151
|
Sharkey KA, Wiley JW. The Role of the Endocannabinoid System in the Brain-Gut Axis. Gastroenterology 2016; 151:252-66. [PMID: 27133395 PMCID: PMC4961581 DOI: 10.1053/j.gastro.2016.04.015] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.
Collapse
Affiliation(s)
- Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada,Corresponding author: Dr. Keith Sharkey, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada, , Tel: 403-220-4601
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
152
|
Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Linoleic acid and the pathogenesis of obesity. Prostaglandins Other Lipid Mediat 2016; 125:90-9. [PMID: 27350414 DOI: 10.1016/j.prostaglandins.2016.06.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The modern Western diet has been consumed in developed English speaking countries for the last 50 years, and is now gradually being adopted in Eastern and developing countries. These nutrition transitions are typified by an increased intake of high linoleic acid (LA) plant oils, due to their abundance and low price, resulting in an increase in the PUFA n-6:n-3 ratio. This increase in LA above what is estimated to be required is hypothesised to be implicated in the increased rates of obesity and other associated non-communicable diseases which occur following a transition to a modern Westernised diet. LA can be converted to the metabolically active arachidonic acid, which has roles in inducing inflammation and adipogenesis, and endocannabinoid system regulation. This review aims to address the possible implications of excessive LA and its metabolites in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Shaan S Naughton
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Michael L Mathai
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia; Florey Neuroscience Institutes, The University of Melbourne, Melbourne, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
153
|
Gao YY, Jin L, Ji J, Sun BL, Xu LH, Wang QX, Wang CK, Bi YZ. Xanthophyll supplementation reduced inflammatory mediators and apoptosis in hens and chicks. J Anim Sci 2016; 94:2014-23. [PMID: 27285699 DOI: 10.2527/jas.2015-9628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated effects of xanthophylls (containing 40% lutein and 60% zeaxanthin) on gene expression of inflammatory mediators ( [] and []) and apoptosis ( [] and ) of breeding hens and chicks. In Exp. 1, 432 hens were divided into 3 groups and fed diets supplemented with 0 (as the control group), 20, or 40 mg/kg xanthophylls. The liver, duodenum, jejunum, and ileum were sampled after 35 d. Results showed that 40 mg/kg of xanthophyll addition decreased in the liver, in the liver and duodenum, and in the liver and jejunum while increasing level in the liver and jejunum. Experiment 2 was a 2 × 2 factorial design. Male chicks hatched from hens fed 0 or 40 mg/kg xanthophyll diets were fed diets containing either 0 or 40 mg/kg xanthophylls. The liver, duodenum, jejunum, and ileum were sampled at 0, 7, 14, and 21 d after hatching. Results showed that in ovo xanthophylls reduced inflammatory mediators and apoptosis in the liver, duodenum, and jejunum of chicks mainly within 1 wk after hatching, whereas dietary xanthophylls only decreased expression in the liver from 2 wk onward. These results underlined important anti-inflammatory and antiapoptotic effects of maternal but not progeny dietary xanthophylls. In conclusion, xanthophylls can suppress inflammatory mediators and apoptosis in different tissues of hens and chicks.
Collapse
|
154
|
Nwosu ZC, Alborzinia H, Wölfl S, Dooley S, Liu Y. Evolving Insights on Metabolism, Autophagy, and Epigenetics in Liver Myofibroblasts. Front Physiol 2016; 7:191. [PMID: 27313533 PMCID: PMC4887492 DOI: 10.3389/fphys.2016.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
Liver myofibroblasts (MFB) are crucial mediators of extracellular matrix (ECM) deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs) upon a process termed “activation.” To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells, and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy, and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.
Collapse
Affiliation(s)
- Zeribe C Nwosu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Yan Liu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
155
|
Gartung A, Zhao J, Chen S, Mottillo E, VanHecke GC, Ahn YH, Maddipati KR, Sorokin A, Granneman J, Lee MJ. Characterization of Eicosanoids Produced by Adipocyte Lipolysis: IMPLICATION OF CYCLOOXYGENASE-2 IN ADIPOSE INFLAMMATION. J Biol Chem 2016; 291:16001-10. [PMID: 27246851 DOI: 10.1074/jbc.m116.725937] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 12/29/2022] Open
Abstract
Excessive adipocyte lipolysis generates lipid mediators and triggers inflammation in adipose tissue. However, the specific roles of lipolysis-generated mediators in adipose inflammation remain to be elucidated. In the present study, cultured 3T3-L1 adipocytes were treated with isoproterenol to activate lipolysis and the fatty acyl lipidome of released lipids was determined by using LC-MS/MS. We observed that β-adrenergic activation elevated levels of approximately fifty lipid species, including metabolites of cyclooxygenases, lipoxygenases, epoxygenases, and other sources. Moreover, we found that β-adrenergic activation induced cyclooxygenase 2 (COX-2), not COX-1, expression in a manner that depended on activation of hormone-sensitive lipase (HSL) in cultured adipocytes and in the epididymal white adipose tissue (EWAT) of C57BL/6 mice. We found that lipolysis activates the JNK/NFκB signaling pathway and inhibition of the JNK/NFκB axis abrogated the lipolysis-stimulated COX-2 expression. In addition, pharmacological inhibition of COX-2 activity diminished levels of COX-2 metabolites during lipolytic activation. Inhibition of COX-2 abrogated the induction of CCL2/MCP-1 expression by β-adrenergic activation and prevented recruitment of macrophage/monocyte to adipose tissue. Collectively, our data indicate that excessive adipocyte lipolysis activates the JNK/NFκB pathway leading to the up-regulation of COX-2 expression and recruitment of inflammatory macrophages.
