151
|
Iida R, Ueki M, Yasuda T. Identification of Rhit as a novel transcriptional repressor of human Mpv17-like protein with a mitigating effect on mitochondrial dysfunction, and its transcriptional regulation by FOXD3 and GABP. Free Radic Biol Med 2012; 52:1413-22. [PMID: 22306510 DOI: 10.1016/j.freeradbiomed.2012.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
Mpv17-like protein (M-LP) is a protein that has been suggested to be involved in the metabolism of reactive oxygen species. To elucidate the molecular basis of M-LP expression, we recently searched for regulatory elements of M-LP and identified a novel mouse KRAB-containing protein, Rhit (regulator of heat-induced transcription), as a repressor of the transcriptional regulation of M-LP. In this study, we identified zinc-finger protein 205 as a candidate human Rhit (RhitH) and subsequently confirmed its participation in transcriptional regulation of human M-LP (M-LPH). To clarify the functions of RhitH and M-LPH, we searched for cis-regulatory elements in the promoter region of RhitH and identified two transcription factors: forkhead box D3, as a negative regulatory element, and GA-binding protein, one of the key regulators of the mitochondrial electron transport system, as a positive regulatory element. Additionally, it was demonstrated that knockdown of RhitH or overexpression of M-LPH reduces the generation of intracellular H(2)O(2) and loss of mitochondrial membrane potential caused by an inhibitor of the respiratory chain, antimycin A. These results suggest that M-LPH functions to protect cells from oxidative stress and/or initiation of the mitochondrial apoptotic cascade under stressed conditions.
Collapse
Affiliation(s)
- Reiko Iida
- Division of Life Science, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan.
| | | | | |
Collapse
|
152
|
Boonsanay V, Kim J, Braun T, Zhou Y. The Emerging Role of Epigenetic Modifiers Linking Cellular Metabolism and Gene Activity in Cardiac Progenitor Cells. Trends Cardiovasc Med 2012; 22:77-81. [DOI: 10.1016/j.tcm.2012.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
153
|
Kim SF. Animal models of eating disorders. Neuroscience 2012; 211:2-12. [PMID: 22465439 DOI: 10.1016/j.neuroscience.2012.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 01/30/2023]
Abstract
Feeding is a fundamental process for basic survival and is influenced by genetics and environmental stressors. Recent advances in our understanding of behavioral genetics have provided a profound insight on several components regulating eating patterns. However, our understanding of eating disorders, such as anorexia nervosa, bulimia nervosa, and binge eating, is still poor. The animal model is an essential tool in the investigation of eating behaviors and their pathological forms, yet development of an appropriate animal model for eating disorders still remains challenging due to our limited knowledge and some of the more ambiguous clinical diagnostic measures. Therefore, this review will serve to focus on the basic clinical features of eating disorders and the current advances in animal models of eating disorders.
Collapse
Affiliation(s)
- S F Kim
- Center for Neurobiology and Behavior, Department of Psychiatry and Pharmacology, The Perelman School of Medicine University of Pennsylvania, 125 S 31st St., TRL Rm 2207, Philadelphia, PA 19104, USA.
| |
Collapse
|
154
|
Chowdhury SKR, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 2012; 51:56-65. [PMID: 22446165 DOI: 10.1016/j.nbd.2012.03.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy is a neurological complication of diabetes that causes significant morbidity and, because of the obesity-driven rise in incidence of type 2 diabetes, is becoming a major international health problem. Mitochondrial phenotype is abnormal in sensory neurons in diabetes and may contribute to the etiology of diabetic neuropathy where a distal dying-back neurodegenerative process is a key component contributing to fiber loss. This review summarizes the major features of mitochondrial dysfunction in neurons and Schwann cells in human diabetic patients and in experimental animal models (primarily exhibiting type 1 diabetes). This article attempts to relate these findings to the development of critical neuropathological hallmarks of the disease. Recent work reveals that hyperglycemia in diabetes triggers nutrient excess in neurons that, in turn, mediates a phenotypic change in mitochondrial biology through alteration of the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signaling axis. This vital energy sensing metabolic pathway modulates mitochondrial function, biogenesis and regeneration. The bioenergetic phenotype of mitochondria in diabetic neurons is aberrant due to deleterious alterations in expression and activity of respiratory chain components as a direct consequence of abnormal AMPK/PGC-1α signaling. Utilization of innovative respirometry equipment to analyze mitochondrial function of cultured adult sensory neurons from diabetic rodents shows that the outcome for cellular bioenergetics is a reduced adaptability to fluctuations in ATP demand. The diabetes-induced maladaptive process is hypothesized to result in exhaustion of the ATP supply in the distal nerve compartment and induction of nerve fiber dissolution. The role of mitochondrial dysfunction in the etiology of diabetic neuropathy is compared with other types of neuropathy with a distal dying-back pathology such as Friedreich ataxia, Charcot-Marie-Tooth disease type 2 and human immunodeficiency virus-associated distal-symmetric neuropathy.
Collapse
Affiliation(s)
- Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | |
Collapse
|
155
|
Abstract
Integrating signals from the ECM (extracellular matrix) via the cell surface into the nucleus is an essential feature of multicellular life and often malfunctions in cancer. To date many signal transducers known as shuttle proteins have been identified that act as both: a cytoskeletal and a signalling protein. Here, we highlight the interesting member of the Zyxin family TRIP6 [thyroid receptor interactor protein 6; also designated ZRP-1 (zyxin-related protein 1)] and review current literature to define its role in cell physiology and cancer. TRIP6 is a versatile scaffolding protein at FAs (focal adhesions) involved in cytoskeletal organization, coordinated cell migration and tissue invasion. Via its LIM and TDC domains TRIP6 interacts with different components of the LPA (lysophosphatidic acid), NF-κB (nuclear factor κB), glucocorticoid and AMPK (AMP-activated protein kinase) signalling pathway and thereby modulates their activity. Within the nucleus TRIP6 acts as a transcriptional cofactor regulating the transcriptional responses of these pathways. Moreover, intranuclear TRIP6 associates with proteins ensuring telomere protection and hence may contribute to genome stability. Accordingly, TRIP6 is engaged in key cellular processes such as cell proliferation, differentiation and survival. These diverse functions of TRIP6 are found to be dysregulated in various cancers and may have pleiotropic roles in tumour initiation, tumour growth and metastasis, which turn TRIP6 into an attractive candidate for cancer diagnosis and targeted therapy.
Collapse
|
156
|
Anderson RM, Weindruch R. The caloric restriction paradigm: implications for healthy human aging. Am J Hum Biol 2012; 24:101-6. [PMID: 22290875 DOI: 10.1002/ajhb.22243] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/26/2011] [Accepted: 12/27/2011] [Indexed: 12/16/2022] Open
Abstract
Underlying the importance of research on the biology of aging is the fact that many nations face the demographic reality of a rapidly aging populace and the looming healthcare challenges that it brings. This reality is a result of aging itself being the most significant risk factor for a range of the most prevalent diseases, including many cancers, cardiovascular disease, and diabetes. Accordingly, interventions are sorely needed that would be able to delay or prevent diseases and disorders associated with the aging process and thereby increase the period of time that aging individuals are in good health (the health-span). Caloric restriction (CR) has emerged as a model of major interest as it is widely agreed that CR is the most potent environmental intervention that delays the onset of aging and extends life span in diverse experimental organisms. A better understanding of the mechanisms by which CR delays aging will reveal new insights into the aging process and the underlying causes of disease vulnerability with age. These novel insights will allow the development of novel treatments and preventive measures for age-associated diseases and disorders.
Collapse
Affiliation(s)
- Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
157
|
NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 2012; 147:827-39. [PMID: 22078881 DOI: 10.1016/j.cell.2011.10.017] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 08/09/2011] [Accepted: 10/06/2011] [Indexed: 02/08/2023]
Abstract
Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.
Collapse
|
158
|
Li P, Fan W, Xu J, Lu M, Yamamoto H, Auwerx J, Sears DD, Talukdar S, Oh D, Chen A, Bandyopadhyay G, Scadeng M, Ofrecio JM, Nalbandian S, Olefsky JM. Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 2012; 147:815-26. [PMID: 22078880 DOI: 10.1016/j.cell.2011.09.050] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/22/2011] [Accepted: 09/23/2011] [Indexed: 01/06/2023]
Abstract
Insulin resistance, tissue inflammation, and adipose tissue dysfunction are features of obesity and Type 2 diabetes. We generated adipocyte-specific Nuclear Receptor Corepressor (NCoR) knockout (AKO) mice to investigate the function of NCoR in adipocyte biology, glucose and insulin homeostasis. Despite increased obesity, glucose tolerance was improved in AKO mice, and clamp studies demonstrated enhanced insulin sensitivity in liver, muscle, and fat. Adipose tissue macrophage infiltration and inflammation were also decreased. PPARγ response genes were upregulated in adipose tissue from AKO mice and CDK5-mediated PPARγ ser-273 phosphorylation was reduced, creating a constitutively active PPARγ state. This identifies NCoR as an adaptor protein that enhances the ability of CDK5 to associate with and phosphorylate PPARγ. The dominant function of adipocyte NCoR is to transrepress PPARγ and promote PPARγ ser-273 phosphorylation, such that NCoR deletion leads to adipogenesis, reduced inflammation, and enhanced systemic insulin sensitivity, phenocopying the TZD-treated state.
