151
|
Reicherts P, Wiemer J, Gerdes AB, Schulz SM, Pauli P, Wieser MJ. Anxious anticipation and pain: the influence of instructed vs conditioned threat on pain. Soc Cogn Affect Neurosci 2017; 12:544-554. [PMID: 28008077 PMCID: PMC5390728 DOI: 10.1093/scan/nsw181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/19/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Negative emotions such as anxiety enhance pain perception. However, certain threat characteristics are discussed to have different or even divergent effects on pain (hypoalgesia vs hyperalgesia). In order to investigate the neurobiological basis of different threats, we compared the impact of conditioned threat (CT) vs instructed threat (IT) on pain using fMRI. In two groups, participants underwent either Pavlovian threat conditioning or an instructed threat procedure. Afterwards, in an identical test phase participants watched the same visual cues from the previous phase indicating potential threat or safety, and received painful thermal stimulation. In the test phase, pain ratings were increased in both groups under threat. Group comparisons show elevated responses in amygdala and hippocampus for pain under threat in the CT group, and higher activation of the mid-cingulate gyrus (MCC) in the IT group. Psychophysiological interaction analyses in CT demonstrated elevated connectivity of the amygdala and the insula for the comparison of pain under threat vs safety. In IT, the same comparison revealed elevated functional connectivity of the MCC and the insula. The results suggest a similar pain augmenting effect of CT and IT, which, however, seems to rely on different networks mediating the impact of threat on pain.
Collapse
Affiliation(s)
| | - Julian Wiemer
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | | | - Stefan M. Schulz
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Paul Pauli
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Matthias J. Wieser
- Department of Psychology, University of Würzburg, Würzburg, Germany
- Institute of Psychology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
152
|
Pitcher MH, Gonzalez-Cano R, Vincent K, Lehmann M, Cobos EJ, Coderre TJ, Baeyens JM, Cervero F. Mild Social Stress in Mice Produces Opioid-Mediated Analgesia in Visceral but Not Somatic Pain States. THE JOURNAL OF PAIN 2017; 18:716-725. [PMID: 28219667 DOI: 10.1016/j.jpain.2017.02.422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/14/2017] [Accepted: 02/02/2017] [Indexed: 12/30/2022]
Abstract
Visceral pain has a greater emotional component than somatic pain. To determine if the stress-induced analgesic response is differentially expressed in visceral versus somatic pain states, we studied the effects of a mild social stressor in either acute visceral or somatic pain states in mice. We show that the presence of an unfamiliar conspecific mouse (stranger) in an adjacent cubicle of a standard transparent observation box produced elevated plasma corticosterone levels compared with mice tested alone, suggesting that the mere presence of a stranger is stressful. We then observed noxious visceral or somatic stimulation-induced nociceptive behavior in mice tested alone or in mildly stressful conditions (ie, beside an unfamiliar stranger). Compared with mice tested alone, the presence of a stranger produced a dramatic opioid-dependent reduction in pain behavior associated with visceral but not somatic pain. This social stress-induced reduction of visceral pain behavior relied on visual but not auditory/olfactory cues. These findings suggest that visceral pain states may provoke heightened responsiveness to mild stressors, an effect that could interfere with testing outcomes during simultaneous behavioral testing of multiple rodents. PERSPECTIVE In mice, mild social stress due to the presence of an unfamiliar conspecific mouse reduces pain behavior associated with noxious visceral but not somatic stimulation, suggesting that stress responsiveness may be enhanced in visceral pain versus somatic pain states.
Collapse
Affiliation(s)
- Mark H Pitcher
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland.
| | | | - Kathleen Vincent
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Michael Lehmann
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Enrique J Cobos
- Department of Pharmacology, University of Granada, Granada, Spain
| | - Terence J Coderre
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - José M Baeyens
- Department of Pharmacology, University of Granada, Granada, Spain
| | - Fernando Cervero
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
153
|
François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, Ramakrishnan C, Ritola KD, Sharif-Naeini R, Deisseroth K, Delp SL, Malenka RC, Luo L, Hantman AW, Scherrer G. A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron 2017; 93:822-839.e6. [PMID: 28162807 DOI: 10.1016/j.neuron.2017.01.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Sarah A Low
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth I Sypek
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Amelia J Christensen
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chaudy Sotoudeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin T Beier
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kimberly D Ritola
- Virus Services, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, H3G0B1 QC, Canada
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Department of Bioengineering, Department of Psychiatry, CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Scott L Delp
- Department of Bioengineering, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
154
|
GEVA NIRIT, PRUESSNER JENS, DEFRIN RUTH. Triathletes Lose Their Advantageous Pain Modulation under Acute Psychosocial Stress. Med Sci Sports Exerc 2017; 49:333-341. [DOI: 10.1249/mss.0000000000001110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
155
|
Amini-Khoei H, Amiri S, Mohammadi-Asl A, Alijanpour S, Poursaman S, Haj-Mirzaian A, Rastegar M, Mesdaghinia A, Banafshe HR, Sadeghi E, Samiei E, Mehr SE, Dehpour AR. Experiencing neonatal maternal separation increased pain sensitivity in adult male mice: Involvement of oxytocinergic system. Neuropeptides 2017; 61:77-85. [PMID: 27932062 DOI: 10.1016/j.npep.2016.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
Early-life stress adversely affects the development of the brain, and alters a variety of behaviors such as pain in later life. In present study, we investigated how early-life stress (maternal separation or MS) can affect the nociceptive response later in life. We particularly focused on the role of oxytocin (OT) in regulating nociception in previously exposed (MS during early postnatal development) mice that were subjected to acute stress (restraint stress or RS). Further, we evaluated whether such modulation of pain sensation in MS mice are regulated by shared mechanisms of the OTergic and opioidergic systems. To do this, we assessed the underlying systems mediating the nociceptive response by administrating different antagonists (for both opioid and OTergic systems) under the different experimental conditions (control vs MS, and control plus RS vs MS plus RS). Our results showed that MS increased pain sensitivity in both tail-flick and hot-plate tests while after administration of OT (1μg/μl/mouse, i.c.v) pain threshold was increased. Atosiban, an OT antagonist (10μg/μl/mouse, i.c.v) abolished the effects of OT. While acute RS increased the pain threshold in control (and not MS) mice, treating MS mice with OT normalized the pain response to RS. This latter effect was reversed by atosiban and/or naltrexone, an opioid antagonist (0.5μg/μl/mouse, i.c.v) suggesting that OT enhances the effect of endogenous opioids. OTergic system is involved in mediating the nociception under acute stress in mice subjected to early-life stress and OTergic and opioidergic systems interact to modulate pain sensitivity in MS mice.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Physiology and Pharmacology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shayan Amiri
