151
|
Shichita T, Sakaguchi R, Suzuki M, Yoshimura A. Post-ischemic inflammation in the brain. Front Immunol 2012; 3:132. [PMID: 22833743 PMCID: PMC3400935 DOI: 10.3389/fimmu.2012.00132] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 05/08/2012] [Indexed: 12/25/2022] Open
Abstract
Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. In this review, we focus on the post-ischemic inflammation triggered by infiltrating immune cells, macrophages, and T lymphocytes. Brain ischemia is a sterile organ, but injury-induced inflammation is mostly dependent on Toll-like receptor (TLR) 2 and TLR4. Some endogenous TLR ligands, high mobility group box 1 (HMGB1) and peroxiredoxin family proteins, in particular, are implicated in the activation and inflammatory cytokine expression in infiltrating macrophages. Following macrophage activation, T lymphocytes infiltrate the ischemic brain and regulate the delayed phase inflammation. IL-17-producing γδT lymphocytes induced by IL-23 from macrophages promote ischemic brain injury, whereas regulatory T lymphocytes suppress the function of inflammatory mediators. A deeper understanding of the inflammatory mechanisms of infiltrating immune cells may lead to the development of novel neuroprotective therapies.
Collapse
Affiliation(s)
- Takashi Shichita
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
| | | | | | | |
Collapse
|
152
|
Activation of innate immune responses in the central nervous system during reovirus myelitis. J Virol 2012; 86:8107-18. [PMID: 22623770 DOI: 10.1128/jvi.00171-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reovirus infection of the murine spinal cord (SC) was used as a model system to investigate innate immune responses during viral myelitis, including the activation of glia (microglia and astrocytes) and interferon (IFN) signaling and increased expression of inflammatory mediators. Reovirus myelitis was associated with the pronounced activation of SC glia, as evidenced by characteristic changes in cellular morphology and increased expression of astrocyte and microglia-specific proteins. Expression of inflammatory mediators known to be released by activated glia, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), chemokine (C-C motif) ligand 5 (CCL 5), chemokine (C-X-C motif) ligand 10 (CXCL10), and gamma interferon (IFN-γ), was also significantly upregulated in the SC of reovirus-infected animals compared to mock-infected controls. Reovirus infection of the mouse SC was also associated with increased expression of genes involved in IFN signaling, including IFN-stimulated genes (ISG). Further, reovirus infection of mice deficient in the expression of the IFN-α/β receptor (IFNAR(-/-)) resulted in accelerated mortality, demonstrating that IFN signaling is protective during reovirus myelitis. Experiments performed in ex vivo SC slice cultures (SCSC) confirmed that resident SC cells contribute to the production of at least some of these inflammatory mediators and ISG during reovirus infection. Microglia, but not astrocytes, were still activated, and glia-associated inflammatory mediators were still produced in reovirus-infected INFAR(-/-) mice, demonstrating that IFN signaling is not absolutely required for these neuroinflammatory responses. Our results suggest that activated glia and inflammatory mediators contribute to a local microenvironment that is deleterious to neuronal survival.
Collapse
|
153
|
Yi H, Patel AK, Sodhi CP, Hackam DJ, Hackam AS. Novel role for the innate immune receptor Toll-like receptor 4 (TLR4) in the regulation of the Wnt signaling pathway and photoreceptor apoptosis. PLoS One 2012; 7:e36560. [PMID: 22615780 PMCID: PMC3355158 DOI: 10.1371/journal.pone.0036560] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/07/2012] [Indexed: 01/01/2023] Open
Abstract
Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways.
Collapse
Affiliation(s)
- Hyun Yi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Amit K. Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Chhinder P. Sodhi
- Department of Surgery (Pediatric), University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David J. Hackam
- Department of Surgery (Pediatric), University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Abigail S. Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
154
|
Zhang L, Zhang ZG, Chopp M. The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 2012; 33:415-22. [PMID: 22595494 DOI: 10.1016/j.tips.2012.04.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/06/2012] [Accepted: 04/18/2012] [Indexed: 01/01/2023]
Abstract
Tissue plasminogen activator (tPA) administered within 4.5h of symptom onset restores cerebral blood flow (CBF) and promotes neurological recovery of stroke patients. However, the narrow therapeutic time window and the risk of intracerebral hemorrhage after tPA treatment pose major hurdles to its clinical usage. In light of the failures of neuroprotective therapies in clinical trials, emerging concepts suggest that neuroprotection alone without restoration of tissue perfusion and vascular integrity may not be adequate for treatment of acute stroke. Here we review evidence of the use of adjuvant pharmacological agents to extend the therapeutic window for tPA via targeting the neurovascular unit and the underlying mechanisms of the combination therapy in experimental stroke.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
155
|
Offner H, Hurn PD. A novel hypothesis: regulatory B lymphocytes shape outcome from experimental stroke. Transl Stroke Res 2012; 3:324-30. [PMID: 23175646 DOI: 10.1007/s12975-012-0187-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although inflammatory immune cells clearly contribute to the development of middle cerebral artery occlusion (MCAO) in mice, the failure to block neutrophil-associated injury in clinical stroke trials has discouraged further development of immunotherapeutic approaches. However, there is renewed interest in a possible protective role for regulatory T- and B-cells that can suppress inflammation and limit central nervous system damage induced by infiltrating pro-inflammatory cells. Our failure to implicate CD4(+)FoxP3(+) T-cells in limiting brain lesion volume after MCAO turned our focus towards regulatory B-cells known to mediate protection against other inflammatory CNS conditions. Our results clearly demonstrated that B-cell deficient mice developed larger infarct volumes, higher mortality and more severe functional deficits compared to wild-type mice, and had increased numbers of activated T-cells, macrophages, microglial cells, and neutrophils in the affected brain hemisphere. These MCAO-induced changes were completely prevented in B-cell-restored mice after transfer of highly purified WT B-cells but not IL-10-deficient B-cells. Our novel observations are the first to implicate IL-10-secreting B-cells as a major regulatory cell type in stroke and suggest that enhancement of regulatory B-cells might have application as a novel therapy for this devastating neurologic condition.
Collapse
Affiliation(s)
- Halina Offner
- Neuroimmunology Research, Portland VA Medical Center, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR 97239 ; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201 ; Department of Anesthesiology and Peri-Operative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239
| | | |
Collapse
|
156
|
Wu D, Sheu JS, Liu HC, Yuan RY, Yu JM, Sheu JJ, Hung CH, Hu CJ. Increase of toll-like receptor 4 but decrease of interleukin-8 mRNA expression among ischemic stroke patients under aspirin treatment. Clin Biochem 2012; 45:1316-9. [PMID: 22580394 DOI: 10.1016/j.clinbiochem.2012.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Toll-like receptors (TLRs) are molecules conserved in evolution for detecting pathogen invasions and tissue damage and are involved in atherogenesis. This study explores the mRNA expression of TLRs and their probable role in further disease occurrence among ischemic stroke patients. DESIGN AND METHODS A total of 89 ischemic stroke patients and 166 controls were recruited for this study. Total RNA was extracted and mRNA was reverse-transcribed to cDNA and was analyzed for TLRs and interleukin 8 (IL8). RESULTS The TLR4 mRNA expression level is significantly higher in the stroke group. Conversely, IL-8 mRNA levels decreased significantly in the patient group. CONCLUSION Our results suggest that TLR4 overexpression in mRNA levels is observed in stroke patients, which might account for the probable inflammatory injury before or after stroke. A reduction of IL-8 expression could result from the downregulatory effects of aspirin.
Collapse
Affiliation(s)
- Dean Wu
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Hanamsagar R, Hanke ML, Kielian T. Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends Immunol 2012; 33:333-42. [PMID: 22521509 DOI: 10.1016/j.it.2012.03.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 12/18/2022]
Abstract
During the past 10 years, much attention has been focused towards elucidating the impact of Toll-like receptors (TLRs) in central nervous system (CNS) innate immunity. TLR signaling triggers the transcriptional activation of pro-interleukin-1β (pro-IL-1β) and pro-IL-18 that are processed into their active forms by the inflammasome. Recent studies have demonstrated inflammasome involvement during CNS infection, autoimmune disease, and injury. This review will address inflammasome actions within the CNS and how cooperation between TLR and inflammasome signaling may influence disease outcome. In addition, the concept of alternative inflammasome functions independent of IL-1 and IL-18 processing are considered in the context of CNS disease.