Collapse
Affiliation(s)
- Pingping Li
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Sahar S, Sassone-Corsi P. Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab 2012; 23:1-8. [PMID: 22169754 PMCID: PMC3259741 DOI: 10.1016/j.tem.2011.10.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/30/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023]
Abstract
Circadian rhythms occur with a periodicity of approximately 24h and regulate a wide array of metabolic and physiologic functions. Accumulating epidemiological and genetic evidence indicates that disruption of circadian rhythms can be directly linked to many pathological conditions, including sleep disorders, depression, metabolic syndrome and cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of cellular metabolism. Although the circadian clock regulates multiple metabolic pathways, metabolite availability and feeding behavior can in turn regulate the circadian clock. An in-depth understanding of this reciprocal regulation of circadian rhythms and cellular metabolism may provide insights into the development of therapeutic intervention against specific metabolic disorders.
Collapse
|
160
|
Song Y, Shan S, Zhang Y, Liu W, Ding W, Ren W, Xia H, Li X, Zhang Q, Zhao L, Li X, Yan J, Ying H. Ligand-dependent corepressor acts as a novel corepressor of thyroid hormone receptor and represses hepatic lipogenesis in mice. J Hepatol 2012; 56:248-54. [PMID: 21827732 DOI: 10.1016/j.jhep.2011.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Transcriptional co-regulators assist nuclear receptors to control the transcription and maintain the metabolic homeostasis. Ligand-dependent corepressor (LCOR) was reported to function as a transcriptional corepressor in vitro. We found LCOR expression decreased in fatty livers of leptin-deficient (ob/ob) mice, diet-induced obese mice, as well as patients, suggesting LCOR may play a role in lipid homeostasis. We sought to investigate the physiological role of LCOR in vivo and elucidate the underlining molecular mechanisms. METHODS The effect of LCOR on hepatic lipid accumulation and thyroid hormone receptor (TR) mediated expression of lipogenic genes was studied in vitro and in vivo. RESULTS Ectopic expression of LCOR via intravenous infection with LCOR adenovirus decreased the hepatic triglyceride level in wild type, ob/ob, and diet-induced obese mice. Interestingly, overexpression of LCOR repressed the thyroid hormone induced expression of lipogenic genes and non-lipogenic genes, and ameliorated hepatic steatosis in obese mice, suggesting that LCOR might regulate lipogenesis as a novel TR corepressor. Furthermore, our study revealed that LCOR could interact with TRβ1 in the presence of the ligand, which resulted in competitive binding and reduced recruitment of steroid receptor coactivator-1/3 (SRC-1/3) to the promoter region of TR target genes. CONCLUSIONS Our data suggest that LCOR is likely to suppress TRβ1-mediated hepatic lipogenesis by decreasing binding and recruitment of SRCs to TRβ1. Our study reveals the physiological function of hepatic LCOR in lipid metabolism and the mechanism by which LCOR regulates lipogenesis. Hepatic LCOR may be a potential target for treating hepatic steatosis.
Collapse
Affiliation(s)
- Yiyun Song
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Goodson ML, Mengeling BJ, Jonas BA, Privalsky ML. Alternative mRNA splicing of corepressors generates variants that play opposing roles in adipocyte differentiation. J Biol Chem 2011; 286:44988-99. [PMID: 22065574 DOI: 10.1074/jbc.m111.291625] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SMRT and NCoR corepressors partner with, and help mediate repression by, a wide variety of nuclear receptors and non-receptor transcription factors. Both SMRT and NCoR are expressed by alternative mRNA splicing, resulting in the production of a series of interrelated corepressor variants that differ in their tissue distribution and in their biochemical properties. We report here that different corepressor splice variants can exert opposing transcriptional and biological effects during adipocyte differentiation. Most notably, the NCoRω splice variant inhibits, whereas the NCoRδ splice variant promotes, adipogenesis. Furthermore, the ratio of NCoRω to NCoRδ decreases during adipogenic differentiation. We propose that this alteration in corepressor splicing helps convert the cellular transcriptional program from one that maintains the pre-adipocyte in an undifferentiated state to a new transcriptional context that promotes differentiation and helps establish the proper physiology of the mature adipocyte.
Collapse
Affiliation(s)
- Michael L Goodson
- Department of Microbiology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
162
|
Satyanarayana A, Klarmann KD, Gavrilova O, Keller JR. Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis. FASEB J 2011; 26:309-23. [PMID: 21990377 DOI: 10.1096/fj.11-190892] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Obesity is a major health concern that contributes to the development of diabetes, hyperlipidemia, coronary artery disease, and cancer. Id proteins are helix-loop-helix transcription factors that regulate the proliferation and differentiation of cells from multiple tissues, including adipocytes. We screened mouse tissues for the expression of Id1 and found that Id1 protein is highly expressed in brown adipose tissue (BAT) and white adipose tissue (WAT), suggesting a role for Id1 in adipogenesis and cell metabolism. Id1(-/-) mice are viable but show a significant reduction in fat mass (P<0.005) over the life of the animal that was not due to decreased number of adipocytes. Analysis of Id1(-/-) mice revealed higher energy expenditure, increased lipolysis, and fatty acid oxidation, resulting in reduced triglyceride accumulation in WAT compared to Id1(+/+) mice. Serum levels of triglycerides (193.9±32.2 vs. 86.5±33.8, P<0.0005), cholesterol (189.4±33.8 vs. 110.6±8.23, P<0.0005) and leptin (1263±835 vs. 222±260, P<0.005) were significantly lower in aged Id1(-/-) mice compared to Id1(+/+) mice. Id1-deficient mice have higher resting (P<0.005) and total (P<0.05) O(2) consumption and lower respiratory exchange ratio (P<0.005), confirming that Id1(-/-) mice use a higher proportion of lipid as an energy source for the increased energy expenditure. The expression of PGC1α and UCP1 were 2- to 3-fold up-regulated in Id1(-/-) BAT, suggesting that loss of Id1 increases thermogenesis. As a consequence of higher energy expenditure and reduced fat mass, Id1(-/-) mice displayed enhanced insulin sensitivity. Id1 deficiency protected mice against age- and high-fat-diet-induced adiposity, insulin resistance, and hepatosteatosis. Our findings suggest that Id1 plays a critical role in the regulation of energy homeostasis and could be a potential target in the treatment of insulin resistance and fatty liver disease.
Collapse
Affiliation(s)
- Ande Satyanarayana
- Center for Cancer Research, National Cancer, Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
163
|
Chuang CC, McIntosh MK. Potential Mechanisms by Which Polyphenol-Rich Grapes Prevent Obesity-Mediated Inflammation and Metabolic Diseases. Annu Rev Nutr 2011; 31:155-76. [DOI: 10.1146/annurev-nutr-072610-145149] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Michael K. McIntosh
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, North Carolina 27402; ,
| |
Collapse
|
164
|
Bedford DC, Kasper LH, Wang R, Chang Y, Green DR, Brindle PK. Disrupting the CH1 domain structure in the acetyltransferases CBP and p300 results in lean mice with increased metabolic control. Cell Metab 2011; 14:219-30. [PMID: 21803292 PMCID: PMC3163393 DOI: 10.1016/j.cmet.2011.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 11/30/2010] [Accepted: 06/09/2011] [Indexed: 12/30/2022]
Abstract
Opposing activities of acetyltransferases and deacetylases help regulate energy balance. Mice heterozygous for the acetyltransferase CREB binding protein (CBP) are lean and insulin sensitized, but how CBP regulates energy homeostasis is unclear. In one model, the main CBP interaction with the glucagon-responsive factor CREB is not limiting for liver gluconeogenesis, whereas a second model posits that Ser436 in the CH1 (TAZ1) domain of CBP is required for insulin and the antidiabetic drug metformin to inhibit CREB-mediated liver gluconeogenesis. Here we show that conditional knockout of CBP in liver does not decrease fasting blood glucose or gluconeogenic gene expression, consistent with the first model. However, mice in which the CBP CH1 domain structure is disrupted by deleting residues 342-393 (ΔCH1) are lean and insulin sensitized, as are p300ΔCH1 mutants. CBP(ΔCH1/ΔCH1) mice remain metformin responsive. An intact CH1 domain is thus necessary for normal energy storage, but not for the blood glucose-lowering actions of insulin and metformin.
