treatment approaches.
Collapse
Affiliation(s)
- Ameli Gerhard
- grid.6363.00000 0001 2218 4662Klinik für Neurologie und Experimentelle Neurologie, Charité – Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Deutschland
| | - Harald Prüß
- grid.6363.00000 0001 2218 4662Klinik für Neurologie und Experimentelle Neurologie, Charité – Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Deutschland ,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Berlin, Berlin, Deutschland
| | - Christiana Franke
- grid.6363.00000 0001 2218 4662Klinik für Neurologie und Experimentelle Neurologie, Charité – Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Deutschland
| |
Collapse
|
160
|
Evidence mapping and review of long-COVID and its underlying pathophysiological mechanism. Infection 2022; 50:1053-1066. [PMID: 35489015 PMCID: PMC9055372 DOI: 10.1007/s15010-022-01835-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Apart from the global disease burden of acute COVID-19 disease, the health complications arising after recovery have been recognized as a long-COVID or post-COVID-19 syndrome. Evidences of long-COVID symptoms involving various organ systems are rapidly growing in literature. The objective was to perform a rapid review and evidence mapping of systemic complications and symptoms of long-COVID and underlying pathophysiological mechanisms. METHODS Publications reporting clinical trials, observational cohort studies, case-control studies, case-series, meta-analysis, and systematic reviews, focusing on the squeal of the disease, consequences of COVID-19 treatment/hospitalization, long-COVID, chronic COVID syndrome, and post acute COVID-19 were reviewed in detail for the narrative synthesis of frequency, duration, risk factors, and pathophysiology. RESULTS The review highlights that pulmonary, neuro-psychological, and cardiovascular complications are major findings in most epidemiological studies. However, dysfunctional gastrointestinal, endocrine, and metabolic health are recent findings for which underlying pathophysiological mechanisms are poorly understood. Analysis of the clinical trial landscape suggests that more than 50% of the industry-sponsored trials are focused on pulmonary symptoms. In contrast to the epidemiological trends and academic trials, cardiovascular complications are not a focus of industry-sponsored trials, suggestive of the gaps in the research efforts. CONCLUSION The gap in epidemiological trends and academic trials, particularly concerning cardiovascular complications not being a focus of industry-sponsored trials is suggestive of the gaps in research efforts and longer follow-up durations would help identify other long-COVID-related health issues such as reproductive health and fertility.
Collapse
|
161
|
Haberland A, Müller J. Aptamers Against COVID-19: An Untested Opportunity. Mini Rev Med Chem 2022; 22:1708-1715. [PMID: 35023454 PMCID: PMC9896377 DOI: 10.2174/1389557522666220112094951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
Given the lack of success in the development of effective drugs to treat COVID-19, which show "game-changing" potential, it is necessary to explore drugs with different modes of action. Single mode-of-action drugs have not been succeeded in curing COVID-19, which is a highly complex disease. This is the case for direct antivirals and anti-inflammatory drugs, both of which treat different phases of the disease. Aptamers are molecules that deliver different modes of action, allowing their effects to be bundled, which, when combined, support their therapeutic efficacy. In this minireview, we summarise the current activities in the development of aptamers for the treatment of COVID-19 and long-COVID. A special emphasis is placed on the capability of their multiple modes of action, which is a promising approach for treating complex diseases such as COVID-19.
Collapse
Affiliation(s)
- Annekathrin Haberland
- Berlin Cures GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany;,Address correspondence to this author at the Berlin Cures GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany; E-mail:
| | - Johannes Müller
- Berlin Cures GmbH, Knesebeckstr. 59-61, 10719 Berlin, Germany
| |
Collapse
|
162
|
Chen C, Amelia A, Ashdown GW, Mueller I, Coussens AK, Eriksson EM. Risk surveillance and mitigation: autoantibodies as triggers and inhibitors of severe reactions to SARS-CoV-2 infection. Mol Med 2021; 27:160. [PMID: 34930107 PMCID: PMC8686808 DOI: 10.1186/s10020-021-00422-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 clinical presentation differs considerably between individuals, ranging from asymptomatic, mild/moderate and severe disease which in some cases are fatal or result in long-term effects. Identifying immune mechanisms behind severe disease development informs screening strategies to predict who are at greater risk of developing life-threatening complications. However, to date clear prognostic indicators of individual risk of severe or long COVID remain elusive. Autoantibodies recognize a range of self-antigens and upon antigen recognition and binding, important processes involved in inflammation, pathogen defence and coagulation are modified. Recent studies report a significantly higher prevalence of autoantibodies that target immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins in COVID-19 patients experiencing severe disease compared to those who experience mild or asymptomatic infections. Here we discuss the diverse impacts of autoantibodies on immune processes and associations with severe COVID-19 disease.
