151
|
Morphofunctional properties of a differentiated Caco2/HT-29 co-culture as an in vitro model of human intestinal epithelium. Biosci Rep 2018. [PMID: 29540534 PMCID: PMC5920134 DOI: 10.1042/bsr20171497] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An intestinal 70/30 Caco2/HT-29 co-culture was set up starting from the parental populations of differentiated cells to mimic the human intestinal epithelium. Co-culture was harvested at confluence 0 (T0) and at 3, 6, 10, and 14 days post confluence after plating (T3, T6, T10, and T14, respectively) for morphological and functional analysis. Transmission electron microscopy revealed different features from T0 to T14: microvilli and a complete junctional apparatus from T6, mucus granules from T3, as also confirmed by PAS/Alcian Blue staining. The specific activity of alkaline phosphatase (ALP), aminopeptidase N (APN), and dipeptidyl peptidase IV (DPPIV) progressively increased after T0, indicating the acquirement of a differentiated and digestive phenotype. Transepithelial electrical resistance (TEER), indicative of the barrier properties of the monolayer, increased from T0 up to T6 reaching values very similar to the human small intestine. The apparent permeability coefficient for Lucifer Yellow (LY), along with morphological analysis, reveals a good status of the tight junctions. At T14, HT-29 cells reduced to 18.4% and formed domes, indicative of transepithelial transport of nutrients. This Caco2/HT-29 co-culture could be considered a versatile and suitable in vitro model of human intestinal epithelium for the presence of more than one prevalent intestinal cell type, by means of a minimum of 6 to a maximum of 14 post-confluence days obtained without the need of particular inducers of subclones and growth support to reach an intestinal differentiated phenotype.
Collapse
|
152
|
Lee CQE, Turco MY, Gardner L, Simons BD, Hemberger M, Moffett A. Integrin α2 marks a niche of trophoblast progenitor cells in first trimester human placenta. Development 2018. [PMID: 29540503 PMCID: PMC6124543 DOI: 10.1242/dev.162305] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During pregnancy the trophoblast cells of the placenta are the only fetal cells in direct contact with maternal blood and decidua. Their functions include transport of nutrients and oxygen, secretion of pregnancy hormones, remodelling of the uterine arteries, and communicating with maternal cells. Despite the importance of trophoblast cells in placental development and successful pregnancy, little is known about the identity, location and differentiation of human trophoblast progenitors. We identify a proliferative trophoblast niche at the base of the cytotrophoblast cell columns in first trimester placentas that is characterised by integrin α2 (ITGA2) expression. Pulse-chase experiments with 5-iodo-2′-deoxyuridine indicate that these cells might contribute to both villous (VCT) and extravillous (EVT) lineages. These proliferating trophoblast cells can be isolated by flow cytometry using ITGA2 as a marker and express genes from both VCT and EVT. Microarray expression analysis shows that ITAG2+ cells display a unique transcriptional signature, including genes involved in NOTCH signalling, and exhibit a combination of epithelial and mesenchymal characteristics. ITGA2 thus marks a niche allowing the study of pure populations of trophoblast progenitor cells. Summary: ITGA2 marks a proliferative trophoblast progenitor compartment in first trimester human placenta that appears to be regulated by NOTCH signalling and exhibits a unique combination of epithelial and mesenchymal expression characteristics.
Collapse
Affiliation(s)
- Cheryl Q E Lee
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK
| | - Margherita Y Turco
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK
| | - Lucy Gardner
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Myriam Hemberger
- Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK.,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ashley Moffett
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK .,Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
153
|
Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, Seoane JA, Farshidfar F, Bowlby R, Islam M, Kim J, Chatila W, Akbani R, Kanchi RS, Rabkin CS, Willis JE, Wang KK, McCall SJ, Mishra L, Ojesina AI, Bullman S, Pedamallu CS, Lazar AJ, Sakai R, Thorsson V, Bass AJ, Laird PW. Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell 2018; 33:721-735.e8. [PMID: 29622466 PMCID: PMC5966039 DOI: 10.1016/j.ccell.2018.03.010] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
We analyzed 921 adenocarcinomas of the esophagus, stomach, colon, and rectum to examine shared and distinguishing molecular characteristics of gastrointestinal tract adenocarcinomas (GIACs). Hypermutated tumors were distinct regardless of cancer type and comprised those enriched for insertions/deletions, representing microsatellite instability cases with epigenetic silencing of MLH1 in the context of CpG island methylator phenotype, plus tumors with elevated single-nucleotide variants associated with mutations in POLE. Tumors with chromosomal instability were diverse, with gastroesophageal adenocarcinomas harboring fragmented genomes associated with genomic doubling and distinct mutational signatures. We identified a group of tumors in the colon and rectum lacking hypermutation and aneuploidy termed genome stable and enriched in DNA hypermethylation and mutations in KRAS, SOX9, and PCBP1.