Collapse
Affiliation(s)
- David C Bedford
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
165
|
Birket MJ, Orr AL, Gerencser AA, Madden DT, Vitelli C, Swistowski A, Brand MD, Zeng X. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci 2011; 124:348-58. [PMID: 21242311 DOI: 10.1242/jcs.072272] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Here, we have investigated mitochondrial biology and energy metabolism in human embryonic stem cells (hESCs) and hESC-derived neural stem cells (NSCs). Although stem cells collectively in vivo might be expected to rely primarily on anaerobic glycolysis for ATP supply, to minimise production of reactive oxygen species, we show that in vitro this is not so: hESCs generate an estimated 77% of their ATP through oxidative phosphorylation. Upon differentiation of hESCs into NSCs, oxidative phosphorylation declines both in absolute rate and in importance relative to glycolysis. A bias towards ATP supply from oxidative phosphorylation in hESCs is consistent with the expression levels of the mitochondrial gene regulators peroxisome-proliferator-activated receptor γ coactivator (PGC)-1α, PGC-1β and receptor-interacting protein 140 (RIP140) in hESCs when compared with a panel of differentiated cell types. Analysis of the ATP demand showed that the slower ATP turnover in NSCs was associated with a slower rate of most energy-demanding processes but occurred without a reduction in the cellular growth rate. This mismatch is probably explained by a higher rate of macromolecule secretion in hESCs, on the basis of evidence from electron microscopy and an analysis of conditioned media. Taken together, our developmental model provides an understanding of the metabolic transition from hESCs to more quiescent somatic cell types, and supports important roles for mitochondria and secretion in hESC biology.
Collapse
Affiliation(s)
- Matthew J Birket
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E, Yang K, Li M, Gao JL, Liu H, Natale RB, Luther G, Luo Q, Wang L, Rames R, Bi Y, Luo J, Luu HH, Haydon RC, Reid RR, He TC. Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int 2011; 2011:201371. [PMID: 21772852 PMCID: PMC3137957 DOI: 10.4061/2011/201371] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/27/2011] [Indexed: 12/20/2022] Open
Abstract
Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.
Collapse
Affiliation(s)
- Chad M Teven
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Chowdhury SKR, Dobrowsky RT, Fernyhough P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes. Mitochondrion 2011; 11:845-54. [PMID: 21742060 DOI: 10.1016/j.mito.2011.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/28/2011] [Accepted: 06/24/2011] [Indexed: 01/01/2023]
Abstract
Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged diabetes may trigger a switching off of AMP kinase (AMPK) and/or silent information regulator T1 (SIRT1) signaling leading to impaired peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) expression/activity and diminished mitochondrial activity. This review briefly summarizes the alterations of mitochondrial function and proteome in sensory neurons of STZ-diabetic rodents. We also discuss the possible involvement of AMPK/SIRT/PGC-1α pathway in other diabetic models and different tissues affected by diabetes.
Collapse
Affiliation(s)
- Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada R2H 2A6
| | | | | |
Collapse
|
168
|
Dorsa KK, Santos MVD, Silva MRDD. Enhancing T3 and cAMP responsive gene participation in the thermogenic regulation of fuel oxidation pathways. ACTA ACUST UNITED AC 2011; 54:381-9. [PMID: 20625650 DOI: 10.1590/s0004-27302010000400007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/09/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We sought to identify glycolysis, glycogenolysis, lipolysis, Krebs cycle, respiratory chain, and oxidative phosphorylation enzymes simultaneously regulated by T3 and cAMP. MATERIALS AND METHODS We performed in silico analysis of 56 promoters to search for cis-cAMP (CREB) and cis-thyroid (TRE) response elements, considering UCP1, SERCA2 and glyceraldehyde 3-phosphate dehydrogenase as reference. Only regulatory regions with prior in vitro validation were selected. RESULTS 29/56 enzymes presented potential TREs in their regulatory sequence, and some scored over 0.80 (better predictive value 1): citrate synthase, phosphoglucose isomerase, succinate dehydrogenases A/C, UCP3, UCP2, UCP4, UCP5, phosphoglycerate mutase, glyceraldehyde 3-P dehydrogenase, glucokinase, malate dehydrogenase, acyl-CoA transferase (thiolase), cytochrome a3, and lactate dehydrogenase. Moreover, some enzymes have not yet been described in the literature as genomically regulated by T3. CONCLUSION Our results point to other enzymes which may possibly be regulated by T3 and CREB, and speculate their joint roles in contributing to the optimal thermogenic acclimation.
Collapse
|
169
|
Balagopal PB, de Ferranti SD, Cook S, Daniels SR, Gidding SS, Hayman LL, McCrindle BW, Mietus-Snyder ML, Steinberger J. Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth: a scientific statement from the American Heart Association. Circulation 2011; 123:2749-69. [PMID: 21555711 DOI: 10.1161/cir.0b013e31821c7c64] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid increase in the prevalence and severity of obesity in children is likely to lower the age of onset and increase the incidence of cardiovascular disease worldwide. Understanding the pathophysiology and improving the clinical management of cardiovascular disease involve a knowledge of novel risk factors and biomarkers. The clinical and mechanistic roles of these novel biological factors during childhood are currently being investigated. The goals of this scientific statement are to present the existing knowledge and theoretical framework of nontraditional risk factors for cardiovascular disease as they relate to children and adolescents, to describe the relevance and weight of available experimental and clinical evidence and the therapeutic implications pertaining to nontraditional risk factors in the pediatric population, and to stimulate further research with a goal of developing valid and reliable approaches to identify and validate novel risk factors that will aid in the clinical evaluation and perhaps prediction of cardiovascular disease in the pediatric population. Although several biomarkers are promising, substantial research is required before nontraditional risk factors can be used to identify and reduce cardiovascular disease risk in children and adolescents.
Collapse
|
170
|
PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol 2011; 13:668-75. [PMID: 21532585 DOI: 10.1038/ncb2228] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 02/28/2011] [Indexed: 12/12/2022]
Abstract
Reversible histone methylation and demethylation are highly regulated processes that are crucial for chromatin reorganization and regulation of gene transcription in response to extracellular conditions. However, the mechanisms that regulate histone-modifying enzymes are largely unknown. Here, we characterized a protein kinase A (PKA)-dependent histone lysine demethylase complex, PHF2-ARID5B. PHF2, a jmjC demethylase, is enzymatically inactive by itself, but becomes an active H3K9Me2 demethylase through PKA-mediated phosphorylation. We found that phosphorylated PHF2 then associates with ARID5B, a DNA-binding protein, and induce demethylation of methylated ARID5B. This modification leads to targeting of the PHF2-ARID5B complex to its target promoters, where it removes the repressive H3K9Me2 mark. These findings suggest that the PHF2-ARID5B complex is a signal-sensing modulator of histone methylation and gene transcription, in which phosphorylation of PHF2 enables subsequent formation of a competent and specific histone demethylase complex.
Collapse
|
171
|
Eichner LJ, Giguère V. Estrogen related receptors (ERRs): a new dawn in transcriptional control of mitochondrial gene networks. Mitochondrion 2011; 11:544-52. [PMID: 21497207 DOI: 10.1016/j.mito.2011.03.121] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/07/2011] [Accepted: 03/23/2011] [Indexed: 01/12/2023]
Abstract
Mitochondrial dysfunction contributes to the etiology of numerous diseases. Consequently, improving our knowledge of how to modulate mitochondrial activity is of considerable interest. One means to achieve this goal would be to control in a global and comprehensive manner the expression of most if not all nuclear encoded mitochondrial genes. The advent of genome-wide location analysis of transcription factor occupancy coupled with functional studies in cell and animal models has recently shown that three transcription factors possess this unique attribute. Unexpectedly, these factors are orphan members of the superfamily of nuclear receptors known as estrogen-related receptors (ERRs) α, β and γ. In this review, we will integrate current knowledge gathered through several functional and physiological genomic studies to provide persuasive evidence that the ERRs are indeed master regulators of mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Lillian J Eichner
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada H3A 1A3
| | | |
Collapse
|
172
|
Kulozik P, Jones A, Mattijssen F, Rose AJ, Reimann A, Strzoda D, Kleinsorg S, Raupp C, Kleinschmidt J, Müller-Decker K, Wahli W, Sticht C, Gretz N, von Loeffelholz C, Stockmann M, Pfeiffer A, Stöhr S, Dallinga-Thie GM, Nawroth PP, Diaz MB, Herzig S. Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell Metab 2011; 13:389-400. [PMID: 21459324 DOI: 10.1016/j.cmet.2011.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/03/2010] [Accepted: 01/20/2011] [Indexed: 01/14/2023]
Abstract
The aberrant accumulation of lipids in the liver ("fatty liver") is tightly associated with several components of the metabolic syndrome, including type 2 diabetes, coronary heart disease, and atherosclerosis. Here we show that the impaired hepatic expression of transcriptional cofactor transducin beta-like (TBL) 1 represents a common feature of mono- and multigenic fatty liver mouse models. Indeed, the liver-specific ablation of TBL1 gene expression in healthy mice promoted hypertriglyceridemia and hepatic steatosis under both normal and high-fat dietary conditions. TBL1 deficiency resulted in inhibition of fatty acid oxidation due to impaired functional cooperation with its heterodimerization partner TBL-related (TBLR) 1 and the nuclear receptor peroxisome proliferator-activated receptor (PPAR) α. As TBL1 expression levels were found to also inversely correlate with liver fat content in human patients, the lack of hepatic TBL1/TBLR1 cofactor activity may represent a molecular rationale for hepatic steatosis in subjects with obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Philipp Kulozik
- Joint Division of Molecular Metabolic Control, DKFZ-ZMBH Alliance, Center for Molecular Biology Heidelberg, University Hospital Heidelberg, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Allan Jones
