151
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
152
|
Amati F, Spagnolo P, Ryerson CJ, Oldham JM, Gramegna A, Stainer A, Mantero M, Sverzellati N, Lacedonia D, Richeldi L, Blasi F, Aliberti S. Walking the path of treatable traits in interstitial lung diseases. Respir Res 2023; 24:251. [PMID: 37872563 PMCID: PMC10594881 DOI: 10.1186/s12931-023-02554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Interstitial lung diseases (ILDs) are complex and heterogeneous diseases. The use of traditional diagnostic classification in ILD can lead to suboptimal management, which is worsened by not considering the molecular pathways, biological complexity, and disease phenotypes. The identification of specific "treatable traits" in ILDs, which are clinically relevant and modifiable disease characteristics, may improve patient's outcomes. Treatable traits in ILDs may be classified into four different domains (pulmonary, aetiological, comorbidities, and lifestyle), which will facilitate identification of related assessment tools, treatment options, and expected benefits. A multidisciplinary care team model is a potential way to implement a "treatable traits" strategy into clinical practice with the aim of improving patients' outcomes. Multidisciplinary models of care, international registries, and the use of artificial intelligence may facilitate the implementation of the "treatable traits" approach into clinical practice. Prospective studies are needed to test potential therapies for a variety of treatable traits to further advance care of patients with ILD.
Collapse
Affiliation(s)
- Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Gramegna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Marco Mantero
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Nicola Sverzellati
- Unit of Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Donato Lacedonia
- Department of Medical and Occupational Sciences, Institute of Respiratory Disease, Università degli Studi di Foggia, Foggia, Italy
| | - Luca Richeldi
- Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Blasi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
153
|
Luo H, Yan J, Zhou X. Constructing an extracellular matrix-related prognostic model for idiopathic pulmonary fibrosis based on machine learning. BMC Pulm Med 2023; 23:397. [PMID: 37858084 PMCID: PMC10585847 DOI: 10.1186/s12890-023-02699-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Multiple research has revealed that the extracellular matrix (ECM) may be associated with the development and prognosis of IPF, however, the underlying mechanisms remain incompletely understood. METHODS We included GSE70866 dataset from the GEO database and established an ECM-related prognostic model utilizing LASSO, Random forest and Support vector machines algorithms. To compare immune cell infiltration levels between the high and low risk groups, we employed the ssGSEA algorithm. Enrichment analysis was conducted to explore pathway differences between the high-risk and low-risk groups. Finally, the model genes were validated using an external validation set consisting of IPF cases, as well as single-cell data analysis. RESULTS Based on machine learning algorithms, we constructed an ECM-related risk model. IPF patients in the high-risk group had a worse overall survival rate than those in the low-risk group. The model's AUC predictive values were 0.786, 0.767, and 0.768 for the 1-, 2-, and 3-year survival rates, respectively. The validation cohort validated these findings, demonstrating our model's effective prognostication. Chemokine-related pathways were enriched through enrichment analysis. Moreover, immune cell infiltration varied significantly between the two groups. Finally, the validation results indicate that the expression levels of all the model genes exhibited significant differential expression. CONCLUSIONS Based on CST6, PPBP, CSPG4, SEMA3B, LAMB2, SERPINB4 and CTF1, our study developed and validated an ECM-related risk model that accurately predicts the outcome of IPF patients.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Jisong Yan
- Department of Tuberculosis and Respiratory, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China.
| |
Collapse
|
154
|
Hanyu F, Zheng H, Jiaqi W, Tairan D, Yiyuanzi Z, Qiwen Y, Ying L, Hongchun Z, Lu L. Protective effects and mechanism of curcumin in animal models of pulmonary fibrosis: a preclinical systematic review and meta-analysis. Front Pharmacol 2023; 14:1258885. [PMID: 37900163 PMCID: PMC10613035 DOI: 10.3389/fphar.2023.1258885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: At present, there is a lack of effective treatment for pulmonary fibrosis (PF), and a number of studies have confirmed that curcumin (CUR) has a good effect on PF. Research Qusetion: Is CUR effective in preclinical trials for PF and what is its mechanism of action? Methods: Animal reports of PF treated with CUR were searched from Pubmed, Embase, Web of Science and Cochrane Library from 1 January 2000 to 19 April 2023 to compare CUR treatment of PF with a no-intervention model group. A previous registration (nsply registration number: INPLASY202360084) of this review protocol was undertaken. Results: The meta-analysis included 27 publications and 29 studies involving 396 animals. CUR significantly improved the degree of fibrosis, levels of inflammation, and oxidative imbalances in lung tissue in animal models of PF. In terms fibrosis, such as HYP content (SMD = -4.96; 95% CI = -6.05 to -3.87; p = 0.000).In terms of inflammatory indicators, such as MPO activity (SMD = -2.12; 95% CI = -4.93 to 0.69; p = 0.000). In terms of oxidation index, such as MDA (SMD = -5.63; 95% CI = -9.66 to -1.6; p = 0.000). Conclusion: CUR significantly improved the degree of fibrosis, levels of inflammation, and oxidative imbalances in lung tissue in animal models of PF. Due to the quantitative and qualitative limitations of current research, more high-quality studies are needed to verify the above conclusion.
Collapse
Affiliation(s)
- Fang Hanyu
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Hong Zheng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Wang Jiaqi
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dong Tairan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Zhao Yiyuanzi
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yang Qiwen
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Liu Ying
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, China
| | - Zhang Hongchun
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liu Lu
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Jining Hospital of Xiyuan Hospital of China Academy of Chinese Medical Science, Jining, Shandong, China
| |
Collapse
|
155
|
Apte SH, Groves PL, Tan ME, Lutzky VP, de Silva T, Monteith JN, Yerkovich ST, O’Sullivan BJ, Davis RA, Chambers DC. A Methodological Approach to Identify Natural Compounds with Antifibrotic Activity and the Potential to Treat Pulmonary Fibrosis Using Single-Cell Sequencing and Primary Human Lung Macrophages. Int J Mol Sci 2023; 24:15104. [PMID: 37894784 PMCID: PMC10606775 DOI: 10.3390/ijms242015104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of the interstitial pneumonias. The cause of the disease is unknown, and new therapies that stop or reverse disease progression are desperately needed. Recent advances in next-generation sequencing have led to an abundance of freely available, clinically relevant, organ-and-disease-specific, single-cell transcriptomic data, including studies from patients with IPF. We mined data from published IPF data sets and identified gene signatures delineating pro-fibrotic or antifibrotic macrophages and then used the Enrichr platform to identify compounds with the potential to drive the macrophages toward the antifibrotic transcriptotype. We then began testing these compounds in a novel in vitro phenotypic drug screening assay utilising human lung macrophages recovered from whole-lung lavage of patients with silicosis. As predicted by the Enrichr tool, glitazones potently modulated macrophage gene expression towards the antifibrotic phenotype. Next, we assayed a subset of the NatureBank pure compound library and identified the cyclobutane lignan, endiandrin A, which was isolated from the roots of the endemic Australian rainforest plant, Endiandra anthropophagorum, with a similar antifibrotic potential to the glitazones. These methods open new avenues of exploration to find treatments for lung fibrosis.
Collapse
Affiliation(s)
- Simon H. Apte
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Penny L. Groves
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
| | - Maxine E. Tan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Viviana P. Lutzky
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Tharushi de Silva
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Joshua N. Monteith
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Stephanie T. Yerkovich
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Brendan J. O’Sullivan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Rohan A. Davis
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia;
- NatureBank, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Daniel C. Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| |
Collapse
|
156
|
Tottoli EM, Benedetti L, Riva F, Chiesa E, Pisani S, Bruni G, Genta I, Conti B, Ceccarelli G, Dorati R. Electrospun Fibers Loaded with Pirfenidone: An Innovative Approach for Scar Modulation in Complex Wounds. Polymers (Basel) 2023; 15:4045. [PMID: 37896289 PMCID: PMC10610295 DOI: 10.3390/polym15204045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Hypertrophic scars (HTSs) are pathological structures resulting from chronic inflammation during the wound healing process, particularly in complex injuries like burns. The aim of this work is to propose Biofiber PF (biodegradable fiber loaded with Pirfenidone 1.5 w/w), an electrospun advanced dressing, as a solution for HTSs treatment in complex wounds. Biofiber has a 3-day antifibrotic action to modulate the fibrotic process and enhance physiological healing. Its electrospun structure consists of regular well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) fibers (size 2.83 ± 0.46 µm) loaded with Pirfenidone (PF, 1.5% w/w), an antifibrotic agent. The textured matrix promotes the exudate balance through mild hydrophobic wettability behavior (109.3 ± 2.3°), and an appropriate equilibrium between the absorbency % (610.2 ± 171.54%) and the moisture vapor transmission rate (0.027 ± 0.036 g/min). Through its finer mechanical properties, Biofiber PF is conformable to the wound area, promoting movement and tissue oxygenation. These features also enhance the excellent elongation (>500%) and tenacity, both in dry and wet conditions. The ancillary antifibrotic action of PF on hypertrophic scar fibroblast (HSF) for 3 days downregulates the cell proliferation over time and modulates the gene expression of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA) at 48-72 h. After 6 days of treatment, a decrement of α-SMA protein levels was detected, proving the potential of biofiber as a valid therapeutic treatment for HTSs in an established wound healing process.
Collapse
Affiliation(s)
- Erika Maria Tottoli
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Laura Benedetti
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy; (L.B.); (G.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Federica Riva
- Department of Public Health, Experimental Medicine and Forensic, Histology and Embryology Unit, University of Pavia, 27100 Pavia, Italy;
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Giovanna Bruni
- Physical-Chemistry Section, Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy; (L.B.); (G.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| |
Collapse
|
157
|
Perrot CY, Karampitsakos T, Unterman A, Adams T, Marlin K, Arsenault A, Zhao A, Kaminski N, Katlaps G, Patel K, Bandyopadhyay D, Herazo-Maya JD. Mast-Cell Expressed Membrane Protein-1 (MCEMP1) is expressed in classical monocytes and alveolar macrophages in Idiopathic Pulmonary Fibrosis and regulates cell chemotaxis, adhesion, and migration in a TGFβ dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.07.561349. [PMID: 37873485 PMCID: PMC10592658 DOI: 10.1101/2023.10.07.561349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Mast-Cell Expressed Membrane Protein-1 (MCEMP1) is higher in Idiopathic Pulmonary Fibrosis (IPF) patients with increased risk of death and poor outcomes. Here we seek to establish the mechanistic role of MCEMP1 in pulmonary fibrosis. Methods MCEMP1 expression was analyzed by single-cell RNA sequencing, immunofluorescence in Peripheral Blood Mononuclear Cells (PBMC) as well as in lung tissues from IPF patients and controls. Chromatin Immunoprecipitation (ChiP) and Proximity Ligation Assay (PLA) were used to study the transcriptional regulation of MCEMP1 . Transient RNA interference and lentivirus transduction were used to knockdown and knock-in MCEMP1 in THP-1 cells to study chemotaxis, adhesion, and migration. Bulk RNA sequencing was used to identify the mechanisms by which MCEMP1 participates in monocyte function. Active RHO pull-down assay was used to validate bulk RNA sequencing results. Results We identified increased MCEMP1 expression in classical monocytes and alveolar macrophages in IPF compared to controls. MCEMP1 was upregulated by TGFβ at the mRNA and protein levels in THP-1. TGFβ-mediated MCEMP1 upregulation results from the cooperation of SMAD3 and SP1 via concomitant binding to SMAD3/SP1 cis -regulatory elements within the MCEMP1 promoter. In terms of its function, we found that MCEMP1 regulates TGFβ-mediated monocyte chemotaxis, adhesion, and migration. 400 differentially expressed genes were found to increase after TGFβ stimulation of THP-1, further increased in MCEMP1 knock-in cells treated with TGFβ and decreased in MCEMP1 knockdown cells treated with TGFβ. GO annotation analysis of these genes showed enrichment for positive regulation of RHO GTPase activity and signal transduction. While TGFβ enhanced RHO GTPase activity in THP-1 cells, this effect was attenuated following MCEMP1 knockdown. Conclusion MCEMP1 is highly expressed in circulating classical monocytes and alveolar macrophages in IPF. MCEMP1 is regulated by TGFβ and participates in the chemotaxis, adhesion, and migration of circulating monocytes by modulating the effect of TGFβ in RHO activity. Our results suggest that MCEMP1 may regulate the migration and transition of monocytes to monocyte-derived alveolar macrophages during pulmonary fibrosis development and progression.