Collapse
Affiliation(s)
- Richa Hanamsagar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
158
|
Abstract
Prolonged seizures (status epilepticus) produce pathophysiological changes in the hippocampus that are associated with large-scale, wide-ranging changes in gene expression. Epileptic tolerance is an endogenous program of cell protection that can be activated in the brain by previous exposure to a non-harmful seizure episode before status epilepticus. A major transcriptional feature of tolerance is gene downregulation. Here, through methylation analysis of 34,143 discrete loci representing all annotated CpG islands and promoter regions in the mouse genome, we report the genome-wide DNA methylation changes in the hippocampus after status epilepticus and epileptic tolerance in adult mice. A total of 321 genes showed altered DNA methylation after status epilepticus alone or status epilepticus that followed seizure preconditioning, with >90% of the promoters of these genes undergoing hypomethylation. These profiles included genes not previously associated with epilepsy, such as the polycomb gene Phc2. Differential methylation events generally occurred throughout the genome without bias for a particular chromosomal region, with the exception of a small region of chromosome 4, which was significantly overrepresented with genes hypomethylated after status epilepticus. Surprisingly, only few genes displayed differential hypermethylation in epileptic tolerance. Nevertheless, gene ontology analysis emphasized the majority of differential methylation events between the groups occurred in genes associated with nuclear functions, such as DNA binding and transcriptional regulation. The present study reports select, genome-wide DNA methylation changes after status epilepticus and in epileptic tolerance, which may contribute to regulating the gene expression environment of the seizure-damaged hippocampus.
Collapse
|
159
|
Comparative study of the effect of baicalin and its natural analogs on neurons with oxygen and glucose deprivation involving innate immune reaction of TLR2/TNFα. J Biomed Biotechnol 2012; 2012:267890. [PMID: 22536016 PMCID: PMC3321472 DOI: 10.1155/2012/267890] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/31/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022] Open
Abstract
This work is to study the baicalin and its three analogs, baicalin, wogonoside, and wogonin, on the protective effect of neuron from oxygen-glucose deprivation (OGD) and toll-like receptor 2 (TLR2) expression in OGD damage. The results showed that baicalin and its three analogs did protect neurons from OGD damage and downregulated protein level of TLR2. D-Glucopyranosiduronic acid on site 7 in the structure played a core of cytotoxicity of these flavonoid analogs. The methoxyl group on carbon 8 of the structure had the relation with TLR2 protein expression, as well as the anti-inflammation. In addition, we detected caspase3 and antioxidation capability, to investigate the effect of four analogs on cell apoptosis and total antioxidation competence in OGD model.
Collapse
|
160
|
The Splenic Response to Ischemic Stroke: Neuroinflammation, Immune Cell Migration, and Experimental Approaches to Defining Cellular Mechanisms. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
161
|
Zhang Z, Zhang ZY, Wu Y, Schluesener HJ. Immunolocalization of Toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation 2012; 19:10-9. [PMID: 22067617 DOI: 10.1159/000326771] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/23/2011] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Toll-like receptors (TLRs) are essential to the innate immune system for recognizing not only microbial pathogens but also endogenous ligands from injured cells, suggesting that TLRs are a sensitive detection system to tissue injury and play roles in initiating tissue degeneration/regeneration. In this study, the effects of traumatic brain injury (TBI) on lesional expression of TLR2, TLR4, their most common adaptor molecule myeloid differentiation factor 88 (MyD88) and their endogenous ligand, heat shock protein 70 (HSP70), were investigated. METHODS Rat TBI was induced using an open-skull weight-drop model. TLR2, TLR4, MyD88 and HSP70 expression was studied by immunohistochemistry. RESULTS TLR2, TLR4, HSP70 and MyD88 were mainly found in lesioned regions and subcortical white matter. While infiltration of TLR2+ cells became significant on day 2, significant accumulation of TLR4+, MyD88+ and HSP70+ cells was already seen on day 1, and the numbers of immunopositive cells increased continuously until day 4. Furthermore, double staining together with morphological classification showed that major cellular sources for TLR2, TLR4 and MyD88 were macrophages/microglia in lesioned areas and astrocytes in subcortical white matter. But for HSP70, the major cellular sources were neurons in perilesion and macrophages/microglia in lesion areas and astrocytes in subcortical white matter. DISCUSSION In summary, our data reveal distinct patterns of localization of TLR+ resident and infiltrating cells in TBI rat brain. Infiltrating activated monocytic cells are the major source of TLR+ cells. These findings warrant further investigation of the roles of TLRs in controlling immune and degenerative/regenerative processes after TBI.
Collapse
Affiliation(s)
- Zhiren Zhang
- Institute of Immunology, Third Military University of PLA, Chongqing, PR China.
| | | | | | | |
Collapse
|
162
|
Sarwal A, Hussain MS, Shuaib A. Neuroprotection in Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
163
|
Wang YC, Lin S, Yang QW. Toll-like receptors in cerebral ischemic inflammatory injury. J Neuroinflammation 2011; 8:134. [PMID: 21982558 PMCID: PMC3198933 DOI: 10.1186/1742-2094-8-134] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/08/2011] [Indexed: 02/06/2023] Open
Abstract
Cerebral ischemia triggers acute inflammation, which has been associated with an increase in brain damage. The mechanisms that regulate the inflammatory response after cerebral ischemia are multifaceted. An important component of this response is the activation of the innate immune system. However, details of the role of the innate immune system within the complex array of mechanisms in cerebral ischemia remain unclear. There have been recent great strides in our understanding of the innate immune system, particularly in regard to the signaling mechanisms of Toll-like receptors (TLRs), whose primary role is the initial activation of immune cell responses. So far, few studies have examined the role of TLRs in cerebral ischemia. However, work with experimental models of ischemia suggests that TLRs are involved in the enhancement of cell damage following ischemia, and their absence is associated with lower infarct volumes. It may be possible that therapeutic targets could be designed to modulate activities of the innate immune system that would attenuate cerebral brain damage. Ischemic tolerance is a protective mechanism induced by a variety of preconditioning stimuli. Interpreting the molecular mechanism of ischemic tolerance will open investigative avenues into the treatment of cerebral ischemia. In this review, we discuss the critical role of TLRs in mediating cerebral ischemic injury. We also summarize evidence demonstrating that cerebral preconditioning downregulates pro-inflammatory TLR signaling, thus reducing the inflammation that exacerbates ischemic brain injury.