- Joint Division of Molecular Metabolic Control, DKFZ-ZMBH Alliance, Center for Molecular Biology Heidelberg, University Hospital Heidelberg, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Frits Mattijssen
- Joint Division of Molecular Metabolic Control, DKFZ-ZMBH Alliance, Center for Molecular Biology Heidelberg, University Hospital Heidelberg, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Adam J Rose
- Joint Division of Molecular Metabolic Control, DKFZ-ZMBH Alliance, Center for Molecular Biology Heidelberg, University Hospital Heidelberg, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Anja Reimann
- Joint Division of Molecular Metabolic Control, DKFZ-ZMBH Alliance, Center for Molecular Biology Heidelberg, University Hospital Heidelberg, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Daniela Strzoda
- Joint Division of Molecular Metabolic Control, DKFZ-ZMBH Alliance, Center for Molecular Biology Heidelberg, University Hospital Heidelberg, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Kleinsorg
- Joint Division of Molecular Metabolic Control, DKFZ-ZMBH Alliance, Center for Molecular Biology Heidelberg, University Hospital Heidelberg, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Christina Raupp
- Division of Tumor Virology, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Jürgen Kleinschmidt
- Division of Tumor Virology, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Carsten Sticht
- Medical Research Center, Klinikum Mannheim, 68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Klinikum Mannheim, 68167 Mannheim, Germany
| | - Christian von Loeffelholz
- Department of Endocrinology, Diabetes, and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; Department of Clinical Nutrition, German Institute of Nutrition, 14558 Potsdam, Germany
| | - Martin Stockmann
- Department of General, Visceral, and Transplantation Surgery, Charité-Universitätsmedizin, Campus Virchow, Free University of Berlin, 13353 Berlin, Germany
| | - Andreas Pfeiffer
- Department of Endocrinology, Diabetes, and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; Department of Clinical Nutrition, German Institute of Nutrition, 14558 Potsdam, Germany
| | - Sigrid Stöhr
- Department of Animal Physiology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Mauricio Berriel Diaz
- Joint Division of Molecular Metabolic Control, DKFZ-ZMBH Alliance, Center for Molecular Biology Heidelberg, University Hospital Heidelberg, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Stephan Herzig
- Joint Division of Molecular Metabolic Control, DKFZ-ZMBH Alliance, Center for Molecular Biology Heidelberg, University Hospital Heidelberg, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
173
|
Rossi M, Colecchia D, Iavarone C, Strambi A, Piccioni F, Verrotti di Pianella A, Chiariello M. Extracellular signal-regulated kinase 8 (ERK8) controls estrogen-related receptor α (ERRα) cellular localization and inhibits its transcriptional activity. J Biol Chem 2011; 286:8507-8522. [PMID: 21190936 PMCID: PMC3048734 DOI: 10.1074/jbc.m110.179523] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/03/2010] [Indexed: 11/06/2022] Open
Abstract
ERK8 (MAPK15) is a large MAP kinase already implicated in the regulation of the functions of different nuclear receptors and in cellular proliferation and transformation. Here, we identify ERRα as a novel ERK8-interacting protein. As a consequence of such interaction, ERK8 induces CRM1-dependent translocation of ERRα to the cytoplasm and inhibits its transcriptional activity. Also, we identify in ERK8 two LXXLL motifs, typical of agonist-bound nuclear receptor corepressors, as necessary features for this MAP kinase to interact with ERRα and to regulate its cellular localization and transcriptional activity. Ultimately, we demonstrate that ERK8 is able to counteract, in immortalized human mammary cells, ERRα activation induced by the EGF receptor pathway, often deregulated in breast cancer. Altogether, these results reveal a novel function for ERK8 as a bona fide ERRα corepressor, involved in control of its cellular localization by nuclear exclusion, and suggest a key role for this MAP kinase in the regulation of the biological activities of this nuclear receptor.
Collapse
Affiliation(s)
- Matteo Rossi
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena,; the Università degli Studi di Siena, and
| | - David Colecchia
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena,; the Università degli Studi di Siena, and
| | - Carlo Iavarone
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli
| | - Angela Strambi
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena
| | | | - Arturo Verrotti di Pianella
- the CEINGE-Biotecnologie Avanzate, Napoli,; the Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli, Napoli, and
| | - Mario Chiariello
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena,; Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli,; the Istituto di Fisiologia Clinica, Sede di Siena, CNR, Siena, Italy.
| |
Collapse
|
174
|
André P, Ramière C, Scholtes C, Curtil C, Lotteau V. Role of nuclear receptors in hepatitis B and C infections. Clin Res Hepatol Gastroenterol 2011; 35:169-75. [PMID: 21316326 DOI: 10.1016/j.clinre.2011.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/26/2010] [Accepted: 01/03/2011] [Indexed: 02/04/2023]
Abstract
Nuclear receptors are key regulators of many cellular functions including energy supply by the direct control of the expression of target genes. They constitute a super-family of transcription factors activated by ligands, hormones or metabolites, and therefore, sensible to host metabolic stimuli. Viral replication and production requires energy and elementary building blocks from the infected cells. Hepatitis B and C virus replication is modulated in part by liver nuclear receptors that regulate the glucose and lipid metabolism. However, nuclear receptors control the two viruses' replication by different mechanisms. The expression of hepatitis B virus genes is directly under the control of nuclear receptors, which bind to the viral genome regulatory regions. Viral replication and production may, therefore, be optimal when cells receive the correct metabolic signals. Hepatitis C virus replication and production depend to a large extent on lipidogenesis and lipoprotein secretion. The role of nuclear receptors in controlling hepatitis C replication may be to turn on the cellular mode that would provide the appropriate metabolic environment for viral replication.
Collapse
Affiliation(s)
- Patrice André
- INSERM U851, IFR 128 biosciences Lyon Gerland, université de Lyon 1, 21 avenue Tony-Garnier, Lyon, France.
| | | | | | | | | |
Collapse
|
175
|
Teshigawara K, Hosaka T, Yamaguchi M, Terada E, Kisyuku Y, Fukunaga K, Hirata Y, Jambaldorj B, Harada N, Sakai T, Nakaya Y. Long-term treatment with hyperbaric air improves hyperlipidemia of db/db mice. THE JOURNAL OF MEDICAL INVESTIGATION 2011; 57:224-31. [PMID: 20847521 DOI: 10.2152/jmi.57.224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Hyperbaric air (HBA) is used to improve healing of wounds including diabetic ulcer. The aim of this study was to clarify the effects of HBA exposure on lipid and glucose metabolism in db/db mice. HBA did not influence the weight of db/db mice. Serum levels of free fatty acid and triglyceride, but not glucose and insulin, were significantly decreased after 6 weeks of treatment with HBA. The mRNA expressions of CPT-1, PPARα and PGC-1α genes, which are related to lipid metabolism, were significantly up-regulated in the muscle and liver. Increases in TNFα and MCP1 mRNA, which impaired lipid metabolism, were also attenuated by HBA treatment. These results suggest that exposure of HBA could have beneficial effects on lipid metabolism in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Kiyoshi Teshigawara
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Li HX, Xiao L, Wang C, Gao JL, Zhai YG. Review: Epigenetic regulation of adipocyte differentiation and adipogenesis. J Zhejiang Univ Sci B 2011; 11:784-91. [PMID: 20872986 DOI: 10.1631/jzus.b0900401] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is generally agreed that adipocytes originate from mesenchymal stem cells in what can be divided into two processes: determination and differentiation. In the past decade, many factors associated with epigenetic signals have been proved to be pivotal for the appropriate timing of adipogenesis progression. A large number of coregulators at critical gene promoters set up specific patterns of DNA methylation, histone acetylation and methylation, and nucleosome rearrangement, that act as an epigenetic code to modulate the correct progress of adipocyte differentiation and adipogenesis during adipogenesis. In this review, we focus on the functions and roles of epigenetic processes in preadipocyte differentiation and adipogenesis.
Collapse
Affiliation(s)
- Hong-xing Li
- Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
177
|
Frazier EP, Isenberg JS, Shiva S, Zhao L, Schlesinger P, Dimitry J, Abu-Asab MS, Tsokos M, Roberts DD, Frazier WA. Age-dependent regulation of skeletal muscle mitochondria by the thrombospondin-1 receptor CD47. Matrix Biol 2011; 30:154-61. [PMID: 21256215 DOI: 10.1016/j.matbio.2010.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 02/08/2023]
Abstract
CD47, a receptor for thrombospondin-1, limits two important regulatory axes: nitric oxide-cGMP signaling and cAMP signaling, both of which can promote mitochondrial biogenesis. Electron microscopy revealed increased mitochondrial densities in skeletal muscle from both CD47 null and thrombospondin-1 null mice. We further assessed the mitochondria status of CD47-null vs WT mice. Quantitative RT-PCR of RNA extracted from tissues of 3 month old mice revealed dramatically elevated expression of mRNAs encoding mitochondrial proteins and PGC-1α in both fast and slow-twitch skeletal muscle from CD47-null mice, but modest to no elevation in other tissues. These observations were confirmed by Western blotting of mitochondrial proteins. Relative amounts of electron transport enzymes and ATP/O(2) ratios of isolated mitochondria were not different between mitochondria from CD47-null and WT cells. Young CD47-null mice displayed enhanced treadmill endurance relative to WTs and CD47-null gastrocnemius had undergone fiber type switching to a slow-twitch pattern of myoglobin and myosin heavy chain expression. In 12 month old mice, both skeletal muscle mitochondrial volume density and endurance had decreased to wild type levels. Expression of myosin heavy chain isoforms and myoglobin also reverted to a fast twitch pattern in gastrocnemius. Both CD47 and TSP1 null mice are leaner than WTs, use less oxygen and produce less heat than WT mice. CD47-null cells produce substantially less reactive oxygen species than WT cells. These data indicate that loss of signaling from the TSP1-CD47 system promotes accumulation of normally functioning mitochondria in a tissue-specific and age-dependent fashion leading to enhanced physical performance, lower reactive oxygen species production and more efficient metabolism.