Collapse
|
158
|
Wu Z, Chen H, Ke S, Mo L, Qiu M, Zhu G, Zhu W, Liu L. Identifying potential biomarkers of idiopathic pulmonary fibrosis through machine learning analysis. Sci Rep 2023; 13:16559. [PMID: 37783761 PMCID: PMC10545744 DOI: 10.1038/s41598-023-43834-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and serious type of idiopathic interstitial pneumonia, characterized by chronic, progressive, and low survival rates, while unknown disease etiology. Until recently, patients with idiopathic pulmonary fibrosis have a poor prognosis, high mortality, and limited treatment options, due to the lack of effective early diagnostic and prognostic tools. Therefore, we aimed to identify biomarkers for idiopathic pulmonary fibrosis based on multiple machine-learning approaches and to evaluate the role of immune infiltration in the disease. The gene expression profile and its corresponding clinical data of idiopathic pulmonary fibrosis patients were downloaded from Gene Expression Omnibus (GEO) database. Next, the differentially expressed genes (DEGs) with the threshold of FDR < 0.05 and |log2 foldchange (FC)| > 0.585 were analyzed via R package "DESeq2" and GO enrichment and KEGG pathways were run in R software. Then, least absolute shrinkage and selection operator (LASSO) logistic regression, support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF) algorithms were combined to screen the key potential biomarkers of idiopathic pulmonary fibrosis. The diagnostic performance of these biomarkers was evaluated through receiver operating characteristic (ROC) curves. Moreover, the CIBERSORT algorithm was employed to assess the infiltration of immune cells and the relationship between the infiltrating immune cells and the biomarkers. Finally, we sought to understand the potential pathogenic role of the biomarker (SLAIN1) in idiopathic pulmonary fibrosis using a mouse model and cellular model. A total of 3658 differentially expressed genes of idiopathic pulmonary fibrosis were identified, including 2359 upregulated genes and 1299 downregulated genes. FHL2, HPCAL1, RNF182, and SLAIN1 were identified as biomarkers of idiopathic pulmonary fibrosis using LASSO logistic regression, RF, and SVM-RFE algorithms. The ROC curves confirmed the predictive accuracy of these biomarkers both in the training set and test set. Immune cell infiltration analysis suggested that patients with idiopathic pulmonary fibrosis had a higher level of B cells memory, Plasma cells, T cells CD8, T cells follicular helper, T cells regulatory (Tregs), Macrophages M0, and Mast cells resting compared with the control group. Correlation analysis demonstrated that FHL2 was significantly associated with the infiltrating immune cells. qPCR and western blotting analysis suggested that SLAIN1 might be a signature for the diagnosis of idiopathic pulmonary fibrosis. In this study, we identified four potential biomarkers (FHL2, HPCAL1, RNF182, and SLAIN1) and evaluated the potential pathogenic role of SLAIN1 in idiopathic pulmonary fibrosis. These findings may have great significance in guiding the understanding of disease mechanisms and potential therapeutic targets in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zenan Wu
- The Clinical Medical School, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Huan Chen
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shiwen Ke
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lisha Mo
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mingliang Qiu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guoshuang Zhu
- The Clinical Medical School, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wei Zhu
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liangji Liu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
159
|
Liendo-Martínez KH, Baratech-Calpena FJ, Ji Z, Pedraza-Serrano F, Caballero-Segura FJ, de Miguel-Díez J. Differences in the Evolution of Lung Function Before and After Treatment With Antifibrotics in Patients With Interstitial Lung Disease. OPEN RESPIRATORY ARCHIVES 2023; 5:100268. [PMID: 37842287 PMCID: PMC10568410 DOI: 10.1016/j.opresp.2023.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Katiuska Herminia Liendo-Martínez
- Respiratory Department, Gregorio Marañón General University Hospital, 28007 Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Zichen Ji
- Respiratory Department, Gregorio Marañón General University Hospital, 28007 Madrid, Spain
| | | | - Francisco José Caballero-Segura
- Respiratory Department, Gregorio Marañón General University Hospital, 28007 Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier de Miguel-Díez
- Respiratory Department, Gregorio Marañón General University Hospital, 28007 Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
160
|
Murata D, Azuma K, Murotani K, Matsuo N, Matama G, Tokito T, Sasada T, Hoshino T. Survival and soluble immune mediators of immune checkpoint inhibitor-induced interstitial lung disease in patients with non-small cell lung cancer. Lung Cancer 2023; 184:107351. [PMID: 37639819 DOI: 10.1016/j.lungcan.2023.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Immune checkpoint inhibitor-related interstitial lung disease (ICI-ILD) is a serious adverse event frequently observed in patients with non-small cell lung cancer (NSCLC). We investigated the clinical effects and mechanism of action of ICI-ILD in NSCLC patients treated with ICI. METHODS We retrospectively screened patients with advanced or recurrent NSCLC who received PD-1/PD-L1 inhibitor monotherapy and examined the prognostic impact of ICI-ILD. In addition, we analyzed the levels of 72 different soluble immune mediators in pre-treatment plasma to explore possible mechanisms associated with the development of ICI-ILD. Furthermore, the relationships between soluble immune mediators associated with ICI-ILD development and survival were analyzed. RESULTS Of 141 patients with NSCLC, 25 (17.7%) developed ICI-ILD. Logistic regression analysis revealed that pre-treatment CXCL9, MMP-1, IL-6, and IL-19 levels were associated with ICI-ILD development. There were no significant differences in progression-free survival (PFS) and overall survival (OS) between patients with or without ICI-ILD. In patients with ICI-ILD, patients with lower grade ICI-ILD had better OS than those with higher-grade ICI-ILD. In ICI-ILD patients, there was a trend for patients with lower-grade ICI-ILD to have better PFS and OS than those with higher-grade ICI-ILD. Among four soluble immune mediators associated with ICI-ILD, a high level of IL-19 was significantly correlated with worse OS and PFS. CONCLUSION The identified soluble immune mediators, including CXCL9, MMP-1, IL-6, and IL-19, may be useful as biomarkers to associate with ICI-ILD development. Although we did not detect significant differences in PFS and OS between patients with and without ICI-ILD, PFS and OS were longer in those with lower-grade ICI-ILD than in patients with higher-grade ICI-ILD. Among biomarkers, IL-19 may be a causal and prognostic factor for ICI-ILD.
Collapse
Affiliation(s)
- Daiki Murata
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan.
| | - Kenta Murotani
- Biostatistics Center, Kurume University School of Medicine, Fukuoka, Japan
| | - Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Goushi Matama
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takaaki Tokito
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuro Sasada
- Cancer Vaccine and Immunotherapy Center and Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Kanagawa, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
161
|
Ma Y, Cui F, Li D, Wang J, Tang L, Xie J, Hu Y, Tian Y. Lifestyle, Genetic Susceptibility, and the Risk of Idiopathic Pulmonary Fibrosis: A Large Prospective Cohort Study. Chest 2023; 164:929-938. [PMID: 37059176 DOI: 10.1016/j.chest.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Lifestyle is an important contributor of age-related chronic disease, but the association between lifestyle and the risk of idiopathic pulmonary fibrosis (IPF) remains unknown. The extent to which genetic susceptibility modifies the effects of lifestyle on IPF also remains unclear. RESEARCH QUESTION Is there a joint effect or interaction of lifestyle and genetic susceptibility on the risk of developing IPF? STUDY DESIGN AND METHODS This study included 407,615 participants from the UK Biobank study. A lifestyle score and a polygenic risk score were constructed separately for each participant. Participants were then classified into three lifestyle categories and three genetic risk categories based on the corresponding score. Cox models were fitted to assess the association of lifestyle and genetic risk with the risk of incident IPF. RESULTS With favorable lifestyle as the reference group, intermediate lifestyle (hazard ratio, 1.384; 95% CI, 1.218-1.574) and unfavorable lifestyle (hazard ratio, 2.271; 95% CI, 1.852-2.785) were significantly associated with an increased risk of IPF. For the combined effect of lifestyle and polygenic risk score, participants with unfavorable lifestyle and high genetic risk had the highest risk of IPF (hazard ratio, 7.796; 95% CI, 5.482-11.086) compared with those with favorable lifestyle and low genetic risk. Moreover, approximately 32.7% (95% CI, 11.3-54.1) of IPF risk could be attributed to the interaction of an unfavorable lifestyle and high genetic risk. INTERPRETATION Exposure to unfavorable lifestyle significantly increased the risk of IPF, particularly in those with high genetic risk.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
162
|
Singh S, Wairkar S. Long-circulating thiolated chitosan nanoparticles of nintedanib with N-acetyl cysteine for treating idiopathic pulmonary fibrosis: In vitro assessment of cytotoxicity, antioxidant, and antifibrotic potential. Int J Pharm 2023; 644:123322. [PMID: 37591474 DOI: 10.1016/j.ijpharm.2023.123322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Nintedanib (NIN) is one of the FDA-approved tyrosine kinase inhibitor drugs used to treat idiopathic pulmonary fibrosis (IPF). This study aimed to formulate a long-circulating injection of Nintedanib to treat bedridden patients with IPF. Nintedanib was incorporated into chitosan nanoparticles (NIN-NP) via the ionic gelation method, and N-acetyl cysteine (NAC), a known antioxidant and mucolytic agent, was added to the NIN-NP (NAC-NIN-NP). The lyophilized formulation had a particle size of 174 nm, a polydispersity index of 0.511, and a zeta potential of 18.6 mV. The spherical nanoparticles were observed in transmission electron microscopy, whereas field emission scanning electron microscopy showed irregular clusters of NP. The thiolation of the chitosan in NAC-NIN-NP was confirmed by ATR-FTIR and NMR, which improved drug release profiles showing >90 % drug release that was 2.42-folds greater than NIN-NP lasting for five days. The DPPH assay showed that adding NAC increased the % inhibition of oxidation in blank-NP (from 54.59 % to 87.17 %) and NIN-NP (58.65 %-89.19 %). The MTT assay on A549 cells showed 67.57 % cell viability by NAC-NIN-NP with an IC50 value of 28 μg/mL. The NAC formulation reduced hydroxyproline content (56.77 μg/mL) compared to NIN-NP (69.48 μg/mL) in WI-38 cell lines. Meanwhile, the healthy cells count with NAC-NIN-NP was higher (5.104 × 103) than with NIN-NP (4.878 × 103). In Hoechst staining, no significant damage to DNA was observed by the drug or formulation. Therefore, NAC-NIN-NP could be a promising treatment option for IPF patients and can be studied further clinically.
Collapse
Affiliation(s)
- Sanskriti Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
163
|
Wu M, Wang Z, Shi X, Zan D, Chen H, Yang S, Ding F, Yang L, Tan P, Ma RZ, Wang J, Ma L, Ma Y, Jin J. TGFβ1-RCN3-TGFBR1 loop facilitates pulmonary fibrosis by orchestrating fibroblast activation. Respir Res 2023; 24:222. [PMID: 37710230 PMCID: PMC10500825 DOI: 10.1186/s12931-023-02533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) bears high mortality due to unclear pathogenesis and limited therapeutic options. Therefore, identifying novel regulators is required to develop alternative therapeutic strategies. METHODS The lung fibroblasts from IPF patients and Reticulocalbin 3 (RCN3) fibroblast-selective knockdown mouse model were used to determine the importance of Rcn3 in IPF; the epigenetic analysis and protein interaction assays, including BioID, were used for mechanistic studies. RESULTS Reticulocalbin 3 (RCN3) upregulation is associated with the fibrotic activation of lung fibroblasts from IPF patients and Rcn3 overexpression blunts the antifibrotic effects of pirfenidone and nintedanib. Moreover, repressing Rcn3 expression in mouse fibroblasts ameliorates bleomycin-induced lung fibrosis and pulmonary dysfunction in vivo. Mechanistically, RCN3 promotes fibroblast activation by maintaining persistent activation of TGFβ1 signalling via the TGFβ1-RCN3-TGFBR1 positive feedback loop, in which RCN3 upregulated by TGFβ1 exposure detains EZH2 (an epigenetic methyltransferase) in the cytoplasm through RCN3-EZH2 interaction, leading to the release of the EZH2-H3K27me3 epigenetic repression of TGFBR1 and the persistent expression of TGFBR1. CONCLUSIONS These findings introduce a novel regulating mechanism of TGFβ1 signalling in fibroblasts and uncover a critical role of the RCN3-mediated loop in lung fibrosis. RCN3 upregulation may cause resistance to IPF treatment and targeting RCN3 could be a novel approach to ameliorate pulmonary fibrosis.