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ali Mohammadi-Asl
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Sciences, Gonbad Kavous University, Gonbad, Iran
| | - Simin Poursaman
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Azam Mesdaghinia
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsanollah Sadeghi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
| | - Elika Samiei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaie Mehr
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
156
|
Egloff N, Wegmann B, Juon B, Stauber S, von Känel R, Vögelin E. The impact of anxiety and depressive symptoms on chronic pain in conservatively and operatively treated hand surgery patients. J Pain Res 2017; 10:259-263. [PMID: 28203103 PMCID: PMC5293357 DOI: 10.2147/jpr.s116674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this prospective study was to examine to what extent anxiety and depressive symptoms predict the level of pain at 4-month follow-up in hand surgery patients. A total of 132 consecutive patients (mean age: 51.5±17.1 years, 51.9% female) of a tertiary center for hand surgery participated in this study. The patients underwent conservative or operative treatment, depending on the nature of their hand problem. The initial pain assessment included psychometric testing with the hospital anxiety and depression scale. Ninety-nine patients underwent operative treatment and 33 patients were conservatively treated. At 4-month follow-up, the amount of pain was measured with a visual analog scale (0–10). After controlling for age, sex, and pre-surgical pain intensity, depressive symptoms were a significant predictor for increased pain levels at follow-up in conservatively treated patients. In operatively treated patients, anxiety symptoms showed a trend for being a predictor of pain level at follow-up. The findings support the assumption that psychological factors may have an impact on pain outcome in patients presenting to hand surgery clinics.
Collapse
Affiliation(s)
- Niklaus Egloff
- Division of Psychosomatic Medicine, Department of General Internal Medicine, Inselspital Bern University Hospital; Department of Clinical Research, University of Bern
| | - Barbara Wegmann
- Division of Psychosomatic Medicine, Department of General Internal Medicine, Inselspital Bern University Hospital
| | - Bettina Juon
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, Bern
| | - Stefanie Stauber
- Division of Psychosomatic Medicine, Department of General Internal Medicine, Inselspital Bern University Hospital
| | - Roland von Känel
- Department of Clinical Research, University of Bern; Department of Psychosomatic Medicine, Clinic Barmelweid, Barmelweid, Switzerland
| | - Esther Vögelin
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, Bern
| |
Collapse
|
157
|
Stress and its role in the dentin hypersensitivity in rats. Arch Oral Biol 2017; 73:151-160. [DOI: 10.1016/j.archoralbio.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022]
|
158
|
The Role of Chronic Psychosocial Stress in Explaining Racial Differences in Stress Reactivity and Pain Sensitivity. Psychosom Med 2017; 79:201-212. [PMID: 27669431 PMCID: PMC5285323 DOI: 10.1097/psy.0000000000000385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To examine the role of psychosocial factors in mediating the relationship between African American (AA) race and both increased pain sensitivity and blunted stress reactivity. METHODS Participants included 133 AA and non-Hispanic white (nHW) individuals (mean [SD] age, 37 [9]) matched for age, sex, and socioeconomic status. Participants underwent mental stress testing (Trier Social Stress Test) while cardiovascular, hemodynamic, and neuroendocrine reactivity were measured. Participants completed questionnaires assessing potential sources of psychosocial stress and were tested for pain responses to cold pain and the temporal summation of heat pulses. Mediation analyses were used to determine the extent to which exposure to psychosocial stress accounted for the observed racial differences in stress reactivity and pain. RESULTS Chronic stress exposure and reactivity to mental stress was largely similar among AAs and nHWs; however, AAs exhibited heightened pain to both cold (p = .012) and heat (p = .004). Racial differences in the relationship between stress reactivity and pain were also observed: while greater stress reactivity was associated with decreased pain among nHWs, reactivity was either unrelated to or even positively associated with pain among AAs (e.g., r = -.21 among nHWs and r = .41 among AAs for stroke volume reactivity and cold pressor intensity). Adjusting for minor racial differences in chronic psychosocial stress did not change these findings. CONCLUSIONS Accounting for psychosocial factors eliminated racial differences in stress reactivity but not racial differences in sensitivity to experimental pain tasks. Increased exposure to chronic stress may not explain AAs' increased pain sensitivity in laboratory settings.
Collapse
|
159
|
Sun R, Zhang W, Bo J, Zhang Z, Lei Y, Huo W, Liu Y, Ma Z, Gu X. Spinal activation of alpha7-nicotinic acetylcholine receptor attenuates posttraumatic stress disorder-related chronic pain via suppression of glial activation. Neuroscience 2016; 344:243-254. [PMID: 28039041 DOI: 10.1016/j.neuroscience.2016.12.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023]
Abstract
The high prevalence of chronic pain in posttraumatic stress disorder (PTSD) individuals has been widely reported by clinical studies, which emphasized an urgent need to uncover the underlying mechanisms and identify potential therapeutic targets. Recent studies suggested that targeting activated glia and their pro-inflammatory products may provide a novel and effective therapy for the stress-related pain. In this study, we investigated whether activation of alpha-7 nicotinic acetylcholine receptor (α7 nAChR), a novel anti-inflammatory target, could attenuate PTSD-related chronic pain. The experiments were conducted in a rat model of single prolonged stress (SPS), an established model of PTSD-pain comorbidity. We found that SPS exposure produced persistent mechanical allodynia. Immunohistochemical and enzyme-linked immuno sorbent assay analysis showed that SPS also induced elevated activation of glia cells (including microglia and astrocytes) and accumulation of pro-inflammatory cytokines in spinal cord. In another experiment, we found that intrathecal injection of PHA-543613, a selective α7 nAchR agonist, attenuated the SPS-evoked allodynia in a dose dependent manner. However, this anti-hyperalgesic effect was blocked by pretreatment with methyllycaconitine (MLA), a selective α7 nAchR antagonist. Further analyses showed that PHA-543613 suppressed SPS-induced spinal glial activation and SPS-elevated spinal pro-inflammatory cytokines, and these were abolished by MLA. Taken together, the present study showed that spinal activation of α7 nAChR by PHA-543613 attenuated mechanical allodynia induced by PTSD-like stress, and the suppression of spinal glial activation may underlie this anti-hyperalgesic effect. Our study demonstrated the therapeutic potential of targeting α7 nAChR in the treatment of PTSD-related chronic pain.