Collapse
Affiliation(s)
- Yang Liu
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nilay S Sethi
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Toshinori Hinoue
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Barbara G Schneider
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew D Cherniack
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Francisco Sanchez-Vega
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jose A Seoane
- Department of Medicine, and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Farshad Farshidfar
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgarry, Canada
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Mirazul Islam
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jaegil Kim
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Walid Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rupa S Kanchi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles S Rabkin
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joseph E Willis
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kenneth K Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Lopa Mishra
- Center for Translational Research, Department of Surgery, George Washington University Cancer Center, Washington, DC 20052, USA
| | - Akinyemi I Ojesina
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ryo Sakai
- PharmiWeb Solutions, Bracknell RG12 1QB, UK
| | | | - Adam J Bass
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
154
|
Garcia MA, Nelson WJ, Chavez N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol 2018; 10:a029181. [PMID: 28600395 PMCID: PMC5773398 DOI: 10.1101/cshperspect.a029181] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, California 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, California 94305
- Departments of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
155
|
Pan X, Gong D, Gao F, Sangild PT. Diet-dependent changes in the intestinal DNA methylome after introduction of enteral feeding in preterm pigs. Epigenomics 2018; 10:395-408. [PMID: 29587528 DOI: 10.2217/epi-2017-0122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM To examine how enteral feeding affects the intestinal epigenome and gene expression just after preterm birth. MATERIALS & METHODS Intestinal tissue from preterm pigs, modeling preterm infants, was collected at birth and 5 days after gradual introduction of infant formula or bovine colostrum. The intestinal tissue was analyzed by reduced representation bisulfite sequencing and real-time qPCR. RESULTS Relative to colostrum, formula increased bacterial epithelial adherence and lipopolysaccharide binding protein (LBP) expression, which was regulated by promoter methylation. Diet-dependent changes in DNA methylation and/or mRNA expression were related to innate immune response, hypoxia, angiogenesis and epithelial-mesenchymal transition pathways (e.g., TTC38, IL8, C3, HIF1A and VEGFR1). CONCLUSION Epigenetic changes may mediate important effects of the first feeding on intestinal development in preterm neonates.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Denmark
| | - Desheng Gong
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Denmark
| |
Collapse
|
156
|
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018; 435:97-108. [PMID: 29339095 PMCID: PMC6615902 DOI: 10.1016/j.ydbio.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.
Collapse
Affiliation(s)
- Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
157
|
De Gregorio V, Imparato G, Urciuolo F, Netti PA. 3D stromal tissue equivalent affects intestinal epithelium morphogenesis in vitro. Biotechnol Bioeng 2018; 115:1062-1075. [DOI: 10.1002/bit.26522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Vincenza De Gregorio
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaplesItaly
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaplesItaly
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaplesItaly
| | - Paolo A. Netti
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaplesItaly
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of NaplesNaplesItaly
- Department of Chemical Materials and Industrial Production (DICMAPI)University of NaplesNaplesItaly
| |
Collapse
|
158
|
|
159
|
Frau C, Godart M, Plateroti M. Thyroid hormone regulation of intestinal epithelial stem cell biology. Mol Cell Endocrinol 2017; 459:90-97. [PMID: 28288904 DOI: 10.1016/j.mce.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/08/2023]
Abstract
The gastrointestinal tract is a well-characterized target of thyroid hormones and thyroid hormone nuclear receptors TRs, as extensively described in the literature. The paradigm is its important remodelling in amphibians during thyroid hormone-dependent metamorphosis. Interestingly, several studies have described the conservation of this hormonal signal during intestinal development in mammals. Additional data suggested that it may also play a role in intestinal homeostasis, stem cell physiology and progenitor commitment as well as in tumour development. It is worth underlining that in the mammalian intestine the functionality of the TRα1 receptor is coordinated and integrated with other signalling pathways, such as Wnt and Notch, specifically at the level of stem/progenitor cell populations. Here, we summarize these data and concepts and discuss this new role for thyroid hormones and the TRα1 receptor in the biology of intestinal epithelial precursor cells.