Collapse
Affiliation(s)
- Elfaridah P Frazier
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Emerging actions of the nuclear receptor LRH-1 in the gut. Biochim Biophys Acta Mol Basis Dis 2010; 1812:947-55. [PMID: 21194563 DOI: 10.1016/j.bbadis.2010.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/14/2010] [Indexed: 12/11/2022]
Abstract
Liver receptor homolog-1 (NR5A2) is a nuclear receptor originally identified in the liver and mostly known for its regulatory role in cholesterol and bile acid homeostasis. More recently, liver receptor homolog-1 has emerged as a key regulator of intestinal function, coordinating unanticipated actions, such as cell renewal and local immune function with important implications to common intestinal diseases, including colorectal cancer and inflammatory bowel disease. Unlike most of the other nuclear receptors, liver receptor homolog-1 acts as a constitutively active transcription factor to drive the transcription of its target genes. Liver receptor homolog-1 activity however is to a major extent regulated by different corepressors and posttranslational modifications, which may account for its tissue-specific functions. This review will provide an update on the molecular aspects of liver receptor homolog-1 action and focus on some emerging aspects of its function in normal and diseased gut. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
|
179
|
Park UH, Yoon SK, Park T, Kim EJ, Um SJ. Additional sex comb-like (ASXL) proteins 1 and 2 play opposite roles in adipogenesis via reciprocal regulation of peroxisome proliferator-activated receptor {gamma}. J Biol Chem 2010; 286:1354-63. [PMID: 21047783 DOI: 10.1074/jbc.m110.177816] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our previous studies have suggested that the mammalian additional sex comb-like 1 protein functions as a coactivator or repressor of retinoic acid receptors in a cell-specific manner. Here, we investigated the roles of additional sex comb-like 1 proteins in regulating peroxisome proliferator-activated receptors (PPARs). In pulldown assays in vitro and in immunoprecipitation assays in vivo, ASXL1 and its paralog, ASXL2, interacted with PPARα and PPARγ. In 3T3-L1 preadipocyte cells, overexpression of ASXL1 inhibited the induction of PPARγ activity by rosiglitazone, as shown by transcription assays, and completely suppressed adipogenesis, as shown by Oil Red O staining. In contrast, overexpression of ASXL2 greatly enhanced rosiglitazone-induced PPARγ activity and enhanced adipogenesis. Deletion of the heterochromatin protein 1 (HP1)-binding domain from ASXL1 caused the mutant protein to enhance adipogenesis similarly to ASXL2, indicating that HP1 binding is required for the adipogenesis-suppressing activity of ASXL1. Adipocyte differentiation was associated with a gradual decrease in ASXL1 expression but did not affect ASXL2 expression. Knockdown of ASXL1 and ASXL2 had reciprocal effects on adipogenesis. In chromatin immunoprecipitation assays in 3T3-L1 cells, ASXL1 occupied the promoter of the PPARγ target gene aP2 together with HP1α and Lys-9-methylated histone H3, whereas ASXL2 occupied the aP2 promoter together with histone-lysine N-methyltransferase MLL1 and Lys-9-acetylated and Lys-4-methylated H3 histones. Finally, microarray analysis demonstrated that ASXL1 represses, whereas ASXL2 increases, the expression of adipogenic genes, most of which are PPARγ targets. These results suggest that members of the additional sex comb-like family provide complex regulation of adipogenesis via differential modulation of PPARγ activity.
Collapse
Affiliation(s)
- Ui-Hyun Park
- Department of Bioscience and Biotechnology, BK21 Graduate Program, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747, Korea
| | | | | | | | | |
Collapse
|
180
|
Maj M, Sriskandarajah N, Hung V, Browne I, Shah B, Weadge A, Jamieson NL, Tropak M, Cameron JM, Addis JB, Robinson BH. Identification of drug candidates which increase cytochrome c oxidase activity in deficient patient fibroblasts. Mitochondrion 2010; 11:264-72. [PMID: 21050896 DOI: 10.1016/j.mito.2010.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 12/25/2022]
Abstract
Cytochrome c oxidase (COX) activity reflects the expressed level of respiratory chain complexes, mtDNA levels, titer and mass of mitochondria. Activity is also indicative of the overall fitness of mt-transcription factors and the import, transcription and translation of mt-proteins. We have developed a high-throughput assay to measure COX activity using live cells to screen chemical libraries for compounds capable of increasing COX activity. These libraries have revealed four examples which elevated the activities of COX in NIH-3T3 fibroblasts and in fibroblasts from patients with COX defects independent of the peroxisome proliferator activated receptor family.
Collapse
Affiliation(s)
- Mary Maj
- Metabolism Research Programme, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Ma D, Li S, Lucas EK, Cowell RM, Lin JD. Neuronal inactivation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) protects mice from diet-induced obesity and leads to degenerative lesions. J Biol Chem 2010; 285:39087-95. [PMID: 20947495 DOI: 10.1074/jbc.m110.151688] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that regulates diverse aspects of energy metabolism in peripheral tissues. Mice deficient in PGC-1α have elevated metabolic rate and are resistant to diet-induced obesity. However, it remains unknown whether this alteration in energy balance is due to the action of PGC-1α in peripheral tissues or the central nervous system. In this study, we generated neuronal PGC-1α knock-out mice (BαKO) using calcium/calmodulin-dependent protein kinase IIα (CaMKIIα)-Cre to address its role in the regulation of energy balance and neuronal function. Unlike whole body PGC-1α null mice, BαKO mice have normal adaptive metabolic response to starvation and cold exposure in peripheral tissues. In contrast, BαKO mice are hypermetabolic, and similar to whole body PGC-1α null mice, are also resistant to diet-induced obesity, resulting in significantly improved metabolic profiles. Neuronal inactivation of PGC-1α leads to striatal lesions that are reminiscent of neurodegeneration in whole body PGC-1α null brain and impairs nutritional regulation of hypothalamic expression of genes that regulate systemic energy balance. Together, these studies have demonstrated a physiological role for neuronal PGC-1α in the control of energy balance. Our results also implicate CaMKIIα-positive neurons as an important part of the neural circuitry that governs energy expenditure in vivo.
Collapse
Affiliation(s)
- Di Ma
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
182
|
Teperino R, Schoonjans K, Auwerx J. Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 2010; 12:321-327. [PMID: 20889125 PMCID: PMC3642811 DOI: 10.1016/j.cmet.2010.09.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heritable changes to the transcriptome that are independent to changes in the genome are defined as epigenetics. DNA methylation and posttranslational modifications of histones, such as acetylation/deacetylation and methylation/demethylation of lysine residues, underlie these epigenetic phenomena, which impact on many physiological processes. This perspective focuses on the emerging biology of histone methylation and demethylation, highlighting how these reactions depend on metabolic coenzymes like S-adenosylmethionine, flavin adenine dinucleotide, and α-ketoglutarate. Furthermore, we illustrate that methyltranferases and demethylases affect many metabolic pathways. Despite the preliminary evidence that methyltranferases and demethylases could link metabolic signals to chromatin and alter transcription, further research is indispensable to consolidate these enticing observations.
