151
|
Deng H, Kooijman S, van den Nieuwendijk AMCH, Ogasawara D, van der Wel T, van Dalen F, Baggelaar MP, Janssen FJ, van den Berg RJBHN, den Dulk H, Cravatt BF, Overkleeft HS, Rensen PCN, van der Stelt M. Triazole Ureas Act as Diacylglycerol Lipase Inhibitors and Prevent Fasting-Induced Refeeding. J Med Chem 2016; 60:428-440. [DOI: 10.1021/acs.jmedchem.6b01482] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hui Deng
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sander Kooijman
- Department
of Medicine, Division of Endocrinology, and Einthoven Laboratory for
Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Daisuke Ogasawara
- Department
of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tom van der Wel
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Floris van Dalen
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Marc P. Baggelaar
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Freek J. Janssen
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | | | - Hans den Dulk
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Benjamin F. Cravatt
- Department
of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Herman S. Overkleeft
- Department
of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department
of Medicine, Division of Endocrinology, and Einthoven Laboratory for
Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
152
|
Lipases and their inhibitors in health and disease. Chem Biol Interact 2016; 259:211-222. [DOI: 10.1016/j.cbi.2016.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/04/2016] [Accepted: 04/04/2016] [Indexed: 02/07/2023]
|
153
|
Liu X, Chen Y, Vickstrom CR, Li Y, Viader A, Cravatt BF, Liu QS. Coordinated regulation of endocannabinoid-mediated retrograde synaptic suppression in the cerebellum by neuronal and astrocytic monoacylglycerol lipase. Sci Rep 2016; 6:35829. [PMID: 27775008 PMCID: PMC5075776 DOI: 10.1038/srep35829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates retrograde synaptic depression including depolarization-induced suppression of excitation (DSE) and inhibition (DSI). 2-AG is degraded primarily by monoacylglycerol lipase (MAGL), which is expressed in neurons and astrocytes. Using knockout mice in which MAGL is deleted globally or selectively in neurons or astrocytes, we investigated the relative contribution of neuronal and astrocytic MAGL to the termination of DSE and DSI in Purkinje cells (PCs) in cerebellar slices. We report that neuronal MAGL plays a predominant role in terminating DSE at climbing fiber (CF) to PC synapses, while both neuronal and astrocytic MAGL significantly contributes to the termination of DSE at parallel fiber (PF) to PC synapses and DSI at putative Stellate cell to PC synapses. Thus, DSE and DSI at different synapses is not uniformly affected by global and cell type-specific knockout of MAGL. Additionally, MAGL global knockout, but not cell type-specific knockout, caused tonic activation and partial desensitization of the CB1 receptor at PF-PC synapses. This tonic CB1 activation is mediated by 2-AG since it was blocked by the diacylglycerol lipase inhibitor DO34. Together, these results suggest that both neuronal and astrocytic MAGL contribute to 2-AG clearance and prevent CB1 receptor over-stimulation in the cerebellum.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yao Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yan Li
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Andreu Viader
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
154
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
155
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
156
|
Zhou Y, Howell FV, Glebov OO, Albrecht D, Williams G, Doherty P. Regulated endosomal trafficking of Diacylglycerol lipase alpha (DAGLα) generates distinct cellular pools; implications for endocannabinoid signaling. Mol Cell Neurosci 2016; 76:76-86. [PMID: 27595600 DOI: 10.1016/j.mcn.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/27/2023] Open
Abstract
Diacylglycerol lipase alpha (DAGLα) generates the endocannabinoid (eCB) 2-arachidonylglycerol (2-AG) that regulates the proliferation and differentiation of neural stem cells and serves as a retrograde signaling lipid at synapses. Nothing is known about the dynamics of DAGLα expression in cells and this is important as it will govern where 2-AG can be made and released. We have developed a new construct to label DAGLα at the surface of live cells and follow its trafficking. In hippocampal neurons a cell surface pool of DAGLα co-localizes with Homer, a postsynaptic density marker. This surface pool of DAGLα is dynamic, undergoing endocytosis and recycling back to the postsynaptic membrane. A similar cycling is seen in COS-7 cells with the internalized DAGLα initially transported to EEA1 and Rab5-positive early endosomes via a clathrin-independent pathway before being transported back to the cell surface. The internalized DAGLα is present on reticular structures that co-localize with microtubules. Importantly, DAGLα cycling is a regulated process as inhibiting PKC results in a significant reduction in endocytosis. This is the first description of DAGLα cycling between the cell surface and an intracellular endosomal compartment in a manner that can regulate the level of the enzyme at the cell surface.
Collapse
Affiliation(s)
- Ya Zhou
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
| | - Fiona V Howell
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
| | - Oleg O Glebov
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
| | - David Albrecht
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, UK
| | - Gareth Williams
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK.
| |
Collapse
|
157
|
Yuan D, Wu Z, Wang Y. Evolution of the diacylglycerol lipases. Prog Lipid Res 2016; 64:85-97. [PMID: 27568643 DOI: 10.1016/j.plipres.2016.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/24/2016] [Accepted: 08/24/2016] [Indexed: 01/31/2023]
Abstract
Diacylglycerol lipases (DGLs) mainly catalyze "on-demand" biosynthesis of bioactive monoacylglycerols (MAGs) with different long fatty acyl chains, including 2-arachidonoylglycerol (2-AG), 2-linoleoylglycerol (2-LG), 2-oleoylglycerol (2-OG) and 2-palmitoylglycerol (2-PG). Enzymatic characterization of DGLs, their expression and distribution, and functional features has been elucidated from microorganisms to mammals in some extent. In mammals, biosynthesis, degradation and metabolism of these bioactive lipids intertwine and form a complicated biochemical pathway to affect the mammal neuromodulation of central nervous system and also other physiological processes in most peripheral organs and non-nervous tissue cells, and yet we still do not know if the neuromodulatory role of mammal DGL and MAGs is similar to invertebrates. Tracing the evolutionary history of DGLs from microorganisms to vertebrates will be an essential method to infer DGL and MAG research in organisms. In this review, we give an exhaustive explanation of the ancestral origin, divergence and evolutionary pattern through systemic searching of DGL orthologs in different species. Finally, we also summarize our recent work on the structural and functional studies of DGL in order to explore usage of DGLs in industry and the development of inhibitors for clinical intervention.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China; College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Yonghua Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
158
|
Janssen FJ, van der Stelt M. Inhibitors of diacylglycerol lipases in neurodegenerative and metabolic disorders. Bioorg Med Chem Lett 2016; 26:3831-7. [DOI: 10.1016/j.bmcl.2016.06.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 01/11/2023]
|
159
|
Sugaya Y, Yamazaki M, Uchigashima M, Kobayashi K, Watanabe M, Sakimura K, Kano M. Crucial Roles of the Endocannabinoid 2-Arachidonoylglycerol in the Suppression of Epileptic Seizures. Cell Rep 2016; 16:1405-1415. [PMID: 27452464 DOI: 10.1016/j.celrep.2016.06.083] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/01/2016] [Accepted: 06/21/2016] [Indexed: 01/13/2023] Open
Abstract
Endocannabinoid signaling is considered to suppress excessive excitability of neural circuits and to protect the brain from seizures. However, the precise mechanisms of this effect are poorly understood. Here, we report that 2-arachidonoylglycerol (2-AG), one of the two major endocannabinoids, is crucial for suppressing seizures. We found that kainate-induced seizures in mice lacking the 2-AG synthesizing enzyme, diacylglycerol lipase α, were much more severe compared with those in cannabinoid CB1 receptor knockout mice and were comparable to those in mice lacking both CB1- and CB2-receptor-mediated signaling. In the dentate gyrus, 2-AG suppressed excitatory input around the inner and middle molecular layers through CB1 and presumably CB2 receptors, respectively. This 2-AG-mediated suppression contributed to decreased granule cell excitability and the dampening of seizures. Furthermore, lack of 2-AG signaling enhanced kindling epileptogenesis and spontaneous seizures after kainate-induced status epilepticus. These results highlight critical roles of 2-AG signaling in the suppression of epileptic seizures.