Collapse
Affiliation(s)
- Mingting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoqian Shi
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Danni Zan
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hong Chen
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuqiao Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
| | - Fangping Ding
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Pingping Tan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Runlin Z Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
| | - Lishuang Ma
- Department of Neonatal Surgery, Children's Hospital of Capital Institute of Pediatrics, Peking Union Medical College, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Beijing, China.
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
164
|
Lv J, Gao H, Ma J, Liu J, Tian Y, Yang C, Li M, Zhao Y, Li Z, Zhang X, Zhu Y, Zhang J, Wu L. Dynamic atlas of immune cells reveals multiple functional features of macrophages associated with progression of pulmonary fibrosis. Front Immunol 2023; 14:1230266. [PMID: 37771586 PMCID: PMC10525351 DOI: 10.3389/fimmu.2023.1230266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a high mortality rate and unclarified aetiology. Immune response is elaborately regulated during the progression of IPF, but immune cells subsets are complicated which has not been detailed described during IPF progression. Therefore, in the current study, we sought to investigate the role of immune regulation by elaborately characterize the heterogeneous of immune cells during the progression of IPF. To this end, we performed single-cell profiling of lung immune cells isolated from four stages of bleomycin-induced pulmonary fibrosis-a classical mouse model that mimics human IPF. The results revealed distinct components of immune cells in different phases of pulmonary fibrosis and close communication between macrophages and other immune cells along with pulmonary fibrosis progression. Enriched signals of SPP1, CCL5 and CXCL2 were found between macrophages and other immune cells. The more detailed definition of the subpopulations of macrophages defined alveolar macrophages (AMs) and monocyte-derived macrophages (mo-Macs)-the two major types of primary lung macrophages-exhibited the highest heterogeneity and dynamic changes in expression of profibrotic genes during disease progression. Our analysis suggested that Gpnmb and Trem2 were both upregulated in macrophages and may play important roles in pulmonary fibrosis progression. Additionally, the metabolic status of AMs and mo-Macs varied with disease progression. In line with the published data on human IPF, macrophages in the mouse model shared some features regarding gene expression and metabolic status with that of macrophages in IPF patients. Our study provides new insights into the pathological features of profibrotic macrophages in the lung that will facilitate the identification of new targets for disease intervention and treatment of IPF.
Collapse
Affiliation(s)
- Jiaoyan Lv
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Haoxiang Gao
- Department of Automation, Ministry of Education (MOE) Key Laboratory of Bioinformatics, Bioinformatics Division and Centre for Synthetic & Systems Biology, BNRist, Tsinghua University, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jiachen Liu
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yujie Tian
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Chunyuan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mansheng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yue Zhao
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, China
| | - Zhimin Li
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, China
| | - Xuegong Zhang
- Department of Automation, Ministry of Education (MOE) Key Laboratory of Bioinformatics, Bioinformatics Division and Centre for Synthetic & Systems Biology, BNRist, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jianhong Zhang
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Li Wu
- Institute for Immunology, Tsinghua-Peking Joint Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
165
|
Mendoza N, Casas-Recasens S, Olvera N, Hernandez-Gonzalez F, Cruz T, Albacar N, Alsina-Restoy X, Frino-Garcia A, López-Saiz G, Robres L, Rojas M, Agustí A, Sellarés J, Faner R. Blood Immunophenotypes of Idiopathic Pulmonary Fibrosis: Relationship with Disease Severity and Progression. Int J Mol Sci 2023; 24:13832. [PMID: 37762135 PMCID: PMC10531459 DOI: 10.3390/ijms241813832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
(1) The role of the immune response in the pathogenesis of idiopathic pulmonary fibrosis (IPF) remains controversial. We hypothesized that peripheral blood immune phenotypes will be different in IPF patients and may relate to the disease severity and progression. (2) Whole blood flow cytometry staining was performed at diagnosis in 32 IPF patients, and in 32 age- and smoking-matched healthy controls. Thirty-one IPF patients were followed up for one year and categorized as stable or progressors based on lung function, deterioration and/or death. At 18-60 months, immunophenotypes were characterized again. (3) The main results showed that: (1) compared to matched controls, at diagnosis, patients with IPF showed more neutrophils, CD8+HLA-DR+ and CD8+CD28- T cells, and fewer B lymphocytes and naïve T cells; (2) in IPF, circulating neutrophils, eosinophils and naïve T cells were associated with lung function abnormalities; (3) patients whose disease progressed during the 12 months of follow-up showed evidence of cytotoxic dysregulation, with increased CD8+CD28- T cells, decreased naïve T cells and an inverted CD4/CD8 ratio at baseline; and (4) blood cell alterations were stable over time in survivors. (4) IPF is associated with abnormalities in circulating immune cells, particularly in the cytotoxic cell domain. Patients with progressive IPF, despite antifibrotic therapy, present an over-activated and exhausted immunophenotype at diagnosis, which is maintained over time.
Collapse
Affiliation(s)
- Nuria Mendoza
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Biomedicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sandra Casas-Recasens
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
| | - Núria Olvera
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Fernanda Hernandez-Gonzalez
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Biomedicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Tamara Cruz
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
| | - Núria Albacar
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Xavier Alsina-Restoy
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Alejandro Frino-Garcia
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Gemma López-Saiz
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Lucas Robres
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
| | - Mauricio Rojas
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Alvar Agustí
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Biomedicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Jacobo Sellarés
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Rosa Faner
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Biomedicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
166
|
Luo YL, Li Y, Zhou W, Wang SY, Liu YQ. Inhibition of LPA-LPAR1 and VEGF-VEGFR2 Signaling in IPF Treatment. Drug Des Devel Ther 2023; 17:2679-2690. [PMID: 37680863 PMCID: PMC10482219 DOI: 10.2147/dddt.s415453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Due to the complex mechanism and limited treatments available for pulmonary fibrosis, the development of targeted drugs or inhibitors based on their molecular mechanisms remains an important strategy for prevention and treatment. In this paper, the downstream signaling pathways mediated by VEGFR and LPAR1 in pulmonary cells and the role of these pathways in pulmonary fibrosis, as well as the current status of drug research on the targets of LPAR1 and VEGFR2, are described. The mechanism by which these two pathways regulate vascular leakage and collagen deposition leading to the development of pulmonary fibrosis are analyzed, and the mutual promotion of the two pathways is discussed. Here we propose the development of drugs that simultaneously target LPAR1 and VEGFR2, and discuss the important considerations in targeting and safety.
Collapse
Affiliation(s)
- Ya-Li Luo
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yan Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Wen Zhou
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Si-Yu Wang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong-Qi Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
167
|
Bao S, Zou Y, Firempong CK, Feng Y, Yu Y, Wang Y, Dai H, Mo W, Sun C, Liu H. Preparation and evaluation of sustained release pirfenidone-loaded microsphere dry powder inhalation for treatment of idiopathic pulmonary fibrosis. Eur J Pharm Sci 2023; 188:106509. [PMID: 37356463 DOI: 10.1016/j.ejps.2023.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Pirfenidone (PFND) is a recommended oral drug used to treat idiopathic pulmonary fibrosis, but have low bioavailability and high hepatotoxicity. The study, therefore, seeks to improve the therapeutic activities of the drug via increased bioavailability and reduced associated side effects by developing a novel drug delivery system. The electrostatic spray technology was used to prepare a sustained release pirfenidone-loaded microsphere dry powder inhalation with PEG-modified chitosan (PFND-mPEG-CS-MS). The entrapment efficiency, drug loading, and in vitro cumulative drug release rate (at 24 h and with a sustained release effect) of PFND-mPEG-CS-MS were 77.35±3.01%, 11.45±0.64%, and 90.4%, respectively. The Carr's index of PFND-mPEG-CS-MS powder was 17.074±2.163% with a theoretical mass median aerodynamic diameter (MMADt) of 0.99±0.07 μm, and a moisture absorption weight gain rate (Rw) of 4.61±0.72%. The emptying rate, pulmonary deposition rate (fine particle fraction) and actual mass median aerodynamic diameter (MMADa) were 90%∼95%, 48.72±7.04% and 3.10±0.16 μm, respectively. MTT bioassay showed that mPEG-CS-MS (200 μg/mL) had good biocompatibility (RGR = 90.25%) and PFND-mPEG-CS-MS (200 μg/mL) had significant inhibitory activity (RGR = 49.82%) on fibroblast growth. The pharmacokinetic data revealed that the t1/2 (5.02 h) and MRT (10.66 h) of PFND-mPEG-CS-MS were prolonged compared with the free PFND (t1/2, 1.67 h; MRT, 2.71 h). The pharmacodynamic results also showed that the formulated-drug group had slight pathological changes, lower lung hydroxyproline content, and reduced hepatotoxicity compared with the free-drug group. The PFND-mPEG-CS-MS further significantly down-regulated TGF-β cytokines, Collagen I, and α-SMA protein expression levels compared with the free drug. The findings indicated that the PFND-mPEG-CS-MS had a good sustained release effect, enhanced bioavailability, decreased toxicity, and increased anti-fibrotic activities.
Collapse
Affiliation(s)
- Shixue Bao
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Zou
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Suzhou Zelgen Biopharmaceutical Co., Ltd, Kunshan, 215300, PR China
| | | | - Yingshu Feng
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang, 212028, PR China; Postdoctoral Programme of JiangSu CTQJ Pharmaceutical Co., Ltd., Huaian, 223001, PR China
| | - Yang Yu
- Jiang Sunan Pharmaceutical Industrial CO., Ltd, Zhenjiang, 212400, PR China
| | - Ying Wang
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huiying Dai
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Weiwei Mo
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Changshan Sun
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Jiang Sunan Pharmaceutical Industrial CO., Ltd, Zhenjiang, 212400, PR China; Jiangmen Hongxiao Biomedical Technology Co., Ltd, Jiangmen, 529040, PR China.
| |
Collapse
|
168
|
Liang H, Zhang L, Rong J. Potential roles of exosomes in the initiation and metastatic progression of lung cancer. Biomed Pharmacother 2023; 165:115222. [PMID: 37549459 DOI: 10.1016/j.biopha.2023.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Lung cancer (LC) incidence and mortality continue to increase annually worldwide. LC is insidious and readily metastasizes and relapses. Except for its early diagnosis and surgical resection, there is no effective cure for advanced metastatic LC, and the prognosis remains dismal. Exosomes, a class of nano-sized extracellular vesicles produced by healthy or diseased cells, are coated with a bilayer lipid membrane and contain various functional molecules such as proteins, lipids, and nucleic acids. They can be used for intracellular or intercellular signaling or the transportation of biological substances. A growing body of evidence supports that exosomes play multiple crucial roles in the occurrence and metastatic progression of many malignancies, including LC. The elucidation of the potential roles of exosomes in the initiation, invasion, and metastasis of LC and their underlying molecular mechanisms may contribute to improved early diagnosis and treatment.
Collapse
Affiliation(s)
- Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China
| | - Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, No. 210 Baita Street, Hunnan District, Shenyang 110001, PR China.