Collapse
Affiliation(s)
- Catherine Chen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Aisah Amelia
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - George W Ashdown
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Anna K Coussens
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia.
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Diseases Research in Africa, University of Cape, Cape Town, South Africa.
| | - Emily M Eriksson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
163
|
Hohberger B, Mardin CY. OCT Angiography as an Interdisciplinary Diagnostic Tool for Systemic Diseases. Klin Monbl Augenheilkd 2021; 238:1294-1298. [PMID: 34879428 DOI: 10.1055/a-1654-0504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, OCT angiography (OCT-A) has emerged as a well established imaging modality of the retina. This allows non-invasive visualisation of the retinal circulation at a micrometre scale in eye disorders and systemic diseases with potential ocular involvement. This review summarises the current state of this topic.
Collapse
|
164
|
Yong SJ, Liu S. Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies. Rev Med Virol 2021; 32:e2315. [PMID: 34888989 DOI: 10.1002/rmv.2315] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
The effects of coronavirus disease 2019 (COVID-19), a highly transmissible infectious respiratory disease that has initiated an ongoing pandemic since early 2020, do not always end in the acute phase. Depending on the study referred, about 10%-30% (or more) of COVID-19 survivors may develop long-COVID or post-COVID-19 syndrome (PCS), characterised by persistent symptoms (most commonly fatigue, dyspnoea, and cognitive impairments) lasting for 3 months or more after acute COVID-19. While the pathophysiological mechanisms of PCS have been extensively described elsewhere, the subtypes of PCS have not. Owing to its highly multifaceted nature, this review proposes and characterises six subtypes of PCS based on the existing literature. The subtypes are non-severe COVID-19 multi-organ sequelae (NSC-MOS), pulmonary fibrosis sequelae (PFS), myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), postural orthostatic tachycardia syndrome (POTS), post-intensive care syndrome (PICS) and medical or clinical sequelae (MCS). Original studies supporting each of these subtypes are documented in this review, as well as their respective symptoms and potential interventions. Ultimately, the subtyping proposed herein aims to provide better clarity on the current understanding of PCS.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Shiliang Liu
- Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, ON, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
165
|
Hohberger B, Harrer T, Mardin C, Kruse F, Hoffmanns J, Rogge L, Heltmann F, Moritz M, Szewczykowski C, Schottenhamml J, Kräter M, Bergua A, Zenkel M, Gießl A, Schlötzer-Schrehardt U, Lämmer R, Herrmann M, Haberland A, Göttel P, Müller J, Wallukat G. Case Report: Neutralization of Autoantibodies Targeting G-Protein-Coupled Receptors Improves Capillary Impairment and Fatigue Symptoms After COVID-19 Infection. Front Med (Lausanne) 2021; 8:754667. [PMID: 34869451 PMCID: PMC8637609 DOI: 10.3389/fmed.2021.754667] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Clinical features of Coronavirus disease 2019 (COVID-19) are caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Acute infection management is a substantial healthcare issue, and the development of long-Covid syndrome (LCS) is extremely challenging for patients and physicians. It is associated with a variety of characteristics as impaired capillary microcirculation, chronic fatigue syndrome (CFS), proinflammatory cytokines, and functional autoantibodies targeting G-protein-coupled receptors (GPCR-AAbs). Here, we present a case report of successful healing of LCS with BC 007 (Berlin Cures, Berlin, Germany), a DNA aptamer drug with a high affinity to GPCR-AAbs that neutralizes these AAbs. A patient with a documented history of glaucoma, recovered from mild COVID-19, but still suffered from CFS, loss of taste, and impaired capillary microcirculation in the macula and peripapillary region. He was positively tested for various targeting GPCR-AAbs. Within 48 h after a single BC 007 treatment, GPCR-AAbs were functionally inactivated and remained inactive during the observation period of 4 weeks. This observation was accompanied by constant improvement of the fatigue symptoms of the patient, taste, and retinal capillary microcirculation. Therefore, the removal of GPCR-AAb might ameliorate the characteristics of the LCD, such as capillary impairment, loss of taste, and CFS.