Collapse
Affiliation(s)
- Allison Gartung
- From the Bioactive Lipid Research Program, Department of Pathology
| | - Jiawei Zhao
- From the Bioactive Lipid Research Program, Department of Pathology
| | - Simon Chen
- From the Bioactive Lipid Research Program, Department of Pathology
| | | | | | | | | | - Andrey Sorokin
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - James Granneman
- Center for Integrative Metabolic and Endocrine Research, Center for Molecular Medicine and Genetics
| | - Menq-Jer Lee
- From the Bioactive Lipid Research Program, Department of Pathology, Cardiovascular Research Institute, and Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48202 and
| |
Collapse
|
156
|
Thyroxine therapy ameliorates serum levels of eicosanoids in Chinese subclinical hypothyroidism patients. Acta Pharmacol Sin 2016; 37:656-63. [PMID: 26997566 DOI: 10.1038/aps.2015.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
AIM The eicosanoids derived from phospholipids play key roles in inflammation. However, the profiles of serum eicosanoids in subclinical hypothyroidism (SH) patients and the effects of thyroxine replacement therapy (TRT) on these eicosanoids remain unclear. Many studies show that TSH regulates lipid metabolism. As eicosanoids derived from phospholipids play key roles in oxidative stress and immune function and inflammatory process, it was necessary to explore the profiles of serum eicosanoids in SH patients and the effects of thyroxine replacement therapy (TRT) on the eicosanoids. METHODS A total of 50 Chinese SH patients and 22 healthy volunteers were recruited. SH patients received TRT (L-T4, 25 and 50 mcg/d for patients with TSH≤10.0 mIU/L and TSH>10.0 mIU/L, respectively) for 3 months. Serum levels of major eicosanoids and cPLA2 were analyzed using LC-MS and clinical biochemical assays. RESULTS The serum levels of cPLA2, eicosanoids (8-isoPGF2a, 11-dehydroTXB2 and 12-HETE) and 11-dehydroTXB2/6-Keto-PGF1a were significantly elevated in SH patients. The serum TSH levels were significantly correlated with the levels of cPLA2 (r=+0.65), 11-dehydroTXB2 (r=+0.32) and 11-dehydroTXB2/6-Keto-PGF1a (r=+0.37). After 3-month TRT, the serum levels of TSH, cPLA2 and the above-mentioned eicosanoids in SH patients were significantly decreased. CONCLUSION The metabolism of eicosanoids is significantly altered in Chinese SH patients, and TRT can ameliorate the abnormalities of serum eicosanoid levels.
Collapse
|
157
|
She Y, Zheng Q, Xiao X, Wu X, Feng Y. An analysis on the suppression of NO and PGE2 by diphenylheptane A and its effect on glycerophospholipids of lipopolysaccharide-induced RAW264.7 cells with UPLC/ESI-QTOF-MS. Anal Bioanal Chem 2016; 408:3185-201. [DOI: 10.1007/s00216-016-9383-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
|
158
|
Synthesis and Biological Evaluation of an (18)Fluorine-Labeled COX Inhibitor--[(18)F]Fluorooctyl Fenbufen Amide--For Imaging of Brain Tumors. Molecules 2016; 21:387. [PMID: 27007363 PMCID: PMC6273898 DOI: 10.3390/molecules21030387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
Molecular imaging of brain tumors remains a great challenge, despite the advances made in imaging technology. An anti-inflammatory compound may be a useful tool for this purpose because there is evidence of inflammatory processes in brain tumor micro-environments. Fluorooctylfenbufen amide (FOFA) was prepared from 8-chlorooctanol via treatment with potassium phthalimide, tosylation with Ts2O, fluorination with KF under phase transfer catalyzed conditions, deprotection using aqueous hydrazine, and coupling with fenbufen. The corresponding radiofluoro product [18F]FOFA, had a final radiochemical yield of 2.81 mCi and was prepared from activated [18F]F− (212 mCi) via HPLC purification and concentration. The radiochemical purity was determined to be 99%, and the specific activity was shown to exceed 22 GBq/μmol (EOS) based on decay-corrected calculations. Ex-vivo analysis of [18F]FOFA in plasma using HPLC showed that the agent had a half-life of 15 min. PET scanning showed significant accumulation of [18F]FOFA over tumor loci with reasonable contrast in C6-glioma bearing rats. These results suggest that this molecule is a promising agent for the visualization of brain tumors. Further investigations should focus on tumor micro-environments.
Collapse
|
159
|
Behl T, Kaur I, Kotwani A. Role of endocannabinoids in the progression of diabetic retinopathy. Diabetes Metab Res Rev 2016; 32:251-9. [PMID: 26379208 DOI: 10.1002/dmrr.2710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/04/2015] [Accepted: 09/15/2015] [Indexed: 12/17/2022]
Abstract
In the past decades, the role of numerous factors in the pathophysiology of diabetic retinopathy has been explored, following which marked progress has been made in developing several novel therapeutic options, such as anti-vascular endothelial growth factor, anti-tumor necrosis factor-alpha and various other anti-inflammatory and anti-angiogenic agents, for the treatment of diabetic retinopathy. However, the involvement of endocannabinoid system in its pathogenesis has not been much explored. This review aims at unveiling every aspect of association of the endocannabinoid system and its interactions with various physiological and pathological pathways to induce disease progression. The various alterations induced by endocannabinoids, such as anandamide and 2-arachidonylglycerol, in retina during hyperglycaemia clearly demonstrate and verify their involvement in aggravating the pathological conditions, hence leading to the progression of diabetic retinopathy. Exploring this involvement furthermore, in greater depths, might be beneficial in acknowledging and understanding the hidden aspects of the pathogenesis of this complication even better and might provide a therapeutically beneficial alternative target to combat and restrict its progression amongst diabetic patients.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Ishneet Kaur
- Department of Pharmacy, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
160
|
Abstract
Over the last 10 years, a great boost of knowledge accumulated on the immunomodulatory and anti-inflammatory properties of endocannabinoids (eCBs). In this scenario, these bioactive lipids, which are produced by most immune cells along with a set of receptors and enzymes that regulate their synthesis and degradation, act as secondary modulators and increase or decrease a plethora of immune functions. In this review, the manifold immunomodulatory effects of the main eCBs in different compartments of innate and adaptive immunity will be discussed, suggesting that they could be considered as master regulators of innate-adaptive immune axis and as potent immunoresolvents.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
161
|
Cairns EA, Baldridge WH, Kelly MEM. The Endocannabinoid System as a Therapeutic Target in Glaucoma. Neural Plast 2016; 2016:9364091. [PMID: 26881140 PMCID: PMC4737462 DOI: 10.1155/2016/9364091] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/10/2015] [Indexed: 11/17/2022] Open
Abstract
Glaucoma is an irreversible blinding eye disease which produces progressive retinal ganglion cell (RGC) loss. Intraocular pressure (IOP) is currently the only modifiable risk factor, and lowering IOP results in reduced risk of progression of the disorder. The endocannabinoid system (ECS) has attracted considerable attention as a potential target for the treatment of glaucoma, largely due to the observed IOP lowering effects seen after administration of exogenous cannabinoids. However, recent evidence has suggested that modulation of the ECS may also be neuroprotective. This paper will review the use of cannabinoids in glaucoma, presenting pertinent information regarding the pathophysiology of glaucoma and how alterations in cannabinoid signalling may contribute to glaucoma pathology. Additionally, the mechanisms and potential for the use of cannabinoids and other novel agents that target the endocannabinoid system in the treatment of glaucoma will be discussed.