Collapse
Affiliation(s)
- Raffaele Teperino
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Integrative and Systems Physiology, Station 15, CH-1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Integrative and Systems Physiology, Station 15, CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Integrative and Systems Physiology, Station 15, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
183
|
Wu Q, Saunders RA, Szkudlarek-Mikho M, Serna IDL, Chin KV. The obesity-associated Fto gene is a transcriptional coactivator. Biochem Biophys Res Commun 2010; 401:390-5. [PMID: 20858458 DOI: 10.1016/j.bbrc.2010.09.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 12/26/2022]
Abstract
The fat mass and obesity associated, FTO, gene has been shown to be associated with obesity in human in several genome-wide association scans. In vitro studies suggest that Fto may function as a single-stranded DNA demethylase. In addition, homologous recombination-targeted knockout of Fto in mice resulted in growth retardation, loss of white adipose tissue, and increase energy metabolism and systemic sympathetic activation. Despite these intense investigations, the exact function of Fto remains unclear. We show here that Fto is a transcriptional coactivator that enhances the transactivation potential of the CCAAT/enhancer binding proteins (C/EBPs) from unmethylated as well as methylation-inhibited gene promoters. Fto also exhibits nuclease activity. We showed further that Fto enhances the binding C/EBP to unmethylated and methylated DNA. The coactivator role of FTO in modulating the transcriptional regulation of adipogenesis by C/EBPs is consistent with the temporal progressive loss of adipose tissue in the Fto-deficient mice, thus suggesting a role for Fto in the epigenetic regulation of the development and maintenance of fat tissue. How FTO reactivates transcription from methyl-repressed gene needs to be further investigated.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Medicine, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
184
|
Lee S, Van Bergen NJ, Kong GY, Chrysostomou V, Waugh HS, O'Neill EC, Crowston JG, Trounce IA. Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res 2010; 93:204-12. [PMID: 20691180 DOI: 10.1016/j.exer.2010.07.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/16/2010] [Accepted: 07/27/2010] [Indexed: 12/22/2022]
Abstract
The similarities between glaucoma and mitochondrial optic neuropathies have driven a growing interest in exploring mitochondrial function in glaucoma. The specific loss of retinal ganglion cells is a common feature of mitochondrial diseases - not only the classic mitochondrial optic neuropathies of Leber's Hereditary Optic Neuropathy and Autosomal Dominant Optic Atrophy - but also occurring together with more severe central nervous system involvement in many other syndromic mitochondrial diseases. The retinal ganglion cell, due to peculiar structural and energetic constraints, appears acutely susceptible to mitochondrial dysfunction. Mitochondrial function is also well known to decline with aging in post-mitotic tissues including neurons. Because age is a risk factor for glaucoma this adds another impetus to investigating mitochondria in this common and heterogeneous neurodegenerative disease. Mitochondrial function may be impaired by either nuclear gene or mitochondrial DNA genetic risk factors, by mechanical stress or chronic hypoperfusion consequent to the commonly raised intraocular pressure in glaucomatous eyes, or by toxic xenobiotic or even light-induced oxidative stress. If primary or secondary mitochondrial dysfunction is further established as contributing to glaucoma pathogenesis, emerging therapies aimed at optimizing mitochondrial function represent potentially exciting new clinical treatments that may slow retinal ganglion cell and vision loss in glaucoma.
Collapse
Affiliation(s)
- Shanjean Lee
- Centre for Eye Research Australia, University of Melbourne, Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street East, Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Novak CM, Escande C, Burghardt PR, Zhang M, Barbosa MT, Chini EN, Britton SL, Koch LG, Akil H, Levine JA. Spontaneous activity, economy of activity, and resistance to diet-induced obesity in rats bred for high intrinsic aerobic capacity. Horm Behav 2010; 58:355-67. [PMID: 20350549 PMCID: PMC2923555 DOI: 10.1016/j.yhbeh.2010.03.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 01/05/2023]
Abstract
Though obesity is common, some people remain resistant to weight gain even in an obesogenic environment. The propensity to remain lean may be partly associated with high endurance capacity along with high spontaneous physical activity and the energy expenditure of activity, called non-exercise activity thermogenesis (NEAT). Previous studies have shown that high-capacity running rats (HCR) are lean compared to low-capacity runners (LCR), which are susceptible to cardiovascular disease and metabolic syndrome. Here, we examine the effect of diet on spontaneous activity and NEAT, as well as potential mechanisms underlying these traits, in rats selectively bred for high or low intrinsic aerobic endurance capacity. Compared to LCR, HCR were resistant to the sizeable increases in body mass and fat mass induced by a high-fat diet; HCR also had lower levels of circulating leptin. HCR were consistently more active than LCR, and had lower fuel economy of activity, regardless of diet. Nonetheless, both HCR and LCR showed a similar decrease in daily activity levels after high-fat feeding, as well as decreases in hypothalamic orexin-A content. The HCR were more sensitive to the NEAT-activating effects of intra-paraventricular orexin-A compared to LCR, especially after high-fat feeding. Lastly, levels of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in the skeletal muscle of HCR were consistently higher than LCR, and the high-fat diet decreased skeletal muscle PEPCK-C in both groups of rats. Differences in muscle PEPCK were not secondary to the differing amount of activity. This suggests the possibility that intrinsic differences in physical activity levels may originate at the level of the skeletal muscle, which could alter brain responsiveness to neuropeptides and other factors that regulate spontaneous daily activity and NEAT.
Collapse
Affiliation(s)
- Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Association weight matrix for the genetic dissection of puberty in beef cattle. Proc Natl Acad Sci U S A 2010; 107:13642-7. [PMID: 20643938 DOI: 10.1073/pnas.1002044107] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We describe a systems biology approach for the genetic dissection of complex traits based on applying gene network theory to the results from genome-wide associations. The associations of single-nucleotide polymorphisms (SNP) that were individually associated with a primary phenotype of interest, age at puberty in our study, were explored across 22 related traits. Genomic regions were surveyed for genes harboring the selected SNP. As a result, an association weight matrix (AWM) was constructed with as many rows as genes and as many columns as traits. Each {i, j} cell value in the AWM corresponds to the z-score normalized additive effect of the ith gene (via its neighboring SNP) on the jth trait. Columnwise, the AWM recovered the genetic correlations estimated via pedigree-based restricted maximum-likelihood methods. Rowwise, a combination of hierarchical clustering, gene network, and pathway analyses identified genetic drivers that would have been missed by standard genome-wide association studies. Finally, the promoter regions of the AWM-predicted targets of three key transcription factors (TFs), estrogen-related receptor gamma (ESRRG), Pal3 motif, bound by a PPAR-gamma homodimer, IR3 sites (PPARG), and Prophet of Pit 1, PROP paired-like homeobox 1 (PROP1), were surveyed to identify binding sites corresponding to those TFs. Applied to our case, the AWM results recapitulate the known biology of puberty, captured experimentally validated binding sites, and identified candidate genes and gene-gene interactions for further investigation.
Collapse
|
187
|
Wringe BF, Devlin RH, Ferguson MM, Moghadam HK, Sakhrani D, Danzmann RG. Growth-related quantitative trait loci in domestic and wild rainbow trout (Oncorhynchus mykiss). BMC Genet 2010; 11:63. [PMID: 20609225 PMCID: PMC2914766 DOI: 10.1186/1471-2156-11-63] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 07/07/2010] [Indexed: 12/15/2022] Open
Abstract
Background Somatic growth is a complex process that involves the action and interaction of genes and environment. A number of quantitative trait loci (QTL) previously identified for body weight and condition factor in rainbow trout (Oncorhynchus mykiss), and two other salmonid species, were used to further investigate the genetic architecture of growth-influencing genes in this species. Relationships among previously mapped candidate genes for growth and their co-localization to identified QTL regions are reported. Furthermore, using a comparative genomic analysis of syntenic rainbow trout linkage group clusters to their homologous regions within model teleost species such as zebrafish, stickleback and medaka, inferences were made regarding additional possible candidate genes underlying identified QTL regions. Results Body weight (BW) QTL were detected on the majority of rainbow trout linkage groups across 10 parents from 3 strains. However, only 10 linkage groups (i.e., RT-3, -6, -8, -9, -10, -12, -13, -22, -24, -27) possessed QTL regions with chromosome-wide or genome-wide effects across multiple parents. Fewer QTL for condition factor (K) were identified and only six instances of co-localization across families were detected (i.e. RT-9, -15, -16, -23, -27, -31 and RT-2/9 homeologs). Of note, both BW and K QTL co-localize on RT-9 and RT-27. The incidence of epistatic interaction across genomic regions within different female backgrounds was also examined, and although evidence for interaction effects within certain QTL regions were evident, these interactions were few in number and statistically weak. Of interest, however, was the fact that these predominantly occurred within K QTL regions. Currently mapped growth candidate genes are largely congruent with the identified QTL regions. More QTL were detected in male, compared to female parents, with the greatest number evident in an F1 male parent derived from an intercross between domesticated and wild strain of rainbow trout which differed strongly in growth rate. Conclusions Strain background influences the degree to which QTL effects are evident for growth-related genes. The process of domestication (which primarily selects faster growing fish) may largely reduce the genetic influences on growth-specific phenotypic variation. Although heritabilities have been reported to be relatively high for both BW and K growth traits, the genetic architecture of K phenotypic variation appears less defined (i.e., fewer major contributing QTL regions were identified compared with BW QTL regions).