Collapse
Affiliation(s)
- Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Motokazu Uchigashima
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
160
|
Araki M, Ohshima N, Aso C, Konishi A, Obinata H, Tatei K, Izumi T. Enzymatic characterization of recombinant rat DDHD2: a soluble diacylglycerol lipase. J Biochem 2016; 160:269-279. [PMID: 27198176 DOI: 10.1093/jb/mvw034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
DDHD2 has been reported to exhibit phospholipase A1, triacylglycerol (TG) lipase and diacylglycerol (DG) lipase activities. However, the detailed enzymatic properties of DDHD2 have not yet been elucidated. In the current study, the substrate specificity of DDHD2 towards DG, TG and phosphatidic acid (PA) has been examined using highly purified recombinant rat DDHD2 (rDDHD2) with a liquid chromatography mass spectrometer. The k cat/Km value for DG (18:0/20:4) was much higher than those for TG (18:1/18:1/18:1), and PA (18:0/20:4) in the presence of sodium deoxycholate. The enzyme activity of rDDHD2 towards DG (18:0/20:4) was highest among all of the substrates tested. In addition, rDDHD2 was highly specific to DG substrates with a polyunsaturated fatty acid at their sn-2 position. The levels of 2-arachidonoylglycerol (2-AG) in CHO cells were quantified by gas chromatography-tandem mass spectrometry, showing that CHO cells expressing recombinant rDDHD2 contained higher levels of 2-AG when cells were treated with a monoacylglycerol lipase inhibitor, URB602. These results therefore support the idea that DDHD2 functions as a DG lipase in vivo and produces 2-AG.
Collapse
Affiliation(s)
- Mari Araki
- Department of Biochemistry.,Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | - Chizu Aso
- National Hospital Organization Takasaki General Medical Center, Takasaki, Gunma 370-0829, Japan
| | | | | | | | | |
Collapse
|
161
|
Anxiety, Stress, and Fear Response in Mice With Reduced Endocannabinoid Levels. Biol Psychiatry 2016; 79:858-868. [PMID: 25981172 DOI: 10.1016/j.biopsych.2015.03.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Disruption of the endocannabinoid system through pharmacological or genetic invalidation of cannabinoid CB1 receptors has been linked to depression in humans and depression-like behaviors in mice. The two main endogenous cannabinoids, anandamide and 2-arachidonoyl glycerol (2-AG), are produced on demand from phospholipids. The pathways and enzymes involved in endocannabinoid biosynthesis thus play a major role in regulating the activity of this system. This study investigates the role of the main 2-AG producing enzyme diacylglycerol lipase α (DAGL-α). METHODS We generated and used knockout mice lacking DAGL-α (Dagla(-/-)) to assess the behavioral consequences of reduced endocannabinoid levels in the brain. We performed different behavior tests to determine anxiety- and depression-related behavioral changes in Dagla(-/-) mice. We also analyzed expression of genes related to the endocannabinoid system via real-time polymerase chain reaction and used the mitotic marker 5-bromo-2'-deoxyuridine to analyze adult neurogenesis. RESULTS Dagla(-/-) animals show an 80% reduction of brain 2-AG levels but also a reduction in cortical and amygdalar anandamide. The behavioral changes induced by Dagla deletion include a reduced exploration of the central area of the open field, a maternal neglect behavior, a fear extinction deficit, increased behavioral despair, increased anxiety-related behaviors in the light/dark box, and reduced hippocampal neurogenesis. Some of these behavioral changes resemble those observed in animals lacking the CB1 receptor. CONCLUSIONS Our findings demonstrate that the deletion of Dagla adversely affects the emotional state of animals and results in enhanced anxiety, stress, and fear responses.
Collapse
|
162
|
Neuronal and Astrocytic Monoacylglycerol Lipase Limit the Spread of Endocannabinoid Signaling in the Cerebellum. eNeuro 2016; 3:eN-NWR-0048-16. [PMID: 27182552 PMCID: PMC4865651 DOI: 10.1523/eneuro.0048-16.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
Endocannabinoids are diffusible lipophilic molecules that may spread to neighboring synapses. Monoacylglycerol lipase (MAGL) is the principal enzyme that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Using knock-out mice in which MAGL is deleted globally or selectively in neurons and astrocytes, we investigated the extent to which neuronal and astrocytic MAGL limit the spread of 2-AG-mediated retrograde synaptic depression in cerebellar slices. A brief tetanic stimulation of parallel fibers in the molecular layer induced synaptically evoked suppression of excitation (SSE) in Purkinje cells, and both neuronal and astrocytic MAGL contribute to the termination of this form of endocannabinoid-mediated synaptic depression. The spread of SSE among Purkinje cells occurred only after global knock-out of MAGL or pharmacological blockade of either MAGL or glutamate uptake, but no spread was detected following neuron- or astrocyte-specific deletion of MAGL. The spread of endocannabinoid signaling was also influenced by the spatial pattern of synaptic stimulation, because it did not occur at spatially dispersed parallel fiber synapses induced by stimulating the granular layer. The tetanic stimulation of parallel fibers did not induce endocannabinoid-mediated synaptic suppression in Golgi cells even after disruption of MAGL and glutamate uptake, suggesting that heightened release of 2-AG by Purkinje cells does not spread the retrograde signal to parallel fibers that innervate Golgi cells. These results suggest that both neuronal and astrocytic MAGL limit the spatial diffusion of 2-AG and confer synapse-specificity of endocannabinoid signaling.
Collapse
|
163
|
Singh PK, Markwick R, Lu L, Howell FV, Williams G, Doherty P. Assay and Inhibition of the Purified Catalytic Domain of Diacylglycerol Lipase Beta. Biochemistry 2016; 55:2713-21. [DOI: 10.1021/acs.biochem.6b00221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Praveen K. Singh
- Wolfson Centre for Age-Related
Diseases, King’s College London, London SE1 9RT, United Kingdom
| | - Rachel Markwick
- Wolfson Centre for Age-Related
Diseases, King’s College London, London SE1 9RT, United Kingdom
| | - Leanne Lu
- Wolfson Centre for Age-Related
Diseases, King’s College London, London SE1 9RT, United Kingdom
| | - Fiona V. Howell
- Wolfson Centre for Age-Related
Diseases, King’s College London, London SE1 9RT, United Kingdom
| | - Gareth Williams
- Wolfson Centre for Age-Related
Diseases, King’s College London, London SE1 9RT, United Kingdom
| | - Patrick Doherty
- Wolfson Centre for Age-Related
Diseases, King’s College London, London SE1 9RT, United Kingdom
| |
Collapse
|
164
|
Báldi R, Ghose D, Grueter BA, Patel S. Electrophysiological Measurement of Cannabinoid-Mediated Synaptic Modulation in Acute Mouse Brain Slices. CURRENT PROTOCOLS IN NEUROSCIENCE 2016; 75:6.29.1-6.29.19. [PMID: 27063786 PMCID: PMC4866814 DOI: 10.1002/cpns.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Endocannabinoids (eCBs) are a class of bioactive lipids that mediate retrograde synaptic modulation at central and peripheral synapses. The highly lipophilic nature of eCBs and the pharmacological tools available to interrogate this system require unique methodological consideration, especially when applied to ex vivo systems such as electrophysiological analysis in acute brain slices. This unit provides protocols for measuring cannabinoid and eCB-mediated synaptic signaling in mouse brain slices, including analysis of short-term, long-term, and tonic eCB signaling modes, and the unique considerations for working with eCBs and TRPV1/cannabinoid ligands in acute brain slices.
Collapse
Affiliation(s)
- Rita Báldi
- Department of Psychiatry, 2213 Garland Avenue, 8415 MRBIV, Vanderbilt University Medical Center, Nashville, TN 37232-0413, Tel. 615-936-7768, Fax. 615-936-4075
| | - Dipanwita Ghose
- Department of Anesthesiology, 2213 Garland Avenue, P445 MRBIV, Vanderbilt University Medical Center, Nashville, TN 37232-0413, Tel. 615-936-1684, Fax. 615-936-0456
| | - Brad A. Grueter
- Department of Anesthesiology, 2213 Garland Avenue, P435H MRBIV, Vanderbilt University Medical Center, Nashville, TN 37232-0413, Tel. 615-936-2586, Fax. 615-936-0456
| | - Sachin Patel
- Departments of Psychiatry and Molecular Physiology & Biophysics, 2213 Garland Avenue, 8425B MRBIV, Vanderbilt University Medical Center, Nashville, TN 37232-0413, Tel. 615-936-7768, Fax. 615-936-4075
| |
Collapse
|
165
|
Wilkerson JL, Ghosh S, Bagdas D, Mason BL, Crowe MS, Hsu KL, Wise LE, Kinsey SG, Damaj MI, Cravatt BF, Lichtman AH. Diacylglycerol lipase β inhibition reverses nociceptive behaviour in mouse models of inflammatory and neuropathic pain. Br J Pharmacol 2016; 173:1678-92. [PMID: 26915789 DOI: 10.1111/bph.13469] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of diacylglycerol lipase (DGL)β prevents LPS-induced pro-inflammatory responses in mouse peritoneal macrophages. Thus, the present study tested whether DGLβ inhibition reverses allodynic responses of mice in the LPS model of inflammatory pain, as well as in neuropathic pain models. EXPERIMENTAL APPROACH Initial experiments examined the cellular expression of DGLβ and inflammatory mediators within the LPS-injected paw pad. DAGL-β (-/-) mice or wild-type mice treated with the DGLβ inhibitor KT109 were assessed in the LPS model of inflammatory pain. Additional studies examined the locus of action for KT109-induced antinociception, its efficacy in chronic constrictive injury (CCI) of sciatic nerve and chemotherapy-induced neuropathic pain (CINP) models. KEY RESULTS Intraplantar LPS evoked mechanical allodynia that was associated with increased expression of DGLβ, which was co-localized with increased TNF-α and prostaglandins in paws. DAGL-β (-/-) mice or KT109-treated wild-type mice displayed reductions in LPS-induced allodynia. Repeated KT109 administration prevented the expression of LPS-induced allodynia, without evidence of tolerance. Intraplantar injection of KT109 into the LPS-treated paw, but not the contralateral paw, reversed the allodynic responses. However, i.c.v. or i.t. administration of KT109 did not alter LPS-induced allodynia. Finally, KT109 also reversed allodynia in the CCI and CINP models and lacked discernible side effects (e.g. gross motor deficits, anxiogenic behaviour or gastric ulcers). CONCLUSIONS AND IMPLICATIONS These findings suggest that local inhibition of DGLβ at the site of inflammation represents a novel avenue to treat pathological pain, with no apparent untoward side effects.