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China.
| |
Collapse
|
169
|
Gan C, Wang Y, Xiang Z, Liu H, Tan Z, Xie Y, Yao Y, Ouyang L, Gong C, Ye T. Niclosamide-loaded nanoparticles (Ncl-NPs) reverse pulmonary fibrosis in vivo and in vitro. J Adv Res 2023; 51:109-120. [PMID: 36347425 PMCID: PMC10491968 DOI: 10.1016/j.jare.2022.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF), a life-threatening interstitial lung disease, is characterized by excessive activation and proliferation of fibroblasts and epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) accompanied by a large amount of extracellular matrix aggregation. There are no therapies to reverse pulmonary fibrosis, and nintedanib and pirfenidone could only slow down the decline of lung function of IPF patients and delay their survival time. Niclosamide (Ncl) is an antihelminthic drug approved by FDA, which has been reported to have pleiotropic pharmacological activities in recent years, but it's almost complete insolubility in water limits its clinical application. OBJECTIVES To improve the water solubility of Ncl, explore its ability to reverse BLM-induced pulmonary fibrosis and its specific mechanism of action. METHODS The Niclosamide-loaded nanoparticles (Ncl-NPs) were formed by emulsification solvent evaporation method. A mouse model induced by bleomycin (BLM) was established to evaluate its effects and mechanisms of inhibiting and reversing fibrosis in vivo. The cell models treated by transforming growth factor-β1 (TGF-β1) were used to examine the mechanism of Ncl-NPs inhibiting fibrosis in vitro. Flow cytometry, IHC, IL-4-induced macrophage model and co-culture system were used to assess the effect of Ncl-NPs on M2 polarization of macrophages. RESULTS The Ncl-NPs improved the poor water solubility of Ncl. The lower dose of Ncl-NPs (2.5 mg/kg) showed the same effect of reversing established pulmonary fibrosis as free Ncl (5 mg/kg). Mechanistic studies revealed that Ncl-NPs blocked TGF-β/Smad and signaling transducer and activator of transcription 3 (Stat3) signaling pathways and inhibited the M2 polarization of macrophages. Additionally, H&E staining of the tissues initially showed the safety of Ncl-NPs. CONCLUSION These results indicate Ncl-NPs may serve as a new idea for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhongzheng Xiang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuqin Yao
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyang Gong
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
170
|
李 明, 孙 美, 贾 渊, 任 徽, 刘 含. [Biomechanical properties of epithelial mesenchymal transition in idiopathic pulmonary fibrosis]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:632-637. [PMID: 37666752 PMCID: PMC10477379 DOI: 10.7507/1001-5515.202206016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/02/2023] [Indexed: 09/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scar-forming disease with a high mortality rate that has received widespread attention. Epithelial mesenchymal transition (EMT) is an important part of the pulmonary fibrosis process, and changes in the biomechanical properties of lung tissue have an important impact on it. In this paper, we summarize the changes in the biomechanical microenvironment of lung tissue in IPF-EMT in recent years, and provide a systematic review on the effects of alterations in the mechanical microenvironment in pulmonary fibrosis on the process of EMT, the effects of mechanical factors on the behavior of alveolar epithelial cells in EMT and the biomechanical signaling in EMT, in order to provide new references for the research on the prevention and treatment of IPF.
Collapse
Affiliation(s)
- 明艳 李
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
| | - 美好 孙
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
| | - 渊博 贾
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
| | - 徽 任
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
- 西安交通大学 仿生工程与生物力学中心(西安 710049)Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - 含 刘
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
| |
Collapse
|
171
|
Xu M, Zhao C, Song H, Wang C, Li H, Qiu X, Jing H, Zhuang W. Inhibitory effects of Schisandrin C on collagen behavior in pulmonary fibrosis. Sci Rep 2023; 13:13475. [PMID: 37596361 PMCID: PMC10439186 DOI: 10.1038/s41598-023-40631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary fibrosis (PF) is a serious progressive fibrotic disease that is characterized by excessive accumulation of extracellular matrix (ECM), thus resulting in stiff lung tissues. Lysyl oxidase (LOX) is an enzyme involved in fibrosis by catalyzing collagen cross-linking. Studies found that the ingredients in schisandra ameliorated bleomycin (BLM)-induced PF, but it is unknown whether the anti-PF of schisandra is related to LOX. In this study, we established models of PF including a mouse model stimulated by BLM and a HFL1 cell model induced by transforming growth factor (TGF)-β1 to evaluate the inhibition effects of Schisandrin C (Sch C) on PF. We observed that Sch C treatment decreased pulmonary indexes compared to control group. Treatment of Sch C showed a significant reduction in the accumulation of ECM as evidenced by decreased expressions of α-SMA, FN, MMP2, MMP9, TIMP1 and collagen proteins such as Col 1A1, and Col 3A1. In addition, the expression of LOX in the lung tissue of mice after Sch C treatment was effectively decreased compared with the MOD group. The inhibition effects in vitro were consistent with those in vivo. Mechanistic studies revealed that Sch C significantly inhibited TGF-β1/Smad2/3 and TNF-α/JNK signaling pathways. In conclusion, our data demonstrated that Sch C significantly ameliorated PF in vivo and vitro, which may play an important role by reducing ECM deposition and inhibiting the production of LOX.
Collapse
Affiliation(s)
- Mingchen Xu
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Chenghe Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Haiming Song
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Xudong Qiu
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - He Jing
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China.
| |
Collapse
|
172
|
Wei J, Zhan J, Ji H, Xu Y, Xu Q, Zhu X, Liu Y. Fibroblast Upregulation of Vitamin D Receptor Represents a Self-Protective Response to Limit Fibroblast Proliferation and Activation during Pulmonary Fibrosis. Antioxidants (Basel) 2023; 12:1634. [PMID: 37627629 PMCID: PMC10451996 DOI: 10.3390/antiox12081634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Dysregulation of vitamin D receptor (VDR) is implicated in chronic obstructive pulmonary disease. However, whether VDR dysregulation contributes to the development of pulmonary fibrosis remains largely unknown. Analysis of bulk and single-cell RNA profiling datasets revealed VDR upregulation in lung fibroblasts from patients with pulmonary fibrosis or fibrotic mice, which was validated in lung fibroblasts from bleomycin-exposed mice and bleomycin-treated fibroblasts. Stable VDR knockdown promoted, whereas the VDR agonist paricalcitol suppressed lung fibroblast proliferation and activation. Gene set enrichment analysis (GSEA) showed that the JAK/STAT pathway and unfolded protein response (UPR), a process related to endoplasmic reticulum (ER) stress, were enriched in lung fibroblasts of fibrotic lungs. Stable VDR knockdown stimulated, but paricalcitol suppressed ER stress and JAK1/STAT3 activation in lung fibroblasts. The STAT3 inhibitor blocked bleomycin- or stable VDR knockdown-induced ER stress. Paricalcitol inhibited the bleomycin-induced enrichment of STAT3 to the ATF6 promoter, thereby suppressing ATF6 expression in fibroblasts. Paricalcitol or intrapulmonary VDR overexpression inactivated JAK1/STAT3 and suppressed ER stress in bleomycin-treated mice, thus resulting in the inhibition of fibroblast proliferation and activation. Collectively, this study suggests that fibroblast VDR upregulation may be a self-protective response to limit fibroblast proliferation and activation during pulmonary fibrosis by suppressing the JAK1/STAT3/ER stress pathway.
Collapse
Affiliation(s)
- Juan Wei
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Junhui Zhan
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Hui Ji
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Yitong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Qingfeng Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China
| | - Yujian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| |
Collapse
|
173
|
Barkas GI, Kotsiou OS. The Role of Osteopontin in Respiratory Health and Disease. J Pers Med 2023; 13:1259. [PMID: 37623509 PMCID: PMC10455105 DOI: 10.3390/jpm13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The biological functions of osteopontin (OPN) are diverse and specific to physiological and pathophysiological conditions implicated in inflammation, biomineralization, cardiovascular diseases, cellular viability, cancer, diabetes, and renal stone disease. We aimed to present the role of OPN in respiratory health and disease. OPN influences the immune system and is a chemo-attractive protein correlated with respiratory disease severity. There is evidence that OPN can advance the disease stage associated with its fibrotic, inflammatory, and immune functions. OPN contributes to eosinophilic airway inflammation. OPN can destroy the lung parenchyma through its neutrophil influx and fibrotic mechanisms, linking OPN to at least one of the two major chronic obstructive pulmonary disease phenotypes. Respiratory diseases that involve irreversible lung scarring, such as idiopathic pulmonary disease, are linked to OPN, with protein levels being overexpressed in individuals with severe or advanced stages of the disorders and considerably lower levels in those with less severe symptoms. OPN plays a significant role in lung cancer progression and metastasis. It is also implicated in the pathogenesis of pulmonary hypertension, coronavirus disease 2019, and granuloma generation.
Collapse
Affiliation(s)
- Georgios I. Barkas
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
| | - Ourania S. Kotsiou
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
174
|
Mohammed OA, Abdel-Reheim MA, Saleh LA, Alamri MMS, Alfaifi J, Adam MIE, Farrag AA, AlQahtani AAJ, BinAfif WF, Hashish AA, Abdel-Ghany S, Elmorsy EA, El-wakeel HS, Doghish AS, Hamad RS, Saber S. Alvespimycin Exhibits Potential Anti-TGF-β Signaling in the Setting of a Proteasome Activator in Rats with Bleomycin-Induced Pulmonary Fibrosis: A Promising Novel Approach. Pharmaceuticals (Basel) 2023; 16:1123. [PMID: 37631038 PMCID: PMC10458542 DOI: 10.3390/ph16081123] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and life-threatening lung disease of unknown etiology presenting only a few treatment options. TGF-β signaling orchestrates a cascade of events driving pulmonary fibrosis (PF). Notably, recent research has affirmed the augmentation of TGF-β receptor (TβR) signaling via HSP90 activation. HSP90, a molecular chaperone, adeptly stabilizes and folds TβRs, thus intricately regulating TGF-β1 signaling. Our investigation illuminated the impact of alvespimycin, an HSP90 inhibitor, on TGF-β-mediated transcriptional responses by inducing destabilization of TβRs. This outcome stems from the explicit interaction of TβR subtypes I and II with HSP90, where they are clients of this cellular chaperone. It is worth noting that regulation of proteasome-dependent degradation of TβRs is a critical standpoint in the termination of TGF-β signal transduction. Oleuropein, the principal bioactive compound found in Olea europaea, is acknowledged for its role as a proteasome activator. In this study, our aim was to explore the efficacy of a combined therapy involving oleuropein and alvespimycin for the treatment of PF. We employed a PF rat model that was induced by intratracheal bleomycin infusion. The application of this dual therapy yielded a noteworthy impediment to the undesired activation of TGF-β/mothers against decapentaplegic homologs 2 and 3 (SMAD2/3) signaling. Consequently, this novel combination showcased improvements in both lung tissue structure and function while also effectively restraining key fibrosis markers such as PDGF-BB, TIMP-1, ACTA2, col1a1, and hydroxyproline. On a mechanistic level, our findings unveiled that the antifibrotic impact of this combination therapy likely stemmed from the enhanced degradation of both TβRI and TβRII. In conclusion, the utilization of proteasomal activators in conjunction with HSP90 inhibitors ushers in a promising frontier for the management of PF.
Collapse
Affiliation(s)
- Osama A. Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | | | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Masoud I. E. Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Alshaimaa A. Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Unit of Anatomy, Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Abdullah A. Hashish
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.A.-G.); (E.A.E.)
| | - Elsayed A. Elmorsy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.A.-G.); (E.A.E.)
- Pharmacology and Therapeutics Department, Qassim College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hend S. El-wakeel
- Physiology Department, Benha Faculty of Medicine, Benha University, Benha 13518, Egypt;
- Physiology Department, Albaha Faculty of Medicine, Albaha University, Al Baha 65799, Saudi Arabia
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt;
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11231, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
175
|
Meyer FEU, Santos GL, Doan TP, DeGrave AN, Bues B, Lutz S. Pirfenidone affects human cardiac fibroblast proliferation and cell cycle activity in 2D cultures and engineered connective tissues. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1687-1699. [PMID: 36800014 PMCID: PMC10338590 DOI: 10.1007/s00210-023-02421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
The anti-fibrotic drug pirfenidone (PFD) is currently in clinical testing for the treatment of heart failure with preserved ejection fraction; however, its effects on human cardiac cells have not been fully investigated. Therefore, we aimed to characterize the impact of PFD on human cardiac fibroblasts (CF) in 2D culture as well as in 3D-engineered connective tissues (ECT). We analyzed proliferation by automated cell counting and changes in signaling by immunoblotting. We generated ECT with different geometries to modify the cellular phenotype and investigated the effects of PFD on cell number and viability as well as on cell cycle activity. We further studied its effect on ECT compaction, contraction, stiffening, and strain resistance by ECT imaging, pole deflection analysis, and ultimate tensile testing. Our data demonstrate that PFD inhibits human CF proliferation in a concentration-dependent manner with an IC50 of 0.43 mg/ml and its anti-mitogenic effect was further corroborated by an inhibition of MEK1/2, ERK1/2, and riboprotein S6 (rpS6) phosphorylation. In ECT, a lower cell cycle activity was found in PFD-treated ECT and fewer cells resided in these ECT after 5 days of culture compared to the control. Moreover, ECT compaction as well as ECT contraction was impaired. Consequently, biomechanical analyses demonstrated that PFD reduced the stiffness of ECT. Taken together, our data demonstrate that the anti-fibrotic action of PFD on human CF is based on its anti-mitogenic effect in 2D cultures and ECT.