Collapse
Affiliation(s)
- Brendan F Wringe
- Department of Integrative Biology, 50 Stone Road East, University of Guelph, Guelph, ON N1G 2W1 Canada.
| | | | | | | | | | | |
Collapse
|
188
|
Wernicke C, Hellmann J, Zieba B, Kuter K, Ossowska K, Frenzel M, Dencher NA, Rommelspacher H. 9-Methyl-beta-carboline has restorative effects in an animal model of Parkinson's disease. Pharmacol Rep 2010; 62:35-53. [PMID: 20360614 DOI: 10.1016/s1734-1140(10)70241-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 02/08/2009] [Indexed: 12/19/2022]
Abstract
In a previous study, a primary culture of midbrain cells was exposed to 9-methyl-beta-carboline for 48 h, which caused an increase in the number of tyrosine hydroxylase-positive cells. Quantitative RT-PCR revealed increased transcription of genes participating in the maturation of dopaminergic neurons. These in vitro findings prompted us to investigate the restorative actions of 9-methyl-beta-carboline in vivo. The compound was delivered for 14 days into the left cerebral ventricle of rats pretreated with the neurotoxin 1-methyl-4-phenyl-pyridinium ion (MPP+) for 28 days applying a dose which lowered dopamine by approximately 50%. Interestingly, 9-methyl-beta-carboline reversed the dopamine-lowering effect of the neurotoxin in the left striatum. Stereological counts of tyrosine hydroxylase-immunoreactive cells in the substantia nigra revealed that the neurotoxin caused a decrease in the number of those cells. However, when treated subsequently with 9-methyl-beta-carboline, the number reached normal values. In search of an explanation for the restorative activity, we analyzed the complexes that compose the respiratory chain in striatal mitochondria by 2-dimension gel electrophoresis followed by MALDI-TOF peptide mass fingerprinting.We found no changes in the overall composition of the complexes. However, the activity of complex I was increased by approximately 80% in mitochondria from rats treated with MPP+ and 9-methyl-beta-carboline compared to MPP+ and saline and to sham-operated rats, as determined by measurements of nicotinamide adenine dinucleotide dehydrogenase activity. Microarray technology and single RT-PCR revealed the induction of neurotrophins: brain-derived neurotrophic factor, conserved dopamine neurotrophic factor, cerebellin 1 precursor protein, and ciliary neurotrophic factor. Selected western blots yielded consistent results. The findings demonstrate restorative effects of 9-methyl-beta-carboline in an animal model of Parkinson's disease that improve the effectiveness of the respiratory chain and promote the transcription and expression of neurotrophin-related genes.
Collapse
Affiliation(s)
- Catrin Wernicke
- Department of Psychiatry, CCM, Charité-University Medicine Berlin, Dorotheenstr. 94, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism. Proc Natl Acad Sci U S A 2010; 107:10196-201. [PMID: 20479251 DOI: 10.1073/pnas.1005626107] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.
Collapse
|
190
|
Smolková K, Plecitá-Hlavatá L, Bellance N, Benard G, Rossignol R, Ježek P. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 2010; 43:950-68. [PMID: 20460169 DOI: 10.1016/j.biocel.2010.05.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/05/2010] [Accepted: 05/04/2010] [Indexed: 12/17/2022]
Abstract
We posit the following hypothesis: Independently of whether malignant tumors are initiated by a fundamental reprogramming of gene expression or seeded by stem cells, "waves" of gene expression that promote metabolic changes occur during carcinogenesis, beginning with oncogene-mediated changes, followed by hypoxia-induced factor (HIF)-mediated gene expression, both resulting in the highly glycolytic "Warburg" phenotype and suppression of mitochondrial biogenesis. Because high proliferation rates in malignancies cause aglycemia and nutrient shortage, the third (second oncogene) "wave" of adaptation stimulates glutaminolysis, which in certain cases partially re-establishes oxidative phosphorylation; this involves the LKB1-AMPK-p53, PI3K-Akt-mTOR axes and MYC dysregulation. Oxidative glutaminolysis serves as an alternative pathway compensating for cellular ATP. Together with anoxic glutaminolysis it provides pyruvate, lactate, and the NADPH pool (alternatively to pentose phosphate pathway). Retrograde signaling from revitalized mitochondria might constitute the fourth "wave" of gene reprogramming. In turn, upon reversal of the two Krebs cycle enzymes, glutaminolysis may partially (transiently) function even during anoxia, thereby further promoting malignancy. The history of the carcinogenic process within each malignant tumor determines the final metabolic phenotype of the selected surviving cells, resulting in distinct cancer bioenergetic phenotypes ranging from the highly glycolytic "classic Warburg" to partial or enhanced oxidative phosphorylation. We discuss the bioenergetically relevant functions of oncogenes, the involvement of mitochondrial biogenesis/degradation in carcinogenesis, the yet unexplained Crabtree effect of instant glucose blockade of respiration, and metabolic signaling stemming from the accumulation of succinate, fumarate, pyruvate, lactate, and oxoglutarate by interfering with prolyl hydroxylase domain enzyme-mediated hydroxylation of HIFα prolines.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Membrane Transport Biophysics, Institute of Physiology, vvi, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
191
|
Schweinitzer T, Josenhans C. Bacterial energy taxis: a global strategy? Arch Microbiol 2010; 192:507-20. [PMID: 20411245 PMCID: PMC2886117 DOI: 10.1007/s00203-010-0575-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 12/24/2022]
Abstract
A functional energy metabolism is one of the most important requirements for survival of all kinds of organisms including bacteria. Therefore, many bacteria actively seek conditions of optimal metabolic activity, a behaviour which can be termed "energy taxis". Motility, combined with the sensory perception of the internal energetic conditions, is prerequisite for tactic responses to different energy levels and metabolic yields. Diverse mechanisms of energy sensing and tactic response have evolved among various bacteria. Many of the known energy taxis sensors group among the methyl-accepting chemotaxis protein (MCP)-like sensors. This review summarizes recent advances in the field of energy taxis and explores the current concept that energy taxis is an important part of the bacterial behavioural repertoire in order to navigate towards more favourable metabolic niches and to survive in a specific habitat.
Collapse
Affiliation(s)
- Tobias Schweinitzer
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
192
|
Sutanto MM, Ferguson KK, Sakuma H, Ye H, Brady MJ, Cohen RN. The silencing mediator of retinoid and thyroid hormone receptors (SMRT) regulates adipose tissue accumulation and adipocyte insulin sensitivity in vivo. J Biol Chem 2010; 285:18485-95. [PMID: 20371609 DOI: 10.1074/jbc.m110.107680] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The silencing mediator of retinoid and thyroid hormone receptors (SMRT) serves as a corepressor for nuclear receptors and other factors. Recent evidence suggests that SMRT is an important regulator of metabolism, but its role in adipocyte function in vivo remains unclear. We generated heterozygous SMRT knock-out (SMRT(+/-)) mice to investigate the function of SMRT in the adipocyte and the regulation of adipocyte insulin sensitivity. We show that SMRT(+/-) mice are normal weight on a regular diet, but develop increased adiposity on a high-fat diet (HFD). The mechanisms underlying this phenotype are complex, but appear to be due to a combination of an increased number of smaller subcutaneous adipocytes as well as decreased leptin expression, resulting in greater caloric intake. In addition, adipogenesis of mouse embryonic fibroblasts (MEFs) derived from these mice was increased. However, adipocyte insulin sensitivity, measured by insulin-induced Akt phosphorylation and insulin-mediated suppression of lipolysis, was enhanced in SMRT(+/-) adipocytes. These finding suggest that SMRT regulates leptin expression and limits the ability of fat mass to expand with increased caloric intake, but that SMRT also negatively regulates adipocyte insulin sensitivity.
Collapse
Affiliation(s)
- Maria M Sutanto
- Committee on Molecular Metabolism and Nutrition, Division of the Biological Sciences, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
193
|
Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010; 12:537-77. [PMID: 19650713 PMCID: PMC2824521 DOI: 10.1089/ars.2009.2531] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Given their essential function in aerobic metabolism, mitochondria are intuitively of interest in regard to the pathophysiology of diabetes. Qualitative, quantitative, and functional perturbations in mitochondria have been identified and affect the cause and complications of diabetes. Moreover, as a consequence of fuel oxidation, mitochondria generate considerable reactive oxygen species (ROS). Evidence is accumulating that these radicals per se are important in the pathophysiology of diabetes and its complications. In this review, we first present basic concepts underlying mitochondrial physiology. We then address mitochondrial function and ROS as related to diabetes. We consider different forms of diabetes and address both insulin secretion and insulin sensitivity. We also address the role of mitochondrial uncoupling and coenzyme Q. Finally, we address the potential for targeting mitochondria in the therapy of diabetes.
Collapse
Affiliation(s)
- William I Sivitz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Iowa City Veterans Affairs Medical Center and University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
194
|
Charest-Marcotte A, Dufour CR, Wilson BJ, Tremblay AM, Eichner LJ, Arlow DH, Mootha VK, Giguère V. The homeobox protein Prox1 is a negative modulator of ERR{alpha}/PGC-1{alpha} bioenergetic functions. Genes Dev 2010; 24:537-42. [PMID: 20194433 PMCID: PMC2841331 DOI: 10.1101/gad.1871610] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/21/2010] [Indexed: 01/20/2023]
Abstract
Estrogen-related receptor alpha (ERRalpha) and proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) play central roles in the transcriptional control of energy homeostasis, but little is known about factors regulating their activity. Here we identified the homeobox protein prospero-related homeobox 1 (Prox1) as one such factor. Prox1 interacts with ERRalpha and PGC-1alpha, occupies promoters of metabolic genes on a genome-wide scale, and inhibits the activity of the ERRalpha/PGC-1alpha complex. DNA motif analysis suggests that Prox1 interacts with the genome through tethering to ERRalpha and other factors. Importantly, ablation of Prox1 and ERRalpha have opposite effects on the respiratory capacity of liver cells, revealing an unexpected role for Prox1 in the control of energy homeostasis.