Collapse
Affiliation(s)
- Rao Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jinhua Bo
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zuoxia Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yishan Lei
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wenwen Huo
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yue Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zhengliang Ma
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
160
|
Response to: Comment on "Cost-Saving Early Diagnosis of Functional Pain in Nonmalignant Pain: A Noninferiority Study of Diagnostic Accuracy". PAIN RESEARCH AND TREATMENT 2016; 2016:4657102. [PMID: 28025623 PMCID: PMC5153484 DOI: 10.1155/2016/4657102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 01/18/2023]
|
161
|
Okine BN, Gaspar JC, Madasu MK, Olango WM, Harhen B, Roche M, Finn DP. Characterisation of peroxisome proliferator-activated receptor signalling in the midbrain periaqueductal grey of rats genetically prone to heightened stress, negative affect and hyperalgesia. Brain Res 2016; 1657:185-192. [PMID: 27916440 DOI: 10.1016/j.brainres.2016.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
Abstract
The stress-hyperresponsive Wistar-Kyoto (WKY) rat strain exhibits a hyperalgesic phenotype and is a useful genetic model for studying stress-pain interactions. Peroxisome proliferator-activated receptor (PPAR) signalling in the midbrain periaqueductal grey (PAG) modulates pain. This study characterised PPAR signalling in the PAG of WKY rats exposed to the formalin test of inflammatory pain, versus Sprague-Dawley (SD) controls. Formalin injection reduced levels of the endogenous PPAR ligands N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA) in the lateral(l) PAG of SD rats, but not WKY rats which exhibited higher levels of these analytes compared with formalin-injected SD counterparts. Levels of mRNA coding for fatty acid amide hydrolase (FAAH; catabolises PEA and OEA) were lower in the lPAG of WKY versus SD rats. PPARγ mRNA and protein levels in the lPAG were higher in saline-treated WKY rats, with PPARγ protein levels reduced by formalin treatment in WKY rats only. In the dorsolateral(dl) or ventrolateral(vl) PAG, there were no effects of formalin injection on PEA or OEA levels but there were some differences in levels of these analytes between saline-treated WKY and SD rats and some formalin-evoked alterations in levels of PPARα, PPARγ or FAAH mRNA in WKY and/or SD rats. Pharmacological blockade of PPARγ in the lPAG enhanced formalin-evoked nociceptive behaviour in WKY, but not SD, rats. These data indicate differences in the PPAR signalling system in the PAG of WKY versus SD rats and suggest that enhanced PEA/OEA-mediated tone at PPARγ in the lPAG may represent an adaptive mechanism to lower hyperalgesia in WKY rats.
Collapse
Affiliation(s)
- Bright N Okine
- Pharmacology and Therapeutics, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Jessica C Gaspar
- Pharmacology and Therapeutics, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Manish K Madasu
- Pharmacology and Therapeutics, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Weredeselam M Olango
- Pharmacology and Therapeutics, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Brendan Harhen
- Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
162
|
|
163
|
Sun R, Zhang Z, Lei Y, Liu Y, Lu C, Rong H, Sun Y, Zhang W, Ma Z, Gu X. Hippocampal activation of microglia may underlie the shared neurobiology of comorbid posttraumatic stress disorder and chronic pain. Mol Pain 2016; 12:12/0/1744806916679166. [PMID: 27852966 PMCID: PMC5117253 DOI: 10.1177/1744806916679166] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/12/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022] Open
Abstract
The high comorbidity rates of posttraumatic stress disorder and chronic pain have been widely reported, but the underlying mechanisms remain unclear. Emerging evidence suggested that an excess of inflammatory immune activities in the hippocampus involved in the progression of both posttraumatic stress disorder and chronic pain. Considering that microglia are substrates underlying the initiation and propagation of the neuroimmune response, we hypothesized that stress-induced activation of hippocampal microglia may contribute to the pathogenesis of posttraumatic stress disorder-pain comorbidity. We showed that rats exposed to single prolonged stress, an established posttraumatic stress disorder model, exhibited persistent mechanical allodynia and anxiety-like behavior, which were accompanied by increased activation of microglia and secretion of pro-inflammatory cytokines in the hippocampus. Correlation analyses showed that hippocampal activation of microglia was significantly correlated with mechanical allodynia and anxiety-like behavior. Our data also showed that both intraperitoneal and intra-hippocampal injection of minocycline suppressed single prolonged stress-induced microglia activation and inflammatory cytokines accumulation in the hippocampus, and attenuated both single prolonged stress-induced mechanical allodynia and anxiety-like behavior. Taken together, the present study suggests that stress-induced microglia activation in the hippocampus may serve as a critical mechanistic link in the comorbid relationship between posttraumatic stress disorder and chronic pain. The novel concept introduces the possibility of cotreating chronic pain and posttraumatic stress disorder.
Collapse
Affiliation(s)
- Rao Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zuoxia Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yishan Lei
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cui'e Lu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hui Rong
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu'e Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
164
|
Psychosoziale Stressoren und Schmerzempfindlichkeit bei chronischer Schmerzstörung mit somatischen und psychischen Faktoren (F45.41). Schmerz 2016; 31:40-46. [DOI: 10.1007/s00482-016-0159-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
165
|
Smith ML, Hostetler CM, Heinricher MM, Ryabinin AE. Social transfer of pain in mice. SCIENCE ADVANCES 2016; 2:e1600855. [PMID: 27774512 PMCID: PMC5072181 DOI: 10.1126/sciadv.1600855] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
A complex relationship exists between the psychosocial environment and the perception and experience of pain, and the mechanisms of the social communication of pain have yet to be elucidated. The present study examined the social communication of pain and demonstrates that "bystander" mice housed and tested in the same room as mice subjected to inflammatory pain or withdrawal from morphine or alcohol develop corresponding hyperalgesia. Olfactory cues mediate the transfer of hyperalgesia to the bystander mice, which can be measured using mechanical, thermal, and chemical tests. Hyperalgesia in bystanders does not co-occur with anxiety or changes in corticosterone and cannot be explained by visually dependent emotional contagion or stress-induced hyperalgesia. These experiments reveal the multifaceted relationship between the social environment and pain behavior and support the use of mice as a model system for investigating these factors. In addition, these experiments highlight the need for proper consideration of how experimental animals are housed and tested.