Collapse
Affiliation(s)
- Yan-Chun Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | | | | |
Collapse
|
164
|
Combination treatment with low-dose Niaspan and tissue plasminogen activator provides neuroprotection after embolic stroke in rats. J Neurol Sci 2011; 309:96-101. [PMID: 21802695 DOI: 10.1016/j.jns.2011.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Niaspan, an extended-release formulation of niacin (vitamin B3), has been widely used to increase high density lipoprotein (HDL) cholesterol and to prevent cardiovascular diseases and stroke. We have previously demonstrated that Niaspan (40 mg/kg) administered at 2h after stroke induces neuroprotection, while low dose Niaspan (20mg/kg) does not reduce infarct volume. Tissue plasminogen activator (tPA) is an effective therapy for acute stroke, but its use remains limited by a narrow therapeutic window. We have previously demonstrated that intravenous administration of tPA 4h after stroke in rats does not reduce infarct volume. In this study, we tested whether combination treatment with low-dose Niaspan (20mg/kg) and tPA administered 4h after embolic stroke in a rat model reduces infarct volume and provides neuroprotection. METHODS Adult male Wistar rats were subjected to embolic middle cerebral artery occlusion (MCAo) and treated with low-dose Niaspan (20mg/kg) alone (n = 7), tPA (10mg/kg) alone (n = 7), combination of low-dose Niaspan and tPA (n = 7), or saline control (n = 9), 4h after stroke. A battery of functional outcome tests was performed. Rats were sacrificed at 7 days after MCAo and lesion volumes were measured. To investigate the underlying mechanism of combination treatment neuroprotective effect, deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), cleaved caspase-3, tumor necrosis factor alpha (TNF-alpha), and toll-like receptor 4 (TLR-4) immunostaining were performed. RESULTS Combination treatment with low-dose Niaspan and tPA significantly improved functional outcome compared to the saline control group (p<0.05), while treatment with Niaspan or tPA alone did not significantly improve functional outcome compared to saline control group. Additionally, combination treatment significantly reduced infarct volume compared to saline control group (p = 0.006) and infarct volume was significantly correlated with functional outcome (p = 0.0008; r = 0.63). Monotherapy with Niaspan or tPA did not significantly decrease infarct volume compared to saline control group. Combination treatment reduced apoptosis as measured by significant reduction in the number of TUNEL-positive cells and cleaved caspase-3 expression in the ischemic brain compared to saline control group (p<0.05). Combination treatment also significantly reduced the expression of TNF-alpha and TLR-4 in the ischemic brain compared to Niaspan, tPA and saline treatment groups (p<0.05). A significant interaction between Niaspan and tPA on the TNF-alpha expression was detected (p<0.05), indicating a synergy effect in the combination treatment group. CONCLUSION Treatment of stroke with combination of low-dose Niaspan and tPA at 4h after embolic stroke reduces infarct volume, improves neurological outcome and provides neuroprotection. The neuroprotective effects of combination treatment were associated with reduction of apoptosis and attenuation of TNF-alpha and TLR-4 expression.
Collapse
|
165
|
Feng R, Li S, Li F. Toll-like receptor 4 is involved in ischemic tolerance of postconditioning in hippocampus of tree shrews to thrombotic cerebral ischemia. Brain Res 2011; 1384:118-27. [PMID: 21315690 DOI: 10.1016/j.brainres.2011.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 01/19/2023]
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) is an important mediator of the innate immune response. It significantly contributes to neuroinflammation and may be involved in ischemic tolerance. It is unknown how cerebral ischemia in the cortex and postconditioning might affect inflammatory reactions in the hippocampus or whether TLR4 expression plays a role. OBJECTIVE This study explored the mechanistic hypothesis that postconditioning modulates TLR4 expression and thus improves inflammatory reactions in the hippocampus. METHODS Thrombotic focal cerebral ischemia was induced by a photochemical reaction in tree shrews. Four hours after the photochemical reaction onset, ischemic postconditioning was established with three repeated five minute cycles of temporary right carotid artery clipping and a five minute reperfusion. Histological changes were assessed over 72h in hippocampal morphology (hematoxylin-and-eosin), myeloperoxidase (MPO) expression (immunohistochemistry), TLR4 expression (Western blot analysis and immunohistochemistry), and TLR4 mRNA expression (semiquantitative RT-PCR). RESULTS We found extensive neuronal degeneration in the hippocampus that peaked at 24h after cerebral ischemia. This was significantly attenuated after postconditioning. Cerebral ischemia caused a predominant increase in TLR4 protein expression from 4 to 24h (P<0.05). In contrast, postconditioning caused a decrease in TLR4 protein expression from 4 to 24h (P<0.05), which increased at 72h (P<0.05). Hippocampal TLR4 mRNA levels showed the same trends as those observed in protein expression. CONCLUSION These findings indicated that TLR4 signaling and innate immunity may be involved in the protective mechanisms of postconditioning and ischemic tolerance.
Collapse
Affiliation(s)
- Rui Feng
- Department of Rheumatology and Immunology, The first Affiliated Hospital of Kunming Medical University, Kunming 650031, PR China
| | | | | |
Collapse
|
166
|
Abstract
Immunity and inflammation are key elements of the pathobiology of stroke, a devastating illness second only to cardiac ischemia as a cause of death worldwide. While the immune system participates in the brain damage produced by ischemia, the damaged brain, in turn, exerts a powerful immunosuppressive effect that promotes fatal intercurrent infections and threatens the survival of stroke patients. Inflammatory signaling is instrumental in all stages of the ischemic cascade, from the early damaging events triggered by arterial occlusion, to the late regenerative processes underlying post-ischemic tissue repair. Recent developments have revealed that stroke, like multiple sclerosis, engages both innate and adaptive immunity. But, unlike multiple sclerosis, adaptive immunity triggered by newly exposed brain antigens does not have an impact on the acute phase of the damage. Nevertheless, modulation of adaptive immunity exerts a remarkable protective effect on the ischemic brain and offers the prospect of new stroke therapies. However, immunomodulation is not devoid of deleterious side effects, and gaining a better understanding of the reciprocal interaction between the immune system and the ischemic brain is essential to harness the full therapeutic potential of the immunology of stroke.
Collapse
|
167
|
Yan Y, Sun HH, Mackinnon SE, Johnson PJ. Evaluation of peripheral nerve regeneration via in vivo serial transcutaneous imaging using transgenic Thy1-YFP mice. Exp Neurol 2011; 232:7-14. [PMID: 21763310 DOI: 10.1016/j.expneurol.2011.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/23/2011] [Accepted: 06/23/2011] [Indexed: 12/28/2022]
Abstract
This study uses the saphenous nerve crush model in Thy1-YFP mice and serial transcutaneous imaging to evaluate the rate of nerve regeneration under various FK-506 (tacrolimus) dosing regimens and in the presence of transgenic overexpression of glial cell line-derived neurotrophic factor (GDNF). Thy1-YFP transgenic mice received saphenous nerve crush and were monitored for axonal regeneration via transcutaneous imaging for 7 days. Group A received no FK-506. Groups B and C received FK-506 at 2 or 0.5 mg/kg/day, starting three days before injury (preload). Groups D and E received FK-506 at 2 or 0.5 mg/kg/day, starting on the day of injury. Group F consisted of double transgenic mice with central overexpression of GDNF by CNS astrocytes (GFAP-GDNF/Thy1-YFP). Length and rate of axonal regeneration were measured and calculated over time. Regardless of concentration, FK-506 preload (Groups B and C) improved length and rate of axonal outgrowth compared with controls (Group A) and no preload (Groups D and E). Surprisingly, central overexpression of GDNF (GFAP-GDNF) delayed and stunted axonal outgrowth. Saphenous nerve crush in Thy1-YFP mice represents a viable model for timely evaluation of therapeutic strategies affecting the rate of nerve regeneration. FK-506 administered three days prior to injury accelerates axonal regeneration beyond injury conditioned regeneration alone and may serve as a reliable positive control for the model. GDNF overexpression in the CNS impedes early axonal outgrowth.
Collapse
Affiliation(s)
- Ying Yan
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
168
|
Hickey E, Shi H, Van Arsdell G, Askalan R. Lipopolysaccharide-induced preconditioning against ischemic injury is associated with changes in toll-like receptor 4 expression in the rat developing brain. Pediatr Res 2011; 70:10-4. [PMID: 21659958 DOI: 10.1203/pdr.0b013e31821d02aa] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lipopolysaccharide (LPS) preconditioning reduces ischemic injury in adult brain by activating Toll-like receptor 4 (TLR-4). We sought to investigate the effect of brain maturity on the efficacy of LPS preconditioning against hypoxic-ischemic (HI) injury in the developing rat brain. Rat pups at the specified age were randomly assigned to LPS-treated (0.1 mg/kg) or saline-treated groups. HI injury was induced 48 h later by occluding the right common carotid artery followed by transient hypoxia. Brains were removed 1 wk after HI injury, and infarct volumes were compared between the two groups. TLR-4 expression was also compared among different ages. We found that LPS treated P7, P9, and P14 rat pups had significantly smaller infarct volume compared with saline-treated pups (p = 0.006, 0.03, and 0.01, respectively). This significant reduction in infarct volume was not observed in P3 and P5 rats. TLR-4 expression was significantly higher in older rats compared with P3 and P5 rats (p < 0.01). These findings indicate that LPS-induced preconditioning is a robust neuroprotective phenomenon in the ischemic developing brain that is age dependent. Pattern of TLR-4 expression is also affected by brain maturity and likely to be responsible for differences in the efficacy of LPS preconditioning.