Collapse
Affiliation(s)
| | - Gabriela Leao Santos
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- Randall Centre for Cell and Molecular Biophysics, Kings College London, London, UK
- DZHK (German Centre for Cardiovascular Research) Partner Site, Goettingen, Germany
| | - Thao Phuong Doan
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
| | - Alisa Nicole DeGrave
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site, Goettingen, Germany
| | - Bastian Bues
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany.
- DZHK (German Centre for Cardiovascular Research) Partner Site, Goettingen, Germany.
| |
Collapse
|
176
|
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, Tu Y, Gao Y. The application of Aptamer in biomarker discovery. Biomark Res 2023; 11:70. [PMID: 37468977 DOI: 10.1186/s40364-023-00510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.
Collapse
Affiliation(s)
- Yongshu Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| | - Winnie Wailing Tam
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomic, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhichao Xue
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Weijing Wang
- Shantou University Medical College, Shantou, China
| | - Yongyi Li
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, China.
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| |
Collapse
|
177
|
Li W, Shi X, Lv C, Hu H, Sundar IK, Qin S. Editorial: Applications of medicine in treating pulmonary fibrosis. Front Pharmacol 2023; 14:1212681. [PMID: 37469878 PMCID: PMC10352825 DOI: 10.3389/fphar.2023.1212681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xin Shi
- Shandong Technology and Business University, Yantai, China
| | - Changjun Lv
- Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Haibo Hu
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
178
|
Ibhagui O, Li D, Han H, Peng G, Meister ML, Gui Z, Qiao J, Salarian M, Dong B, Yuan Y, Xu Y, Yang H, Tan S, Satyanarayana G, Xue S, Turaga RC, Sharma M, Hai Y, Meng Y, Hekmatyar K, Sun P, Sica G, Ji X, Liu ZR, Yang JJ. Early Detection and Staging of Lung Fibrosis Enabled by Collagen-Targeted MRI Protein Contrast Agent. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:268-285. [PMID: 37388961 PMCID: PMC10302889 DOI: 10.1021/cbmi.3c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 07/01/2023]
Abstract
Chronic lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), are major leading causes of death worldwide and are generally associated with poor prognoses. The heterogeneous distribution of collagen, mainly type I collagen associated with excessive collagen deposition, plays a pivotal role in the progressive remodeling of the lung parenchyma to chronic exertional dyspnea for both IPF and COPD. To address the pressing need for noninvasive early diagnosis and drug treatment monitoring of pulmonary fibrosis, we report the development of human collagen-targeted protein MRI contrast agent (hProCA32.collagen) to specifically bind to collagen I overexpressed in multiple lung diseases. When compared to clinically approved Gd3+ contrast agents, hProCA32.collagen exhibits significantly better r1 and r2 relaxivity values, strong metal binding affinity and selectivity, and transmetalation resistance. Here, we report the robust detection of early and late-stage lung fibrosis with stage-dependent MRI signal-to-noise ratio (SNR) increase, with good sensitivity and specificity, using a progressive bleomycin-induced IPF mouse model. Spatial heterogeneous mapping of usual interstitial pneumonia (UIP) patterns with key features closely mimicking human IPF, including cystic clustering, honeycombing, and traction bronchiectasis, were noninvasively detected by multiple MR imaging techniques and verified by histological correlation. We further report the detection of fibrosis in the lung airway of an electronic cigarette-induced COPD mouse model, using hProCA32.collagen-enabled precision MRI (pMRI), and validated by histological analysis. The developed hProCA32.collagen is expected to have strong translational potential for the noninvasive detection and staging of lung diseases, and facilitating effective treatment to halt further chronic lung disease progression.
Collapse
Affiliation(s)
- Oluwatosin
Y. Ibhagui
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Dongjun Li
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hongwei Han
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Guangda Peng
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Maureen L. Meister
- Department
of Nutrition, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zongxiang Gui
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jingjuan Qiao
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
- InLighta
Biosciences, Atlanta, Georgia 30303, United States
| | - Mani Salarian
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bin Dong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yi Yuan
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yiting Xu
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hua Yang
- Department
of Ophthalmology, Emory University, Atlanta, Georgia 30322, United States
| | - Shanshan Tan
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ganesh Satyanarayana
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shenghui Xue
- InLighta
Biosciences, Atlanta, Georgia 30303, United States
| | - Ravi Chakra Turaga
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Malvika Sharma
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yan Hai
- Department
of Statistics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuguang Meng
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
- Emory
National Primate Research Center, Emory
University, Atlanta, Georgia 30329, United States
| | - Khan Hekmatyar
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Phillip Sun
- Emory
National Primate Research Center, Emory
University, Atlanta, Georgia 30329, United States
| | - Gabriel Sica
- Winship
Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Xiangming Ji
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhi-ren Liu
- Department
of Nutrition, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jenny J. Yang
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
- InLighta
Biosciences, Atlanta, Georgia 30303, United States
| |
Collapse
|
179
|
Jayant G, Kuperberg S, Somnay K, Wadgaonkar R. The Role of Sphingolipids in Regulating Vascular Permeability in Idiopathic Pulmonary Fibrosis. Biomedicines 2023; 11:1728. [PMID: 37371823 DOI: 10.3390/biomedicines11061728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease that causes scarring and fibrotic transformation of the lung parenchyma, resulting in the progressive loss of respiratory function and, often, death. Current treatments that target profibrotic factors can slow the rate of progression but are unable to ultimately stop it. In the past decade, many studies have shown that increased vascular permeability may be both a predictive and perpetuating factor in fibrogenesis. Consequently, there is a search for therapeutic targets to try and modulate vascular permeability in fibrotic lungs. One such class of targets that show great promise is sphingolipids. Sphingolipids are common in cell membranes and are increasingly recognized as critical to many cell signaling pathways, including those that affect the integrity of the vascular endothelial barrier. In this focused review we look at sphingolipids, particularly the sphingosine-1-phosphate (S1P) axis and its effects on vascular permeability, and how those effects may affect the pathogenesis of IPF. We further examine existing S1P modulators and their potential efficacy as therapeutics for IPF.
Collapse
Affiliation(s)
- Girish Jayant
- SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA
| | | | - Kaumudi Somnay
- NY Presbyterian Hospital Queens, New York, NY 11355, USA
| | - Raj Wadgaonkar
- SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA
| |
Collapse
|
180
|
Liu J, Gao D, Ding Q, Zhang B, Zhu W, Shi Y. Sparganii Rhizoma alleviates pulmonary fibrosis by inhibiting fibroblasts differentiation and epithelial-mesenchymal transition mediated by TGF-β1/ Smad2/3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116305. [PMID: 36878395 DOI: 10.1016/j.jep.2023.116305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF), a lethal lung disease, can lead to structural destruction of the alveoli until death. Sparganii Rhizoma (SR), primarily distributed in East Asia, has been used clinically for hundreds of years against organ fibrosis and inflammation. AIM OF THE STUDY We intended to verify the effect of SR alleviate PF and further explore mechanisms. METHODS Murine model of PF was established by endotracheal infusion of bleomycin. We detected the anti-PF effect of SR through lung coefficient, hydroxyproline content, lung function and pathological staining. Then, we used Western Blot and RT-PCR to verify the mechanism. In vitro experiments, MRC-5 and BEAS-2B were induced to phenotypic transformation by TGF-β1 and then RT-PCR, WB and IF were conducted to verify the effect of SR. RESULTS SR significantly reduced BLM-induced PF in mice, improved lung function, slowed the degree of lung tissue lesions, and reduced collagen deposition. SR alleviated PF by inhibiting fibroblasts differentiation and epithelial-mesenchymal transition. In vivo studies explored the mechanism and found that it was related to TGF-β1/Smad2/3 pathway. CONCLUSIONS Our research proved SR could effectively treat PF, providing a fresh idea and approach for the treatment of PF with traditional Chinese medicine.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongyang Gao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qi Ding
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenxiang Zhu
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| |
Collapse
|
181
|
Lin Y, Lai X, Huang S, Pu L, Zeng Q, Wang Z, Huang W. Identification of diagnostic hub genes related to neutrophils and infiltrating immune cell alterations in idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1078055. [PMID: 37334348 PMCID: PMC10272521 DOI: 10.3389/fimmu.2023.1078055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background There is still a lack of specific indicators to diagnose idiopathic pulmonary fibrosis (IPF). And the role of immune responses in IPF is elusive. In this study, we aimed to identify hub genes for diagnosing IPF and to explore the immune microenvironment in IPF. Methods We identified differentially expressed genes (DEGs) between IPF and control lung samples using the GEO database. Combining LASSO regression and SVM-RFE machine learning algorithms, we identified hub genes. Their differential expression were further validated in bleomycin-induced pulmonary fibrosis model mice and a meta-GEO cohort consisting of five merged GEO datasets. Then, we used the hub genes to construct a diagnostic model. All GEO datasets met the inclusion criteria, and verification methods, including ROC curve analysis, calibration curve (CC) analysis, decision curve analysis (DCA) and clinical impact curve (CIC) analysis, were performed to validate the reliability of the model. Through the Cell Type Identification by Estimating Relative Subsets of RNA Transcripts algorithm (CIBERSORT), we analyzed the correlations between infiltrating immune cells and hub genes and the changes in diverse infiltrating immune cells in IPF. Results A total of 412 DEGs were identified between IPF and healthy control samples, of which 283 were upregulated and 129 were downregulated. Through machine learning, three hub genes (ASPN, SFRP2, SLCO4A1) were screened. We confirmed their differential expression using pulmonary fibrosis model mice evaluated by qPCR, western blotting and immunofluorescence staining and analysis of the meta-GEO cohort. There was a strong correlation between the expression of the three hub genes and neutrophils. Then, we constructed a diagnostic model for diagnosing IPF. The areas under the curve were 1.000 and 0.962 for the training and validation cohorts, respectively. The analysis of other external validation cohorts, as well as the CC analysis, DCA, and CIC analysis, also demonstrated strong agreement. There was also a significant correlation between IPF and infiltrating immune cells. The frequencies of most infiltrating immune cells involved in activating adaptive immune responses were increased in IPF, and a majority of innate immune cells showed reduced frequencies. Conclusion Our study demonstrated that three hub genes (ASPN, SFRP2, SLCO4A1) were associated with neutrophils, and the model constructed with these genes showed good diagnostic value in IPF. There was a significant correlation between IPF and infiltrating immune cells, indicating the potential role of immune regulation in the pathological process of IPF.
Collapse
Affiliation(s)
- Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaojie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lvya Pu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qihao Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
182
|
Sun HN, Ren CX, Lee DH, Wang WH, Guo XY, Hao YY, Wang XM, Zhang HN, Xiao WQ, Li N, Cong J, Han YH, Kwon T. PRDX1 negatively regulates bleomycin-induced pulmonary fibrosis via inhibiting the epithelial-mesenchymal transition and lung fibroblast proliferation in vitro and in vivo. Cell Mol Biol Lett 2023; 28:48. [PMID: 37268886 DOI: 10.1186/s11658-023-00460-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a major category of end-stage changes in lung diseases, characterized by lung epithelial cell damage, proliferation of fibroblasts, and accumulation of extracellular matrix. Peroxiredoxin 1 (PRDX1), a member of the peroxiredoxin protein family, participates in the regulation of the levels of reactive oxygen species in cells and various other physiological activities, as well as the occurrence and development of diseases by functioning as a chaperonin. METHODS Experimental methods including MTT assay, morphological observation of fibrosis, wound healing assay, fluorescence microscopy, flow cytometry, ELISA, western blot, transcriptome sequencing, and histopathological analysis were used in this study. RESULTS PRDX1 knockdown increased ROS levels in lung epithelial cells and promoted epithelial-mesenchymal transition (EMT) through the PI3K/Akt and JNK/Smad signalling pathways. PRDX1 knockout significantly increased TGF-β secretion, ROS production, and cell migration in primary lung fibroblasts. PRDX1 deficiency also increased cell proliferation, cell cycle circulation, and fibrosis progression through the PI3K/Akt and JNK/Smad signalling pathways. BLM treatment induced more severe pulmonary fibrosis in PRDX1-knockout mice, mainly through the PI3K/Akt and JNK/Smad signalling pathways. CONCLUSIONS Our findings strongly suggest that PRDX1 is a key molecule in BLM-induced lung fibrosis progression and acts through modulating EMT and lung fibroblast proliferation; therefore, it may be a therapeutic target for the treatment of BLM-induced lung fibrosis.