Collapse
Affiliation(s)
- J L Wilkerson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - S Ghosh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - D Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.,Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - B L Mason
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - M S Crowe
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - K L Hsu
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - L E Wise
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - S G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - B F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
166
|
An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry 2016; 79:516-25. [PMID: 26698193 PMCID: PMC4789136 DOI: 10.1016/j.biopsych.2015.07.028] [Citation(s) in RCA: 707] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 11/20/2022]
Abstract
The endocannabinoid system (ECS) is a widespread neuromodulatory system that plays important roles in central nervous system development, synaptic plasticity, and the response to endogenous and environmental insults. The ECS comprises cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes responsible for the synthesis and degradation of the endocannabinoids. The most abundant cannabinoid receptors are the CB1 cannabinoid receptors; however, CB2 cannabinoid receptors, transient receptor potential channels, and peroxisome proliferator activated receptors are also engaged by some cannabinoids. Exogenous cannabinoids, such as tetrahydrocannabinol, produce their biological effects through their interactions with cannabinoid receptors. The best-studied endogenous cannabinoids are 2-arachidonoyl glycerol and arachidonoyl ethanolamide (anandamide). Despite similarities in chemical structure, 2-arachidonoyl glycerol and anandamide are synthesized and degraded by distinct enzymatic pathways, which impart fundamentally different physiologic and pathophysiologic roles to these two endocannabinoids. As a result of the pervasive social use of cannabis and the involvement of endocannabinoids in a multitude of biological processes, much has been learned about the physiologic and pathophysiologic roles of the ECS. This review provides an introduction to the ECS with an emphasis on its role in synaptic plasticity and how the ECS is perturbed in schizophrenia.
Collapse
|
167
|
Iannotti FA, Di Marzo V, Petrosino S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog Lipid Res 2016; 62:107-28. [DOI: 10.1016/j.plipres.2016.02.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/19/2022]
|
168
|
Chupak LS, Zheng X, Hu S, Huang Y, Ding M, Lewis MA, Westphal RS, Blat Y, McClure A, Gentles RG. Structure activity relationship studies on chemically non-reactive glycine sulfonamide inhibitors of diacylglycerol lipase. Bioorg Med Chem 2016; 24:1455-68. [DOI: 10.1016/j.bmc.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
|
169
|
A novel live cell assay to measure diacylglycerol lipase α activity. Biosci Rep 2016; 36:BSR20160073. [PMID: 27013337 PMCID: PMC4859088 DOI: 10.1042/bsr20160073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 11/24/2022] Open
Abstract
Diacylglycerol lipase α (DAGLα) hydrolyses DAG to generate the principal endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα dependent cannabinoid (CB) signalling has been implicated in numerous processes including axonal growth and guidance, adult neurogenesis and retrograde signalling at the synapse. Recent studies have implicated DAGLα as an emerging drug target for several conditions including pain and obesity. Activity assays are critical to the drug discovery process; however, measurement of diacylglycerol lipase (DAGL) activity using its native substrate generally involves low-throughput MS techniques. Some relatively high-throughput membrane based assays utilizing surrogate substrates have been reported, but these do not take into account the rate-limiting effects often associated with the ability of a drug to cross the cell membrane. In the present study, we report the development of a live cell assay to measure DAGLα activity. Two previously reported DAGLα surrogate substrates, p-nitrophenyl butyrate (PNPB) and 6,8-difluoro-4-methylumbelliferyl octanoate (DiFMUO), were evaluated for their ability to detect DAGLα activity in live cell assays using a human cell line stably expressing the human DAGLα transgene. Following optimization, the small molecule chromogenic substrate PNPB proved to be superior by providing lower background activity along with a larger signal window between transfected and parental cells when compared with the fluorogenic substrate DiFMUO. The assay was further validated using established DAGL inhibitors. In summary, the live cell DAGLα assay reported here offers an economical and convenient format to screen for novel inhibitors as part of drug discovery programmes and compliments previously reported high-throughput membrane based DAGL assays.
Collapse
|
170
|
Zhang L, Kolaj M, Renaud LP. Endocannabinoid 2-AG and intracellular cannabinoid receptors modulate a low-threshold calcium spike-induced slow depolarizing afterpotential in rat thalamic paraventricular nucleus neurons. Neuroscience 2016; 322:308-19. [PMID: 26924019 DOI: 10.1016/j.neuroscience.2016.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/01/2022]
Abstract
In rat paraventricular thalamic nucleus (PVT) neurons, activation of low-threshold calcium (Ca(2+)) channels triggers a low-threshold spike (LTS) which may be followed by slow afterpotentials that can dramatically influence action potential patterning. Using gluconate-based internal recording solutions, we investigated the properties of a LTS-induced slow afterdepolarization (sADP) observed in a subpopulation of PVT neurons recorded in brain slice preparations. This LTS-induced sADP required T-type Ca(2+) channel opening, exhibited variable magnitudes between neurons and a voltage dependency with a maximum near -50 mV. The area under the sADP remained stable during control monitoring, but displayed gradual suppression in media where strontium replaced Ca(2+). The sADP was suppressed following bath application of 2-APB or ML204, suggesting engagement of transient receptor potential canonical (TRPC)-like channels. Further investigation revealed a reversible suppression during bath applications of membrane permeable cannabinoid receptor (CBR) blockers rimonabant, AM630 or SR144528 suggesting the presence of both CB1Rs and CB2Rs. Similar results were achieved by intracellular, but not bath application of the membrane impermeant CB1R blocker hemopressin, suggesting an intracellular localization of CB1Rs. Data from pharmacologic manipulation of endocannabinoid biosynthetic pathways suggested 2-arachidonlyglycerol (2-AG) as the endogenous cannabinoid ligand, derived via hydrolysis of diacylglycerol (DAG), with the latter formed from the pathway involving phosphatidylcholine-specific phospholipase D and phosphatic acid phosphohydrolase. The sADP suppression observed during recordings with pipettes containing LY294002, a PI3-kinase inhibitor, suggested a role for PI3kinase in the translocation of these TRPC-like channels to the plasma membrane. Drug-induced attenuation of the availability of 2-AG influences the number of action potentials that surmount the LTS evoked in PVT neurons, implying an ongoing intracellular CBR modulation of neuronal excitability during LTS-induced bursting behavior.
Collapse
Affiliation(s)
- L Zhang
- Neuroscience Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada
| | - M Kolaj
- Neuroscience Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada
| | - L P Renaud
- Neuroscience Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada.
| |
Collapse
|
171
|
Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2016; 16:705-18. [PMID: 26585799 DOI: 10.1038/nrn4036] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism's long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux 33077, France.,University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33077, France
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
172
|
Buczynski MW, Herman MA, Hsu KL, Natividad LA, Irimia C, Polis IY, Pugh H, Chang JW, Niphakis MJ, Cravatt BF, Roberto M, Parsons LH. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure. Proc Natl Acad Sci U S A 2016; 113:1086-91. [PMID: 26755579 PMCID: PMC4743781 DOI: 10.1073/pnas.1522672113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE.