Collapse
Affiliation(s)
- Elizabeth A. Cairns
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - William H. Baldridge
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Melanie E. M. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada B3H 4R2
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
162
|
Fraga D, Zanoni CIS, Zampronio AR, Parada CA, Rae GA, Souza GEP. Endocannabinoids, through opioids and prostaglandins, contribute to fever induced by key pyrogenic mediators. Brain Behav Immun 2016; 51:204-211. [PMID: 26291402 DOI: 10.1016/j.bbi.2015.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/05/2015] [Accepted: 08/14/2015] [Indexed: 02/08/2023] Open
Abstract
This study aims to explore the contribution of endocannabinoids on the cascade of mediators involved in LPS-induced fever and to verify the participation of prostaglandins and endogenous opioids in fever induced by anandamide (AEA). Body temperature (Tc) of male Wistar rats was recorded over 6h, using a thermistor probe. Cerebrospinal fluid concentration of PGE2 and β-endorphin were measured by ELISA after the administration of AEA. Intracerebroventricular administration of the CB1 receptor antagonist AM251 (5μg, i.c.v.), reduced the fever induced by IL-1β (3ng, i.c.v.), TNF-α (250ng, i.c.v.), IL-6 (300ng, i.c.v.), corticotrophin release factor (CRH; 2.5μg, i.c.v.) and endothelin (ET)-1 (1pmol, i.c.v.), but not the fever induced by PGE2 (250ng, i.c.v.) or PGF2α (250ng, i.c.v.). Systemic administration of indomethacin (2mgkg(-1), i.p.) or celecoxib (5mgkg(-1), p.o.) reduced the fever induced by AEA (1μg, i.c.v.), while naloxone (1mgkg(-1), s.c.) abolished it. The increases of PGE2 and β-endorphin concentration in the CSF induced by AEA were abolished by the pretreatment of rats with AM251. These results suggest that endocannabinoids are intrinsically involved in the pyretic activity of cytokines (IL-1β, TNF-α, IL-6), CRH and ET-1 but not the PGE2 or PGF2α induced fevers. However, anandamide via CB1 receptor activation induces fever that is dependent on the synthesis of prostaglandin and opioids.
Collapse
Affiliation(s)
- Daniel Fraga
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil; Faculty of Nursing, Federal University of Mato Grosso of Sul, Coxim, MS, Brazil.
| | - Cristiane I S Zanoni
- Laboratory of Neuropathic Pain, Department of Pharmacology, Institute of Biomedical Sciences, São Paulo, Brazil
| | | | - Carlos A Parada
- Biology Institute, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Giles A Rae
- Department of Pharmacology, Biological Science Center, Federal University of Santa Catarina, Brazil
| | - Glória E P Souza
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
163
|
Janssen FJ, Baggelaar MP, Hummel JJA, Overkleeft HS, Cravatt BF, Boger DL, van der Stelt M. Comprehensive Analysis of Structure-Activity Relationships of α-Ketoheterocycles as sn-1-Diacylglycerol Lipase α Inhibitors. J Med Chem 2015; 58:9742-53. [PMID: 26584396 PMCID: PMC4690813 DOI: 10.1021/acs.jmedchem.5b01627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diacylglycerol lipase α (DAGLα) is responsible for the formation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα inhibitors are required to study the physiological role of 2-AG. Previously, we identified the α-ketoheterocycles as potent and highly selective DAGLα inhibitors. Here, we present the first comprehensive structure-activity relationship study of α-ketoheterocycles as DAGLα inhibitors. Our findings indicate that the active site of DAGLα is remarkably sensitive to the type of heterocyclic scaffold with oxazolo-4N-pyridines as the most active framework. We uncovered a fundamental substituent effect in which electron-withdrawing meta-oxazole substituents increased inhibitor potency. (C6-C9)-acyl chains with a distal phenyl group proved to be the most potent inhibitors. The integrated SAR data was consistent with the proposed binding pose in a DAGLα homology model. Altogether, our results may guide the design of future DAGLα inhibitors as leads for molecular therapies to treat neuroinflammation, obesity, and related metabolic disorders.
Collapse
Affiliation(s)
- Freek J. Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Marc P. Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Jessica J. A. Hummel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| |
Collapse
|
164
|
Lowin T, Apitz M, Anders S, Straub RH. Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res Ther 2015; 17:321. [PMID: 26567045 PMCID: PMC4644337 DOI: 10.1186/s13075-015-0845-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/29/2015] [Indexed: 12/29/2022] Open
Abstract
Introduction The endocannabinoid system modulates function of immune cells and mesenchymal cells such as fibroblasts, which contribute to cartilage destruction in rheumatoid arthritis (RA). The aim of the study was to determine the influence of N-acylethanolamines anandamide (AEA), palmitoylethanolamine (PEA) and oleylethanolamine (OEA) on several features of arthritic inflammation in vitro (human material) and in vivo (a mouse model). Methods Immunofluorescence and western blotting were used to detect cannabinoid receptors and related enzymes. Cytokines and MMP-3 were measured by ELISA. Intracellular signaling proteins were detected by proteome profiling. Proliferation was quantified by CTB reagent. Adhesion was assessed by the xCELLigence system. After onset of collagen type II arthritis, mice were treated daily with the FAAH inhibitor JNJ1661010 (20 mg/kg) or vehicle. Results IL-6, IL-8 and MMP-3 (determined only in synovial fibroblasts (SFs)) were downregulated in primary synoviocytes and SFs of RA and OA after AEA, PEA and OEA treatment. In SFs, this was due to activation of TRPV1 and TRPA1 in a COX-2-dependent fashion. FAAH inhibition increased the efficacy of AEA in primary synoviocytes but not in SFs. The effects of OEA and PEA on SFs were diminished by FAAH inhibition. Adhesion to fibronectin was increased in a CB1-dependent manner by AEA in OASFs. Furthermore, elevation of endocannabinoids ameliorated collagen-induced arthritis in mice. Conclusions N-acylethanolamines exert anti-inflammatory effects in SFs. A dual FAAH/COX-2 inhibitor, increasing N-acylethanolamine levels with concomitant TRP channel desensitization, might be a good candidate to inhibit the production of proinflammatory mediators of synovial cells and to reduce erosions. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0845-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Martin Apitz
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Sven Anders
- Department of Orthopaedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V Allee 3, 93077, Bad Abbach, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| |
Collapse
|
165
|
Abstract
INTRODUCTION The COX enzymes play a central role in the biosynthetic pathway of important biological mediators called prostanoids. Differences in regulation of gene expression, stability of transcripts and proteins determine the different biological functions of COX-1 and COX-2. While the COX-1 gene has been considered to be a 'housekeeping' gene expressed in many tissues and cells, COX-2 gene is upregulated during inflammation, hypoxia and in many cancers. AREAS COVERED The first part of this review provides a survey of the development of both modified traditional NSAIDs (tNSAIDs) and COX inhibitors (coxibs) with reduced side effects for the treatment of inflammation and cancer. The second part deals with patents reporting several dual inhibitors characterized by the conjugation of a COX-inhibitor scaffold to a molecule able to modulate a different target. Finally, two patents on novel COX inhibitor scaffolds are reported. EXPERT OPINION The most interesting branch of research concerns the conjugation of a COX-inhibitor scaffold to a molecule able to modulate a different target, in order to either enhance anti-inflammatory activity or to act as a dual inhibitor. Among the described compounds, selenium-containing coxibs inhibiting COX-2 and Akt, in addition to the multi-target biphenyl derivatives as dual inhibitors of COX and fatty acid amide hydrolase, are the most promising ones.