Collapse
Affiliation(s)
- Edward Hickey
- Department of Surgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
169
|
Abstract
Recent studies suggest that the heart possesses an innate immune system that is intended to delimit tissue injury, as well as orchestrate homoeostatic responses, within the heart. The extant literature suggests that this intrinsic stress response system is mediated, at least in part, by a family of pattern recognition receptors, most notably the Toll-like receptors. Although the innate immune system provides a short-term adaptive response to tissue injury, the beneficial effects of this phylogenetically ancient system may be lost if innate immune signaling becomes sustained and/or excessive; in which case, the salutary effects of activation of these pathways are contravened by the known deleterious effects of inflammatory signaling. Herein, the biology of innate immune signaling in the heart is reviewed, as well as the literature suggesting that the innate immune system is involved in the pathogenesis of atherosclerosis, acute coronary syndromes, stroke, viral myocarditis, sepsis, ischemia/reperfusion injury, and heart failure. The review concludes by discussing new therapies that are being developed to modulate the innate immune system.
Collapse
Affiliation(s)
- Douglas L Mann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
170
|
Mergenthaler P, Dirnagl U. Protective conditioning of the brain: expressway or roadblock? J Physiol 2011; 589:4147-55. [PMID: 21708907 DOI: 10.1113/jphysiol.2011.209718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The brain responds to noxious stimulation with protective signalling. Over the last decades, a number of experimental strategies have been established to study endogenous brain protection. Pre-, per-, post- and remote 'conditioning' are now widely used to unravel the underlying mechanisms of endogenous neuroprotection. Some of these strategies are currently being tested in clinical trials to protect the human brain against anticipated damage or to boost protective responses during or after injury. Here we summarize the principles of 'conditioning' research and current efforts to translate this knowledge into effective treatment of patients. Conditioning to induce protected brain states provides an experimental window into endogenous brain protection and can lead to the discovery of drugs mimicking the effects of conditioning. Mechanisms of endogenous brain tolerance can be activated through a wide variety of stimuli that signal 'danger' to the brain. These danger signals lead to the induction of regulator and effector mechanisms, which suppress death and induce survival pathways, decrease metabolism, as well as increase substrate delivery. We conclude that preclinical research on endogenous brain protection has greatly benefited from conditioning strategies, but that clinical applications are challenging, and that we should not prematurely rush into ill-designed and underpowered clinical trials.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (CSB), Department of Neurology and Experimental Neurology, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | |
Collapse
|
171
|
Lu C, Liu L, Chen Y, Ha T, Kelley J, Schweitzer J, Kalbfleisch JH, Kao RL, Williams DL, Li C. TLR2 ligand induces protection against cerebral ischemia/reperfusion injury via activation of phosphoinositide 3-kinase/Akt signaling. THE JOURNAL OF IMMUNOLOGY 2011; 187:1458-66. [PMID: 21709150 DOI: 10.4049/jimmunol.1003428] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study examined the effect of TLR2 activation by its specific ligand, Pam3CSK4, on cerebral ischemia/reperfusion (I/R) injury. Mice (n = 8/group) were treated with Pam3CSK4 1 h before cerebral ischemia (60 min), followed by reperfusion (24 h). Pam3CSK4 was also given to the mice (n = 8) 30 min after ischemia. Infarct size was determined by triphenyltetrazolium chloride staining. The morphology of neurons in brain sections was examined by Nissl staining. Pam3CSK4 administration significantly reduced infarct size by 55.9% (p < 0.01) compared with untreated I/R mice. Therapeutic treatment with Pam3CSK4 also significantly reduced infarct size by 55.8%. Morphologic examination showed that there was less neuronal damage in the hippocampus of Pam3CSK4-treated mice compared with untreated cerebral I/R mice. Pam3CSK4 treatment increased the levels of Hsp27, Hsp70, and Bcl2, and decreased Bax levels and NF-κB-binding activity in the brain tissues. Administration of Pam3CSK4 significantly increased the levels of phospho-Akt/Akt and phospho-GSK-3β/GSK-3β compared with untreated I/R mice. More significantly, either TLR2 deficiency or PI3K inhibition with LY29004 abolished the protection by Pam3CSK4. These data demonstrate that activation of TLR2 by its ligand prevents focal cerebral ischemic damage through a TLR2/PI3K/Akt-dependent mechanism. Of greater significance, these data indicate that therapy with a TLR2-specific agonist during cerebral ischemia is effective in reducing injury.
Collapse
Affiliation(s)
- Chen Lu
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 2011; 10:471-80. [PMID: 21511199 DOI: 10.1016/s1474-4422(11)70066-7] [Citation(s) in RCA: 399] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stroke is the second most common cause of death worldwide and a major cause of acquired disability in adults. Despite tremendous progress in understanding the pathophysiology of stroke, translation of this knowledge into effective therapies has largely failed, with the exception of thrombolysis, which only benefits a small proportion of patients. Systemic and local immune responses have important roles in causing stroke and are implicated in the primary and secondary progression of ischaemic lesions, as well as in repair, recovery, and overall outcome after a stroke. However, potential therapeutic targets in the immune system and inflammatory responses have not been well characterised. Development of novel and effective therapeutic strategies for stroke will require further investigation of these pathways in terms of their temporal profile (before, during, and after stroke) and risk-to-benefit therapeutic ratio of modulating them.
Collapse
Affiliation(s)
- Richard Macrez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, UMR CNRS 6232 Ci-NAPs, Cyceron, Université de Caen Basse-Normandie, Caen, France
| | | | | | | | | | | | | |
Collapse
|
173
|
Pascual M, Baliño P, Alfonso-Loeches S, Aragón CMG, Guerri C. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 2011; 25 Suppl 1:S80-91. [PMID: 21352907 DOI: 10.1016/j.bbi.2011.02.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions.