Collapse
Affiliation(s)
- Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China.
| | - Chen-Xi Ren
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Dong Hun Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Wei-Hao Wang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiao-Yu Guo
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Xiao-Ming Wang
- Yabian Academy of Agricultural Science, Longjing, Jilin, 1334000, China
| | - Hui-Na Zhang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Wan-Qiu Xiao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Nan Li
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Jie Cong
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33 Neongme-Gil, Ibam-Myeon, Jeongeup-Si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
183
|
Hong JR, Jin L, Zhang CY, Zhong WJ, Yang HH, Wang GM, Ma SC, Guan CX, Li Q, Zhou Y. Mitochondrial citrate accumulation triggers senescence of alveolar epithelial cells contributing to pulmonary fibrosis in mice. Heliyon 2023; 9:e17361. [PMID: 37416635 PMCID: PMC10320039 DOI: 10.1016/j.heliyon.2023.e17361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of pulmonary fibrosis (PF). However, the exact mechanism underlying AEC senescence during PF remains poorly understood. Here, we reported an unrecognized mechanism for AEC senescence during PF. We found that, in bleomycin (BLM)-induced PF mice, the expressions of isocitrate dehydrogenase 3α (Idh3α) and citrate carrier (CIC) were significantly down-regulated in the lungs, which could result in mitochondria citrate (citratemt) accumulation in our previous study. Notably, the down-regulation of Idh3α and CIC was related to senescence. The mice with AECs-specific Idh3α and CIC deficiency by adenoviral vector exhibited spontaneous PF and senescence in the lungs. In vitro, co-inhibition of Idh3α and CIC with shRNA or inhibitors triggered the senescence of AECs, indicating that accumulated citratemt triggers AEC senescence. Mechanistically, citratemt accumulation impaired the mitochondrial biogenesis of AECs. In addition, the senescence-associated secretory phenotype from senescent AECs induced by citratemt accumulation activated the proliferation and transdifferentiation of NIH3T3 fibroblasts into myofibroblasts. In conclusion, we show that citratemt accumulation would be a novel target for protection against PF that involves senescence.
Collapse
Affiliation(s)
- Jie-Ru Hong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Guan-Ming Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Sheng-Chao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- The School of Basic Medical Sciences, Ningxia Medical University Yinchuan 750004, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Qing Li
- Department of Physiology, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
184
|
Shi H, Deng L, Zhou Y, Yu H, Huang X, Chen M, Lei Y, Dong J. Network pharmacology and experiments in vivo and in vitro reveal that the Jia-Wei-Bu-Shen-Yi-Qi formula (JWBSYQF) and its active ingredient baicalein ameliorate BLM-induced lung fibrosis in mice via PI3K/Akt signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023:116691. [PMID: 37247682 DOI: 10.1016/j.jep.2023.116691] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jia-Wei-Bu-Shen-Yi-Qi formula (JWBSYQF), a classical traditional Chinese herbal formula consisting of five herbs, is used clinically in China to treat inflammatory lung diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Its mechanism for treating asthma and COPD has been reported, however, how it works against IPF remains unclear. RESEARCH PURPOSE Our study aims to observe the therapeutic effect of JWBSYQF on pulmonary fibrosis and further identify the potential active ingredients and molecular pathways. RESEARCH METHODS In this study, we used a bleomycin-induced mouse model to investigate the therapeutic effect of JWBSYQF on pulmonary fibrosis. To further explore the potential effective ingredients and molecular pathways, we used the network pharmacology approach to construct a drug-ingredient-target network of JWBSYQF. Then, the common target set was established for JWBSYQF, fibroblast, and lung fibrosis. Analyses of the KEGG pathway, GO enrichment, and network topology were performed to identify key biological processes and molecular pathways for the common targets. Finally, a TGF-β-induced NIH/3T3 proliferation and activation model was used to validate the possible active ingredients and signaling pathways. RESEARCH RESULTS JWBSYQF reversed BLM-induced balf leukocyte levels, pulmonary inflammatory lesions and fibrotic collagen deposition in mice and reduced the levels of a-SMA, Col1a1 and TGF-β. A total of 86 active ingredients were identified, 12 of which were considered as potential effective ingredients, while only baicalein effectively improved TGF-β-induced proliferation and activation of NIH/3T3. KEGG results showed that PI3K/Akt signaling pathway may be the potential action mechanism, and Western Blot demonstrated that both JWBSYQF and baicalein downregulated the protein levels of p-PI3K and p-Akt. The molecular docking results suggested that baicalein may directly act on the catalytic and regulatory subunits of PI3K, and this a effect is stronger than direct binding to Akt1. CONCLUSIONS Our study revealed that baicalein may be the material basis for JWBSYQF in the treatment of pulmonary fibrosis, and the PI3K/Akt signaling pathway may be a common pathway of action for JWBSYQF and baicalein.
Collapse
Affiliation(s)
- Hanlin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| | - Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| | - Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| | - Yang Lei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
185
|
Shi X, Pan Z, Cai W, Zhang Y, Duo J, Liu R, Cai T. Identification and immunological characterization of cuproptosis-related molecular clusters in idiopathic pulmonary fibrosis disease. Front Immunol 2023; 14:1171445. [PMID: 37266442 PMCID: PMC10230064 DOI: 10.3389/fimmu.2023.1171445] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) has attracted considerable attention worldwide and is challenging to diagnose. Cuproptosis is a new form of cell death that seems to be associated with various diseases. However, whether cuproptosis-related genes (CRGs) play a role in regulating IPF disease is unknown. This study aims to analyze the effect of CRGs on the progression of IPF and identify possible biomarkers. Methods Based on the GSE38958 dataset, we systematically evaluated the differentially expressed CRGs and immune characteristics of IPF disease. We then explored the cuproptosis-related molecular clusters, the related immune cell infiltration, and the biological characteristics analysis. Subsequently, a weighted gene co-expression network analysis (WGCNA) was performed to identify cluster-specific differentially expressed genes. Lastly, the eXtreme Gradient Boosting (XGB) machine-learning model was chosen for the analysis of prediction and external datasets validated the predictive efficiency. Results Nine differentially expressed CRGs were identified between healthy and IPF patients. IPF patients showed higher monocytes and monophages M0 infiltration and lower naive B cells and memory resting T CD4 cells infiltration than healthy individuals. A positive relationship was found between activated dendritic cells and CRGs of LIPT1, LIAS, GLS, and DBT. We also identified cuproptosis subtypes in IPF patients. Go and KEGG pathways analysis demonstrated that cluster-specific differentially expressed genes in Cluster 2 were closely related to monocyte aggregation, ubiquitin ligase complex, and ubiquitin-mediated proteolysis, among others. We also constructed an XGB machine model to diagnose IPF, presenting the best performance with a relatively lower residual and higher area under the curve (AUC= 0.700) and validated by external validation datasets (GSE33566, AUC = 0.700). The analysis of the nomogram model demonstrated that XKR6, MLLT3, CD40LG, and HK3 might be used to diagnose IPF disease. Further analysis revealed that CD40LG was significantly associated with IPF. Conclusion Our study systematically illustrated the complicated relationship between cuproptosis and IPF disease, and constructed an effective model for the diagnosis of IPF disease patients.
Collapse
Affiliation(s)
- Xuefeng Shi
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, China
- Department of Pulmonary and Critial Care medicine, Qinghai provincial people’s hospital, Xining, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zhilei Pan
- Department of Pulmonary and Critial Care medicine, Qinghai provincial people’s hospital, Xining, China
| | - Weixiu Cai
- Department of Pulmonary and Critial Care medicine, Qinghai provincial people’s hospital, Xining, China
| | - Yuhao Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jie Duo
- Department of Pulmonary and Critial Care medicine, Qinghai provincial people’s hospital, Xining, China
| | - Ruitian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ting Cai
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
186
|
Callaway DA, Penkala IJ, Zhou S, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGFβ controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540035. [PMID: 37214932 PMCID: PMC10197675 DOI: 10.1101/2023.05.09.540035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease increasing in incidence which disrupts lung health throughout the lifespan. The TGFβ superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that Tgfbr2 is critical for AT1 cell fate maintenance and function. Loss of Tgfbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analysis reveal the necessity of Tgfbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGFβ signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGFβ signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
|
187
|
Pan L, Cheng Y, Yang W, Wu X, Zhu H, Hu M, Zhang Y, Zhang M. Nintedanib Ameliorates Bleomycin-Induced Pulmonary Fibrosis, Inflammation, Apoptosis, and Oxidative Stress by Modulating PI3K/Akt/mTOR Pathway in Mice. Inflammation 2023:10.1007/s10753-023-01825-2. [PMID: 37160579 PMCID: PMC10359208 DOI: 10.1007/s10753-023-01825-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) seriously threatens human life and health, and no curative therapy is available at present. Nintedanib is the first agent approved by the US Food and Drug Administration (FDA) in order to treat IPF; however, its mechanism of inhibition of IPF is still elusive. According to recent studies, nintedanib is a potent inhibitor. It can antagonize platelet-derived growth factor (PDGF), basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), etc., to inhibit pulmonary fibrosis. Whether there are other signaling pathways involved in IPF remains unknown. This study focused on investigating the therapeutic efficacy of nintedanib in bleomycin-mediated pulmonary fibrosis (PF) mice through PI3K/Akt/mTOR pathway. Following the induction of pulmonary fibrosis in C57 mice through bleomycin (BLM) administration, the mice were randomized into five groups: (1) the normal control group, (2) the BLM model control group, (3) the low-dose Nintedanib administration model group, (4) the medium-dose nintedanib administration model group, and (5) the high-dose nintedanib administration model group. For lung tissues, morphological changes were found by HE staining and Masson staining, ELISA method was used to detect inflammatory factors, alkaline water method to estimate collagen content, and western blotting for protein levels. TUNEL staining and immunofluorescence methods were used to analyze the effect of nintedanib on lung tissue and the impacts and underlying mechanisms of bleomycin-induced pulmonary fibrosis. After 28 days, bleomycin-treated mice developed significant pulmonary fibrosis. Relative to bleomycin-treated mice, nintedanib-treated mice had markedly reduced degrees of PF. In addition, nintedanib showed lung-protective effects by up-regulating antioxidant levels, down-regulating inflammatory protein expression, and reducing collagen accumulation. We demonstrated that nintedanib ameliorated bleomycin-induced lung injury by inhibiting the P13K/Akt/mTOR pathway as well as apoptosis. In addition, significant improvement in pulmonary fibrosis was seen after nintedanib (30/60/120 mg/kg body weight/day) treatment through a dose-dependent way. Histopathological results further corroborated the effect of nintedanib treatment on remarkably attenuating bleomycin-mediated mouse lung injury. According to our findings, nintedanib restores the antioxidant system, suppresses pro-inflammatory factors, and inhibits apoptosis. Nintedanib can reduce bleomycin-induced inflammation by downregulating PI3K/Akt/mTOR pathway, PF, and oxidative stress (OS).
Collapse
Affiliation(s)
- Lin Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yiju Cheng
- Department of Respiratory and Critical Care Medicine, Guiyang First People's Hospital, Guiyang, 550004, China.