Collapse
Affiliation(s)
- Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de La Recherche, 69000 Lyon, France
| | - Matthias Godart
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de La Recherche, 69000 Lyon, France
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de La Recherche, 69000 Lyon, France.
| |
Collapse
|
160
|
Wong MKS, Tsukada T, Ogawa N, Pipil S, Ozaki H, Suzuki Y, Iwasaki W, Takei Y. A sodium binding system alleviates acute salt stress during seawater acclimation in eels. ZOOLOGICAL LETTERS 2017; 3:22. [PMID: 29255617 PMCID: PMC5727781 DOI: 10.1186/s40851-017-0081-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 10/11/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Teleosts transiting from freshwater (FW) to seawater (SW) environments face an immediate osmotic stress from ion influxes and water loss, but some euryhaline species such as eels can maintain a stable plasma osmolality during early SW exposure. The time course changes in the gene expression, protein abundance, and localization of key ion transporters suggested that the reversal of the ion transport systems was gradual, and we investigate how eels utilize a Na-binding strategy to slow down the ion invasion and complement the transporter-mediated osmoregulation. RESULTS Using an electron probe micro-analyzer, we localized bound Na in various eel tissues in response to SW transfer, suggesting that the Na-binding molecules were produced to sequester excess ionic Na+ to negate its osmotic potential, thus preventing acute cellular dehydration. Mucus cells were acutely activated in digestive tract, gill, and skin after SW transfer, producing Na-binding molecule-containing mucus layers that fence off high osmolality of SW. Using gel filtration HPLC, some molecules at 18 kDa were found to bind Na in the luminal secretion of esophagus and intestine, and higher binding was associated with SW transfer. Transcriptome and protein interaction results indicated that downregulation of Notch and β-catenin pathways, and dynamic changes in TGFβ pathways in intestine were involved during early SW transition, supporting the observed histological changes on epithelial desquamation and increased mucus production. CONCLUSIONS The timing for the activation of the Na-binding mechanism to alleviate the adverse osmotic gradient was temporally complementary to the subsequent remodeling of branchial ionocytes and transporting epithelia of the digestive tract. The strategy to manipulate the osmotic potential of Na+ by specific binding molecules is similar to the osmotically inactive Na described in human skin and muscle. The Na-binding molecules provide a buffer to tolerate the salinity changes, which is advantageous to the estuary and migrating fishes. Our data pave the way to identify this unknown class of molecules and open a new area of vertebrate osmoregulation research.
Collapse
Affiliation(s)
- Marty Kwok Shing Wong
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa City, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, Funabashi City, Japan
| | - Nobuhiro Ogawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa City, Japan
| | - Supriya Pipil
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa City, Japan
| | - Haruka Ozaki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Japan
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako City, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Japan
| | - Wataru Iwasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa City, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa City, Japan
| |
Collapse
|
161
|
Lennicke C, Rahn J, Wickenhauser C, Lichtenfels R, Müller AS, Wessjohann LA, Kipp AP, Seliger B. Loss of epithelium-specific GPx2 results in aberrant cell fate decisions during intestinal differentiation. Oncotarget 2017; 9:539-552. [PMID: 29416634 PMCID: PMC5787487 DOI: 10.18632/oncotarget.22640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023] Open
Abstract
The selenoprotein glutathione peroxidase 2 (GPx2) is expressed in the epithelium of the gastrointestinal tract, where it is thought to be involved in maintaining mucosal homeostasis. To gain novel insights into the role of GPx2, proteomic profiles of colonic tissues either derived from wild type (WT) or GPx2 knockout (KO) mice, maintained under selenium (Se) deficiency or adequate Se supplementation conditions were established and analyzed. Amongst the panel of differentially expressed proteins, the calcium-activated chloride channel regulator 1 (CLCA1) was significantly down-regulated in GPx2 KO versus WT mice regardless of the given Se status. Moreover, transcript levels of the isoforms CLCA2 and CLCA3 showed a similar expression pattern. In the intestine, CLCA1 is usually restricted to mucin-producing goblet cells. However, although -SeKO mice had the highest numbers of goblet cells as confirmed by significantly enhanced mRNA expression levels of the goblet cell marker mucin-2, the observed expression pattern suggests that GPx2 KO goblet cells might be limited in synthesizing CLCA1. Furthermore, transcript levels of differentiation markers such as chromogranin-1 (Chga) for enteroendocrine cells and leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) for stem cells were also downregulated in GPx2 KO mice. Moreover, this was accompanied by a downregulation of the mRNA expression levels of the intestinal hormones glucagon-like peptide 1 (Glp1), ghrelin (Ghrl) and somatostatin (Sst). Thus, it seems that GPx2 might be important for the modulation of cell fate decisions in the murine intestinal epithelium.