Collapse
Affiliation(s)
- María Pascual
- Department of Cell Pathology, Príncipe Felipe Research Center, Avda. Autopista del Saler 16, 46012 Valencia, Spain
| | | | | | | | | |
Collapse
|
174
|
Zhou L, Li J, Wang X, Ye L, Hou W, Ho J, Li H, Ho W. IL-29/IL-28A suppress HSV-1 infection of human NT2-N neurons. J Neurovirol 2011; 17:212-9. [PMID: 21499846 PMCID: PMC4444784 DOI: 10.1007/s13365-011-0031-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/08/2011] [Accepted: 03/14/2011] [Indexed: 12/22/2022]
Abstract
The newly identified cytokines, IL-28/IL-29 (also termed type III IFNs), are able to inhibit a number of viruses. Here, we examined the antiviral effects of IL-29/IL-28A against herpes simplex virus type 1 (HSV-1) in human NT2-N neurons and CHP212 neuronal cells. Both IL-29 and IL-28A could efficiently inhibit HSV-1 replication in neuronal cells, as evidenced by the reduced expression of HSV-1 DNA and proteins. This inhibitory effect of IL-29 and IL-28A against HSV-1 could be partially blocked by antibody to IL-10Rβ, one of the key receptors for IL-29 and IL-28A. To explore the underlying antiviral mechanisms employed by IL-29/IL-28A, we showed that IL-29/IL-28A could selectively induce the expression of several Toll-like receptors (TLRs) as well as activate TLR-mediated antiviral pathway, including IFN regulatory factor 7, IFN-α, and the key IFN-α stimulated antiviral genes.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Medical Education Research Building, 1052, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Wu Y, Tang K, Huang RQ, Zhuang Z, Cheng HL, Yin HX, Shi JX. Therapeutic potential of peroxisome proliferator-activated receptor gamma agonist rosiglitazone in cerebral vasospasm after a rat experimental subarachnoid hemorrhage model. J Neurol Sci 2011; 305:85-91. [DOI: 10.1016/j.jns.2011.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 02/18/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
176
|
Hua F, Wang J, Ishrat T, Wei W, Atif F, Sayeed I, Stein DG. Genomic profile of Toll-like receptor pathways in traumatically brain-injured mice: effect of exogenous progesterone. J Neuroinflammation 2011; 8:42. [PMID: 21549006 PMCID: PMC3098165 DOI: 10.1186/1742-2094-8-42] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 05/08/2011] [Indexed: 02/07/2023] Open
Abstract
Background Traumatic brain injury (TBI) causes acute inflammatory responses that result in an enduring cascade of secondary neuronal loss and behavioral impairments. It has been reported that progesterone (PROG) can inhibit the increase of some inflammatory cytokines and inflammation-related factors induced by TBI. Toll-like receptors (TLRs) play a critical role in the induction and regulation of immune/inflammatory responses. Therefore, in the present study, we examined the genomic profiles of TLR-mediated pathways in traumatically injured brain and PROG's effects on these genes. Methods Bilateral cortical impact injury to the medial frontal cortex was induced in C57BL/6J mice. PROG was injected (i.p., 16 mg/kg body weight) at 1 and 6 h after surgery. Twenty-four hours post-surgery, mice were killed and peri-contusional brain tissue was harvested for genomic detection and protein measurement. RT-PCR arrays were used to measure the mRNA of 84 genes in TLR-mediated pathways. Western blot, ELISA and immunohistochemistry were used to confirm the protein expression of genes of interest. Results We found that 2 TLRs (TLR1 and 2), 5 adaptor/interacting proteins (CD14, MD-1, HSPA1a, PGRP and Ticam2) and 13 target genes (Ccl2, Csf3, IL1a, IL1b, IL1r1, IL6, IL-10, TNFa, Tnfrsf1a, Cebpb, Clec4e, Ptgs2 and Cxcl10) were significantly up-regulated after injury. Administration of PROG significantly down-regulated three of the 13 increased target genes after TBI (Ccl-2, IL-1b and Cxcl-10), but did not inhibit the expression of any of the detected TLRs and adaptor/interacting proteins. Rather, PROG up-regulated the expression of one TLR (TLR9), 5 adaptor/interacting proteins, 5 effectors and 10 downstream target genes. We confirmed that Ccl-2, Cxcl-10, TLR2 and TLR9 proteins were expressed in brain tissue, a finding consistent with our observations of mRNA expression. Conclusion The results demonstrate that TBI can increase gene expression in TLR-mediated pathways. PROG does not down-regulate the increased TLRs or their adaptor proteins in traumatically injured brain. Reduction of the observed inflammatory cytokines by PROG does not appear to be the result of inhibiting TLRs or their adaptors in the acute stage of TBI.
Collapse
Affiliation(s)
- Fang Hua
- Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Rd, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
177
|
Gesuete R, Orsini F, Zanier ER, Albani D, Deli MA, Bazzoni G, De Simoni MG. Glial Cells Drive Preconditioning-Induced Blood-Brain Barrier Protection. Stroke 2011; 42:1445-53. [DOI: 10.1161/strokeaha.110.603266] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Raffaella Gesuete
- From the Mario Negri Institute (R.G., F.O., E.R.Z., D.A., G.B., M.G.D.S.), Milan, Italy, and Biological Research Center (M.A.D.), Szeged, Hungary
| | - Franca Orsini
- From the Mario Negri Institute (R.G., F.O., E.R.Z., D.A., G.B., M.G.D.S.), Milan, Italy, and Biological Research Center (M.A.D.), Szeged, Hungary
| | - Elisa R. Zanier
- From the Mario Negri Institute (R.G., F.O., E.R.Z., D.A., G.B., M.G.D.S.), Milan, Italy, and Biological Research Center (M.A.D.), Szeged, Hungary
| | - Diego Albani
- From the Mario Negri Institute (R.G., F.O., E.R.Z., D.A., G.B., M.G.D.S.), Milan, Italy, and Biological Research Center (M.A.D.), Szeged, Hungary
| | - Maria A. Deli
- From the Mario Negri Institute (R.G., F.O., E.R.Z., D.A., G.B., M.G.D.S.), Milan, Italy, and Biological Research Center (M.A.D.), Szeged, Hungary
| | - Gianfranco Bazzoni
- From the Mario Negri Institute (R.G., F.O., E.R.Z., D.A., G.B., M.G.D.S.), Milan, Italy, and Biological Research Center (M.A.D.), Szeged, Hungary
| | - Maria-Grazia De Simoni
- From the Mario Negri Institute (R.G., F.O., E.R.Z., D.A., G.B., M.G.D.S.), Milan, Italy, and Biological Research Center (M.A.D.), Szeged, Hungary
| |
Collapse
|
178
|
Blocking TLR2 in vivo protects against accumulation of inflammatory cells and neuronal injury in experimental stroke. J Cereb Blood Flow Metab 2011; 31:757-66. [PMID: 20842165 PMCID: PMC3049529 DOI: 10.1038/jcbfm.2010.161] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reduced infarct volume in TLR2-knockout mice compared with C57Bl/6 wild-type mice has recently been shown in experimental stroke and confirmed in this study. We now also show a significant decrease of CD11b-positive cell counts and decreased neuronal death in the ischemic hemispheres of TLR2-deficient mice compared with C57Bl/6wt mice 2 days after transient focal cerebral ischemia. To examine the potential benefit of intravascular TLR2 inhibition, C57Bl/6wt mice were treated intraarterially with TLR2-blocking anti-TLR2 antibody (clone T2.5) after 45 minutes of cerebral ischemia and compared with control antibody (isotype) treated wild-type mice. Whereas T2.5-treated mice had no reduction in infarct volumes at 48 hours after reperfusion, they did have decreased numbers of CD11b-positive inflammatory cells and decreased neuronal death compared with isotype-treated control mice. Comparison of the isotype antibody treatment to control (saline) treatment showed no effects on infarct volumes or neuronal survival. However, mice treated with the control isotype antibody had increased numbers of CD11b-positive inflammatory cells compared with saline-treated animals. Thus, antibody treatment itself (i.e., control isotype antibody, but potentially of any antibody) may have adverse effects and limit therapeutic benefit of anti-TLR2-antibody therapy. We conclude that TLR2 mediates leukocyte and microglial infiltration and neuronal death, which can be attenuated by TLR2 inhibition. The TLR2 inhibition in vivo improves neuronal survival and may represent a future stroke therapy.
Collapse
|
179
|
Henn A, Kirner S, Leist M. TLR2 hypersensitivity of astrocytes as functional consequence of previous inflammatory episodes. THE JOURNAL OF IMMUNOLOGY 2011; 186:3237-47. [PMID: 21282508 DOI: 10.4049/jimmunol.1002787] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Precedent inflammatory episodes may drastically modify the function and reactivity of cells. We investigated whether priming of astrocytes by microglia-derived cytokines alters their subsequent reaction to pathogen-associated danger signals not recognized in the quiescent state. Resting primary murine astrocytes expressed little TLR2, and neither the TLR2/6 ligand fibroblast-stimulating lipopeptide-1 (FSL1) nor the TLR1/2 ligand Pam(3)CysSK(4) (P3C) triggered NF-κB translocation or IL-6 release. We made use of single-cell detection of NF-κB translocation as easily detectable and sharply regulated upstream indicator of an inflammatory response or of c-Jun phosphorylation to measure restimulation events in astrocytes under varying conditions. Cells prestimulated with IL-1β, with a TLR3 ligand, with a complete cytokine mix consisting of TNF-α, IL-1β, and IFN-γ, or with media conditioned by activated microglia responded strongly to FSL1 or P3C stimulation, whereas the sensitivity of the NF-κB response to other pattern recognition receptors was unchanged. This sensitization to TLR2 ligands was associated with an initial upregulation of TLR2, displayed a "memory" window of several days, and was largely independent of the length of prestimulation. The altered signaling led to altered function, as FSL1 or P3C triggered the release of IL-6, CCL-20, and CXCL-2 in primed cells, but not in resting astrocytes. These data confirmed the hypothesis that astrocytes exposed to activated microglia assume a different functional phenotype involving longer term TLR2 responsiveness, even after the initial stimulation by inflammatory mediators has ended.