Collapse
Affiliation(s)
- Sara Consalvi
- a Sapienza University of Rome, Dipartimento di Chimica e Tecnologie del Farmaco , p.le A. Moro 5, I-00185 Rome, Italy
| | - Mariangela Biava
- a Sapienza University of Rome, Dipartimento di Chimica e Tecnologie del Farmaco , p.le A. Moro 5, I-00185 Rome, Italy
| | - Giovanna Poce
- a Sapienza University of Rome, Dipartimento di Chimica e Tecnologie del Farmaco , p.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
166
|
Borges PV, Moret KH, Maya-Monteiro CM, Souza-Silva F, Alves CR, Batista PR, Caffarena ER, Pacheco P, Henriques MDG, Penido C. Gedunin Binds to Myeloid Differentiation Protein 2 and Impairs Lipopolysaccharide-Induced Toll-Like Receptor 4 Signaling in Macrophages. Mol Pharmacol 2015; 88:949-61. [PMID: 26330549 DOI: 10.1124/mol.115.098970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/26/2015] [Indexed: 12/16/2022] Open
Abstract
Recognition of bacterial lipopolysaccharide (LPS) by innate immune system is mediated by the cluster of differentiation 14/Toll-like receptor 4/myeloid differentiation protein 2 (MD-2) complex. In this study, we investigated the modulatory effect of gedunin, a limonoid from species of the Meliaceae family described as a heat shock protein Hsp90 inhibitor, on LPS-induced response in immortalized murine macrophages. The pretreatment of wild-type (WT) macrophages with gedunin (0.01-100 µM, noncytotoxic concentrations) inhibited LPS (50 ng/ml)-induced calcium influx, tumor necrosis factor-α, and nitric oxide production in a concentration-dependent manner. The selective effect of gedunin on MyD88-adapter-like/myeloid differentiation primary response 88- and TRIF-related adaptor molecule/TIR domain-containing adapter-inducing interferon-β-dependent signaling pathways was further investigated. The pretreatment of WT, TIR domain-containing adapter-inducing interferon-β knockout, and MyD88 adapter-like knockout macrophages with gedunin (10 µM) significantly inhibited LPS (50 ng/ml)-induced tumor necrosis factor-α and interleukin-6 production, at 6 hours and 24 hours, suggesting that gedunin modulates a common event between both signaling pathways. Furthermore, gedunin (10 µM) inhibited LPS-induced prostaglandin E2 production, cyclooxygenase-2 expression, and nuclear factor κB translocation into the nucleus of WT macrophages, demonstrating a wide-range effect of this chemical compound. In addition to the ability to inhibit LPS-induced proinflammatory mediators, gedunin also triggered anti-inflammatory factors interleukin-10, heme oxygenase-1, and Hsp70 in macrophages stimulated or not with LPS. In silico modeling studies revealed that gedunin efficiently docked into the MD-2 LPS binding site, a phenomenon further confirmed by surface plasmon resonance. Our results reveal that, in addition to Hsp90 modulation, gedunin acts as a competitive inhibitor of LPS, blocking the formation of the Toll-like receptor 4/MD-2/LPS complex.
Collapse
Affiliation(s)
- Perla Villani Borges
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Katelim Hottz Moret
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Franklin Souza-Silva
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carlos Roberto Alves
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Ricardo Batista
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ernesto Raúl Caffarena
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Pacheco
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria das Graças Henriques
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carmen Penido
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
167
|
Almada M, Piscitelli F, Fonseca BM, Di Marzo V, Correia-da-Silva G, Teixeira N. Anandamide and decidual remodelling: COX-2 oxidative metabolism as a key regulator. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1473-81. [PMID: 26335727 DOI: 10.1016/j.bbalip.2015.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
Recently, endocannabinoids have emerged as signalling mediators in reproduction. It is widely accepted that anandamide (AEA) levels must be tightly regulated, and that a disturbance in AEA levels may impact decidual stability and regression. We have previously characterized the endocannabinoid machinery in rat decidual tissue and reported the pro-apoptotic action of AEA on rat decidual cells. Cyclooxygenase-2 (COX-2) is an inducible enzyme that plays a crucial role in early pregnancy, and is also a key modulator in the crosstalk between endocannabinoids and prostaglandins. On the other hand, AEA-oxidative metabolism by COX-2 is not merely a mean to inactivate its action, but it yields the formation of a new class of mediators, named prostaglandin-ethanolamides, or prostamides. In this study we found that AEA-induced apoptosis in decidual cells involves COX-2 metabolic pathway. AEA induced COX-2 expression through p38 MAPK, resulting in the formation of prostamide E2 (PME2). Our findings also suggest that AEA-induced effect is associated with NF-kB activation. Finally, we describe the involvement of PME2 in the induction of the intrinsic apoptotic pathway in rat decidual cells. Altogether, our findings highlight the role of COX-2 as a gatekeeper in the uterine environment and clarify the impact of the deregulation of AEA levels on the decidual remodelling process.
Collapse
Affiliation(s)
- M Almada
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| | - F Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - B M Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| | - V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| | - N Teixeira
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
168
|
Fatty acids, endocannabinoids and inflammation. Eur J Pharmacol 2015; 785:96-107. [PMID: 26325095 DOI: 10.1016/j.ejphar.2015.08.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/01/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system. However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems. Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides. With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation. A key feature of this 'expanded' endocannabinoid system, or 'endocannabinoidome', is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities. Following an update on the role of the 'endocannabinoidome' in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners. Although its pleiotropic character poses scientific challenges, the 'expanded' endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases. In this respect, successes are more likely to come from 'multiple-target' than from 'single-target' strategies.
Collapse
|
169
|
The potential of inhibitors of endocannabinoid metabolism as anxiolytic and antidepressive drugs--A practical view. Eur Neuropsychopharmacol 2015; 25:749-62. [PMID: 25791296 DOI: 10.1016/j.euroneuro.2015.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/13/2015] [Accepted: 02/20/2015] [Indexed: 12/15/2022]
Abstract
The endocannabinoid system, comprising cannabinoid CB1 and CB2 receptors, their endogenous ligands anandamide and 2-arachidonoylglyerol, and their synthetic and metabolic enzymes, are involved in many biological processes in the body, ranging from appetite to bone turnover. Compounds inhibiting the breakdown of anandamide and 2-arachidonoylglycerol increase brain levels of these lipids and thus modulate endocannabinoid signalling. In the present review, the preclinical evidence that these enzymes are good targets for development of novel therapies for anxiety and depression are discussed from a practical, rather than mechanistic, point of view. It is concluded that the preclinical data are promising, albeit tempered by problems of tolerance as well as effects upon learning and memory for irreversible monoacylglycerol lipase inhibitors, and limited by a focus upon male rodents alone. Clinical data so far has been restricted to safety studies with inhibitors of anandamide hydrolysis and a hitherto unpublished study on such a compound in elderly patients with major depressive disorders, but under the dose regimes used, they are well tolerated and show no signs of "cannabis-like" behaviours.