Collapse
Affiliation(s)
- Bettina Hohberger
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Harrer
- Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Erlangen, Germany.,Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Mardin
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Kruse
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jakob Hoffmanns
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lennart Rogge
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Heltmann
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Moritz
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Charlotte Szewczykowski
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schottenhamml
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Kräter
- Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Erlangen, Germany.,Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Antonio Bergua
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Zenkel
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Gießl
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Lämmer
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Erlangen, Germany.,Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
166
|
Autoantibody Release in Children after Corona Virus mRNA Vaccination: A Risk Factor of Multisystem Inflammatory Syndrome? Vaccines (Basel) 2021; 9:vaccines9111353. [PMID: 34835284 PMCID: PMC8618727 DOI: 10.3390/vaccines9111353] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/23/2023] Open
Abstract
Multisystem inflammatory syndrome (MIS) is a new systemic inflammatory acute onset disease that mainly affects children (MIS-C) and, at a lesser frequency, adults (MIS-A); it typically occurs 3–6 weeks after acute SARS-CoV infection. It has been postulated and shown in adults that MIS may occur after SARS-CoV-2 vaccination (MIS-V). Our current case is one of the first published cases with a multisystem inflammatory syndrome in an 18-year-old adolescent after the SARS-CoV-2 vaccine from Pfizer/BionTech (BNT162b2), who fulfills the published level 1 criteria for a definitive disease: age < 21 years, fever > 3 consecutive days, pericardial effusion, elevated CRP/NT-BNP/Troponin T/D-dimeres, cardiac involvement, and positive SARS-CoV-2 antibodies. The disease starts 10 weeks after the second vaccination, with a fever (up to 40 °C) and was treated with amoxicillin for suspected pneumonia. The SARS CoV-2-PCR and several antigen tests were negative. With an ongoing fever, he was hospitalized 14 days later. A pericardial effusion (10 mm) was diagnosed by echocardiography. The C-reactive protein (174 mg/L), NT-BNP (280 pg/mL), and Troponin T (28 pg/mL) values were elevated. Due to highly elevated D-dimeres (>35,000 μg/L), a pulmonary embolism was excluded by thoracal computer tomography. If the boy did not improve with intravenous antibiotics, he was treated with intravenous immunoglobulins; however, the therapy was discontinued after 230 mg/kg if he developed high fever and hypotension. A further specialized clinic treated him with colchicine and ibuprofen. The MIS-V was discovered late, 4 months after the onset of the disease. As recently shown in four children with MIS-C after SARS-CoV-2 infection and a girl with Hashimoto thyroiditis after BNT162b2 vaccination, we found elevated functional autoantibodies against G-protein-coupled receptors that may be important for pathophysiology but are not conclusive for the diagnosis of MIS-C. Conclusion: We are aware that a misattribution of MIS-V as a severe complication of coronavirus vaccination can lead to increased vaccine hesitancy and blunt the global COVID-19 vaccination drive. However, the pediatric population is at a higher risk for MIS-C and a very low risk for COVID-19 mortality. The publication of such cases is very important to make doctors aware of this complication of the vaccination, so that therapy with intravenous immunoglobulins can be initiated at an early stage.