Collapse
Affiliation(s)
- Monique L. Smith
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L470, Portland, OR 97239, USA
| | - Caroline M. Hostetler
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L470, Portland, OR 97239, USA
| | - Mary M. Heinricher
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L470, Portland, OR 97239, USA
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L470, Portland, OR 97239, USA
| |
Collapse
|
166
|
Egle UT, Franz M, Joraschky P, Lampe A, Seiffge-Krenke I, Cierpka M. [Health-related long-term effects of adverse childhood experiences - an update]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 59:1247-54. [PMID: 27580599 DOI: 10.1007/s00103-016-2421-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the last decade strong empirical evidence from several long-term studies supports the conclusion that physical and sexual abuse as well as emotional deprivation in childhood make people significantly more vulnerable to mental and functional disorders across their lifetime. Additionally, an increased vulnerability to several somatic disorders (cardiovascular disorders, type-2-diabetes, hepatitis, chronic obstructive pulmonary disease (COPD), immunological and pain disorders, pharynx and lung cancer) was demonstrated - most of them with a reduced life expectancy. A review of the current research will be presented that outlines the underlying developmental neurobiological and psychological mechanisms mediating these long-term effects. There is now sufficient evidence about familial risk constellations that demonstrates the well-documented impact of specific prevention strategies by several model projects. Only by establishing these strategies, future enormous health-related burdens and high economic costs (unfitness to work, early retirement) can presumably be limited.
Collapse
Affiliation(s)
- Ulrich T Egle
- Klinik Barmelweid, Aarau, Schweiz. .,, Wiesentalstr. 48, 79111, Freiburg, Deutschland.
| | - Matthias Franz
- Klinisches Institut für Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - Peter Joraschky
- Klinik für Psychotherapie und Psychosomatik, Universitätsklinikums Dresden, Dresden, Deutschland
| | - Astrid Lampe
- Klinik für Medizinische Psychologie, Universitätsklinikum Innsbruck, Innsbruck, Österreich
| | - Inge Seiffge-Krenke
- Abt. Entwicklungspsychologie, Psychologisches Institut, Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
| | - Manfred Cierpka
- Institut für Psychosoziale Prävention, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
167
|
Abstract
Fibromyalgia is a disorder that is part of a spectrum of syndromes that lack precise classification. It is often considered as part of the global overview of functional somatic syndromes that are otherwise medically unexplained or part of a somatization disorder. Patients with fibromyalgia share symptoms with other functional somatic problems, including issues of myalgias, arthralgias, fatigue and sleep disturbances. Indeed, there is often diagnostic and classification overlap for the case definitions of a variety of somatization disorders. Fibromyalgia, however, is a critically important syndrome for physicians and scientists to be aware of. Patients should be taken very seriously and provided optimal care. Although inflammatory, infectious, and autoimmune disorders have all been ascribed to be etiological events in the development of fibromyalgia, there is very little data to support such a thesis. Many of these disorders are associated with depression and anxiety and may even be part of what has been sometimes called affected spectrum disorders. There is no evidence that physical trauma, i.e., automobile accidents, is associated with the development or exacerbation of fibromyalgia. Treatment should be placed on education, patient support, physical therapy, nutrition, and exercise, including the use of drugs that are approved for the treatment of fibromyalgia. Treatment should not include opiates and patients should not become poly pharmacies in which the treatment itself can lead to significant morbidities. Patients with fibromyalgia are living and not dying of this disorder and positive outlooks and family support are key elements in the management of patients.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA.
| |
Collapse
|
168
|
Madasu MK, Okine BN, Olango WM, Rea K, Lenihan R, Roche M, Finn DP. Genotype-dependent responsivity to inflammatory pain: A role for TRPV1 in the periaqueductal grey. Pharmacol Res 2016; 113:44-54. [PMID: 27520401 DOI: 10.1016/j.phrs.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
Abstract
Negative affective state has a significant impact on pain, and genetic background is an important moderating influence on this interaction. The Wistar-Kyoto (WKY) inbred rat strain exhibits a stress-hyperresponsive, anxiety/depressive-like phenotype and also displays a hyperalgesic response to noxious stimuli. Transient receptor potential subfamily V member 1 (TRPV1) within the midbrain periaqueductal grey (PAG) plays a key role in regulating both aversive and nociceptive behaviour. In the present study, we investigated the role of TRPV1 in the sub-columns of the PAG in formalin-evoked nociceptive behaviour in WKY versus Sprague-Dawley (SD) rats. TRPV1 mRNA expression was significantly lower in the dorsolateral (DL) PAG and higher in the lateral (L) PAG of WKY rats, compared with SD counterparts. There were no significant differences in TRPV1 mRNA expression in the ventrolateral (VL) PAG between the two strains. TRPV1 mRNA expression significantly decreased in the DLPAG and increased in the VLPAG of SD, but not WKY rats upon intra-plantar formalin administration. Intra-DLPAG administration of either the TRPV1 agonist capsaicin, or the TRPV1 antagonist 5'-Iodoresiniferatoxin (5'-IRTX), significantly increased formalin-evoked nociceptive behaviour in SD rats, but not in WKY rats. The effects of capsaicin were likely due to TRPV1 desensitisation, given their similarity to the effects of 5'-IRTX. Intra-VLPAG administration of capsaicin or 5'-IRTX reduced nociceptive behaviour in a moderate and transient manner in SD rats, and similar effects were seen with 5'-IRTX in WKY rats. Intra-LPAG administration of 5'-IRTX reduced nociceptive behaviour in a moderate and transient manner in SD rats, but not in WKY rats. These results indicate that modulation of inflammatory pain by TRPV1 in the PAG occurs in a sub-column-specific manner. The data also provide evidence for differences in the expression of TRPV1, and differences in the effects of pharmacological modulation of TRPV1 in specific PAG sub-columns, between WKY and SD rats, suggesting that TRPV1 expression and/or functionality in the PAG plays a role in hyper-responsivity to noxious stimuli in a genetic background prone to negative affect.