Collapse
Affiliation(s)
- Matthew W Buczynski
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Melissa A Herman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Ku-Lung Hsu
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Luis A Natividad
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Cristina Irimia
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Ilham Y Polis
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Holly Pugh
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jae Won Chang
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Micah J Niphakis
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Loren H Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
173
|
Aso C, Araki M, Ohshima N, Tatei K, Hirano T, Obinata H, Kishi M, Kishimoto K, Konishi A, Goto F, Sugimoto H, Izumi T. Protein purification and cloning of diacylglycerol lipase from rat brain. J Biochem 2016; 159:585-97. [PMID: 26790472 DOI: 10.1093/jb/mvw002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/08/2015] [Indexed: 11/14/2022] Open
Abstract
Diacylglycerol (DG) lipase, which hydrolyses 1-stearoyl-2-arachidonyl-sn-glycerol to produce an endocannabinoid, 2-arachidonoylglycerol, was purified from the soluble fraction of rat brain lysates. DG lipase was purified about 1,200-fold by a sequential column chromatographic procedure. Among proteins identified by mass spectrometry analysis in the partially purified DG lipase sample, only DDHD domain containing two (DDHD2), which was formerly regarded as a phospholipase A1, exhibited significant DG lipase activity. Rat DDHD2 expressed in Chinese hamster ovary cells showed similar enzymatic properties to partially purified DG lipase from rat brain. The source of DG lipase activity in rat brain was immunoprecipitated using anti-DDHD2 antibody. Thus, we concluded that the DG lipase activity in the soluble fraction of rat brain is derived from DDHD2. DDHD2 is distributed widely in the rat brain. Immunohistochemical analysis revealed that DDHD2 is expressed in hippocampal neurons, but not in glia.
Collapse
Affiliation(s)
- Chizu Aso
- Department of Biochemistry; Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511; and
| | | | | | | | | | | | | | | | | | - Fumio Goto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511; and
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | | |
Collapse
|
174
|
Viader A, Ogasawara D, Joslyn CM, Sanchez-Alavez M, Mori S, Nguyen W, Conti B, Cravatt BF. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation. eLife 2016; 5:e12345. [PMID: 26779719 PMCID: PMC4737654 DOI: 10.7554/elife.12345] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/13/2015] [Indexed: 12/19/2022] Open
Abstract
Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI:http://dx.doi.org/10.7554/eLife.12345.001 The brain is made up of many types of cells. These include the neurons that transmit messages throughout the nervous system, and microglia, which act as the first line of the brain’s immune defense. The activity of both neurons and microglia can be influenced by molecules called endocannabinoids that bind to proteins on the cells’ surface. For example, endocannabinoids affect how a neuron responds to messages sent to it from a neighbouring neuron, and help microglia to regulate the inflammation of brain tissue. Enzymes called serine hydrolases play important roles in several different signaling processes in the brain, including those involving endocannabinoids. Viader et al. have now studied the activities of these enzymes – including two called DAGLα and DAGLβ – in the mouse brain using a technique called activity-based protein profiling. This revealed that DAGLα plays an important role in controlling how neurons respond to endocannabinoids, while DAGLβ performs the equivalent role in microglia. When Viader et al. shut down DAGLβ activity, this only affected endocannabinoid signaling in microglia. This also had the effect of reducing inflammation in the brain, without affecting how endocannabinoids signal in neurons. These results suggest that inhibitors of DAGLβ could offer a way to suppress inflammation in the brain, which may contribute to neuropsychiatric and neurodegenerative diseases, while preserving the normal pathways that neurons use to communicate with one another. DOI:http://dx.doi.org/10.7554/eLife.12345.002
Collapse
Affiliation(s)
- Andreu Viader
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Christopher M Joslyn
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Manuel Sanchez-Alavez
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Simone Mori
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - William Nguyen
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Bruno Conti
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
175
|
Gobira PH, Almeida-Santos AF, Guimaraes FS, Moreira FA, Aguiar DC. Role of the endocannabinoid 2-arachidonoylglycerol in aversive responses mediated by the dorsolateral periaqueductal grey. Eur Neuropsychopharmacol 2016; 26:15-22. [PMID: 26628106 DOI: 10.1016/j.euroneuro.2015.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/14/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
2-arachidonoylglycerol (2-AG) is an endogenous ligand of the cannabinoid CB1 receptor. This endocannabinoid and its hydrolyzing enzyme, monoacylglycerol lipase (MAGL), are present in encephalic regions related to psychiatric disorders, including the midbrain dorsolateral periaqueductal grey (dlPAG). The dlPAG is implicated in panic disorder and its stimulation results in defensive responses proposed as a model of panic attacks. The present work verified if facilitation of 2-AG signalling in the dlPAG counteracts panic-like responses induced by local chemical stimulation. Intra-dlPAG injection of 2-AG prevented panic-like response induced by the excitatory amino acid N-methyl-d-aspartate (NMDA). This effect was mimicked by the 2-AG hydrolysis inhibitor (MAGL preferring inhibitor) URB602. The anti-aversive effect of URB602 was reversed by the CB1 receptor antagonist, AM251. Additionally, a combination of sub-effective doses of 2-AG and URB602 also prevented NMDA-induced panic-like response. Finally, immunofluorescence assay showed a significant increase in c-Fos positive cells in the dlPAG after local administration of NMDA. This response was also prevented by URB602. These data support the hypothesis that 2-AG participates in anti-aversive mechanisms in the dlPAG and reinforce the proposal that facilitation of endocannabinoid signalling could be a putative target for developing additional treatments against panic and other anxiety-related disorders.
Collapse
Affiliation(s)
- P H Gobira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A F Almeida-Santos
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - F S Guimaraes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil; Center of Interdisciplinary Research of Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - D C Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
176
|
Chen B, Ge SS, Zhao YC, Chen C, Yang S. Activity-based protein profiling: an efficient approach to study serine hydrolases and their inhibitors in mammals and microbes. RSC Adv 2016. [DOI: 10.1039/c6ra20006k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review focuses on the identification of serine hydrolases and their inhibitors in mammals and microbes with activity-based protein profiling (ABPP).
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Yuan-Chao Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Chong Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| |
Collapse
|
177
|
Janssen FJ, Baggelaar MP, Hummel JJA, Overkleeft HS, Cravatt BF, Boger DL, van der Stelt M. Comprehensive Analysis of Structure-Activity Relationships of α-Ketoheterocycles as sn-1-Diacylglycerol Lipase α Inhibitors. J Med Chem 2015; 58:9742-53. [PMID: 26584396 PMCID: PMC4690813 DOI: 10.1021/acs.jmedchem.5b01627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diacylglycerol lipase α (DAGLα) is responsible for the formation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα inhibitors are required to study the physiological role of 2-AG. Previously, we identified the α-ketoheterocycles as potent and highly selective DAGLα inhibitors. Here, we present the first comprehensive structure-activity relationship study of α-ketoheterocycles as DAGLα inhibitors. Our findings indicate that the active site of DAGLα is remarkably sensitive to the type of heterocyclic scaffold with oxazolo-4N-pyridines as the most active framework. We uncovered a fundamental substituent effect in which electron-withdrawing meta-oxazole substituents increased inhibitor potency. (C6-C9)-acyl chains with a distal phenyl group proved to be the most potent inhibitors. The integrated SAR data was consistent with the proposed binding pose in a DAGLα homology model. Altogether, our results may guide the design of future DAGLα inhibitors as leads for molecular therapies to treat neuroinflammation, obesity, and related metabolic disorders.
Collapse
Affiliation(s)
- Freek J. Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Marc P. Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Jessica J. A. Hummel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| |
Collapse
|
178
|
Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition. Proc Natl Acad Sci U S A 2015; 113:26-33. [PMID: 26668358 DOI: 10.1073/pnas.1522364112] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diacylglycerol lipases (DAGLα and DAGLβ) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.
Collapse
|
179
|
Merrill CB, Friend LN, Newton ST, Hopkins ZH, Edwards JG. Ventral tegmental area dopamine and GABA neurons: Physiological properties and expression of mRNA for endocannabinoid biosynthetic elements. Sci Rep 2015; 5:16176. [PMID: 26553597 PMCID: PMC4639757 DOI: 10.1038/srep16176] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/08/2015] [Indexed: 11/12/2022] Open
Abstract
The ventral tegmental area (VTA) is involved in adaptive reward and motivation processing and is composed of dopamine (DA) and GABA neurons. Defining the elements regulating activity and synaptic plasticity of these cells is critical to understanding mechanisms of reward and addiction. While endocannabinoids (eCBs) that potentially contribute to addiction are known to be involved in synaptic plasticity mechanisms in the VTA, where they are produced is poorly understood. In this study, DA and GABAergic cells were identified using electrophysiology, cellular markers, and a transgenic mouse model that specifically labels GABA cells. Using single-cell RT-qPCR and immunohistochemistry, we investigated mRNA and proteins involved in eCB signaling such as diacylglycerol lipase α, N-acyl-phosphatidylethanolamine-specific phospholipase D, and 12-lipoxygenase, as well as type I metabotropic glutamate receptors (mGluRs). Our results demonstrate the first molecular evidence of colocalization of eCB biosynthetic enzyme and type I mGluR mRNA in VTA neurons. Further, these data reveal higher expression of mGluR1 in DA neurons, suggesting potential differences in eCB synthesis between DA and GABA neurons. These data collectively suggest that VTA GABAergic and DAergic cells have the potential to produce various eCBs implicated in altering neuronal activity or plasticity in adaptive motivational reward or addiction.