- Guizhou Medical University, Guiyang, 550004, China.
| | - Wenting Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Honglan Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Meigui Hu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yuquan Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Menglin Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
188
|
Li R, Kang H, Chen S. From Basic Research to Clinical Practice: Considerations for Treatment Drugs for Silicosis. Int J Mol Sci 2023; 24:ijms24098333. [PMID: 37176040 PMCID: PMC10179659 DOI: 10.3390/ijms24098333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Silicosis, characterized by irreversible pulmonary fibrosis, remains a major global public health problem. Nowadays, cumulative studies are focusing on elucidating the pathogenesis of silicosis in order to identify preventive or therapeutic antifibrotic agents. However, the existing research on the mechanism of silica-dust-induced pulmonary fibrosis is only the tip of the iceberg and lags far behind clinical needs. Idiopathic pulmonary fibrosis (IPF), as a pulmonary fibrosis disease, also has the same problem. In this study, we examined the relationship between silicosis and IPF from the perspective of their pathogenesis and fibrotic characteristics, further discussing current drug research and limitations of clinical application in silicosis. Overall, this review provided novel insights for clinical treatment of silicosis with the hope of bridging the gap between research and practice in silicosis.
Collapse
Affiliation(s)
- Rou Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Huimin Kang
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
189
|
Liu Y, Sun W, Shen N, Hao W, Xin H, Che F, Cui Y. Network pharmacology and molecular docking combined with widely targeted metabolomics to elucidate the potential compounds and targets of Euphorbia helioscopia seeds for the treatment of pulmonary fibrosis. Comput Biol Med 2023; 160:107007. [PMID: 37150086 DOI: 10.1016/j.compbiomed.2023.107007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The whole herb of Euphorbia helioscopia has been traditionally used for treating pulmonary tuberculosis, malaria, warts, lung cancer and bacillary dysentery for a long time in China. However, E. helioscopia seeds are often discarded and its medicinal value is often ignored, resulting in a waste of resources. METHOD In this work, widely targeted metabolomics based on UPLC-ESI-QTRAP-MS/MS methods and metware database (MWDB) were firstly used to identify the chemical compositions of EHS. Besides, network pharmacology, molecular docking and molecular dynamics simulation were performed for elucidating the potential compounds and targets of E. helioscopia seeds for the treatment of pulmonary fibrosis via common database (like TCMSP, Genecards, DAVID, STRING) and common software (like Sybyl, Cytoscape, Pymol and Schrödinger). RESULT The results of widely targeted metabolomics showed 231 compounds including 12 categories were identified. The highest content compositions are lipids (33.89%) followed by amino acids and derivatives (21.78%), nucleotides and derivatives (15.73%), as well as the content of functional ingredients like phenolic acids (7.33%), alkaloids (7.03%) and flavonoids (4.51%) are relatively high. Besides, the results of network pharmacology and molecular docking showed that EHS presented anti-pulmonary fibrosis medicinal value through multi-ingredients, multi-targets and multi-pathways approach. Key ingredients including 9-Hydroxy-12-oxo-15(Z)-octadecenoic acid, Nordihydrocapsiate, 1-O-Salicyl-d-glucose, 9-(Arabinosyl)hypoxanthine, Xanthosine and Galangin-7-O-glucoside. Key targets including SRC, HSP90AA1, AKT1, EGFR, JUN, EP300 and VEGFA, and key signaling pathways mainly related to AGE-RAGE, EGFR tyrosine kinase inhibitor resistance, VEGF and HIF-1 signaling pathway. Molecular dynamics simulation showed that HSP90AA1 and 9-Hydroxy-12-oxo-15(Z)-octadecenoic complex (with the highest docking score) have a stable combination effect. CONCLUSION In conclusion, this study revealed the chemical compositions of EHS and its anti-pulmonary fibrosis medicinal effect for the first time, it will provide scientific insight for the development of EHS as medicinal resource.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Wanqing Sun
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Wenhua Hao
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Fengyuan Che
- Central Lab and Neurology Department of Linyi People's Hospital, Linyi, 276000, China.
| | - Yulei Cui
- Central Lab and Neurology Department of Linyi People's Hospital, Linyi, 276000, China; School of Medicine, Linyi University, Linyi, 276000, Shandong, China.
| |
Collapse
|
190
|
Zou X, Huang Z, Zhan Z, Yuan M, Zhang Y, Liu T, Hu X, Fan W, Chen P, Qin H, Zhang S, Xia Y, Zheng S, Pan Z, Huang P. The alcohol extracts of Sceptridium ternatum (Thunb.) Lyon exert anti-pulmonary fibrosis effect through targeting SETDB1/STAT3/p-STAT3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116520. [PMID: 37120058 DOI: 10.1016/j.jep.2023.116520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a pathological process of irreversible scarring of lung tissues, with limited treatment means. Sceptridium ternatum (Thunb.) Lyon (STE) is a traditional Chinese herbal medicine that has a traditional use in relieving cough and asthma, resolving phlegm, clearing heat, and detoxicating in China. However, its role in PF has not been reported. AIM OF THE STUDY This study aims to investigate the protective role of STE in PF and the underlying mechanisms. MATERIALS AND METHODS Sprague-Dawley (SD) rats were divided into control group, PF model group, positive drug (pirfenidone) group and STE group. After 28 days of STE administration in bleomycin (BLM)-induced PF rats, living Nuclear Magnetic Resonance Imaging (NMRI) was used to observe the structural changes of lung tissues. H&E and Masson's trichrome staining were used to observe PF-associated pathological alteration, and immunohistochemistry (IHC) staining, western blotting, and qRT-PCR were used to detect the expression of PF-related marker proteins in the lung tissues. ELISA was used to detect PF-associated biochemical criteria in the lung tissue homogenates. The proteomics technology was used to screen the different proteins. Co-immunoprecipitation, western blotting, and IHC staining were used to confirm the underlying targets of STE as well as its downstream signaling. UPLC-Triple-TOF/MS assay was used to explore the effective components in the alcohol extracts of STE. Autodock vina was used to detect the potential binding between the above effective components and SETDB1. RESULTS STE prevented PF by inhibiting the activation of lung fibroblasts and ECM deposition in BLM-induced PF rats. Mechanism analyses demonstrated that STE could inhibit the up-regulation of SETDB1 induced by BLM and TGF-β1, which further blocked the binding of SETDB1 and STAT3 as well as the phosphorylation of STAT3, ultimately preventing the activation and proliferation of lung fibroblasts. CONCLUSION STE played a preventive role in PF by targeting the SETBD1/STAT3/p-STAT3 pathway, which may be a potential therapeutic agent for PF.
Collapse
Affiliation(s)
- Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Zhongjie Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310014, China.
| | - Zibo Zhan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310014, China.
| | - Mengnan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Ting Liu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Weijiao Fan
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China.
| | - Pengcheng Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Hui Qin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Su Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Yuxuan Xia
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Shuilian Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
191
|
Gunatilaka A, Zhang S, Tan WSD, G Stewart A. Anti-fibrotic strategies and pulmonary fibrosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:179-224. [PMID: 37524487 DOI: 10.1016/bs.apha.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) results from the dysregulated process of injury and repair, which promotes scarring of the lung tissue and deposition of collagen-rich extracellular matrix (ECM) components, that make the lung unphysiologically stiff. IPF presents a serious concern as its pathogenesis remains elusive, and current anti-fibrotic treatments are only effective in slowing rather than halting disease progression. The IPF disease pathogenesis is incompletely defined, complex and incorporates interplay between different fibrogenesis signaling pathways. Preclinical IPF experimental models used to validate drug candidates present significant limitations in modeling IPF pathobiology, with their limited time frame, simplicity and inaccurate representation of the disease and the mechanical influences of IPF. Potentially more accurate mimetic disease models that capture the cell-cell and cell-matrix interaction, such as 3D cultures, organoids and precision-cut lung slices (PCLS), may yield more meaningful clinical predictions for drug candidates. Recent advances in developing anti-fibrotic compounds have positioned drug towards targeting components of the fibrogenesis signaling pathway of IPF or the extracellular microenvironment. The major goals in this area of research focus on finding ways to reverse or halt the disease progression by utilizing more disease-relevant experimental models to improve the qualification of potential drug targets for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Avanka Gunatilaka
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Zhang
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Wan Shun Daniel Tan
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Alastair G Stewart
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
192
|
Xiong M, Wu Z, Zhao Y, Zhao D, Pan Z, Wu X, Liu W, Hu K. Intermittent hypoxia exacerbated depressive and anxiety-like behaviors in the bleomycin-induced pulmonary fibrosis mice. Brain Res Bull 2023; 198:55-64. [PMID: 37094614 DOI: 10.1016/j.brainresbull.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Depression and anxiety are prevalent in patients with idiopathic pulmonary fibrosis (IPF). Recent researchers reveal that intermittent hypoxia (IH) increases the severity of bleomycin (BLM)-induced lung injury. However, experimental studies dealing with anxiety- and depression-like behavior in animal models of BLM-induced pulmonary fibrosis in a combination of IH are lacking, hence, this study aimed to investigate that. In this study, 80 C57BL/6J male mice were intratracheally injected with BLM or normal saline at day0 and then exposed to IH (alternating cycles of FiO2 21% for 60s and FiO2 10% for 30s, 40 cycles/hour, 8hours/day) or intermittent air (IA) for 21 days. Behavioral tests, including open field test (OFT), sucrose preference test (SPT) and tail suspension test (TST), were detected from day22 to day26. This study found that pulmonary fibrosis developed and lung inflammation were activated in BLM-induced mice, which were potentiated by IH. Significant less time in center and less frequency of entries in the centre arena in OFT were observed in BLM treated mice, and IH exposure further decreased that. Marked decreased percent of sucrose preference in SPT, and significant increased immobility time of the TST were detected in BLM treated mice and IH widen the gaps. The expression of ionized calcium-binding adaptor molecule (Iba1) was activated in the hippocampus of BLM instillation mice and IH enlarged it. Moreover, a positive correlation between hippocampal microglia activation and inflammatory factors was observed. Our results demonstrated that IH exacerbated depressive and anxiety-like behaviors in the BLM-induced pulmonary fibrosis mice. The changes in pulmonary inflammation-hippocampal microglia activation may be a potential mechanism in this phenomenon, which can be researched in future.
Collapse
Affiliation(s)
- Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
193
|
Magnetic liposome as a dual-targeting delivery system for idiopathic pulmonary fibrosis treatment. J Colloid Interface Sci 2023; 636:388-400. [PMID: 36640550 DOI: 10.1016/j.jcis.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, where M2 macrophages play an irreplaceable role in the anti-inflammatory progress. Targeting M2 macrophages and regulating their polarization may be a potential treatment strategy for IPF. Herein, we designed a magnetic liposome based dual-targeting delivery system for the IPF treatment, constructed by mannose-modified magnetic nanoparticles (MAN-MNPs) loaded on the surface of the liposome (MAN-MNPs@LP). The delivery system is capable of responding to a static magnetic field (SMF) and then recognizing in situ of M2 macrophages through the mannose receptor-dependent internalization. Firstly, a series of physical and chemical assays were used to characterize these nanoparticles. Subsequently, magnetic liposomes accumulation in the damaged lung with/without mannose modification and SMF were compared by in vivo imaging system. Finally, the reduction of M2 macrophages and inhibition of their polarization confirmed that the development of IPF was retarded due to the in situ release of encapsulated dexamethasone (Dex) in lungs under the SMF. Further investigation demonstrated that the expression of α-SMA and collagen deposition was reduced. Altogether, this dual-targeting delivery system can effectively deliver Dex into M2 macrophages in the lung, making it a novel and promising therapeutic system for the IPF treatment.
Collapse
|
194
|
Li D, Zhao A, Zhu J, Wang C, Shen J, Zheng Z, Pan F, Liu Z, Chen Q, Yang Y. Inhaled Lipid Nanoparticles Alleviate Established Pulmonary Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300545. [PMID: 37058092 DOI: 10.1002/smll.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Pulmonary fibrosis, a sequela of lung injury resulting from severe infection such as severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) infection, is a kind of life-threatening lung disease with limited therapeutic options. Herein, inhalable liposomes encapsulating metformin, a first-line antidiabetic drug that has been reported to effectively reverse pulmonary fibrosis by modulating multiple metabolic pathways, and nintedanib, a well-known antifibrotic drug that has been widely used in the clinic, are developed for pulmonary fibrosis treatment. The composition of liposomes made of neutral, cationic or anionic lipids, and poly(ethylene glycol) (PEG) is optimized by evaluating their retention in the lung after inhalation. Neutral liposomes with suitable PEG shielding are found to be ideal delivery carriers for metformin and nintedanib with significantly prolonged retention in the lung. Moreover, repeated noninvasive aerosol inhalation delivery of metformin and nintedanib loaded liposomes can effectively diminish the development of fibrosis and improve pulmonary function in bleomycin-induced pulmonary fibrosis by promoting myofibroblast deactivation and apoptosis, inhibiting transforming growth factor 1 (TGFβ1) action, suppressing collagen formation, and inducing lipogenic differentiation. Therefore, this work presents a versatile platform with promising clinical translation potential for the noninvasive inhalation delivery of drugs for respiratory disease treatment.