Collapse
|
170
|
Growth arrest-specific protein 6 protects against renal ischemia-reperfusion injury. J Surg Res 2015; 199:572-9. [PMID: 26182998 DOI: 10.1016/j.jss.2015.05.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/27/2015] [Accepted: 05/21/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Renal injury caused by ischemia-reperfusion (I/R) often occurs after shock or transplantation. Growth arrest-specific protein 6 (Gas6) is a secreted protein that binds to the TAM-Tyro3, Axl, Mer-family tyrosine kinase receptors, which modulate the inflammatory response and activate cell survival pathways. We hypothesized that Gas6 could have a protective role in attenuating the severity of renal injury after I/R. MATERIALS AND METHODS Adult mice were subjected to 45 min of bilateral renal ischemia. Recombinant mouse Gas6 (rmGas6, 5 μg per mouse) or normal saline (vehicle) was administered intraperitoneally 1 h before ischemia and all subjects were sacrificed at 23 h after I/R for blood and tissue analysis. The expression of protein and messenger RNA (mRNA) was assessed by Western blotting and quantitative polymerase chain reaction, respectively. RESULTS Treatment with rmGas6 significantly decreased serum levels of creatinine and blood urea nitrogen by 29% and 27%, respectively, improved the renal histologic injury index, and reduced the apoptosis in the kidneys, compared with the vehicle. Renal mRNA levels of interleukin 1β, interleukin 6, tumor necrosis factor α, keratinocyte-derived chemokine and macrophage inflammatory protein 2 were decreased significantly by 99%, 60%, 53%, 58%, and 43%, with rmGas6 treatment, respectively. After I/R, renal I-kappa-B α levels were reduced by 40%, whereas they returned to sham levels with rmGas6 treatment. The mRNA levels of inducible nitric oxide synthase and cyclooxygenase 2 were reduced by 79% and 70%, respectively, whereas the expression of cyclin D1 was increased by 2.1-fold in the rmGas6-treated group, compared with the vehicle. CONCLUSIONS Gas6 suppresses the nuclear factor κB pathway and promotes cell proliferation, leading to the reduction of inflammation and protection of renal injury induced by I/R.
Collapse
|
171
|
Fang Y, Zhang Z, Wang Q, Zhao J. Expression and clinical significance of cyclooxygenase-2 and microRNA-143 in osteosarcoma. Exp Ther Med 2015; 9:2374-2378. [PMID: 26136990 DOI: 10.3892/etm.2015.2420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/05/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the expression profiles of cyclooxygenase (COX)-2 and microRNA (miRNA)-143 in the tumor tissue and blood samples of patients with osteosarcoma, and their involvement in the disease pathogenesis. Tumor tissue and blood samples were obtained from 46 patients with osteosarcoma (stages I-III). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analyses were performed to detect the mRNA and protein expression of COX-2, respectively, in these samples. The expression of miRNA-143 in the tumor tissue and blood samples was assessed using RT-qPCR. The results showed that, compared with the normal control subjects, the mRNA and protein expression levels of COX-2 in the tumor tissue and blood samples of patients with osteosarcoma were increased. Among the patients with osteosarcoma, increases in the COX-2 mRNA and protein levels were observed with progressing disease severity (from stage I to stage III), suggesting the involvement of COX-2 in the disease pathogenesis. By contrast, the expression of miRNA-143 decreased as the disease progressed, which was the opposite trend to the COX-2 expression, indicating that miRNA-143 and COX-2 may play different roles in the disease pathogenesis. In conclusion, COX-2 expression in the tumor tissue and blood samples of patients with osteosarcoma increases significantly along with the degree of tumor malignancy, and this is accompanied by a decreased expression of miRNA-143; therefore, a negative correlation between COX-2 and miRNA-143 may exist in the progression of osteosarcoma.
Collapse
Affiliation(s)
- Yongchao Fang
- Department of Orthopedic Surgery, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhiqiang Zhang
- Department of Orthopedic Surgery, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Qiang Wang
- Department of Orthopedic Surgery, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianning Zhao
- Department of Orthopedic Surgery, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
172
|
Astarita G, Kendall AC, Dennis EA, Nicolaou A. Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:456-68. [PMID: 25486530 PMCID: PMC4323855 DOI: 10.1016/j.bbalip.2014.11.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
Oxidation of polyunsaturated fatty acids (PUFA) through enzymatic or non-enzymatic free radical-mediated reactions can yield an array of lipid metabolites including eicosanoids, octadecanoids, docosanoids and related species. In mammals, these oxygenated PUFA mediators play prominent roles in the physiological and pathological regulation of many key biological processes in the cardiovascular, renal, reproductive and other systems including their pivotal contribution to inflammation. Mass spectrometry-based technology platforms have revolutionized our ability to analyze the complex mixture of lipid mediators found in biological samples, with increased numbers of metabolites that can be simultaneously quantified from a single sample in few analytical steps. The recent development of high-sensitivity and high-throughput analytical tools for lipid mediators affords a broader view of these oxygenated PUFA species, and facilitates research into their role in health and disease. In this review, we illustrate current analytical approaches for a high-throughput lipidomic analysis of eicosanoids and related mediators in biological samples. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Giuseppe Astarita
- Waters Corporation, Milford, MA, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| | - Alexandra C Kendall
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Edward A Dennis
- Department of Chemistry/Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA; Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | - Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
173
|
Finnegan DF, Shelnut EL, Nikas SP, Chiang N, Serhan CN, Makriyannis A. Novel tail and head group prostamide probes. Bioorg Med Chem Lett 2015; 25:1228-31. [PMID: 25701254 PMCID: PMC4405029 DOI: 10.1016/j.bmcl.2015.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
We report the design and synthesis of novel prostaglandin-ethanolamide (PGE2-EA) analogs containing head and tail group modifications to aid in the characterization of a putative prostamide receptor(s). Our synthetic approach utilizes Horner-Wadsworth-Emmons and Wittig reactions to construct the head and the tail moieties of the key PGE2 precursor, which leads to the final products through a peptide coupling, Swern oxidation and HF/pyridine assisted desilylation. The synthesized analogs were shown not to interact significantly with endocannabinoid proteins and recombinant EP1, EP3 and EP4 receptors and suggest a yet to be identified prostamide receptor as their site(s) of action.