Collapse
Affiliation(s)
- Collin B Merrill
- Brigham Young University Department of Physiology and Developmental Biology Provo, UT 84602 USA
| | - Lindsey N Friend
- Brigham Young University Neuroscience Center Provo, UT 84602 USA
| | - Scott T Newton
- Brigham Young University Neuroscience Center Provo, UT 84602 USA
| | | | - Jeffrey G Edwards
- Brigham Young University Department of Physiology and Developmental Biology Provo, UT 84602 USA.,Brigham Young University Neuroscience Center Provo, UT 84602 USA
| |
Collapse
|
180
|
Hillard CJ. The Endocannabinoid Signaling System in the CNS: A Primer. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:1-47. [PMID: 26638763 DOI: 10.1016/bs.irn.2015.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this chapter is to provide an introduction to the mechanisms for the regulation of endocannabinoid signaling through CB1 cannabinoid receptors in the central nervous system. The processes involved in the synthesis and degradation of the two most well-studied endocannabinoids, 2-arachidonoylglycerol and N-arachidonylethanolamine are outlined along with information regarding the regulation of the proteins involved. Signaling mechanisms and pharmacology of the CB1 cannabinoid receptor are outlined, as is the paradigm of endocannabinoid/CB1 receptor regulation of neurotransmitter release. The reader is encouraged to appreciate the importance of the endocannabinoid/CB1 receptor signaling system in the regulation of synaptic activity in the brain.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center, and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
181
|
Abstract
UNLABELLED The possibility that mechanisms of synaptic modulation differ between males and females has far-reaching implications for understanding brain disorders that vary between the sexes. We found recently that 17β-estradiol (E2) acutely suppresses GABAergic inhibition in the hippocampus of female rats through a sex-specific estrogen receptor α (ERα), mGluR, and endocannabinoid-dependent mechanism. Here, we define the intracellular signaling that links ERα, mGluRs, and endocannabinoids in females and identify where in this pathway males and females differ. Using a combination of whole-cell patch-clamp recording and biochemical analyses in hippocampal slices from young adult rats, we show that E2 acutely suppresses inhibition in females through mGluR1 stimulation of phospholipase C, leading to inositol triphosphate (IP3) generation, activation of the IP3 receptor (IP3R), and postsynaptic endocannabinoid release, likely of anandamide. Analysis of sex differences in this pathway showed that E2 stimulates a much greater increase in IP3 levels in females than males, whereas the group I mGluR agonist DHPG increases IP3 levels equivalently in each sex. Coimmunoprecipitation showed that ERα-mGluR1 and mGluR1-IP3R complexes exist in both sexes but are regulated by E2 only in females. Independently of E2, a fatty acid amide hydrolase inhibitor, which blocks breakdown of anandamide, suppressed >50% of inhibitory synapses in females with no effect in males, indicating tonic endocannabinoid release in females that is absent in males. Together, these studies demonstrate sex differences in both E2-dependent and E2-independent regulation of the endocannabinoid system and suggest that manipulation of endocannabinoids in vivo could affect physiological and behavioral responses differently in each sex. SIGNIFICANCE STATEMENT Many brain disorders vary between the sexes, yet the degree to which this variation arises from differential experience versus intrinsic biological sex differences is unclear. In this study, we demonstrate intrinsic sex differences in molecular regulation of a key neuromodulatory system, the endocannabinoid system, in the hippocampus. Endocannabinoids are involved in diverse aspects of physiology and behavior that involve the hippocampus, including cognitive and motivational state, responses to stress, and neurological disorders such as epilepsy. Our finding that molecular regulation of the endocannabinoid system differs between the sexes suggests mechanisms through which experiences or therapeutics that engage endocannabinoids could affect males and females differently.
Collapse
|
182
|
Mohammad-Pour Kargar H, Azizi H, Mirnajafi-Zadeh J, Ali Reza M, Semnanian S. Microinjection of orexin-A into the rat locus coeruleus nucleus induces analgesia via cannabinoid type-1 receptors. Brain Res 2015; 1624:424-432. [DOI: 10.1016/j.brainres.2015.07.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023]
|
183
|
Arjmand S, Vaziri Z, Behzadi M, Abbassian H, Stephens GJ, Shabani M. Cannabinoids and Tremor Induced by Motor-related Disorders: Friend or Foe? Neurotherapeutics 2015; 12:778-87. [PMID: 26152606 PMCID: PMC4604184 DOI: 10.1007/s13311-015-0367-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Tremor arises from an involuntary, rhythmic muscle contraction/relaxation cycle and is a common disabling symptom of many motor-related diseases such as Parkinson disease, multiple sclerosis, Huntington disease, and forms of ataxia. In the wake of anecdotal, largely uncontrolled, observations claiming the amelioration of some symptoms among cannabis smokers, and the high density of cannabinoid receptors in the areas responsible for motor function, including basal ganglia and cerebellum, many researchers have pursued the question of whether cannabinoid-based compounds could be used therapeutically to alleviate tremor associated with central nervous system diseases. In this review, we focus on possible effects of cannabinoid-based medicines, in particular on Parkinsonian and multiple sclerosis-related tremors and the common probable molecular mechanisms. While, at present, inconclusive results have been obtained, future investigations should extend preclinical studies with different cannabinoids to controlled clinical trials to determine potential benefits in tremor.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Vaziri
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Behzadi
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Abbassian
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Gary J Stephens
- School of Pharmacy, University of Reading, Whiteknights, P.O. Box 228, Reading, RG6 6AJ, UK.
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
184
|
Onyango MG, Beebe NW, Gopurenko D, Bellis G, Nicholas A, Ogugo M, Djikeng A, Kemp S, Walker PJ, Duchemin JB. Assessment of population genetic structure in the arbovirus vector midge, Culicoides brevitarsis (Diptera: Ceratopogonidae), using multi-locus DNA microsatellites. Vet Res 2015; 231:39-58. [PMID: 26408175 DOI: 10.1007/978-3-319-20825-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bluetongue virus (BTV) is a major pathogen of ruminants that is transmitted by biting midges (Culicoides spp.). Australian BTV serotypes have origins in Asia and are distributed across the continent into two distinct episystems, one in the north and another in the east. Culicoides brevitarsis is the major vector of BTV in Australia and is distributed across the entire geographic range of the virus. Here, we describe the isolation and use of DNA microsatellites and gauge their ability to determine population genetic connectivity of C. brevitarsis within Australia and with countries to the north. Eleven DNA microsatellite markers were isolated using a novel genomic enrichment method and identified as useful for genetic analyses of sampled populations in Australia, northern Papua New Guinea (PNG) and Timor-Leste. Significant (P < 0.05) population genetic subdivision was observed between all paired regions, though the highest levels of genetic sub-division involved pair-wise tests with PNG (PNG vs. Australia (FST = 0.120) and PNG vs. Timor-Leste (FST = 0.095)). Analysis of multi-locus allelic distributions using STRUCTURE identified a most probable two-cluster population model, which separated PNG specimens from a cluster containing specimens from Timor-Leste and Australia. The source of incursions of this species in Australia is more likely to be Timor-Leste than PNG. Future incursions of BTV positive C. brevitarsis into Australia may be genetically identified to their source populations using these microsatellite loci. The vector's panmictic genetic structure within Australia cannot explain the differential geographic distribution of BTV serotypes.
Collapse
Affiliation(s)
- Maria G Onyango
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia. .,School of Medicine, Deakin University, 75 Pidgons Road, Waurn Ponds, Victoria, 3216, Australia.
| | - Nigel W Beebe
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia. .,CSIRO Health & Biosecurity Ecosciences Precinct, 41, Boggo Road, Dutton Park, Queensland, 4102, Australia.
| | - David Gopurenko
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, New South Wales, 2650, Australia. .,Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Glenn Bellis
- Northern Australia Quarantine Strategy, 1 Pederson Road, Marrara, Northern Territory, 0812, Australia.
| | - Adrian Nicholas
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Moses Ogugo
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Appolinaire Djikeng
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya. .,Biosciences eastern and central Africa - ILRI Hub (BecA-ILRI Hub), ILRI, PO Box 30709, 00100, Nairobi, Kenya.