Collapse
|
167
|
Post-Acute Sequelae of COVID-19 and Cardiovascular Autonomic Dysfunction: What Do We Know? J Cardiovasc Dev Dis 2021; 8:jcdd8110156. [PMID: 34821709 PMCID: PMC8621226 DOI: 10.3390/jcdd8110156] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Post-acute sequelae of SARS-CoV-2 (PASC), or long COVID syndrome, is emerging as a major health issue in patients with previous SARS-CoV-2 infection. Symptoms commonly experienced by patients include fatigue, palpitations, chest pain, dyspnea, reduced exercise tolerance, and “brain fog”. Additionally, symptoms of orthostatic intolerance and syncope suggest the involvement of the autonomic nervous system. Signs of cardiovascular autonomic dysfunction appear to be common in PASC and are similar to those observed in postural orthostatic tachycardia syndrome and inappropriate sinus tachycardia. In this review, we report on the epidemiology of PASC, discuss current evidence and possible mechanisms underpinning the dysregulation of the autonomic nervous system, and suggest nonpharmacological and pharmacological interventions to treat and relieve symptoms of PASC-associated dysautonomia.
Collapse
|
168
|
Pagano S, Yerly S, Meyer B, Juillard C, Suh N, Le Terrier C, Daguer JP, Farrera-Soler L, Barluenga S, Piumatti G, Hartley O, Lemaitre B, Eberhardt CS, Siegrist CA, Eckerle I, Stringhini S, Guessous I, Kaiser L, Pugin J, Winssinger N, Vuilleumier N. SARS-CoV-2 infection as a trigger of humoral response against apolipoprotein A-1. Eur J Clin Invest 2021; 51:e13661. [PMID: 34324704 PMCID: PMC8420318 DOI: 10.1111/eci.13661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Unravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights into the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. We aimed at determining (a) the association between anti-SARS-CoV-2 and anti-apoA-1 humoral response and (b) the degree of linear homology between SARS-CoV-2, apoA-1 and Toll-like receptor 2 (TLR2) epitopes. DESIGN Bioinformatics modelling coupled with mimic peptides engineering and competition experiments were used to assess epitopes sequence homologies. Anti-SARS-CoV-2 and anti-apoA-1 IgG as well as cytokines were assessed by immunoassays on a case-control (n = 101), an intensive care unit (ICU; n = 126) and a general population cohort (n = 663) with available samples in the pre and post-pandemic period. RESULTS Using bioinformatics modelling, linear sequence homologies between apoA-1, TLR2 and Spike epitopes were identified but without experimental evidence of cross-reactivity. Overall, anti-apoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (P < .0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-day kinetics, reaching 82% for anti-apoA-1 seropositivity. In the general population, SARS-CoV-2-exposed individuals displayed higher anti-apoA-1 IgG seropositivity rates than nonexposed ones (34% vs 16.8%; P = .004). CONCLUSION COVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabine Yerly
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Noémie Suh
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Jean-Pierre Daguer
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Lluc Farrera-Soler
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Sofia Barluenga
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Giovanni Piumatti
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of BioMedicine, Università della Svizzera Italiana, Lugano, Switzerland
| | - Oliver Hartley
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Switzerland
| | - Barbara Lemaitre
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Christiane S Eberhardt
- Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Isabella Eckerle
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Silvia Stringhini
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - Idris Guessous
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Jerome Pugin
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Nicolas Winssinger
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| |
Collapse
|
169
|
Malkova A, Kudryavtsev I, Starshinova A, Kudlay D, Zinchenko Y, Glushkova A, Yablonskiy P, Shoenfeld Y. Post COVID-19 Syndrome in Patients with Asymptomatic/Mild Form. Pathogens 2021; 10:1408. [PMID: 34832564 PMCID: PMC8620929 DOI: 10.3390/pathogens10111408] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Post COVID-19 Syndrome (PCS) is a complex of various symptoms developing a month or more after the acute phase of the disease. The cases of PCS development among patients with asymptomatic/mild forms are frequently reported; however, the pathogenesis of PCS in this group of patients is still not completely clear. The publications about COVID-19 which were published in online databases from December 2019 to September 2021 are analyzed in this review. According to the analysis, PCS develops on average in 30-60% of patients, mainly among women. Fatigue, shortness of breath, cough, and anosmia were reported as the most common symptoms. The possible association between the described PCS symptoms and brain damage was revealed. We assume the possibility of an alternative course of COVID-19, which develops in genetically predisposed individuals with a stronger immune response, in which it predominantly affects the cells of the nervous system, possibly with the presence of an autoimmune component, which might have similarity with chronic fatigue syndrome or autoimmune disautonomia. Thus, the gender (female) and the presence of anosmia during an asymptomatic or mild course of the disease can be predictive factors for the development of PCS, which can be caused by autoimmune damage to neurons, glia, and cerebral vessels.