Collapse
Affiliation(s)
- Anja Henn
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
180
|
Malvandi AM, Mehrzad J, Moghaddam MS. Gene Expression Quantification of Toll like Receptors 2, 4 and Co-molecules in Human Glioblastoma Cell Line (U87-MG): Toward a New In vitro Model of Inflammation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2011; 14:428-35. [PMID: 23492674 PMCID: PMC3586846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 05/15/2011] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Pattern recognition receptors (PRRs) are the main part in the innate immune response. Human glioblastoma cell line (U87-MG) is an established adherent cell line model of this common cancer; due to genetic variations between individuals it is likely more suitable for investigating molecular aspects of innate immunity. Therefore, we undertook a novel characterization of the immune phenotype of U87-MG toward establishing a base for future researches. MATERIALS AND METHODS In this study, U87-MG cells where cultured in a normal condition, to investigate levels of toll-like receptor 2 (TLR2), TLR4, myeloid differentiation factor-88 (MyD88) and CD14 transcripts expression in these cells. Both RT-PCR and qPCR were applied to detect and quantify the expression levels of these genes in U87-MG cells and compare them to their levels in the peripheral blood mononuclear cells (PBMC) of healthy individuals, as a common reference. RESULTS Expression level of TLR2 and TLR4 are not significantly different in U87-MG cells in comparison to PBMC. Also, expression levels of MyD88 and CD14 in U87-MG cells are significantly lower than their levels in PBMC. Furthermore, expression levels of MyD88 and CD14 in both PBMC and U87-MG are significantly lower than TLR2 and TLR4 transcripts. CONCLUSION The data reveal expression of TLR4, CD14, MyD88 and TLR2 genes in U87-MG cell line, for the first time. Expression detection of these genes in human glioblastoma cell line might have a potential for diagnosis of inflammatory mechanisms in immune mediated disorders of in vitro models of human brain inflammatory disease.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Department of Biochemistry, Faculty of Science, Payam Noor University of Mashhad, Iran,Department of Stem cells and Developmental Biology, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran,Corresponding author: Tel: +98-91-55232462; Fax: +98-21-22306486;
| | - Jalil Mehrzad
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran
| | | |
Collapse
|
181
|
Gonzales NR, Grotta JC. Pharmacologic Modification of Acute Cerebral Ischemia. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
182
|
Shichita T, Muto G, Yoshimura A. T lymphocyte function in the delayed phase of ischemic brain injury. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
183
|
Kunz A, Dirnagl U, Mergenthaler P. Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Pract Res Clin Anaesthesiol 2010; 24:495-509. [DOI: 10.1016/j.bpa.2010.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/11/2010] [Indexed: 12/23/2022]
|
184
|
Fairbanks SL, Brambrink AM. Preconditioning and postconditioning for neuroprotection: the most recent evidence. Best Pract Res Clin Anaesthesiol 2010; 24:521-34. [PMID: 21619864 DOI: 10.1016/j.bpa.2010.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/11/2010] [Indexed: 11/13/2022]
Abstract
Stroke is a leading cause of morbidity and mortality, with perioperative stroke being an important complication in the practice of anaesthesia. Unfortunately, pharmacological treatment options are very limited and often not applicable in the perioperative period. The notion of applying a subtoxic stimulus prior to an otherwise lethal event is termed preconditioning. The main focus of the article is on describing the different concepts of preconditioning, including remote ischaemic preconditioning and anaesthetic preconditioning, as well as postconditioning and summarizing the most recent discoveries in this exciting field.
Collapse
Affiliation(s)
- Stacy L Fairbanks
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, UHS-2, Portland, OR 97239, USA.
| | | |
Collapse
|
185
|
Downes CE, Crack PJ. Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol 2010; 160:1872-88. [PMID: 20649586 DOI: 10.1111/j.1476-5381.2010.00864.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The CNS can exhibit features of inflammation in response to injury, infection or disease, whereby resident cells generate inflammatory mediators, including cytokines, prostaglandins, free radicals and complement, chemokines and adhesion molecules that recruit immune cells, and activate glia and microglia. Cerebral ischaemia triggers acute inflammation, which exacerbates primary brain damage. The regulation of inflammation after stroke is multifaceted and comprises vascular effects, distinct cellular responses, apoptosis and chemotaxis. There are many cell types that are affected including neurons, astrocytes, microglia and endothelial cells, all responding to the resultant neuroinflammation in different ways. Over the past 20 years, researchers examining brain tissue at various time intervals after stroke observed the presence of inflammatory cells, neutrophils and monocytes at the site of injury, as well as the activation of endogenous glia and microglia. This review examines the involvement of these cells in the progression of neural injury and proposes that the Toll-like receptors (TLRs) are likely to be an integral component in the communication between the CNS and the periphery. This receptor system is the archetypal pathogen sensing receptor system and its presence and signalling in the brain following neural injury suggests a more diverse role. We propose that the TLR system presents excellent pharmacological targets for the design of a new generation of therapeutic agents to modulate the inflammation that accompanies neural injury.
Collapse
Affiliation(s)
- Catherine E Downes
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
186
|
Abstract
Microglial activation is an early response to brain ischemia and many other stressors. Microglia continuously monitor and respond to changes in brain homeostasis and to specific signaling molecules expressed or released by neighboring cells. These signaling molecules, including ATP, glutamate, cytokines, prostaglandins, zinc, reactive oxygen species, and HSP60, may induce microglial proliferation and migration to the sites of injury. They also induce a nonspecific innate immune response that may exacerbate acute ischemic injury. This innate immune response includes release of reactive oxygen species, cytokines, and proteases. Microglial activation requires hours to days to fully develop, and thus presents a target for therapeutic intervention with a much longer window of opportunity than acute neuroprotection. Effective agents are now available for blocking both microglial receptor activation and the microglia effector responses that drive the inflammatory response after stroke. Effective agents are also available for targeting the signal transduction mechanisms linking these events. However, the innate immune response can have beneficial as well deleterious effects on outcome after stoke, and a challenge will be to find ways to selectively suppress the deleterious effects of microglial activation after stroke without compromising neurovascular repair and remodeling.