Collapse
Affiliation(s)
- Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Jette Rahn
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | | | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Anna P Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
162
|
Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J, Roland JT, Franklin JL, Liu Q, Gerdes MJ, Coffey RJ, Lau KS. Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. Cell Syst 2017; 6:37-51.e9. [PMID: 29153838 DOI: 10.1016/j.cels.2017.10.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/17/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Abstract
Modern single-cell technologies allow multiplexed sampling of cellular states within a tissue. However, computational tools that can infer developmental cell-state transitions reproducibly from such single-cell data are lacking. Here, we introduce p-Creode, an unsupervised algorithm that produces multi-branching graphs from single-cell data, compares graphs with differing topologies, and infers a statistically robust hierarchy of cell-state transitions that define developmental trajectories. We have applied p-Creode to mass cytometry, multiplex immunofluorescence, and single-cell RNA-seq data. As a test case, we validate cell-state-transition trajectories predicted by p-Creode for intestinal tuft cells, a rare, chemosensory cell type. We clarify that tuft cells are specified outside of the Atoh1-dependent secretory lineage in the small intestine. However, p-Creode also predicts, and we confirm, that tuft cells arise from an alternative, Atoh1-driven developmental program in the colon. These studies introduce p-Creode as a reliable method for analyzing large datasets that depict branching transition trajectories.
Collapse
Affiliation(s)
- Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, 2213 Garland Avenue, 10475 MRB IV, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Epithelial Biology Center, Vanderbilt University Medical Center, 2213 Garland Avenue, 10475 MRB IV, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, 2213 Garland Avenue, 10475 MRB IV, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, 2213 Garland Avenue, 10475 MRB IV, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jie Ping
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, 2213 Garland Avenue, 10475 MRB IV, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Epithelial Biology Center, Vanderbilt University Medical Center, 2213 Garland Avenue, 10475 MRB IV, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael J Gerdes
- Life Sciences Division, GE Global Research, Niskayuna, NY 12309, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, 2213 Garland Avenue, 10475 MRB IV, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, 2213 Garland Avenue, 10475 MRB IV, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
163
|
Middelhoff M, Westphalen CB, Hayakawa Y, Yan KS, Gershon MD, Wang TC, Quante M. Dclk1-expressing tuft cells: critical modulators of the intestinal niche? Am J Physiol Gastrointest Liver Physiol 2017; 313:G285-G299. [PMID: 28684459 PMCID: PMC5668570 DOI: 10.1152/ajpgi.00073.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 01/31/2023]
Abstract
Dclk1-expressing tuft cells constitute a unique intestinal epithelial lineage that is distinct from enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. Tuft cells express taste-related receptors and distinct transcription factors and interact closely with the enteric nervous system, suggesting a chemosensory cell lineage. In addition, recent work has shown that tuft cells interact closely with cells of the immune system, with a critical role in the cellular regulatory network governing responses to luminal parasites. Importantly, ablation of tuft cells severely impairs epithelial proliferation and tissue regeneration after injury, implicating tuft cells in the modulation of epithelial stem/progenitor function. Finally, tuft cells expand during chronic inflammation and in preneoplastic tissues, suggesting a possible early role in inflammation-associated tumorigenesis. Hence, we outline and discuss emerging evidence that strongly supports tuft cells as key regulatory cells in the complex network of the intestinal microenvironment.
Collapse
Affiliation(s)
- Moritz Middelhoff
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York; ,2II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany;
| | - C. Benedikt Westphalen
- 3Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany;
| | - Yoku Hayakawa
- 4Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan;
| | - Kelley S. Yan
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York; ,5Department of Genetics and Development, Columbia University Medical Center, New York, New York; and
| | - Michael D. Gershon
- 6Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Timothy C. Wang
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York;
| | - Michael Quante
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany;
| |
Collapse
|
164
|
Abstract
Recently, several lines of evidence that indicate a strong link between the development of colorectal cancer (CRC) and aspects of the gut microbiota have become apparent. However, it remains unclear how changes in the gut microbiota might influence carcinogenesis or how regional organization of the gut might influence the microbiota. In this review, we discuss several leading theories that connect gut microbial dysbiosis with CRC and set this against a backdrop of what is known about proximal-distal gut physiology and the pathways of CRC development and progression. Finally, we discuss the potential for gut microbial modulation therapies, for example, probiotics, antibiotics, and others, to target and improve gut microbial dysbiosis as a strategy for the prevention or treatment of CRC.