Collapse
Affiliation(s)
- Manish K Madasu
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Bright N Okine
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Weredeselam M Olango
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Kieran Rea
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Róisín Lenihan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
169
|
Low LA, Bauer LC, Pitcher MH, Bushnell MC. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses. Pain 2016; 157:1761-1772. [PMID: 27058679 PMCID: PMC4949008 DOI: 10.1097/j.pain.0000000000000579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 01/13/2023]
Abstract
With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the "nociceptive" central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli.
Collapse
Affiliation(s)
- Lucie A. Low
- Laboratory of Pain and Integrative Neuroscience, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Lucy C. Bauer
- Laboratory of Pain and Integrative Neuroscience, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Mark H. Pitcher
- Laboratory of Pain and Integrative Neuroscience, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - M. Catherine Bushnell
- Laboratory of Pain and Integrative Neuroscience, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
170
|
Hunt J, Murrell J, Knazovicky D, Harris J, Kelly S, Knowles TG, Lascelles BDX. Alfaxalone Anaesthesia Facilitates Electrophysiological Recordings of Nociceptive Withdrawal Reflexes in Dogs (Canis familiaris). PLoS One 2016; 11:e0158990. [PMID: 27433936 PMCID: PMC4951135 DOI: 10.1371/journal.pone.0158990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/25/2016] [Indexed: 12/02/2022] Open
Abstract
Naturally occurring canine osteoarthritis represents a welfare issue for affected dogs (Canis familiaris), but is also considered very similar to human osteoarthritis and has therefore been proposed as a model of disease in humans. Central sensitisation is recognized in human osteoarthritis sufferers but identification in dogs is challenging. Electromyographic measurement of responses to nociceptive stimulation represents a potential means of investigating alterations in central nociceptive processing, and has been evaluated in conscious experimental dogs, but is likely to be aversive. Development of a suitable anaesthetic protocol in experimental dogs, which facilitated electrophysiological nociceptive withdrawal reflex assessment, may increase the acceptability of using the technique in owned dogs with naturally occurring osteoarthritis. Seven purpose bred male hound dogs underwent electromyographic recording sessions in each of three states: acepromazine sedation, alfaxalone sedation, and alfaxalone anaesthesia. Electromyographic responses to escalating mechanical and electrical, and repeated electrical, stimuli were recorded. Subsequently the integral of both early and late rectified responses was calculated. Natural logarithms of the integral values were analysed within and between the three states using multi level modeling. Alfaxalone increased nociceptive thresholds and decreased the magnitude of recorded responses, but characteristics of increasing responses with increasing stimulus magnitude were preserved. Behavioural signs of anxiety were noted in two out of seven dogs during recordings in the acepromazine sedated state. There were few significant differences in response magnitude or nociceptive threshold between the two alfaxalone states. Following acepromazine premedication, induction of anaesthesia with 1–2 mg kg-1 alfaxalone, followed by a continuous rate infusion in the range 0.075–0.1 mg kg-1 min-1 produced suitable conditions to enable assessment of spinal nociceptive processing in dogs, without subjecting them to potentially aversive experiences. This methodology may be appropriate for obtaining electrophysiological nociceptive withdrawal reflex data in client-owned dogs with naturally occurring osteoarthritis.
Collapse
Affiliation(s)
- James Hunt
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Jo Murrell
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - David Knazovicky
- Comparative Pain Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - John Harris
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Sara Kelly
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Toby G. Knowles
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - B. Duncan X. Lascelles
- Comparative Pain Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Pain Research and Innovation, UNC School of Dentistry, Chapel Hill, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
171
|
Burke NN, Finn DP, McGuire BE, Roche M. Psychological stress in early life as a predisposing factor for the development of chronic pain: Clinical and preclinical evidence and neurobiological mechanisms. J Neurosci Res 2016; 95:1257-1270. [DOI: 10.1002/jnr.23802] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nikita N. Burke
- Physiology, School of Medicine, National University of Ireland; Galway Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
| | - David P. Finn
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland; Galway Ireland
| | - Brian E. McGuire
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
- Psychology, National University of Ireland; Galway Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland; Galway Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
| |
Collapse
|
172
|
Glucocorticoid-Potentiated Spinal Microglia Activation Contributes to Preoperative Anxiety-Induced Postoperative Hyperalgesia. Mol Neurobiol 2016; 54:4316-4328. [PMID: 27339881 DOI: 10.1007/s12035-016-9976-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/14/2016] [Indexed: 12/30/2022]
Abstract
Clinically, preoperative anxiety adversely affected postoperative hyperalgesia. As stress-induced glucocorticoids (GCs) were reported to sensitize the activation of microglia, the present study investigated whether and how GCs and microglia played in the process of preoperative anxiety-induced postoperative hyperalgesia. The study used an animal model that exposed rats to single prolonged stress (SPS) procedure to induce preoperative anxiety-like behaviors 24 h before the plantar incisional surgery. Behavioral testing revealed that preoperative SPS enhanced the mechanical allodynia induced by plantar incision. SPS was also found to induce elevated circulating corticosterone levels, potentiate the activation of spinal microglia, and increase the expression of spinal proinflammatory cytokines. Inhibition of microglia by pretreatment with minocycline attenuated the SPS-enhanced mechanical allodynia, and this was accompanied by decreased activation of spinal microglia and expression of proinflammatory cytokines. Another experiment was conducted by administering RU486, the GC receptor (GR) antagonist, to rats. The results showed that RU486 suppressed SPS-induced and SPS-potentiated proinflammatory activation of spinal microglia and revealed analgesic effects. Together, these data indicated that inhibition of stress-induced GR activation attenuated the preoperative anxiety-induced exacerbation of postoperative pain, and the suppression of spinal microglia activation may underlie this anti-hyperalgesia effect. Pending further studies, these findings suggested that GR and spinal microglia may play important roles in the development of preoperative anxiety-induced postoperative hyperalgesia and may serve as novel targets to prevent this phenomenon.