Collapse
Affiliation(s)
- Dongjun Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Ang Zhao
- Department of medical affair, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chunjie Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| |
Collapse
|
195
|
Deng J, He Y, Sun G, Yang H, Wang L, Tao X, Chen W. Tanreqing injection protects against bleomycin-induced pulmonary fibrosis via inhibiting STING-mediated endoplasmic reticulum stress signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116071. [PMID: 36584920 DOI: 10.1016/j.jep.2022.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Idiopathic pulmonary fibrosis (IPF), characterized by excessive collagen deposition, is a progressive and typically fatal lung disease without effective therapeutic methods. Tanreqing injection (TRQ), a Traditional Chinese Patent Medicine, has been widely used to treat inflammatory respiratory diseases clinically. AIM OF THE STUDY The present work aims to elucidate the therapeutic effects and the possible mechanism of TRQ against pulmonary fibrosis. METHODS The pulmonary fibrosis murine model were constructed by the intratracheal injection of bleomycin (BLM). 7 days later, TRQ-L (2.6 ml/kg) and TRQ-H (5.2 ml/kg) were administered via intraperitoneal injection respectively for 21 days. The efficacy and underlying molecular mechanism of TRQ were investigated. RESULTS Here, we showed that TRQ significantly inhibited BLM-induced lung edema and pulmonary function. TRQ markedly reduced BLM-promoted inflammatory cell infiltration in BALF and inflammatory cytokines release (TNF-α, IL-6, and IL-1β) in serum and lung tissues. Meanwhile, TRQ also alleviated BLM-induced collagen synthesis and deposition. Simultaneously, TRQ attenuated BLM-induced pulmonary fibrosis through regulating the expression of fibrotic hallmarks, manifested by down-regulated α-SMA and up-regulated E-cadherin. Moreover, we found that TRQ significantly prevented STING, p-P65, BIP, p-PERK, p-eIF2α, and ATF4 expression in lung fibrosis mice. CONCLUSIONS Taken together, our results indicated that TRQ positively affects inflammatory responses and lung fibrosis by regulating STING-mediated endoplasmic reticulum stress (ERS) signal pathway.
Collapse
Affiliation(s)
- JiuLing Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - YuQiong He
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - GuangChun Sun
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Hong Yang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Liang Wang
- Suzhou Chien-Shiung Institute of Technology, Suzhou, 215411, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - WanSheng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
196
|
Han S, Lu Q, Liu X. Advances in cellular senescence in idiopathic pulmonary fibrosis (Review). Exp Ther Med 2023; 25:145. [PMID: 36911379 PMCID: PMC9995810 DOI: 10.3892/etm.2023.11844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/05/2023] [Indexed: 02/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible and fatal interstitial lung disease of unknown cause, with a median survival of 2-3 years. Its pathogenesis is unclear and there is currently no effective treatment for IPF. Approximately two-thirds of patients with IPF are >60 years old, with a mean age of 66 years, suggesting a link between aging and IPF. However, the mechanism by which aging promotes development of PF remains unclear. Senescence of alveolar epithelial cells and lung fibroblasts (LFs) and their senescence-associated secretion phenotype (SASP) may be involved in the occurrence and development of IPF. The present review focus on senescence of LFs and epithelial and stem cells, as well as SASP, the activation of profibrotic signaling pathways and potential treatments for pathogenesis of IPF.
Collapse
Affiliation(s)
- Shan Han
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Qiangwei Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xiaoqiu Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
197
|
Xiao T, Ren S, Bao J, Gao D, Sun R, Gu X, Gao J, Chen S, Jin J, Wei L, Wu C, Yang C, Yang G, Zhou H. Vorapaxar proven to be a promising candidate for pulmonary fibrosis by intervening in the PAR1/JAK2/STAT1/3 signaling pathway-an experimental in vitro and vivo study. Eur J Pharmacol 2023; 943:175438. [PMID: 36682482 DOI: 10.1016/j.ejphar.2022.175438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease, and its 5-year mortality rate is even higher than the mortality rate of some cancers. Fibrosis can cause irreversible damage to lung structure and function. Treatment options for IPF remain limited, and there is an urgent need to develop effective therapeutic drugs. Protease activated receptor-1 (PAR-1) is a G-protein-coupled receptor and is considered a potential target for the treatment of fibrotic diseases. Vorapaxar is a clinically approved PAR-1 antagonist for cardiovascular protection. The purpose of this study was to explore the potential effect and mechanism of Vorapaxar on pulmonary fibrosis in vivo and in vitro. In the experimental animal model, Vorapaxar can effectively alleviate bleomycin (BLM)-induced pulmonary fibrosis. Treatment with 2.5, 5 or 10 mg/kg Vorapaxar once a day reduced the degree of fibrosis in a dose-dependent manner. The expression of fibronectin, collagen and α smooth muscle actin decreased significantly at the messenger RNA (mRNA) and protein levels in treated mice. In vitro, our results showed that Vorapaxar could inhibit the activation of fibroblasts induced by thrombin in a dose-dependent manner. In terms of mechanism, Vorapaxar inhibits the signal transduction of JAK2/STAT1/3 by inhibiting the activation of protease activated receptor 1, which reduces the expression of HSP90β and the interaction between HSP90β and transforming growth factor-β (TGFβ) receptor II and inhibits the TGFβ/Smad signaling pathway. In conclusion, Vorapaxar inhibits the activation of pulmonary fibroblasts induced by thrombin by targeting protease activated receptor 1 and alleviates BLM-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Shanfa Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Jiali Bao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Dandi Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ronghao Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Jingjing Gao
- Tianjin Jikun Technology Co., Ltd, Tianjin, 301700, China
| | - Shanshan Chen
- The First Affiliated Hospital of Zhengzhou University, 1 Longhu Middle Ring Road, Zhengzhou, Jinshui District, Henan Province, China
| | - Jin Jin
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Luqing Wei
- Tianjin Beichen Hospital, No. 7, Beiyi Road, Beichen District, Tianjin, 300400, China
| | - Chunwa Wu
- Tianjin Beichen Hospital, No. 7, Beiyi Road, Beichen District, Tianjin, 300400, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| |
Collapse
|
198
|
Huang X, Song Y, Wei L, Guo J, Xu W, Li M. The emerging roles of ferroptosis in organ fibrosis and its potential therapeutic effect. Int Immunopharmacol 2023; 116:109812. [PMID: 36746022 DOI: 10.1016/j.intimp.2023.109812] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Fibrosis refers to the process of excessive deposition of extracellular matrix (ECM) proteins, eventually leading to excessive scar formation. Fibrotic diseases can occur in many organs and result in high mortality. Currently, there is no effective treatment for fibrosis. As a new form of regulatory cell death (RCD), ferroptosis is mainly mediated by iron overload and lipid peroxidation. Emerging evidence shows that ferroptosis is involved in the pathogenesis of fibrotic diseases. Generally, ferroptosis of parenchymal cells exacerbates the progression of fibrosis, while ferroptosis of myofibroblasts may ameliorate it. Therefore, studying the mechanisms of ferroptosis in fibrosis and targeting ferroptosis in certain cells can provide valuable insights into the pathogenesis of fibrotic diseases. In the present review, we summarized the mechanisms and regulators of ferroptosis and then described the mechanism of fibrosis and the role of ferroptosis in fibrotic diseases, including liver fibrosis, renal fibrosis, pulmonary fibrosis, and myocardial fibrosis.
Collapse
Affiliation(s)
- Xuege Huang
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Yahui Song
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Lin Wei
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Wei Xu
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China.
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China.
| |
Collapse
|
199
|
The effects of lipoic acid on respiratory diseases. Int Immunopharmacol 2023; 116. [PMCID: PMC9933494 DOI: 10.1016/j.intimp.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Respiratory diseases, including lung cancer, pulmonary fibrosis, asthma, and the recently emerging fatal coronavirus disease-19 (COVID-19), are the leading causes of illness and death worldwide. The increasing incidence and mortality rates have attracted much attention to the prevention and treatment of these conditions. Lipoic acid (LA), a naturally occurring organosulfur compound, is not only essential for mitochondrial aerobic metabolism but also shows therapeutic potential via certain pharmacological effects (e.g., antioxidative and anti-inflammatory effects). In recent years, accumulating evidence (animal experiments and in vitro studies) has suggested a role of LA in ameliorating many respiratory diseases (e.g., lung cancer, fibrosis, asthma, acute lung injury and smoking-induced lung injury). Therefore, this review will provide an overview of the present investigational evidence on the therapeutic effect of LA against respiratory diseases in vitro and in vivo. We also summarize the corresponding mechanisms of action to inspire further basic studies and clinical trials to confirm the health benefits of LA in the context of respiratory diseases.
Collapse
Key Words
- lipoic acid
- respiratory diseases
- antioxidation
- anti-inflammatory effects
- mechanism of action
- akt, protein kinase b;
- aif, apoptosis-inducing factor;
- ampk, adenosine monophosphate-activated protein kinase;
- α-sma, alpha-smooth muscle actin;
- bcl-2, b-cell lymphoma 2;
- cox-2, cyclooxygenase-2;
- dna, deoxyribonucleic acid;
- er, endoplasmic reticulum;
- erk, extracellular-regulated kinase;
- egfr, epidermal growth factor receptor;
- gr, glutathione reductase;
- gpx, glutathione peroxidase;
- grb2, growth factor receptor-bound protein 2;
- gsh, reduced glutathione;
- gssg, oxidized glutathione;
- hif, hypoxia-inducible factor;
- ho-1, heme oxygenase 1;
- keap-1, kelch-like ech-associated protein 1;
- ig-e, immunoglobulin e;
- il, interleukin
- oct-4, octamer-binding transcription factor 4;
- parp-1, poly (adp-ribose) polymerase-1;
- pdk1, phosphoinositide-dependent kinase-1;
- pdh, pyruvate dehydrogenase;
- pi3k, phosphoinositide 3-kinase;
- pge2, prostaglandin e2;
- pgc1α, peroxisome proliferator-activated receptor‑γ co-activator 1α;
- p70s6k, p70 ribosomal protein s6 kinase;
- fak, focal adhesion kinase;
- sod, superoxide dismutase;
- mapk, mitogen-activated protein kinase;
- mtor, mammalian target of rapamycin;
- nf-κb, nuclear factor-kappa b;
- no, nitric oxide;
- nox-4, nicotinamide adenine dinucleotide phosphate (nadph) oxidase-4;
- nqo1, nadph quinone oxidoreductase 1;
- tnf-α, tumor necrosis factor-α;
- tgf-β1, transforming growth factor beta-1;
- vegf, vascular endothelial growth factor;
Collapse
|
200
|
Principi L, Ferrini E, Ciccimarra R, Pagani L, Chinello C, Previtali P, Smith A, Villetti G, Zoboli M, Ravanetti F, Stellari FF, Magni F, Piga I. Proteomic Fingerprint of Lung Fibrosis Progression and Response to Therapy in Bleomycin-Induced Mouse Model. Int J Mol Sci 2023; 24:ijms24054410. [PMID: 36901840 PMCID: PMC10002924 DOI: 10.3390/ijms24054410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy.
Collapse
Affiliation(s)
- Lucrezia Principi
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Erica Ferrini
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Roberta Ciccimarra
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Lisa Pagani
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Paolo Previtali
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Gino Villetti
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Matteo Zoboli
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | | | - Franco Fabio Stellari
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
- Correspondence: (F.F.S.); (I.P.)
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
- Correspondence: (F.F.S.); (I.P.)
| |
Collapse
|