Collapse
Affiliation(s)
- David F Finnegan
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Erin L Shelnut
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Spyros P Nikas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur (HIM 829), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur (HIM 829), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA; King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
174
|
Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, Plovier H, Castel J, Denis RGP, Bergiers M, Druart C, Alhouayek M, Delzenne NM, Muccioli GG, Demoulin JB, Luquet S, Cani PD. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun 2015; 6:6495. [PMID: 25757720 PMCID: PMC4382707 DOI: 10.1038/ncomms7495] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. Endocannabinoids are bioactive lipid molecules produced in the body. Here, Geurts et al. create mice lacking the endocannabinoid-producing enzyme NAPE-PLD in adipocytes and report defects in adipose-induced browning, which are mediated by alterations in the gut microbiome.
Collapse
Affiliation(s)
- Lucie Geurts
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Ahmed Essaghir
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium
| | - Thibaut Duparc
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Sébastien Matamoros
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Julien Castel
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Raphael G P Denis
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Marie Bergiers
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Céline Druart
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 72 B1.72.11, 1200 Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 72 B1.72.11, 1200 Brussels, Belgium
| | - Jean-Baptiste Demoulin
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| |
Collapse
|
175
|
Shelnut EL, Nikas SP, Finnegan DF, Chiang N, Serhan CN, Makriyannis A. Design and synthesis of novel prostaglandin E 2 ethanolamide and glycerol ester probes for the putative prostamide receptor(s). Tetrahedron Lett 2015; 56:1411-1415. [PMID: 25960577 DOI: 10.1016/j.tetlet.2015.01.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Novel prostaglandin-ethanolamide (PGE2-EA) and glycerol ester (2-PGE2-G) analogs were designed and synthesized to aid in the characterization of a putative prostamide receptor. Our design incorporates the electrophilic isothiocyanato and the photoactivatable azido groups at the terminal tail position of the prototype. Stereoselective Wittig and Horner-Wadsworth-Emmons reactions install the head and the tail moieties of the PGE2 skeleton. The synthesis is completed using Mitsunobu azidation and peptide coupling as the key steps. A chemoenzymatic synthesis for the 2-PGE2-G is described for first time.
Collapse
Affiliation(s)
- Erin L Shelnut
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Spyros P Nikas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - David F Finnegan
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur (HIM 829), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur (HIM 829), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, 116 Mugar Hall, Boston, MA 02115, USA ; King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
176
|
Di Marzo V, Stella N, Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci 2015; 16:30-42. [PMID: 25524120 DOI: 10.1038/nrn3876] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls--and is affected by--normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Nephi Stella
- 1] Department of Pharmacology, University of Washington. [2] Department of Psychiatry and Behavioral Science, University of Washington, 1959 Pacific Avenue North, Seattle, Washington 98103, USA
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, University of Bonn, Sigmund Freud Straße 25, Bonn 53127, Germany
| |
Collapse
|
177
|
Pelletier SJ, Lagacé M, St-Amour I, Arsenault D, Cisbani G, Chabrat A, Fecteau S, Lévesque M, Cicchetti F. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. Int J Neuropsychopharmacol 2015; 18:pyu090. [PMID: 25522422 PMCID: PMC4376545 DOI: 10.1093/ijnp/pyu090] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. METHODS Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. RESULTS In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. CONCLUSION We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neuroscience, Québec, QC, Canada (Mr Pelletier, Ms Lagacé, Drs St-Amour, Arsenault, Cisbani, and Cicchetti); Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada (Drs Lévesque and Cicchetti); Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada (Ms Chabrat and Dr Lévesque); Laboratory of Canada Research Chair in Cognitive Neuroscience, Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Canada (Dr Fecteau); Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, MA (Dr Fecteau).
| |
Collapse
|
178
|
Chiurchiù V, Battistini L, Maccarrone M. Endocannabinoid signalling in innate and adaptive immunity. Immunology 2015; 144:352-364. [PMID: 25585882 DOI: 10.1111/imm.12441] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Luca Battistini
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy.,Centre of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
179
|
The Potential of Inhibitors of Endocannabinoid Metabolism for Drug Development: A Critical Review. Handb Exp Pharmacol 2015; 231:95-128. [PMID: 26408159 DOI: 10.1007/978-3-319-20825-1_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are metabolised by both hydrolytic enzymes (primarily fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL)) and oxygenating enzymes (e.g. cyclooxygenase-2, COX-2). In the present article, the in vivo data for compounds inhibiting endocannabinoid metabolism have been reviewed, focussing on inflammation and pain. Potential reasons for the failure of an FAAH inhibitor in a clinical trial in patients with osteoarthritic pain are discussed. It is concluded that there is a continued potential for compounds inhibiting endocannabinoid metabolism in terms of drug development, but that it is wise not to be unrealistic in terms of expectations of success.
Collapse
|
180
|
Wei G, Chen X, Wang G, Jia P, Xu Q, Ping G, Wang K, Li X. Inhibition of cyclooxygenase-2 prevents intra-abdominal adhesions by decreasing activity of peritoneal fibroblasts. Drug Des Devel Ther 2015; 9:3083-98. [PMID: 26109851 PMCID: PMC4474398 DOI: 10.2147/dddt.s80221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Postoperative intra-abdominal adhesions are common complications after abdominal surgery. The exact molecular mechanisms that are responsible for these complications remain unclear, and there are no effective methods for preventing adhesion formation or reformation. The aim of the study reported here was to investigate the preventive effects and underlying potential molecular mechanisms of selective cyclooxygenase-2 (COX-2) inhibitors in a rodent model of postoperative intra-abdominal adhesions. MATERIALS AND METHODS The expression of COX-2 in postoperative intra-abdominal adhesions and normal peritoneal tissue was examined by immunohistochemistry and Western blot analysis. Assays were performed to elucidate the effect of COX-2 inhibition on hypoxia-induced fibroblast activity in vitro and on intra-abdominal adhesion formation in vivo. RESULTS Hypoxia-induced COX-2 expression in peritoneal fibroblasts was increased in postoperative intra-abdominal adhesions. Inhibition of COX-2 attenuated the activating effect of hypoxia on normal peritoneal fibroblasts in vitro. Data indicate that selective COX-2 inhibitor prevents in vivo intra-abdominal adhesion by inhibition of basic fibroblast growth factor and transforming growth factor-beta expression, but not through an antiangiogenic mechanism. Furthermore, using selective COX-2 inhibitors to prevent intra-abdominal adhesions did not adversely affect the weight, bowel motility, or healing of intestinal anastomoses in a rat model. CONCLUSION These results show that hypoxia-induced COX-2 expression in peritoneal fibroblasts is involved in the formation of intra-abdominal adhesions. Inhibition of COX-2 prevents postoperative intra-abdominal adhesions through suppression of inflammatory cytokines.