| | - Steve Kemp
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Peter J Walker
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| | - Jean-Bernard Duchemin
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| |
Collapse
|
185
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
186
|
Reyes BAS, Heldt NA, Mackie K, Van Bockstaele EJ. Ultrastructural evidence for synaptic contacts between cortical noradrenergic afferents and endocannabinoid-synthesizing post-synaptic neurons. Neuroscience 2015; 303:323-37. [PMID: 26162236 PMCID: PMC4542008 DOI: 10.1016/j.neuroscience.2015.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/12/2015] [Accepted: 07/01/2015] [Indexed: 01/31/2023]
Abstract
Endocannabinoids (eCBs) are involved in a myriad of physiological processes that are mediated through the activation of cannabinoid receptors, which are ubiquitously distributed within the nervous system. One neurochemical target at which cannabinoids interact to have global effects on behavior is brain noradrenergic circuitry. We, and others, have previously shown that CB type 1 receptors (CB1r) are positioned to pre-synaptically modulate norepinephrine (NE) release in the rat frontal cortex (FC). Diacylglycerol lipase (DGL) is a key enzyme in the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). While DGL-α is expressed in the FC in the rat brain, it is not known whether noradrenergic afferents target neurons expressing synthesizing enzymes for the endocannabinoid, 2-AG. In the present study, we employed high-resolution neuroanatomical approaches to better define cellular sites for interactions between noradrenergic afferents and FC neurons expressing DGL-α. Immunofluorescence microscopy showed close appositions between processes containing the norepinephrine transporter (NET) or dopamine-β-hydroxylase (DβH) and cortical neurons expressing DGL-α-immunoreactivity. Ultrastructural analysis using immunogold-silver labeling for DGL-α and immunoperoxidase labeling for NET or DβH confirmed that NET-labeled axon terminals were directly apposed to FC somata and dendritic processes that exhibited DGL-α-immunoreactivity. Finally, tissue sections were processed for immunohistochemical detection of DGL-α, CB1r and DβH. Triple label immunofluorescence revealed that CB1r and DβH were co-localized in common cellular profiles and these were in close association with DGL-α. Taken together, these data provide anatomical evidence for direct synaptic associations between noradrenergic afferents and cortical neurons exhibiting endocannabinoid synthesizing machinery.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, United States.
| | - N A Heldt
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, United States
| | - K Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, United States
| |
Collapse
|
187
|
Llorente-Berzal A, Terzian ALB, di Marzo V, Micale V, Viveros MP, Wotjak CT. 2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons. Psychopharmacology (Berl) 2015; 232:2811-25. [PMID: 25814137 DOI: 10.1007/s00213-015-3917-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/10/2015] [Indexed: 02/02/2023]
Abstract
RATIONALE The contribution of two major endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide (AEA), in the regulation of fear expression is still unknown. OBJECTIVES We analyzed the role of different players of the endocannabinoid system on the expression of a strong auditory-cued fear memory in male mice by pharmacological means. RESULTS The cannabinoid receptor type 1 (CB1) antagonist SR141716 (3 mg/kg) caused an increase in conditioned freezing upon repeated tone presentation on three consecutive days. The cannabinoid receptor type 2 (CB2) antagonist AM630 (3 mg/kg), in contrast, had opposite effects during the first tone presentation, with no effects of the transient receptor potential vanilloid receptor type 1 (TRPV1) antagonist SB366791 (1 and 3 mg/kg). Administration of the CB2 agonist JWH133 (3 mg/kg) failed to affect the acute freezing response, whereas the CB1 agonist CP55,940 (50 μg/kg) augmented it. The endocannabinoid uptake inhibitor AM404 (3 mg/kg), but not VDM11 (3 mg/kg), reduced the acute freezing response. Its co-administration with SR141716 or SB366791 confirmed an involvement of CB1 and TRPV1. AEA degradation inhibition by URB597 (1 mg/kg) decreased, while 2-AG degradation inhibition by JZL184 (4 and 8 mg/kg) increased freezing response. As revealed in conditional CB1-deficient mutants, CB1 on cortical glutamatergic neurons alleviates whereas CB1 on GABAergic neurons slightly enhances fear expression. Moreover, 2-AG fear-promoting effects depended on CB1 signaling in GABAergic neurons, while an involvement of glutamatergic neurons remained inconclusive due to the high freezing shown by vehicle-treated Glu-CB1-KO. CONCLUSIONS Our findings suggest that increased AEA levels mediate acute fear relief, whereas increased 2-AG levels promote the expression of conditioned fear primarily via CB1 on GABAergic neurons.
Collapse
Affiliation(s)
- Alvaro Llorente-Berzal
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, C/ Jose Antonio Novais 12, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
188
|
Guggenhuber S, Romo-Parra H, Bindila L, Leschik J, Lomazzo E, Remmers F, Zimmermann T, Lerner R, Klugmann M, Pape HC, Lutz B. Impaired 2-AG Signaling in Hippocampal Glutamatergic Neurons: Aggravation of Anxiety-Like Behavior and Unaltered Seizure Susceptibility. Int J Neuropsychopharmacol 2015; 19:pyv091. [PMID: 26232789 PMCID: PMC4772822 DOI: 10.1093/ijnp/pyv091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. METHODS Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. RESULTS Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. CONCLUSION Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal's adaptation to aversive situations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany (Dr Guggenhuber, Dr Bindila, Dr Leschik, Dr Lomazzo, Dr Remmers, Ms Zimmermann, Ms Lerner, Dr Klugmann, and Dr Lutz); Institute of Physiology I (Neurophysiology), Westfaelische Wilhelms-University, Muenster, Germany (Drs Romo-Parra and Pape); Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, UNSW Kensington Campus, Sydney, NSW, Australia (Dr Klugmann).
| |
Collapse
|
189
|
Kita Y, Yoshida K, Tokuoka SM, Hamano F, Yamazaki M, Sakimura K, Kano M, Shimizu T. Fever Is Mediated by Conversion of Endocannabinoid 2-Arachidonoylglycerol to Prostaglandin E2. PLoS One 2015. [PMID: 26196692 PMCID: PMC4511515 DOI: 10.1371/journal.pone.0133663] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fever is a common response to inflammation and infection. The mechanism involves prostaglandin E2 (PGE2)-EP3 receptor signaling in the hypothalamus, which raises the set point of hypothalamic thermostat for body temperature, but the lipid metabolic pathway for pyretic PGE2 production remains unknown. To reveal the molecular basis of fever initiation, we examined lipopolysaccharides (LPS)-induced fever model in monoacylglycerol lipase (MGL)-deficient (Mgll-/-) mice, CB1 receptor-MGL compound-deficient (Cnr1-/-Mgll-/-) mice, cytosolic phospholipase A2α (cPLA2α)-deficient (Pla2g4a-/-) mice, and diacylglycerol lipase α (DGLα)-deficient (Dagla-/-) mice. Febrile reactions were abolished in Mgll-/- and Cnr1-/-Mgll-/- mice, whereas Cnr1-/-Mgll+/+, Pla2g4a-/- and Dagla-/- mice responded normally, demonstrating that MGL is a critical enzyme for fever, which functions independently of endocannabinoid signals. Intracerebroventricular administration of PGE2 caused fever similarly in Mgll-/- and wild-type control mice, suggesting a lack of pyretic PGE2 production in Mgll-/- hypothalamus, which was confirmed by lipidomics analysis. Normal blood cytokine responses after LPS administration suggested that MGL-deficiency does not affect pyretic cytokine productions. Diurnal body temperature profiles were normal in Mgll-/- mice, demonstrating that MGL is unrelated to physiological thermoregulation. In conclusion, MGL-dependent hydrolysis of endocannabinoid 2-arachidonoylglycerol is necessary for pyretic PGE2 production in the hypothalamus.
Collapse
Affiliation(s)
- Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Kenij Yoshida
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Suzumi M. Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumie Hamano
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
190
|
Baggelaar MP, Chameau PJP, Kantae V, Hummel J, Hsu KL, Janssen F, van der Wel T, Soethoudt M, Deng H, den Dulk H, Allarà M, Florea BI, Di Marzo V, Wadman WJ, Kruse CG, Overkleeft HS, Hankemeier T, Werkman TR, Cravatt BF, van der Stelt M. Highly Selective, Reversible Inhibitor Identified by Comparative Chemoproteomics Modulates Diacylglycerol Lipase Activity in Neurons. J Am Chem Soc 2015; 137:8851-7. [PMID: 26083464 PMCID: PMC4773911 DOI: 10.1021/jacs.5b04883] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diacylglycerol lipase (DAGL)-α and -β are enzymes responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Selective and reversible inhibitors are required to study the function of DAGLs in neuronal cells in an acute and temporal fashion, but they are currently lacking. Here, we describe the identification of a highly selective DAGL inhibitor using structure-guided and a chemoproteomics strategy to characterize the selectivity of the inhibitor in complex proteomes. Key to the success of this approach is the use of comparative and competitive activity-based proteome profiling (ABPP), in which broad-spectrum and tailor-made activity-based probes are combined to report on the inhibition of a protein family in its native environment. Competitive ABPP with broad-spectrum fluorophosphonate-based probes and specific β-lactone-based probes led to the discovery of α-ketoheterocycle LEI105 as a potent, highly selective, and reversible dual DAGL-α/DAGL-β inhibitor. LEI105 did not affect other enzymes involved in endocannabinoid metabolism including abhydrolase domain-containing protein 6, abhydrolase domain-containing protein 12, monoacylglycerol lipase, and fatty acid amide hydrolase and did not display affinity for the cannabinoid CB1 receptor. Targeted lipidomics revealed that LEI105 concentration-dependently reduced 2-AG levels, but not anandamide levels, in Neuro2A cells. We show that cannabinoid CB1-receptor-mediated short-term synaptic plasticity in a mouse hippocampal slice model can be reduced by LEI105. Thus, we have developed a highly selective DAGL inhibitor and provide new pharmacological evidence to support the hypothesis that "on demand biosynthesis" of 2-AG is responsible for retrograde signaling.