Collapse
Affiliation(s)
- Annа Malkova
- Medical Department, St-Petersburg State University, 199034 Saint-Petersburg, Russia; (P.Y.); (Y.S.)
| | - Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, 197376 Saint-Petersburg, Russia;
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia;
| | - Dmitry Kudlay
- Medical Department, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, 199034 Saint-Petersburg, Russia;
| | - Anzhela Glushkova
- V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia;
| | - Piotr Yablonskiy
- Medical Department, St-Petersburg State University, 199034 Saint-Petersburg, Russia; (P.Y.); (Y.S.)
- St. Petersburg Research Institute of Phthisiopulmonology, 199034 Saint-Petersburg, Russia;
| | - Yehuda Shoenfeld
- Medical Department, St-Petersburg State University, 199034 Saint-Petersburg, Russia; (P.Y.); (Y.S.)
- Ariel University, Kiryat HaMada 3, Ariel 40700, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| |
Collapse
|
170
|
Glynne P, Tahmasebi N, Gant V, Gupta R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J Investig Med 2021; 70:61-67. [PMID: 34611034 PMCID: PMC8494538 DOI: 10.1136/jim-2021-002051] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/23/2023]
Abstract
Long COVID is characterized by the emergence of multiple debilitating symptoms following SARS-CoV-2 infection. Its etiology is unclear and it often follows a mild acute illness. Anecdotal reports of gradual clinical responses to histamine receptor antagonists (HRAs) suggest a histamine-dependent mechanism that is distinct from anaphylaxis, possibly mediated by T cells, which are also regulated by histamine. T cell perturbations have been previously reported in post-viral syndromes, but the T cell landscape in patients who have recovered from mild COVID-19 and its relationship to both long COVID symptoms and any symptomatic response to HRA remain underexplored. We addressed these questions in an observational study of 65 individuals who had recovered from mild COVID-19. Participants were surveyed between 87 and 408 days after the onset of acute symptoms; none had required hospitalization, 16 had recovered uneventfully, and 49 had developed long COVID. Symptoms were quantified using a structured questionnaire and T cell subsets enumerated in a standard diagnostic assay. Patients with long-COVID had reduced CD4+ and CD8+ effector memory (EM) cell numbers and increased PD-1 (programmed cell death protein 1) expression on central memory (CM) cells, whereas the asymptomatic participants had reduced CD8+ EM cells only and increased CD28 expression on CM cells. 72% of patients with long COVID who received HRA reported clinical improvement, although T cell profiling did not clearly distinguish those who responded to HRA. This study demonstrates that T cell perturbations persist for several months after mild COVID-19 and are associated with long COVID symptoms.