Collapse
|
173
|
Egle UT, Egloff N, von Känel R. Stressinduzierte Hyperalgesie (SIH) als Folge von emotionaler Deprivation und psychischer Traumatisierung in der Kindheit. Schmerz 2016; 30:526-536. [DOI: 10.1007/s00482-016-0107-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
174
|
You DS, Creech SK, Meagher MW. Enhanced Area of Secondary Hyperalgesia in Women with Multiple Stressful Life Events: A Pilot Study. PAIN MEDICINE 2016; 17:1859-1864. [DOI: 10.1093/pm/pnw049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
175
|
From Pavlov to pain: How predictability affects the anticipation and processing of visceral pain in a fear conditioning paradigm. Neuroimage 2016; 130:104-114. [DOI: 10.1016/j.neuroimage.2016.01.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 01/16/2016] [Indexed: 01/19/2023] Open
|
176
|
Saravelos SH, Wong AWY, Kong GWS, Huang J, Klitzman R, Li TC. Pain during embryo transfer is independently associated with clinical pregnancy in fresh/frozen assisted reproductive technology cycles. J Obstet Gynaecol Res 2016; 42:684-93. [DOI: 10.1111/jog.12962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/14/2015] [Accepted: 01/07/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Sotirios H. Saravelos
- Assisted Reproductive Technology Unit; Prince of Wales Hospital, Chinese University of Hong Kong; Shatin New Territories Hong Kong
| | - Alice WY. Wong
- Assisted Reproductive Technology Unit; Prince of Wales Hospital, Chinese University of Hong Kong; Shatin New Territories Hong Kong
| | - Grace WS. Kong
- Assisted Reproductive Technology Unit; Prince of Wales Hospital, Chinese University of Hong Kong; Shatin New Territories Hong Kong
| | - Jin Huang
- Assisted Reproductive Technology Unit; Prince of Wales Hospital, Chinese University of Hong Kong; Shatin New Territories Hong Kong
| | - Robert Klitzman
- Mailman School of Public Health; Columbia University Medical Centre; New York USA
| | - Tin-Chiu Li
- Assisted Reproductive Technology Unit; Prince of Wales Hospital, Chinese University of Hong Kong; Shatin New Territories Hong Kong
| |
Collapse
|
177
|
Carlino E, Benedetti F. Different contexts, different pains, different experiences. Neuroscience 2016; 338:19-26. [PMID: 26827944 DOI: 10.1016/j.neuroscience.2016.01.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/19/2022]
Abstract
Pain is an ambiguous perception: the same pain stimulation can be perceived differently in different contexts, producing different experiences, ranging from mild to unbearable pain. It can be even experienced as a rewarding sensation within the appropriate context. Overall, placebo and nocebo effects appear to be very good models to understand how the psychosocial context modulates the experience of pain. In this review, we examine the effects of different contexts on pain, with a specific focus on the neurobiological mechanisms. Positive and rewarding contexts inform the patients that an effective treatment is being delivered and are capable of producing pain relief through the activation of specific systems such as opioids, cannabinoids and dopamine. Conversely, a negative context can produce pain exacerbation and clinical worsening through the modulation of different systems, such as the activation of cholecystokinin and the deactivation of opioids and dopamine. In addition, when a therapy is delivered unbeknownst to the patient, its effects are reduced. A better understanding of the neurobiological underpinnings of the context-pain interaction is a challenge both for future pain research and for good clinical practice.
Collapse
Affiliation(s)
- E Carlino
- University of Turin Medical School, Neuroscience Department, Turin, Italy
| | - F Benedetti
- University of Turin Medical School, Neuroscience Department, Turin, Italy; Plateau Rosa Laboratories, Breuil-Cervinia, Italy, Zermatt, Switzerland.
| |
Collapse
|
178
|
Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:181-9. [PMID: 25988529 DOI: 10.1016/j.pnpbp.2015.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 01/18/2023]
Abstract
Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.
Collapse
|
179
|
Elsenbruch S, Wolf OT. Could Stress Contribute to Pain-Related Fear in Chronic Pain? Front Behav Neurosci 2015; 9:340. [PMID: 26733831 PMCID: PMC4681808 DOI: 10.3389/fnbeh.2015.00340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022] Open
Abstract
Learning to predict pain based on internal or external cues constitutes a fundamental and highly adaptive process aimed at self-protection. Pain-related fear is an essential component of this response, which is formed by associative and instrumental learning processes. In chronic pain, pain-related fear may become maladaptive, drive avoidance behaviors and contribute to symptom chronicity. Pavlovian fear conditioning has proven fruitful to elucidate associative learning and extinction involving aversive stimuli, including pain, but studies in chronic pain remain scarce. Stress demonstrably exerts differential effects on emotional learning and memory processes, but this has not been transferred to pain-related fear. Within this perspective, we propose that stress could contribute to impaired pain-related associative learning and extinction processes and call for interdisciplinary research. Specifically, we suggest to test the hypotheses that: (1) extinction-related phenomena inducing a re-activation of maladaptive pain-related fear (e.g., reinstatement, renewal) likely occur in everyday life of chronic pain patients and may alter pain processing, impair perceptual discrimination and favor overgeneralization; (2) acute stress prior to or during acquisition of pain-related fear may facilitate the formation and/or consolidation of pain-related fear memories; (3) stress during or after extinction may impair extinction efficacy resulting in greater reinstatement or context-dependent renewal of pain-related fear; and (4) these effects could be amplified by chronic stress due to early adversity and/or psychiatric comorbidity such depression or anxiety in patients with chronic pain.
Collapse
Affiliation(s)
- Sigrid Elsenbruch
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-EssenEssen, Germany
- *Correspondence: Sigrid Elsenbruch
| | - Oliver T. Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumBochum, Germany
| |
Collapse
|
180
|
Managing Chronic Pain in Children and Adolescents: A Clinical Review. PM R 2015; 7:S295-S315. [DOI: 10.1016/j.pmrj.2015.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/19/2022]
|
181
|
Fitzgibbon M, Finn DP, Roche M. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity. Int J Neuropsychopharmacol 2015; 19:pyv095. [PMID: 26342110 PMCID: PMC4815466 DOI: 10.1093/ijnp/pyv095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023] Open
Abstract
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.