Collapse
Affiliation(s)
- Guangbing Wei
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Xin Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Guanghui Wang
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Pengbo Jia
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
- Department of General Surgery, First People’s Hospital of Xianyang City, Xianyang, People’s Republic of China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Gaofeng Ping
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Kang Wang
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
- Correspondence: Xuqi Li, Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, 277 West Yanta Road, Xi’an, Shaanxi 710061, People’s Republic of China, Tel +86 29 8532 3899, Fax +86 29 8532 3899, Email
| |
Collapse
|
181
|
Yi X, Zhang B, Wang C, Liao D, Lin J, Chi L. Genetic polymorphisms of ALOX5AP and CYP3A5 increase susceptibility to ischemic stroke and are associated with atherothrombotic events in stroke patients. J Stroke Cerebrovasc Dis 2014; 24:521-9. [PMID: 25534367 DOI: 10.1016/j.jstrokecerebrovasdis.2014.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The contributions of gene-gene interactions to pathogenesis of stroke remain largely elusive. The present study was designed to investigate the associations between genetic variations and ischemic stroke risk, the roles of gene-gene interactions in ischemic stroke, and their associations with atherothrombotic events. METHODS Among 396 patients with ischemic stroke and 378 controls, we examined 8 variants from 5 genes, including ALOX5AP-SG13S32 (rs9551963), SG13S42 (rs4769060), SG13S89 (rs4769874), SG13S114 (rs10507391), EPHX2 G860A (rs751141), CYP2C9*2 C430T (rs1799853), CYP2C9*3 A1075C (rs1057910), and CYP3A5 A6986G (rs776746), using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Gene-gene interactions were determined by the generalized multifactor dimensionality reduction (GMDR) method. All ischemic stroke patients were followed up 12 months for atherothrombotic events, including recurrent ischemic stroke and other vascular events. RESULTS Single-gene variant analysis showed no significant differences in the genotype distributions of the 8 variants between the 2 groups. However, the GMDR analysis showed a significant interaction between rs10507391 and rs776746, in those cases carrying rs10507391 AA and rs776746 GG, the risk of ischemic stroke increased by 2.014 times (95% confidence interval [CI], 1.896-6.299; P = .006), and the atherothrombotic events occurred more frequently in those patients during follow-up period (P < .001). Multiple Cox regression analysis showed that the interaction between rs10507391 AA and rs776746 GG was an independent risk factor for atherothrombotic events (relative risk = 2.921; 95% CI, 1.118-7.012; P = .008). CONCLUSIONS The interaction between rs10507391 and rs776746 increases the susceptibility to ischemic stroke and is associated with atherothrombotic events in stroke patients.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City, Deyang, China.
| | - Biao Zhang
- Department of Neurology, People's Hospital of Deyang City, Deyang, China
| | - Chun Wang
- Department of Neurology, People's Hospital of Deyang City, Deyang, China
| | - Duanxiu Liao
- Department of Neurology, People's Hospital of Deyang City, Deyang, China
| | - Jing Lin
- Department of Neurology, Third Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Lifen Chi
- Department of Neurology, Third Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| |
Collapse
|
182
|
Comparative biochemical characterization of the monoacylglycerol lipase inhibitor KML29 in brain, spinal cord, liver, spleen, fat and muscle tissue. Neuropharmacology 2014; 91:148-56. [PMID: 25497453 DOI: 10.1016/j.neuropharm.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/08/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
Monoacylglycerol lipase (MAGL) is part of the endocannabinoid and the prostaglandin signaling system. MAGL degrades the endocannabinoid 2-arachidonoylglycerol (2-AG) into glycerol and arachidonic acid. MAGL-induced arachidonic acid is the primary source for prostaglandin synthesis in the brain. 2-AG mainly induces neuroprotective and anti-inflammatory effects, whereas prostaglandins are related to pro-inflammatory effects inducing neurotoxicity. Therefore, inhibition of MAGL represents a promising target for neurological diseases characterized by inflammation. However, as 2-AG is an agonist for the cannabinoid receptor 1 (CB1), inhibition of MAGL might be associated with unwanted cannabimimetic effects. Here, we show that oral administration of KML29, a highly selective inhibitor of MAGL, induced large and dose-dependent changes in 2-AG levels in vivo in brain and spinal cord of mice. Of note, MAGL inhibition by KML29 induced a decrease in prostaglandin levels in brain and most peripheral tissues but not in the spinal cord. MAGL expression was highest in fat, liver and brain, whereas the cytosolic phospholipase A2 (cPLA2), a further enzyme responsible for arachidonic acid production, was highly expressed in spinal cord, muscle and spleen. In addition, high doses (10 mg/kg) of KML29 induced some cannabimimetic effects in vivo in the tetrad test, including hypothermia, analgesia and hypomotility without induction of cataleptic behavior. In summary, inhibition of MAGL by KML29 represents a promising strategy for targeting the cannabinoid and prostaglandin system of the brain with only a moderate induction of cannabimimetic effects.
Collapse
|
183
|
Roles of lipid-modulating enzymes diacylglycerol kinase and cyclooxygenase under pathophysiological conditions. Anat Sci Int 2014; 90:22-32. [PMID: 25471593 DOI: 10.1007/s12565-014-0265-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Lipid not only represents a constituent of the plasma membrane, but also plays a pivotal role in intracellular signaling. Lipid-mediated signaling system is strictly regulated by several enzymes, which act at various steps of the lipid metabolism. Under pathological conditions, prolonged or insufficient activation of this system results in dysregulated signaling, leading to diseases such as cancer or metabolic syndrome. Of the lipid-modulating enzymes, diacylglycerol kinase (DGK) and cyclooxygenase (COX) are intimately involved in the signaling system. DGK consists of a family of enzymes that phosphorylate a second messenger diacylglycerol (DG) to produce phosphatidic acid (PA). Both DG and PA are known to activate signaling molecules such as protein kinase C. COX catalyzes the committed step in prostanoid biosynthesis, which involves the metabolism of arachidonic acid to produce prostaglandins. Previous studies have shown that the DGK and COX are engaged in a number of pathological conditions. This review summarizes the functional implications of these two enzymes in ischemia, liver regeneration, vascular events, diabetes, cancer and inflammation.