Collapse
Affiliation(s)
| | | | - Vanya Gant
- Departments of Infection and Microbiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rajeev Gupta
- Stem Cell Laboratory, UCL Cancer Institute, London, UK .,Manual Blood Sciences, Health Services Laboratories, London, UK
| |
Collapse
|
171
|
Kumar S, Çalışkan DM, Janowski J, Faist A, Conrad BCG, Lange J, Ludwig S, Brunotte L. Beyond Vaccines: Clinical Status of Prospective COVID-19 Therapeutics. Front Immunol 2021; 12:752227. [PMID: 34659259 PMCID: PMC8519339 DOI: 10.3389/fimmu.2021.752227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Since November 2019 the SARS-CoV-2 pandemic has caused nearly 200 million infection and more than 4 million deaths globally (Updated information from the World Health Organization, as on 2nd Aug 2021). Within only one year into the pandemic, several vaccines were designed and reached approval for the immunization of the world population. The remarkable protective effects of the manufactured vaccines are demonstrated in countries with high vaccination rates, such as Israel and UK. However, limited production capacities, poor distribution infrastructures and political hesitations still hamper the availability of vaccines in many countries. In addition, due to the emergency of SARS-CoV-2 variants with immune escape properties towards the vaccines the global numbers of new infections as well as patients developing severe COVID-19, remains high. New studies reported that about 8% of infected individuals develop long term symptoms with strong personal restrictions on private as well as professional level, which contributes to the long socioeconomic problems caused by this pandemic. Until today, emergency use-approved treatment options for COVID-19 are limited to the antiviral Remdesivir, a nucleoside analogue targeting the viral polymerase, the glucocorticosteroide Dexamethasone as well as neutralizing antibodies. The therapeutic benefits of these treatments are under ongoing debate and clinical studies assessing the efficiency of these treatments are still underway. To identify new therapeutic treatments for COVID-19, now and by the post-pandemic era, diverse experimental approaches are under scientific evaluation in companies and scientific research teams all over the world. To accelerate clinical translation of promising candidates, repurposing approaches of known approved drugs are specifically fostered but also novel technologies are being developed and are under investigation. This review summarizes the recent developments from the lab bench as well as the clinical status of emerging therapeutic candidates and discusses possible therapeutic entry points for the treatment strategies with regard to the biology of SARS-CoV-2 and the clinical course of COVID-19.
Collapse
Affiliation(s)
- Sriram Kumar
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Duygu Merve Çalışkan
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Josua Janowski
- Institute of Virology, University of Münster, Münster, Germany
- SP BioSciences Graduate Program, University of Münster, Münster, Germany
| | - Aileen Faist
- Institute of Virology, University of Münster, Münster, Germany
- CiM-IMPRS Graduate Program, University of Münster, Münster, Germany
| | | | - Julius Lange
- Institute of Virology, University of Münster, Münster, Germany
| | - Stephan Ludwig
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
- CiM-IMPRS Graduate Program, University of Münster, Münster, Germany
- Interdisciplinary Centre for Medical Research, University of Münster, Münster, Germany
| | - Linda Brunotte
- Institute of Virology, University of Münster, Münster, Germany
- Interdisciplinary Centre for Medical Research, University of Münster, Münster, Germany
| |
Collapse
|
172
|
Haberland A, Müller J. Lack of efficacy of mono-mode of action therapeutics in COVID-19 therapy - How the lack of predictive power of preclinical cell and animal studies leads developments astray. Chem Biol Drug Des 2021; 99:32-45. [PMID: 34549885 PMCID: PMC8653042 DOI: 10.1111/cbdd.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Abstract
The diverse experiences regarding the failure of tested drugs in the fight against COVID‐19 made it clear that one should at least question the requirement to apply classical preclinical development strategies that demand cell and animal efficacy models to be tested before going into clinical trials. Most animals are not susceptible to infection with SARS‐CoV‐2, and so this led to one‐sided virus replication experiments in cells and the use of animal models that have little in common with the complex pathogenesis of COVID‐19 in humans. Therefore, non‐clinical development strategies were designed to meet regulatory requirements, but they did not truly reflect the situation in the clinic. This has led the search for effective agents astray in many cases. As proof of this statement, we now bring together the results of such required preclinical experiments and compare with the results in clinical trials. Two clear conclusions that can be drawn from the experience to date: The required preclinical models are unsuitable for the development of innovative treatments medical devices in the case of COVID‐19 and mono‐action strategies (e.g. direct antivirals) are of very little or no benefit to patients under randomized,blinded conditions. Our hypothesis is that the complex situation of COVID‐19 may benefit from multi‐mode drugs. Here, the molecular class of aptamers could be a solution.