Collapse
Affiliation(s)
| | | | - Michelle Roche
- Physiology (Ms Fitzgibbon and Dr Roche), and Pharmacology and Therapeutics (Dr Finn), School of Medicine, Galway Neuroscience Centre and Centre for Pain Research (Ms Fitzgibbon, Dr Finn, and Dr Roche), National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland.
| |
Collapse
|
182
|
Wang PK, Cao J, Wang H, Liang L, Zhang J, Lutz BM, Shieh KR, Bekker A, Tao YX. Short-Term Sleep Disturbance-Induced Stress Does not Affect Basal Pain Perception, but Does Delay Postsurgical Pain Recovery. THE JOURNAL OF PAIN 2015; 16:1186-99. [PMID: 26342649 DOI: 10.1016/j.jpain.2015.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/29/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Chronic sleep disturbance-induced stress is known to increase basal pain sensitivity. However, most surgical patients frequently report short-term sleep disturbance/deprivation during the pre- and postoperation periods and have normal pain perception presurgery. Whether this short-term sleep disturbance affects postsurgical pain is elusive. Here, we report that pre- or postexposure to rapid eye movement sleep disturbance (REMSD) for 6 hours daily for 3 consecutive days did not alter basal responses to mechanical, heat, and cold stimuli, but did delay recovery in incision-induced reductions in paw withdrawal threshold to mechanical stimulation and paw withdrawal latencies to heat and cold stimuli on the ipsilateral side of male or female rats. This short-term REMSD led to stress shown by an increase in swim immobility time, a decrease in sucrose consumption, and an increase in the level of corticosterone in serum. Blocking this stress via intrathecal RU38486 or bilateral adrenalectomy abolished REMSD-caused delay in recovery of incision-induced reductions in behavioral responses to mechanical, heat, and cold stimuli. Moreover, this short-term REMSD produced significant reductions in the levels of mu opioid receptor and kappa opioid receptor, but not Kv1.2, in the ipsilateral L4/5 spinal cord and dorsal root ganglia on day 9 after incision (but not after sham surgery). PERSPECTIVE Our findings show that short-term sleep disturbance either pre- or postsurgery does not alter basal pain perception, but does exacerbate postsurgical pain hypersensitivity. The latter may be related to the reductions of mu and kappa opioid receptors in the spinal cord and dorsal root ganglia caused by REMSD plus incision. Prevention of short-term sleep disturbance may help recovery from postsurgical pain in patients.
Collapse
MESH Headings
- Animals
- Chronic Disease
- Corticosterone/blood
- Disease Models, Animal
- Disease Progression
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hormone Antagonists/pharmacology
- Kv1.2 Potassium Channel/metabolism
- Lumbar Vertebrae
- Male
- Mifepristone/pharmacology
- Pain Perception/drug effects
- Pain Perception/physiology
- Pain, Postoperative/drug therapy
- Pain, Postoperative/physiopathology
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Sleep Wake Disorders/drug therapy
- Sleep Wake Disorders/physiopathology
- Sleep, REM/physiology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/physiology
Collapse
Affiliation(s)
- Po-Kai Wang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Anesthesiology, Buddhist Tzu Chi General Hospital, Institute of Medical Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jing Cao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongzhen Wang
- Department of Orthopedics, The First People's Hospital of Kunshan City, Kunshan, Jiangsu, China
| | - Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Jun Zhang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Brianna Marie Lutz
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Kun-Ruey Shieh
- Institute of Medical Sciences and Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Neurology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Physiology & Pharmacology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
183
|
Abstract
Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition.
Collapse
|
184
|
Egloff N, von Känel R, Müller V, Egle UT, Kokinogenis G, Lederbogen S, Durrer B, Stauber S. Implications of proposed fibromyalgia criteria across other functional pain syndromes. Scand J Rheumatol 2015; 44:416-24. [DOI: 10.3109/03009742.2015.1010103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
185
|
Okamoto K, Katagiri A, Rahman M, Thompson R, Bereiter DA. Inhibition of temporomandibular joint input to medullary dorsal horn neurons by 5HT3 receptor antagonist in female rats. Neuroscience 2015; 299:35-44. [PMID: 25913635 DOI: 10.1016/j.neuroscience.2015.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/17/2015] [Accepted: 04/16/2015] [Indexed: 12/19/2022]
Abstract
Repeated forced swim (FS) conditioning enhances nociceptive responses to temporomandibular joint (TMJ) stimulation in female rats. The basis for FS-induced TMJ hyperalgesia remains unclear. To test the hypothesis that serotonin 3 receptor (5HT3R) mechanisms contribute to enhanced TMJ nociception after FS, ovariectomized female rats were treated with estradiol and subjected to FS for three days. On day 4, rats were anesthetized with isoflurane and TMJ-responsive neurons were recorded from superficial and deep laminae at the trigeminal subnucleus caudalis/upper cervical (Vc/C1-2) region and electromyographic (EMG) activity was recorded from the masseter muscle. Only Vc/C1-2 neurons activated by intra-TMJ injections of ATP were included for further analysis. Although neurons in both superficial and deep laminae were activated by ATP, only neurons in deep laminae displayed enhanced responses after FS. Local application of the 5HT3R antagonist, ondansetron (OND), at the Vc/C1-2 region reduced the ATP-evoked responses of neurons in superficial and deep laminae and reduced the EMG response in both sham and FS rats. OND also decreased the spontaneous firing rate of neurons in deep laminae and reduced the high-threshold convergent cutaneous receptive field area of neurons in superficial and deep laminae in both sham and FS rats. These results revealed that central application of a 5HT3R antagonist, had widespread effects on the properties of TMJ-responsive neurons at the Vc/C1-2 region and on jaw muscle reflexes under sham and FS conditions. It is concluded that 5HT3R does not play a unique role in mediating stress-induced hyperalgesia related to TMJ nociception.