Collapse
Affiliation(s)
- Alexis Charest-Marcotte
- Goodman Cancer Centre, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | - Brian J. Wilson
- Goodman Cancer Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Annie M. Tremblay
- Goodman Cancer Centre, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Lillian J. Eichner
- Goodman Cancer Centre, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Daniel H. Arlow
- Department of Systems Biology, Massachusetts General Hospital, Cambridge, Massachusetts 02142, USA
- Centre for Human Genetic Research, Massachusetts General Hospital, Cambridge, Massachusetts 02142, USA
- Broad Institute of Massachusetts Institute of Technology/Harvard, Cambridge, Massachusetts 02142, USA
| | - Vamsi K. Mootha
- Department of Systems Biology, Massachusetts General Hospital, Cambridge, Massachusetts 02142, USA
- Centre for Human Genetic Research, Massachusetts General Hospital, Cambridge, Massachusetts 02142, USA
- Broad Institute of Massachusetts Institute of Technology/Harvard, Cambridge, Massachusetts 02142, USA
| | - Vincent Giguère
- Goodman Cancer Centre, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
- Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
- Department of Oncology, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
195
|
Singh S, Bennett RG. Relaxin signaling activates peroxisome proliferator-activated receptor gamma. Mol Cell Endocrinol 2010; 315:239-45. [PMID: 19712722 PMCID: PMC2814924 DOI: 10.1016/j.mce.2009.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/10/2009] [Accepted: 08/18/2009] [Indexed: 01/09/2023]
Abstract
Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1 (relaxin family peptide receptor 1). Many of relaxin's functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARgamma. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARgamma activity. In cells overexpressing RXFP1 (HEK-RXFP1), relaxin increased transcriptional activity through a PPAR response element (PPRE) in a concentration-dependent manner. In cells lacking RXFP1, relaxin had no effect. Relaxin increased both the baseline activity and the response to the PPARgamma agonists rosiglitazone and 15d-PGJ(2), but not to agonists of PPARalpha or PPARdelta. In HEK-RXFP1 cells infected with adenovirus expressing PPARgamma, relaxin increased transcriptional activity through PPRE, and this effect was blocked with an adenovirus expressing a dominant-negative PPARgamma. Knockdown of PPARgamma using siRNA resulted in a decrease in the response to both relaxin and rosiglitazone. Both relaxin and rosiglitazone increased expression of the PPARgamma target genes CD36 and LXRalpha in HEK-RXFP1 and in THP-1 cells naturally expressing RXFP1. Relaxin did not increase PPARgamma mRNA or protein levels. Treatment of cells with GW9662, an inhibitor of PPARgamma ligand binding, effectively blocked rosiglitazone-induced PPARgamma activation, but had no effect on relaxin activation of PPARgamma. These results suggest that relaxin activates PPARgamma activity, and increases the overall response in the presence of PPARgamma agonists. This activation is dependent on the presence of RXFP1. Furthermore, relaxin activates PPARgamma via a ligand-independent mechanism. These studies represent the first report that relaxin can activate the transcriptional activity of PPARgamma.
Collapse
Affiliation(s)
- Sudhir Singh
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | |
Collapse
|
196
|
Feige JN, Gerber A, Casals-Casas C, Yang Q, Winkler C, Bedu E, Bueno M, Gelman L, Auwerx J, Gonzalez FJ, Desvergne B. The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARalpha-dependent mechanisms. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:234-41. [PMID: 20123618 PMCID: PMC2831923 DOI: 10.1289/ehp.0901217] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 10/08/2009] [Indexed: 05/21/2023]
Abstract
BACKGROUND The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferator-activated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents. OBJECTIVES In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action. METHODS As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses. RESULTS DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment. CONCLUSION These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds.
Collapse
Affiliation(s)
- Jérôme N. Feige
- Center for Integrative Genomics, National Research Center “Frontiers in Genetics,” University of Lausanne, Lausanne, Switzerland
| | - Alan Gerber
- Center for Integrative Genomics, National Research Center “Frontiers in Genetics,” University of Lausanne, Lausanne, Switzerland
| | - Cristina Casals-Casas
- Center for Integrative Genomics, National Research Center “Frontiers in Genetics,” University of Lausanne, Lausanne, Switzerland
| | - Qian Yang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Carine Winkler
- Center for Integrative Genomics, National Research Center “Frontiers in Genetics,” University of Lausanne, Lausanne, Switzerland
| | - Elodie Bedu
- Center for Integrative Genomics, National Research Center “Frontiers in Genetics,” University of Lausanne, Lausanne, Switzerland
| | - Manuel Bueno
- Center for Integrative Genomics, National Research Center “Frontiers in Genetics,” University of Lausanne, Lausanne, Switzerland
| | - Laurent Gelman
- Center for Integrative Genomics, National Research Center “Frontiers in Genetics,” University of Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Béatrice Desvergne
- Center for Integrative Genomics, National Research Center “Frontiers in Genetics,” University of Lausanne, Lausanne, Switzerland
- Address correspondence to B. Desvergne, Center for Integrative Genomics, Le Génopode, Université de Lausanne, CH-1015 Lausanne, Switzerland. Telephone: 41-0-21-692-41-40. Fax: 41-0-21-692-41-15. E-mail:
| |
Collapse
|
197
|
Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NKH, Woodcock SR, Golin-Bisello F, Motanya UN, Li Y, Zhang J, Garcia-Barrio MT, Rudolph TK, Rudolph V, Bonacci G, Baker PRS, Xu HE, Batthyany CI, Chen YE, Hallis TM, Freeman BA. Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions. J Biol Chem 2010; 285:12321-33. [PMID: 20097754 DOI: 10.1074/jbc.m109.091512] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The peroxisome proliferator-activated receptor-gamma (PPARgamma) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARgamma include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. Most reported endogenous PPARgamma ligands are intermediates of lipid metabolism and oxidation that bind PPARgamma with very low affinity. In contrast, nitro derivatives of unsaturated fatty acids (NO(2)-FA) are endogenous products of nitric oxide ((*)NO) and nitrite (NO(2)(-))-mediated redox reactions that activate PPARgamma at nanomolar concentrations. We report that NO(2)-FA act as partial agonists of PPARgamma and covalently bind PPARgamma at Cys-285 via Michael addition. NO(2)-FA show selective PPARgamma modulator characteristics by inducing coregulator protein interactions, PPARgamma-dependent expression of key target genes, and lipid accumulation is distinctively different from responses induced by the TZD rosiglitazone. Administration of this class of signaling mediators to ob/ob mice revealed that NO(2)-FA lower insulin and glucose levels without inducing adverse side effects such as the increased weight gain induced by TZDs.
Collapse
Affiliation(s)
- Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Ehrenborg E, Krook A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol Rev 2010; 61:373-93. [PMID: 19805479 DOI: 10.1124/pr.109.001560] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Agonists directed against the alpha and gamma isoforms of the peroxisome proliferator-activated receptors (PPARs) have become important for the respective treatment of hypertriglyceridemia and insulin resistance associated with metabolic disease. PPARdelta is the least well characterized of the three PPAR isoforms. Skeletal muscle insulin resistance is a primary risk factor for the development of type 2 diabetes. There is increasing evidence that PPARdelta is an important regulator of skeletal muscle metabolism, in particular, muscle lipid oxidation, highlighting the potential utility of this isoform as a drug target. In addition, PPARdelta seems to be a key regulator of skeletal muscle fiber type and a possible mediator of the adaptations noted in skeletal muscle in response to exercise. In this review we summarize the current status regarding the regulation, and the metabolic effects, of PPARdelta in skeletal muscle.
Collapse
Affiliation(s)
- Ewa Ehrenborg
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
199
|
Abstract
Mimetics of hormetic agents offer a novel approach to adjust dose to minimize the risk of toxic response, and maximize the benefit of induction of at least partial physiological conditioning. Nature selected and preserved those organisms and triggers that promote tolerance to stress. The induced tolerance can serve to resist that challenge and can repair previous age, disease, and trauma damage as well to provide a more youthful response to other stresses. The associated physiological conditioning may include youthful restoration of DNA repair, resistance to oxidizing pollutants, protein structure and function repair, improved immunity, tissue remodeling, adjustments in central and peripheral nervous systems, and altered metabolism. By elucidating common pathways activated by hormetic agent's mimetics, new strategies for intervention in aging, disease, and trauma emerge. Intervention potential in cancer, diabetes, age-related diseases, infectious diseases, cardiovascular diseases, and Alzheimer's disease are possible. Some hormetic mimetics exist in pathways in primitive organisms and are active or latent in humans. Peptides, oligonucleotides, and hormones are among the mimetics that activate latent resistance to radiation, physical endurance, strength, and immunity to physiological condition tolerance to stress. Co-activators may be required for expression of the desired physiological conditioning health and rejuvenation benefits.
Collapse
Affiliation(s)
- Joan Smith Sonneborn
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| |
Collapse
|
200
|
Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta Mol Basis Dis 2010; 1802:228-34. [DOI: 10.1016/j.bbadis.2009.07.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
|