Collapse
|
173
|
Anaya JM, Rojas M, Salinas ML, Rodríguez Y, Roa G, Lozano M, Rodríguez-Jiménez M, Montoya N, Zapata E, Monsalve DM, Acosta-Ampudia Y, Ramírez-Santana C. Post-COVID syndrome. A case series and comprehensive review. Autoimmun Rev 2021; 20:102947. [PMID: 34509649 PMCID: PMC8428988 DOI: 10.1016/j.autrev.2021.102947] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 01/08/2023]
Abstract
The existence of a variety of symptoms with a duration beyond the acute phase of COVID-19, is referred to as post-COVID syndrome (PCS). We aimed to report a series of patients with PCS attending a Post-COVID Unit and offer a comprehensive review on the topic. Adult patients with previously confirmed SARS-CoV-2 infection and PCS were systematically assessed through a semi-structured and validated survey. Total IgG, IgA and IgM serum antibodies to SARS-CoV-2 were evaluated by an electrochemiluminescence immunoassay. A systematic review of the literature and meta-analysis were conducted, following PRISMA guidelines. Univariate and multivariate methods were used to analyze data. Out of a total of 100 consecutive patients, 53 were women, the median of age was 49 years (IQR: 37.8–55.3), the median of post-COVID time after the first symptoms was 219 days (IQR: 143–258), and 65 patients were hospitalized during acute COVID-19. Musculoskeletal, digestive (i.e., diarrhea) and neurological symptoms including depression (by Zung scale) were the most frequent observed in PCS patients. A previous hospitalization was not associated with PCS manifestation. Arthralgia and diarrhea persisted in more than 40% of PCS patients. The median of anti-SARS-CoV-2 antibodies was 866.2 U/mL (IQR: 238.2–1681). Despite this variability, 98 patients were seropositive. Based on autonomic symptoms (by COMPASS 31) two clusters were obtained with different clinical characteristics. Levels of anti-SARS-CoV-2 antibodies were not different between clusters. A total of 40 articles (11,196 patients) were included in the meta-analysis. Fatigue/muscle weakness, dyspnea, pain and discomfort, anxiety/depression and impaired concentration were presented in more than 20% of patients reported. In conclusion, PCS is mainly characterized by musculoskeletal, pulmonary, digestive and neurological involvement including depression. PCS is independent of severity of acute illness and humoral response. Long-term antibody responses to SARS-CoV-2 infection and a high inter-individual variability were confirmed. Future studies should evaluate the mechanisms by which SARS-CoV-2 may cause PCS and the best therapeutic options.
Collapse
Affiliation(s)
- Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia.
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia
| | - Geraldine Roa
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Marcela Lozano
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mónica Rodríguez-Jiménez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Elizabeth Zapata
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | -
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
174
|
Hirschenberger M, Hunszinger V, Sparrer KMJ. Implications of Innate Immunity in Post-Acute Sequelae of Non-Persistent Viral Infections. Cells 2021; 10:2134. [PMID: 34440903 PMCID: PMC8391718 DOI: 10.3390/cells10082134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Non-persistent viruses classically cause transient, acute infections triggering immune responses aimed at the elimination of the pathogen. Successful viruses evolved strategies to manipulate and evade these anti-viral defenses. Symptoms during the acute phase are often linked to dysregulated immune responses that disappear once the patient recovers. In some patients, however, symptoms persist or new symptoms emerge beyond the acute phase. Conditions resulting from previous transient infection are termed post-acute sequelae (PAS) and were reported for a wide range of non-persistent viruses such as rota-, influenza- or polioviruses. Here we provide an overview of non-persistent viral pathogens reported to be associated with diverse PAS, among them chronic fatigue, auto-immune disorders, or neurological complications and highlight known mechanistic details. Recently, the emergence of post-acute sequelae of COVID-19 (PASC) or long COVID highlighted the impact of PAS. Notably, PAS of non-persistent infections often resemble symptoms of persistent viral infections, defined by chronic inflammation. Inflammation maintained after the acute phase may be a key driver of PAS of non-persistent viruses. Therefore, we explore current insights into aberrant activation of innate immune signaling pathways in the post-acute phase of non-persistent viruses. Finally, conclusions are drawn and future perspectives for treatment and prevention of PAS are discussed.