Collapse
Affiliation(s)
- K Okamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States.
| | - A Katagiri
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - M Rahman
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - R Thompson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - D A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| |
Collapse
|
186
|
Moloney RD, Golubeva AV, O'Connor RM, Kalinichev M, Dinan TG, Cryan JF. Negative allosteric modulation of the mGlu7 receptor reduces visceral hypersensitivity in a stress-sensitive rat strain. Neurobiol Stress 2015; 2:28-33. [PMID: 26844237 PMCID: PMC4721404 DOI: 10.1016/j.ynstr.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/15/2015] [Accepted: 04/03/2015] [Indexed: 11/19/2022] Open
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, exerts its effect through ionotropic and metabotropic receptors. Of these, group III mGlu receptors (mGlu 4, 6, 7, 8) are among the least studied due to a lack of pharmacological tools. mGlu7 receptors, the most highly conserved isoform, are abundantly distributed in the brain, especially in regions, such as the amygdala, known to be crucial for the emotional processing of painful stimuli. Visceral hypersensitivity is a poorly understood phenomenon manifesting as an increased sensitivity to visceral stimuli. Glutamate has long been associated with somatic pain processing leading us to postulate that crossover may exist between these two modalities. Moreover, stress has been shown to exacerbate visceral pain. ADX71743 is a novel, centrally penetrant, negative allosteric modulator of mGlu7 receptors. Thus, we used this tool to explore the possible involvement of this receptor in the mediation of visceral pain in a stress-sensitive model of visceral hypersensitivity, namely the Wistar Kyoto (WKY) rat. ADX71743 reduced visceral hypersensitivity in the WKY rat as exhibited by increased visceral sensitivity threshold with concomitant reductions in total number of pain behaviours. Moreover, AD71743 increased total distance and distance travelled in the inner zone of the open field. These findings show, for what is to our knowledge, the first time, that mGlu7 receptor signalling plays a role in visceral pain processing. Thus, negative modulation of the mGlu7 receptor may be a plausible target for the amelioration of stress-induced visceral pain where there is a large unmet medical need.
Collapse
Affiliation(s)
- Rachel D. Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Ireland
- Department of Psychiatry, University College Cork, Ireland
| | - Anna V. Golubeva
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Ireland
| | | | | | - Timothy G. Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Ireland
- Department of Psychiatry, University College Cork, Ireland
| | - John F. Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- Corresponding author. Dept Anatomy & Neuroscience, Room 386, Western Gateway Building, University College Cork, Western Rd., Cork, Ireland.
| |
Collapse
|
187
|
Aili K, Nyman T, Hillert L, Svartengren M. Sleep disturbances predict future sickness absence among individuals with lower back or neck-shoulder pain: a 5-year prospective study. Scand J Public Health 2015; 43:315-23. [PMID: 25724467 DOI: 10.1177/1403494814567755] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Musculoskeletal pain is one of the most common causes of sickness absence. Sleep disturbances are often co-occurring with pain, but the relationship between sleep and pain is complex. Little is known about the importance of self-reported sleep, when predicting sickness absence among persons with musculoskeletal pain. This study aims to study the association between self-reported sleep quality and sickness absence 5 years later, among individuals stratified by presence of lower back pain (LBP) and neck and shoulder pain (NSP). METHODS The cohort (n = 2286) in this 5-year prospective study (using data from the MUSIC-Norrtälje study) was stratified by self-reported pain into three groups: no LBP or NSP, solely LBP or NSP, and concurrent LBP and NSP. Odds ratios (ORs) for the effect of self-reported sleep disturbances at baseline on sickness absence (> 14 consecutive days), 5 years later, were calculated. RESULTS Within all three pain strata, individuals reporting the most sleep problems showed a significantly higher OR for all-cause sickness absence, 5 years later. The group with the most pronounced sleep problems within the concurrent LBP and NSP stratum had a significantly higher OR (OR 2.00; CI 1.09-3.67) also for long-term sickness absence (> 90 days) 5 years later, compared to the group with the best sleep. CONCLUSIONS Sleep disturbances predict sickness absence among individuals regardless of co-existing features of LBP and/or NSP. The clinical evaluation of patients should take possible sleep disturbances into account in the planning of treatments.
Collapse
Affiliation(s)
- Katarina Aili
- Karolinska Instutitet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Teresia Nyman
- Karolinska Instutitet, Institute of Environmental Medicine, Stockholm, Sweden KTH Royal Institute of Technology, School of Technology and Health, Stockholm, Sweden
| | - Lena Hillert
- Karolinska Instutitet, Institute of Environmental Medicine, Stockholm, Sweden
| | | |
Collapse
|
188
|
Wei X, Yan J, Tillu D, Asiedu M, Weinstein N, Melemedjian O, Price T, Dussor G. Meningeal norepinephrine produces headache behaviors in rats via actions both on dural afferents and fibroblasts. Cephalalgia 2015; 35:1054-64. [PMID: 25601915 DOI: 10.1177/0333102414566861] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/06/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Stress is commonly reported to contribute to migraine although mechanisms by which this may occur are not fully known. The purpose of these studies was to examine whether norepinephrine (NE), the primary sympathetic efferent transmitter, acts on processes in the meninges that may contribute to the pain of migraine. METHODS NE was applied to rat dura using a behavioral model of headache. Primary cultures of rat trigeminal ganglia retrogradely labeled from the dura mater and of rat dural fibroblasts were prepared. Patch-clamp electrophysiology, Western blot, and ELISA were performed to examine the effects of NE. Conditioned media from NE-treated fibroblast cultures was applied to the dura using the behavioral headache model. RESULTS Dural injection both of NE and media from NE-stimulated fibroblasts caused cutaneous facial and hindpaw allodynia in awake rats. NE application to cultured dural afferents increased action potential firing in response to current injections. Application of NE to dural fibroblasts increased phosphorylation of ERK and caused the release of interleukin-6 (IL-6). CONCLUSIONS These data demonstrate that NE can contribute to pro-nociceptive signaling from the meninges via actions on dural afferents and dural fibroblasts. Together, these actions of NE may contribute to the headache phase of migraine.
Collapse
Affiliation(s)
- Xiaomei Wei
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Jin Yan
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Dipti Tillu
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Marina Asiedu
- Department of Pharmacology, The University of Arizona College of Medicine, USA School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Nicole Weinstein
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Ohannes Melemedjian
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Theodore Price
- Department of Pharmacology, The University of Arizona College of Medicine, USA School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Gregory Dussor
- Department of Pharmacology, The University of Arizona College of Medicine, USA School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
189
|
Corcoran L, Roche M, Finn DP. The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:203-55. [DOI: 10.1016/bs.irn.2015.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|