Collapse
|
184
|
Endocannabinoids, related compounds and their metabolic routes. Molecules 2014; 19:17078-106. [PMID: 25347455 PMCID: PMC6271436 DOI: 10.3390/molecules191117078] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 12/27/2022] Open
Abstract
Endocannabinoids are lipid mediators able to bind to and activate cannabinoid receptors, the primary molecular targets responsible for the pharmacological effects of the Δ9-tetrahydrocannabinol. These bioactive lipids belong mainly to two classes of compounds: N-acylethanolamines and acylesters, being N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, their main representatives. During the last twenty years, an ever growing number of fatty acid derivatives (endocannabinoids and endocannabinoid-like compounds) have been discovered and their activities biological is the subject of intense investigations. Here, the most recent advances, from a therapeutic point of view, on endocannabinoids, related compounds, and their metabolic routes will be reviewed.
Collapse
|
185
|
Savinainen JR, Patel JZ, Parkkari T, Navia-Paldanius D, Marjamaa JJT, Laitinen T, Nevalainen T, Laitinen JT. Biochemical and pharmacological characterization of the human lymphocyte antigen B-associated transcript 5 (BAT5/ABHD16A). PLoS One 2014; 9:e109869. [PMID: 25290914 PMCID: PMC4188605 DOI: 10.1371/journal.pone.0109869] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022] Open
Abstract
Background Human lymphocyte antigen B-associated transcript 5 (BAT5, also known as ABHD16A) is a poorly characterized 63 kDa protein belonging to the α/β-hydrolase domain (ABHD) containing family of metabolic serine hydrolases. Its natural substrates and biochemical properties are unknown. Methodology/Principal Findings Amino acid sequence comparison between seven mammalian BAT5 orthologs revealed that the overall primary structure was highly (≥95%) conserved. Activity-based protein profiling (ABPP) confirmed successful generation of catalytically active human (h) and mouse (m) BAT5 in HEK293 cells, enabling further biochemical characterization. A sensitive fluorescent glycerol assay reported hBAT5-mediated hydrolysis of medium-chain saturated (C14∶0), long-chain unsaturated (C18∶1, C18∶2, C20∶4) monoacylglycerols (MAGs) and 15-deoxy-Δ12,14-prostaglandin J2-2-glycerol ester (15d-PGJ2-G). In contrast, hBAT5 possessed only marginal diacylglycerol (DAG), triacylglycerol (TAG), or lysophospholipase activity. The best MAG substrates were 1-linoleylglycerol (1-LG) and 15d-PGJ2-G, both exhibiting low-micromolar Km values. BAT5 had a neutral pH optimum and showed preference for the 1(3)- vs. 2-isomers of MAGs C18∶1, C18∶2 and C20∶4. Inhibitor profiling revealed that β-lactone-based lipase inhibitors were nanomolar inhibitors of hBAT5 activity (palmostatin B > tetrahydrolipstatin > ebelactone A). Moreover, the hormone-sensitive lipase inhibitor C7600 (5-methoxy-3-(4-phenoxyphenyl)-3H-[1], [3], [4]oxadiazol-2-one) was identified as a highly potent inhibitor (IC50 8.3 nM). Phenyl and benzyl substituted analogs of C7600 with increased BAT5 selectivity were synthesized and a preliminary SAR analysis was conducted to obtain initial insights into the active site dimensions. Conclusions/Significance This study provides an initial characterization of BAT5 activity, unveiling the biochemical and pharmacological properties with in vitro substrate preferences and inhibitor profiles. Utilization of glycerolipid substrates and sensitivity to lipase inhibitors suggest that BAT5 is a genuine lipase with preference for long-chain unsaturated MAGs and could in this capacity regulate glycerolipid metabolism in vivo as well. This preliminary SAR data should pave the way towards increasingly potent and BAT5-selective inhibitors.
Collapse
Affiliation(s)
- Juha R. Savinainen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jayendra Z. Patel
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Teija Parkkari
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dina Navia-Paldanius
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Joona J. T. Marjamaa
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tapio Nevalainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jarmo T. Laitinen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| |
Collapse
|
186
|
Pisani DF, Ghandour RA, Beranger GE, Le Faouder P, Chambard JC, Giroud M, Vegiopoulos A, Djedaini M, Bertrand-Michel J, Tauc M, Herzig S, Langin D, Ailhaud G, Duranton C, Amri EZ. The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Mol Metab 2014; 3:834-47. [PMID: 25506549 PMCID: PMC4264041 DOI: 10.1016/j.molmet.2014.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
Objective Brite adipocytes are inducible energy-dissipating cells expressing UCP1 which appear within white adipose tissue of healthy adult individuals. Recruitment of these cells represents a potential strategy to fight obesity and associated diseases. Methods/Results Using human Multipotent Adipose-Derived Stem cells, able to convert into brite adipocytes, we show that arachidonic acid strongly inhibits brite adipocyte formation via a cyclooxygenase pathway leading to secretion of PGE2 and PGF2α. Both prostaglandins induce an oscillatory Ca++ signaling coupled to ERK pathway and trigger a decrease in UCP1 expression and in oxygen consumption without altering mitochondriogenesis. In mice fed a standard diet supplemented with ω6 arachidonic acid, PGF2α and PGE2 amounts are increased in subcutaneous white adipose tissue and associated with a decrease in the recruitment of brite adipocytes. Conclusion Our results suggest that dietary excess of ω6 polyunsaturated fatty acids present in Western diets, may also favor obesity by preventing the “browning” process to take place.
Collapse
Affiliation(s)
- Didier F Pisani
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Rayane A Ghandour
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Guillaume E Beranger
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Pauline Le Faouder
- Lipidomic Core Facility, Metatoul Platform, France ; INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France ; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Jean-Claude Chambard
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Maude Giroud
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Alexandros Vegiopoulos
- Joint Division Molecular Metabolic Control, Alliance and Network Aging Research, German Cancer Research Center (DKFZ), Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Mansour Djedaini
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Justine Bertrand-Michel
- Lipidomic Core Facility, Metatoul Platform, France ; INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France ; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Michel Tauc
- Univ. Nice Sophia Antipolis, LP2M, UMR 7370, 06100 Nice, France ; UMR 7370, CNRS-LP2M, 06100 Nice, France
| | - Stephan Herzig
- Joint Division Molecular Metabolic Control, Alliance and Network Aging Research, German Cancer Research Center (DKFZ), Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Dominique Langin
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France ; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France ; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Gérard Ailhaud
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Christophe Duranton
- Univ. Nice Sophia Antipolis, LP2M, UMR 7370, 06100 Nice, France ; UMR 7370, CNRS-LP2M, 06100 Nice, France
| | - Ez-Zoubir Amri
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| |
Collapse
|
187
|
Le MQ, Kim MS, Song YS, Noh WN, Chun SC, Yoon DY. The Water-Extracted Ampelopsis brevipedunculata Downregulates IL-1β, CCL5, and COX-2 Expression via Inhibition of PKC-Mediated JNK/NF-κB Signaling Pathways in Human Monocytic Cells. J Pharmacol Sci 2014; 126:359-69. [DOI: 10.1254/jphs.14168fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|