Collapse
|
175
|
Seeßle J, Waterboer T, Hippchen T, Simon J, Kirchner M, Lim A, Müller B, Merle U. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin Infect Dis 2021; 74:1191-1198. [PMID: 34223884 PMCID: PMC8394862 DOI: 10.1093/cid/ciab611] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long COVID is defined as the persistence of symptoms beyond 3 months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To better understand the long-term course and etiology of symptoms we analyzed a cohort of patients with COVID-19 prospectively. METHODS Patients were included at 5 months after acute COVID-19 in this prospective, noninterventional, follow-up study. Patients followed until 12 months after COVID-19 symptom onset (n = 96; 32.3% hospitalized, 55.2% females) were included in this analysis of symptoms, quality of life (based on an SF-12 survey), laboratory parameters including antinuclear antibodies (ANAs), and SARS-CoV-2 antibody levels. RESULTS At month 12, only 22.9% of patients were completely free of symptoms and the most frequent symptoms were reduced exercise capacity (56.3%), fatigue (53.1%), dyspnea (37.5%), and problems with concentration (39.6%), finding words (32.3%), and sleeping (26.0%). Females showed significantly more neurocognitive symptoms than males. ANA titers were ≥1:160 in 43.6% of patients at 12 months post-COVID-19 symptom onset, and neurocognitive symptom frequency was significantly higher in the group with an ANA titer ≥1:160 versus <1:160. Compared with patients without symptoms, patients with ≥1 long-COVID symptom at 12 months did not differ significantly with respect to their SARS-CoV-2 antibody levels but had a significantly reduced physical and mental life quality compared with patients without symptoms. CONCLUSIONS Neurocognitive long-COVID symptoms can persist ≥1 year after COVID-19 symptom onset and reduce life quality significantly. Several neurocognitive symptoms were associated with ANA titer elevations. This may indicate autoimmunity as a cofactor in etiology of long COVID.
Collapse
Affiliation(s)
- Jessica Seeßle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Heidelberg, Germany
| | - Theresa Hippchen
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Simon
- Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Heidelberg, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marietta Kirchner
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Adeline Lim
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany,Correspondence: U. Merle, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany ()
| |
Collapse
|
176
|
Aptamer BC 007's Affinity to Specific and Less-Specific Anti-SARS-CoV-2 Neutralizing Antibodies. Viruses 2021; 13:v13050932. [PMID: 34069827 PMCID: PMC8157297 DOI: 10.3390/v13050932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is a pandemic respiratory disease that is caused by the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Anti-SARS-CoV-2 antibodies are essential weapons that a patient with COVID-19 has to combat the disease. When now repurposing a drug, namely an aptamer that interacts with SARS-CoV-2 proteins for COVID-19 treatment (BC 007), which is, however, a neutralizer of pathogenic autoantibodies in its original indication, the possibility of also binding and neutralizing anti-SARS-CoV-2 antibodies must be considered. Here, the highly specific virus-neutralizing antibodies have to be distinguished from the ones that also show cross-reactivity to tissues. The last-mentioned could be the origin of the widely reported SARS-CoV-2-induced autoimmunity, which should also become a target of therapy. We, therefore, used enzyme-linked immunosorbent assay (ELISA) technology to assess the binding of well-characterized publicly accessible anti-SARS-CoV-2 antibodies (CV07-209 and CV07-270) with BC 007. Nuclear magnetic resonance spectroscopy, isothermal calorimetric titration, and circular dichroism spectroscopy were additionally used to test the binding of BC 007 to DNA-binding sequence segments of these antibodies. BC 007 did not bind to the highly specific neutralizing anti-SARS-CoV-2 antibody but did bind to the less specific one. This, however, was a lot less compared to an autoantibody of its original indication (14.2%, range 11.0–21.5%). It was also interesting to see that the less-specific anti-SARS-CoV-2 antibody also showed a high background signal in the ELISA (binding on NeutrAvidin-coated or activated but noncoated plastic plate). These initial experiments suggest that the risk of binding and neutralizing highly specific anti-SARS CoV-2 antibodies by BC 007 should be low.
Collapse
|