Collapse
Affiliation(s)
- Midori A. Yenari
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, 94121 San Francisco, California
| | - Tiina M. Kauppinen
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, 94121 San Francisco, California
| | - Raymond A. Swanson
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, 94121 San Francisco, California
| |
Collapse
|
187
|
Li H, Hu J, Ma L, Yuan Z, Wang Y, Wang X, Xing D, Lei F, Du L. Comprehensive study of baicalin down-regulating NOD2 receptor expression of neurons with oxygen-glucose deprivation in vitro and cerebral ischemia-reperfusion in vivo. Eur J Pharmacol 2010; 649:92-9. [PMID: 20863826 DOI: 10.1016/j.ejphar.2010.09.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/31/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022]
Abstract
Cerebral ischemia-reperfusion can activate several transcription factors and lead to inflammatory reactions, which related to pattern recognition receptors with immune activating functions. NOD2 (nucleotide-binding oligomerization domain protein 2) is one of the receptors involved in innate immune response and is genetically associated with several inflammatory reactions. Since baicalin has the pharmacological effects of anti-inflammation and protection of brain from cerebral ischemia-reperfusion, we studied baicalin's effect on NOD2/TNFα in the cell of oxygen-glucose deprivation (OGD) in vitro and the mice of cerebral ischemia-reperfusion in vivo. The results showed that NOD2 and TNFα were up regulated in the cells with oxygen-glucose deprivation, not only in BV2 cells, but also in both of PC12 cells and primary neuron cells, which suggested NOD2 could express directly in neuron while OGD treatment. Baicalin (10 μg/ml) could effectively down regulate the expression of NOD2 and TNFα in both mRNA and protein levels. Meanwhile, baicalin (50 mg/kg, i.p.) could also down regulate the expression of NOD2 and TNFα in protein levels significantly, in which agreed with its effect in vitro study. These data demonstrated that targeting on NOD2 especially in neurons directly was possibly attributed to the neural-protective effect of baicalin in the injury of cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Huiying Li
- Protein Science Laboratory of the Ministry of Education, Laboratory of Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Denes A, Thornton P, Rothwell NJ, Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun 2010; 24:708-23. [PMID: 19770034 DOI: 10.1016/j.bbi.2009.09.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a classical host defence response to infection and injury that has many beneficial effects. However, inappropriate (in time, place and magnitude) inflammation is increasingly implicated in diverse disease states, now including cancer, diabetes, obesity, atherosclerosis, heart disease and, most relevant here, CNS disease. A growing literature shows strong correlations between inflammatory status and the risk of cerebral ischaemia (CI, most commonly stroke), as well as with outcome from an ischaemic event. Intervention studies to demonstrate a causal link between inflammation and CI (or its consequences) are limited but are beginning to emerge, while experimental studies of CI have provided direct evidence that key inflammatory mediators (cytokines, chemokines and inflammatory cells) contribute directly to ischaemic brain injury. However, it remains to be determined what the relative importance of systemic (largely peripheral) versus CNS inflammation is in CI. Animal models in which CI is driven by a CNS intervention may not accurately reflect the clinical condition; stroke being typically induced by atherosclerosis or cardiac dysfunction, and hence current experimental paradigms may underestimate the contribution of peripheral inflammation. Experimental studies have already identified a number of potential anti-inflammatory therapeutic interventions that may limit ischaemic brain damage, some of which have been tested in early clinical trials with potentially promising results. However, a greater understanding of the contribution of inflammation to CI is still required, and this review highlights some of the key mechanism that may offer future therapeutic targets.
Collapse
Affiliation(s)
- A Denes
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
189
|
Piazza O, Scarpati G, Cotena S, Lonardo M, Tufano R. Thrombin antithrombin complex and IL-18 serum levels in stroke patients. Neurol Int 2010; 2:e1. [PMID: 21577333 PMCID: PMC3093205 DOI: 10.4081/ni.2010.e1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 10/19/2009] [Accepted: 11/30/2009] [Indexed: 01/06/2023] Open
Abstract
The complex picture of inflammation and coagulation alterations comes to life in acute stroke phases. Increasing evidence points to a strong interaction and extensive crosstalk between the inflammation and coagulation systems: the interest towards this relationship has increased since recent experimental research showed that the early administration of antithrombin III (ATIII) decreases the volume of ischemia in mice and might be neuroprotective, playing an antiinflammatory role. We aimed to establish the extent of the relationship among markers of inflammation (S100B and IL-18) and procoagulant and fibrinolytic markers (ATIII, thrombin-antithrombin III complex (TAT), Fibrin Degradation Products (FDP), D-dimer) in 13 comatose patients affected by focal cerebral ischemia. Plasma levels of TAT, D-dimer and FDP, IL18 and S100B were increased. IL-18 and S100B high serum levels in ischemic patients suggest an early activation of the inflammatory cascade in acute ischemic injury. The basic principles of the interaction between inflammatory and coagulation systems are revised, from the perspective that simultaneous modulation of both coagulation and inflammation, rather than specific therapies aimed at one of these systems could be more successful in stroke therapy.
Collapse
Affiliation(s)
- Ornella Piazza
- Università degli Studi di Napoli Federico II, Anestesiologia e Rianimazione, Napoli, Italy
| | | | | | | | | |
Collapse
|
190
|
Williams-Karnesky RL, Stenzel-Poore MP. Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Curr Neuropharmacol 2010; 7:217-27. [PMID: 20190963 PMCID: PMC2769005 DOI: 10.2174/157015909789152209] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality in the United States. Despite intensive research into the development of treatments that lessen the severity of cerebrovascular injury, no major therapies exist. Though the potential use of adenosine as a neuroprotective agent in the context of stroke has long been realized, there are currently no adenosine-based therapies for the treatment of cerebral ischemia and reperfusion. One of the major obstacles to developing adenosine-based therapies for the treatment of stroke is the prevalence of functional adenosine receptors outside the central nervous system. The activities of peripheral immune and vascular endothelial cells are particularly vulnerable to modulation via adenosine receptors. Many of the pathophysiological processes in stroke are a direct result of peripheral immune infiltration into the brain. Ischemic preconditioning, which can be induced by a number of stimuli, has emerged as a promising area of focus in the development of stroke therapeutics. Reprogramming of the brain and immune responses to adenosine signaling may be an underlying principle of tolerance to cerebral ischemia. Insight into the role of adenosine in various preconditioning paradigms may lead to new uses for adenosine as both an acute and prophylactic neuroprotectant.
Collapse
Affiliation(s)
- Rebecca L Williams-Karnesky
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
191
|
Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiol Dis 2010; 39:85-97. [PMID: 20382223 DOI: 10.1016/j.nbd.2010.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/09/2010] [Accepted: 04/02/2010] [Indexed: 12/20/2022] Open
Abstract
Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.
Collapse
|
192
|
Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, Zhou P, Iadecola C. Key role of CD36 in Toll-like receptor 2 signaling in cerebral ischemia. Stroke 2010; 41:898-904. [PMID: 20360550 DOI: 10.1161/strokeaha.109.572552] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptors (TLRs) and the scavenger receptor CD36 are key molecular sensors for the innate immune response to invading pathogens. However, these receptors may also recognize endogenous "danger signals" generated during brain injury, such as cerebral ischemia, and trigger a maladaptive inflammatory reaction. Indeed, CD36 and TLR2 and 4 are involved in the inflammation and related tissue damage caused by brain ischemia. Because CD36 may act as a coreceptor for TLR2 heterodimers (TLR2/1 or TLR2/6), we tested whether such interaction plays a role in ischemic brain injury. METHODS The TLR activators FSL-1 (TLR2/6), Pam3 (TLR2/1), or lipopolysaccharide (TLR4) were injected intracerebroventricularly into wild-type or CD36-null mice, and inflammatory gene expression was assessed in the brain. The effect of TLR activators on the infarct produced by transient middle cerebral artery occlusion was also studied. RESULTS The inflammatory response induced by TLR2/1 activation, but not TLR2/6 or TLR4 activation, was suppressed in CD36-null mice. Similarly, TLR2/1 activation failed to increase infarct volume in CD36-null mice, whereas TLR2/6 or TLR4 activation exacerbated postischemic inflammation and increased infarct volume. In contrast, the systemic inflammatory response evoked by TLR2/6 activation, but not by TLR2/1 activation, was suppressed in CD36-null mice. CONCLUSIONS In the brain, TLR2/1 signaling requires CD36. The cooperative signaling of TLR2/1 and CD36 is a critical factor in the inflammatory response and tissue damage evoked by cerebral ischemia. Thus, suppression of CD36-TLR2/1 signaling could be a valuable approach to minimize postischemic inflammation and the attendant brain injury.