Collapse
Affiliation(s)
- Marc P Baggelaar
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Pascal J P Chameau
- ‡Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1000 GG, The Netherlands
| | - Vasudev Kantae
- §Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Jessica Hummel
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Ku-Lung Hsu
- ∥Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Freek Janssen
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Tom van der Wel
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Marjolein Soethoudt
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hui Deng
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hans den Dulk
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Marco Allarà
- ⊥Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli 80078, Italy
| | - Bogdan I Florea
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Vincenzo Di Marzo
- ⊥Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli 80078, Italy
| | - Wytse J Wadman
- ‡Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1000 GG, The Netherlands
| | - Chris G Kruse
- ‡Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1000 GG, The Netherlands
| | - Herman S Overkleeft
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Thomas Hankemeier
- §Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Taco R Werkman
- ‡Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1000 GG, The Netherlands
| | - Benjamin F Cravatt
- ∥Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mario van der Stelt
- †Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| |
Collapse
|
191
|
Erdozain AM, Rubio M, Valdizan EM, Pazos A, Meana JJ, Fernández-Ruiz J, Alexander SPH, Callado LF. The endocannabinoid system is altered in the post-mortem prefrontal cortex of alcoholic subjects. Addict Biol 2015; 20:773-83. [PMID: 25041461 DOI: 10.1111/adb.12160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is strong biochemical, pharmacological and genetic evidence for the involvement of the endocannabinoid system (ECS) in alcohol dependence. However, the majority of studies have been performed in animal models. The aim of the present study was to assess the state of the CB1 receptor, the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and the extracellular signal-regulated kinase (ERK) and cyclic-AMP response element-binding protein (CREB) in the post-mortem prefrontal cortex of alcoholic subjects. Experiments were performed in samples from 44 subjects classified in four experimental groups: (1) non-suicidal alcoholic subjects (n = 11); (2) suicidal alcoholic subjects (n = 11); (3) non-alcoholic suicide victims (n = 11); and (4) control subjects (n = 11). We did not observe statistically significant differences in CB1 mRNA relative expression among the four experimental groups. Conversely, our results showed an increase in CB1 receptor protein expression in the prefrontal cortex of the suicidal alcoholic group (127.2 ± 7.3%), with no changes in functionality with regard to either G protein activation or the inhibition of adenylyl cyclase. In parallel, alcoholic subjects presented lower levels of MAGL activity, regardless of the cause of death. A significant decrease in the active form of ERK and CREB levels was also observed in both alcoholic groups. Taken together, our data are consistent with a role for the ECS in the neurobiological mechanisms underlying alcoholism. Moreover, the alterations reported here should be of great interest for the therapeutic treatment of this chronic psychiatric disease.
Collapse
Affiliation(s)
- Amaia M. Erdozain
- Department of Pharmacology; University of the Basque Country UPV/EHU; Bizkaia Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
| | - Marina Rubio
- Department of Biochemistry and Molecular Biology; Faculty of Medicine; Complutense University; Madrid Spain
| | - Elsa M. Valdizan
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
- Department of Physiology and Pharmacology; Institute of Biomedicine and Biotechnology IBBTEC (Universidad de Cantabria-CSIC-IDICAN) Santander; Cantabria Spain
| | - Angel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
- Department of Physiology and Pharmacology; Institute of Biomedicine and Biotechnology IBBTEC (Universidad de Cantabria-CSIC-IDICAN) Santander; Cantabria Spain
| | - J Javier Meana
- Department of Pharmacology; University of the Basque Country UPV/EHU; Bizkaia Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
- BioCruces Health Research Institute; Bizkaia Spain
| | - Javier Fernández-Ruiz
- Department of Biochemistry and Molecular Biology; Faculty of Medicine; Complutense University; Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS); Madrid Spain
| | | | - Luis F. Callado
- Department of Pharmacology; University of the Basque Country UPV/EHU; Bizkaia Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
- BioCruces Health Research Institute; Bizkaia Spain
| |
Collapse
|
192
|
Ikeda H, Ikegami M, Kai M, Kamei J. Cannabinoid functions in the amygdala contribute to conditioned fear memory in streptozotocin-induced diabetic mice: Interaction with glutamatergic functions. Exp Neurol 2015; 269:233-41. [DOI: 10.1016/j.expneurol.2015.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
|
193
|
Kishimoto Y, Cagniard B, Yamazaki M, Nakayama J, Sakimura K, Kirino Y, Kano M. Task-specific enhancement of hippocampus-dependent learning in mice deficient in monoacylglycerol lipase, the major hydrolyzing enzyme of the endocannabinoid 2-arachidonoylglycerol. Front Behav Neurosci 2015; 9:134. [PMID: 26082696 PMCID: PMC4451424 DOI: 10.3389/fnbeh.2015.00134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/11/2015] [Indexed: 12/03/2022] Open
Abstract
Growing evidence indicates that the endocannabinoid system is important for the acquisition and/or extinction of learning and memory. However, it is unclear which endocannabinoid(s) play(s) a crucial role in these cognitive functions, especially memory extinction. To elucidate the physiological role of 2-arachidonoylglycerol (2-AG), a major endocannabinoid, in behavioral and cognitive functions, we conducted a comprehensive behavioral test battery in knockout (KO) mice deficient in monoacylglycerol lipase (MGL), the major hydrolyzing enzyme of 2-AG. We found age-dependent increases in spontaneous physical activity (SPA) in MGL KO mice. Next, we tested the MGL KO mice using 5 hippocampus-dependent learning paradigms (i.e., Morris water maze (MWM), contextual fear conditioning, novel object recognition test, trace eyeblink conditioning, and water-finding test). In the MWM, MGL KO mice showed normal acquisition of reference memory, but exhibited significantly faster extinction of the learned behavior. Moreover, they showed faster memory acquisition on the reversal-learning task of the MWM. In contrast, in the contextual fear conditioning, MGL KO mice tended to show slower memory extinction. In the novel object recognition and water-finding tests, MGL KO mice exhibited enhanced memory acquisition. Trace eyeblink conditioning was not altered in MGL KO mice throughout the acquisition and extinction phases. These results indicate that 2-AG signaling is important for hippocampus-dependent learning and memory, but its contribution is highly task-dependent.
Collapse
Affiliation(s)
- Yasushi Kishimoto
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University Sanuki, Kagawa, Japan
| | - Barbara Cagniard
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo Bunkyo-ku, Tokyo, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Junko Nakayama
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University Sanuki, Kagawa, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Yutaka Kirino
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University Sanuki, Kagawa, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
194
|
Takatsuji H, Takahashi K, Kitagawa J. [Physiological and pharmacological actions involved in the pharyngeal and laryngeal sensation
]. Nihon Yakurigaku Zasshi 2015; 145:278-282. [PMID: 26063148 DOI: 10.1254/fpj.145.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
195
|
Miyake T, Shirakawa H, Nakagawa T, Kaneko S. Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration. Glia 2015; 63:1870-82. [PMID: 26010461 DOI: 10.1002/glia.22854] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/17/2015] [Indexed: 12/28/2022]
Abstract
Microglia, the resident immune cells in the brain, survey the environment of the healthy brain. Microglial migration is essential for many physiological and pathophysiological processes. Although microglia express some members of the transient receptor potential (TRP) channel family, there is little knowledge regarding the physiological roles of TRP channels in microglia. Here, we explored the role of TRP vanilloid 1 (TRPV1), a channel opened by capsaicin, heat, protons, and endovanilloids, in microglia. We found that application of capsaicin induced concentration-dependent migration in microglia derived from wild-type mice but not in those derived from TRPV1 knockout (TRPV1-KO) mice. Capsaicin-induced microglial migration was significantly inhibited by co-application of the TRPV1 blocker SB366791 and the Ca(2+) chelator BAPTA-AM. Using RT-PCR and immunocytochemistry, we validated that TRPV1 was expressed in microglia. Electrophysiological recording, intracellular Ca(2+) imaging, and immunocytochemistry indicated that TRPV1 was localized primarily in intracellular organelles. Treatment with capsaicin induced an increase in intramitochondrial Ca(2+) concentrations and mitochondrial depolarization. Furthermore, microglia derived from TRPV1-KO mice showed delayed Ca(2+) efflux compared with microglia derived from wild-type mice. Capsaicin-induced microglial migration was inhibited by membrane-permeable antioxidants and MAPK inhibitors, suggesting that mitochondrial TRPV1 activation induced Ca(2+) -dependent production of ROS followed by MAPK activation, which correlated with an augmented migration of microglia. Moreover, a mixture of three endovanilloids augmented microglial migration via TRPV1 activation. Together, these results indicate that mitochondrial TRPV1 plays an important role in inducing microglial migration. Activation of TRPV1 triggers an increase in intramitochondrial Ca(2+) concentration and following depolarization of mitochondria, which results in mtROS production, MAPK activation, and enhancement of chemotactic activity in microglia.