Collapse
Affiliation(s)
- Takato Abe
- Division of Neurobiology, Weill Cornell Medical College, 407 E 61st St, Room RR303, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Kraig RP, Mitchell HM, Christie-Pope B, Kunkler PE, White DM, Tang YP, Langan G. TNF-α and Microglial Hormetic Involvement in Neurological Health & Migraine. Dose Response 2010; 8:389-413. [PMID: 21191481 DOI: 10.2203/dose-response.09-056.kraig] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Environmental enrichment, i.e., increased intellectual, social, and physical activity makes brain more resilient to subsequent neurological disease. The mechanisms for this effect remain incompletely defined, but evidence shows tumor necrosis factor-alpha (TNF-α) is involved. TNF-α, at acutely high levels, possesses the intrinsic capacity to enhance injury associated with neurological disease. Conversely, the effect of TNF-α at low-levels is nutritive over time, consistent with physiological conditioning hormesis. Evidence shows that neural activity triggers low-level pro-inflammatory signaling involving TNF-α. This low-level TNF-α signaling alters gene expression, resulting in an enhanced resilience to disease. Brain-immune signaling may become maladaptive when increased activity is chronic without sufficient periods of reduced activity necessary for nutritive adaptation. Such tonically increased activity may explain, for example, the transformation of episodic to chronic migraine with related increased susceptibility to spreading depression, the most likely underlying cause of this malady. Thus, TNF-α, whose function is to alter gene expression, and its principal cellular source, microglia, seem powerfully positioned to orchestrate hormetic immune signaling that establishes the phenotype of neurological health and disease from brain activity.
Collapse
Affiliation(s)
- Richard P Kraig
- Department of Neurology, The University of Chicago Medical Center, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
194
|
Durukan A, Tatlisumak T. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2010; 2:2. [PMID: 20298534 PMCID: PMC2830184 DOI: 10.1186/2040-7378-2-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/21/2010] [Indexed: 12/31/2022]
Abstract
Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells.
Collapse
Affiliation(s)
- Aysan Durukan
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland.
| | | |
Collapse
|
195
|
|
196
|
|
197
|
Ziegler G, Prinz V, Albrecht MW, Harhausen D, Khojasteh U, Nacken W, Endres M, Dirnagl U, Nietfeld W, Trendelenburg G. Mrp-8 and -14 mediate CNS injury in focal cerebral ischemia. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1198-204. [PMID: 19835955 DOI: 10.1016/j.bbadis.2009.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 12/17/2022]
Abstract
Several reports have recently demonstrated a detrimental role of Toll-like receptors (TLR) in cerebral ischemia, while there is little information about the endogenous ligands which activate TLR-signaling. The myeloid related proteins-8 and-14 (Mrp8/S100A8; Mrp14/S100A9) have recently been characterized as endogenous TLR4-agonists, and thus may mediate TLR-activation in cerebral ischemia. Interestingly, not only TLR-mRNAs, but also Mrp8 and Mrp14 mRNA were found to be induced in mouse brain between 3 and 48 h after transient 1 h focal cerebral ischemia/reperfusion. Mrp-protein was expressed in the ischemic hemisphere, and co-labeled with CD11b-positive cells. To test the hypothesis that Mrp-signaling contributes to the postischemic brain damage, we subjected Mrp14-deficient mice, which also lack Mrp8 protein expression, to focal cerebral ischemia. Mrp14-deficient mice had significantly smaller lesion volumes when compared to wild-type littermates (130+/-16 mm(3) vs. 105+/-28 mm(3)) at 2 days after transient focal cerebral ischemia (1 h), less brain swelling, and a reduced macrophage/microglia cell count in the ischemic hemisphere. We conclude that upregulation and signaling of Mrp-8 and-14 contribute to neuroinflammation and the progression of ischemic damage.
Collapse
Affiliation(s)
- Gina Ziegler
- Max-Planck-Institute for Molecular Genetics, Ihnestr.73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Diarra A, Geetha T, Potter P, Babu JR. Signaling of the neurotrophin receptor p75 in relation to Alzheimer's disease. Biochem Biophys Res Commun 2009; 390:352-6. [PMID: 19818333 DOI: 10.1016/j.bbrc.2009.09.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/24/2009] [Indexed: 01/29/2023]
Abstract
The cellular mechanism of neuronal apoptosis in Alzheimer's disease (AD) is poorly understood. Many hypotheses have been put fourth to explain the underlying reason for neuro-degeneration in AD. Here, it is demonstrated that all neurotrophins that activated p75, without co-activation of the relevant Trk co-receptor, mediated apoptosis in hippocampal neurons. Thus, proneurotrophins and amyloid beta peptides (Abeta) can induce p75-mediated apoptosis in hippocampal neurons since they do not bind or activate Trk receptors. Based on the combined effects of aging, proneurotrophins, neurotrophins, and Abeta, a novel model of pathogenesis in AD is proposed. This mini-review explores the ligand and cell type based signaling pathways of the neurotrophin receptor p75 relating to Alzheimer's disease.
Collapse
Affiliation(s)
- Adama Diarra
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | | | | | | |
Collapse
|
199
|
Behavioural and histological effects of preconditioning with lipopolysaccharide in epileptic rats. Neurochem Res 2009; 35:262-72. [PMID: 19728087 DOI: 10.1007/s11064-009-0050-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
Sublethal stress stimuli such as systemic endotoxin treatment can induce tolerance of the brain to subsequent ischemic stress, which results in a decreased infarct size. Based on this evidence, we hypothesized that lipopolysaccharide (LPS)-induced preconditioning could protect hippocampal neurons in epileptic rats. To test this hypothesis, the anticonvulsant effect of a low dose of LPS against seizures elicited by pilocarpine hydrochloride was measured. Using the pilocarpine model of temporal lobe epilepsy and LPS-preconditioning, we also investigated hippocampal pathology in the rat brain. Based on the behavioural observations conducted, it can be assumed that the preconditioning procedure used may decrease seizure excitability in epileptic rats. However, determination of the seizure excitability threshold needs to be elaborated. Qualitative and quantitative analyses of histological brain sections in the LPS-preconditioned rats showed markedly decreased intensity of neurodegenerative changes in the CA1, CA3 and DG hippocampal fields. The tendency was observed in all the periods of the pilocarpine model of epilepsy. We suggest that preconditioning with LPS may have neuroprotective effects in the CA1, CA3 and DG hippocampal sectors; however, it has no influence on the course of the seizures in rats in the pilocarpine model of epilepsy.
Collapse
|
200
|
Benardete EA, Bergold PJ. Genomic analysis of ischemic preconditioning in adult rat hippocampal slice cultures. Brain Res 2009; 1292:107-22. [PMID: 19631194 DOI: 10.1016/j.brainres.2009.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 07/04/2009] [Accepted: 07/08/2009] [Indexed: 01/08/2023]
Abstract
Understanding endogenous mechanisms of neuroprotection may have important clinical applications. It is well established that brain tissue becomes more resistant to ischemic injury following a sublethal ischemic insult. This process, called ischemic preconditioning (IPC), can be induced in adult rat hippocampal slice cultures by a brief oxygen-glucose deprivation (OGD) [Hassen, G.W., Tian, D., Ding, D., Bergold, P.J., 2004. A new model of ischemic preconditioning using young adult hippocampal slice cultures. Brain Res. Brain Res. Protoc. 13, 135-143]. We have analyzed the changes in gene expression brought about by IPC in this model in order to understand the mechanisms involved. Total RNA was isolated at different time points following a brief OGD (3, 6 and 12 h) and used to probe genome-wide expression microarrays. Genes were identified that were significantly up- or down-regulated relative to controls. We placed genes that were differentially expressed into statistically significant groups based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) terms. Genes involved in signal transduction, transcription, and oxidative phosphorylation are differentially expressed at each time point. The analysis demonstrates that alterations in signaling pathways (TGF-beta, Wnt, MAPK, ErbB, Toll-like receptor, JAK-STAT, VEGF) consistently accompany IPC. RT-PCR was used to confirm that members of these signaling pathways are regulated as predicted by the microarray analysis. We verified that protein translation following OGD is necessary for IPC. We also found that blocking the NMDA receptor during OGD does not significantly inhibit IPC in this model or produce large changes in gene expression. Our data thus suggests that changes in signaling pathways and their down-stream targets play an important role in triggering endogenous neuroprotection.
Collapse
Affiliation(s)
- Ethan A Benardete
- Department of Neurosurgery, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | | |
Collapse
|