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
196
|
Cui Y, Paillé V, Xu H, Genet S, Delord B, Fino E, Berry H, Venance L. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity. J Physiol 2015; 593:2833-49. [PMID: 25873197 DOI: 10.1113/jp270324] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/10/2015] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Although learning can arise from few or even a single trial, synaptic plasticity is commonly assessed under prolonged activation. Here, we explored the existence of rapid responsiveness of synaptic plasticity at corticostriatal synapses in a major synaptic learning rule, spike-timing-dependent plasticity (STDP). We found that spike-timing-dependent depression (tLTD) progressively disappears when the number of paired stimulations (below 50 pairings) is decreased whereas spike-timing-dependent potentiation (tLTP) displays a biphasic profile: tLTP is observed for 75-100 pairings, is absent for 25-50 pairings and re-emerges for 5-10 pairings. This tLTP induced by low numbers of pairings (5-10) depends on activation of the endocannabinoid system, type-1 cannabinoid receptor and the transient receptor potential vanilloid type-1. Endocannabinoid-tLTP may represent a physiological mechanism operating during the rapid learning of new associative memories and behavioural rules characterizing the flexible behaviour of mammals or during the initial stages of habit learning. ABSTRACT Synaptic plasticity, a main substrate for learning and memory, is commonly assessed with prolonged stimulations. Since learning can arise from few or even a single trial, synaptic strength is expected to adapt rapidly. However, whether synaptic plasticity occurs in response to limited event occurrences remains elusive. To answer this question, we investigated whether a low number of paired stimulations can induce plasticity in a major synaptic learning rule, spike-timing-dependent plasticity (STDP). It is known that 100 pairings induce bidirectional STDP, i.e. spike-timing-dependent potentiation (tLTP) and depression (tLTD) at most central synapses. In rodent striatum, we found that tLTD progressively disappears when the number of paired stimulations is decreased (below 50 pairings) whereas tLTP displays a biphasic profile: tLTP is observed for 75-100 pairings, absent for 25-50 pairings and re-emerges for 5-10 pairings. This tLTP, induced by very few pairings (∼5-10) depends on the endocannabinoid (eCB) system. This eCB-dependent tLTP (eCB-tLTP) involves postsynaptic endocannabinoid synthesis, requires paired activity (post- and presynaptic) and the activation of type-1 cannabinoid receptor (CB1R) and transient receptor potential vanilloid type-1 (TRPV1). eCB-tLTP occurs in both striatopallidal and striatonigral medium-sized spiny neurons (MSNs) and is dopamine dependent. Lastly, we show that eCB-LTP and eCB-LTD can be induced sequentially in the same neuron, depending on the cellular conditioning protocol. Thus, while endocannabinoids are usually thought simply to depress synaptic function, they also constitute a versatile system underlying bidirectional plasticity. Our results reveal a novel form of synaptic plasticity, eCB-tLTP, which may underlie rapid learning capabilities characterizing behavioural flexibility.
Collapse
Affiliation(s)
- Yihui Cui
- Centre for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France.,University Pierre et Marie Curie, ED 158, Paris, France
| | - Vincent Paillé
- Centre for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France.,University Pierre et Marie Curie, ED 158, Paris, France
| | - Hao Xu
- Centre for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France.,University Pierre et Marie Curie, ED 158, Paris, France
| | - Stéphane Genet
- University Pierre et Marie Curie, ED 158, Paris, France.,Institute of Intelligent Systems and Robotics (ISIR), Paris, France
| | - Bruno Delord
- University Pierre et Marie Curie, ED 158, Paris, France.,Institute of Intelligent Systems and Robotics (ISIR), Paris, France
| | - Elodie Fino
- Centre for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France.,University Pierre et Marie Curie, ED 158, Paris, France
| | - Hugues Berry
- INRIA, Villeurbanne, France.,University of Lyon, LIRIS UMR5205, Villeurbanne, France
| | - Laurent Venance
- Centre for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France.,University Pierre et Marie Curie, ED 158, Paris, France
| |
Collapse
|
197
|
BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons. J Neurosci 2015; 35:4469-81. [PMID: 25762688 DOI: 10.1523/jneurosci.2924-14.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB₁ receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning.
Collapse
|
198
|
VGluT3-expressing CCK-positive basket cells construct invaginating synapses enriched with endocannabinoid signaling proteins in particular cortical and cortex-like amygdaloid regions of mouse brains. J Neurosci 2015; 35:4215-28. [PMID: 25762668 DOI: 10.1523/jneurosci.4681-14.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Invaginating synapses in the basal amygdala are a unique type of GABAergic synapses equipped with molecular-anatomical organization specialized for 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling. Cholecystokinin (CCK)-positive basket cell terminals protrude into pyramidal cell somata and form invaginating synapses, where apposing presynaptic and postsynaptic elements are highly loaded with cannabinoid receptor CB₁ or 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα), respectively. The present study scrutinized their neurochemical and neuroanatomical phenotypes in adult mouse telencephalon. In the basal amygdala, vesicular glutamate transporter-3 (VGluT3) was transcribed in one-fourth of CB₁-expressing GABAergic interneurons. The majority of VGluT3-positive CB₁-expressing basket cell terminals apposed DGLα clusters, whereas the majority of VGluT3-negative ones did not. Importantly, VGluT3-positive basket cell terminals selectively constructed invaginating synapses. GABAA receptors accumulated on the postsynaptic membrane of invaginating synapses, whereas metabotropic glutamate receptor-5 (mGluR₅) was widely distributed on the somatodendritic surface of pyramidal cells. Moreover, CCK₂ receptor (CCK₂R) was highly transcribed in pyramidal cells. In cortical regions, pyramidal cells equipped with such VGluT3/CB₁/DGLα-accumulated invaginating synapses were found at variable frequencies depending on the subregions. Therefore, in addition to extreme proximity of CB₁- and DGLα-loaded presynaptic and postsynaptic elements, tripartite transmitter phenotype of GABA/glutamate/CCK is the common neurochemical feature of invaginating synapses, suggesting that glutamate, CCK, or both can promote 2-AG synthesis through activating Gαq/₁₁ protein-coupled mGluR₅ and CCK₂R. These molecular configurations led us to hypothesize that invaginating synapses might be evolved to provide some specific mechanisms of induction, regulation, and cooperativity for 2-AG-mediated retrograde signaling in particular cortical and cortex-like amygdaloid regions.
Collapse
|
199
|
Soltesz I, Alger BE, Kano M, Lee SH, Lovinger DM, Ohno-Shosaku T, Watanabe M. Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 2015; 16:264-77. [PMID: 25891509 PMCID: PMC10631555 DOI: 10.1038/nrn3937] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocannabinoids are lipid-derived messengers, and both their synthesis and breakdown are under tight spatiotemporal regulation. As retrograde signalling molecules, endocannabinoids are synthesized postsynaptically but activate presynaptic cannabinoid receptor 1 (CB1) receptors to inhibit neurotransmitter release. In turn, CB1-expressing inhibitory and excitatory synapses act as strategically placed control points for activity-dependent regulation of dynamically changing normal and pathological oscillatory network activity. Here, we highlight emerging principles of cannabinoid circuit control and plasticity, and discuss their relevance for epilepsy and related comorbidities. New insights into cannabinoid signalling may facilitate the translation of the recent interest in cannabis-related substances as antiseizure medications to evidence-based treatment strategies.
Collapse
Affiliation(s)
- Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - Bradley E Alger
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sang-Hun Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Takako Ohno-Shosaku
- Department of Impairment Study, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0942, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
200
|
Niki M, Jyotaki M, Yoshida R, Yasumatsu K, Shigemura N, DiPatrizio NV, Piomelli D, Ninomiya Y. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice. J Physiol 2015; 593:2527-45. [PMID: 25728242 DOI: 10.1113/jp270295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. ABSTRACT Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1 : AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue.
Collapse
Affiliation(s)
- Mayu Niki
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masafumi Jyotaki
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiko Yasumatsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan.,Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Nicholas V DiPatrizio
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, School of Medicine, Riverside, CA, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pharmacology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Biological Chemistry, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Unit of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan.,Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| |
Collapse
|