Collapse
|
165
|
Melvin RG, Ballard JWO. Cellular and population level processes influence the rate, accumulation and observed frequency of inherited and somatic mtDNA mutations. Mutagenesis 2017; 32:323-334. [PMID: 28521046 DOI: 10.1093/mutage/gex004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are found in all animals and have the unique feature of containing multiple copies of their own small, circular DNA genome (mtDNA). The rate and pattern of mutation accumulation in the mtDNA are influenced by molecular, cellular and population level processes. We distinguish between inherited and somatic mtDNA mutations and review evidence for the often-made assumption that mutations accumulate at a higher rate in mtDNA than in nuclear DNA (nDNA). We conclude that the whole genome mutation accumulation rate is higher for mtDNA than for nDNA but include the caveat that rates overlap considerably between the individual mtDNA- and nDNA-encoded genes. Next, we discuss the postulated causal mechanisms for the high rate of mtDNA mutation accumulation in both inheritance and in somatic cells. Perhaps unexpectedly, mtDNA is resilient to many mutagens of nDNA but is prone to errors of replication. We then consider the influence of maternal inheritance, recombination and selection on the observed accumulation pattern of inherited mtDNA mutations. Finally, we discuss environmental influences of temperature and diet on the observed frequency of inherited and somatic mtDNA mutations. We conclude that it is necessary to understand the cellular processes to fully interpret the pattern of mutations and how they influence our interpretations of evolution and disease.
Collapse
Affiliation(s)
- Richard G Melvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
166
|
Lickwar CR, Camp JG, Weiser M, Cocchiaro JL, Kingsley DM, Furey TS, Sheikh SZ, Rawls JF. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells. PLoS Biol 2017; 15:e2002054. [PMID: 28850571 PMCID: PMC5574553 DOI: 10.1371/journal.pbio.2002054] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology. The epithelium lining the intestine is an ancient animal tissue that serves as a primary site of nutrient absorption and interaction with microbiota. Its formation and function require complex patterns of gene transcription that vary along the intestine and in specialized intestinal epithelial cell (IEC) subtypes. However, it is unknown how the underlying transcriptional regulatory mechanisms have changed over the course of vertebrate evolution. Here, we used genome-wide profiling of mRNA levels and chromatin accessibility to identify conserved IEC genes and regulatory regions in 4 vertebrate species (zebrafish, stickleback, mouse, and human) separated from a common ancestor by 420 million years. We identified substantial similarities in genes expressed along the vertebrate intestine. These data disclosed putative conserved transcription factor binding sites (TFBS) enriched in accessible chromatin near IEC genes and in regulatory sites with accessibility restricted to IECs. Fluorescent reporter assays in transparent zebrafish showed that these regions, which frequently lacked sequence conservation, were still capable of driving conserved expression patterns. We also found a highly conserved region near mammalian and fish hes1 sufficient to drive expression in a specific population of IECs with active Notch signaling. These results establish a platform to define the conserved transcriptional networks underlying vertebrate IEC physiology.
Collapse
Affiliation(s)
- Colin R. Lickwar
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Gray Camp
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Matthew Weiser
- Departments of Genetics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jordan L. Cocchiaro
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Kingsley
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Terrence S. Furey
- Departments of Genetics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shehzad Z. Sheikh
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
167
|
Deregulation of transcription factors controlling intestinal epithelial cell differentiation; a predisposing factor for reduced enteroendocrine cell number in morbidly obese individuals. Sci Rep 2017; 7:8174. [PMID: 28811552 PMCID: PMC5557953 DOI: 10.1038/s41598-017-08487-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Morbidly obese patients exhibit impaired secretion of gut hormones that may contribute to the development of obesity. After bariatric surgery there is a dramatic increase in gut hormone release. In this study, gastric and duodenal tissues were endoscopically collected from lean, and morbidly obese subjects before and 3 months after laparoscopic sleeve gastrectomy (LSG). Tissue morphology, abundance of chromogranin A, gut hormones, α-defensin, mucin 2, Na+/glucose co-transporter 1 (SGLT1) and transcription factors, Hes1, HATH1, NeuroD1, and Ngn3, were determined. In obese patients, the total number of enteroendocrine cells (EEC) and EECs containing gut hormones were significantly reduced in the stomach and duodenum, compared to lean, and returned to normality post-LSG. No changes in villus height/crypt depth were observed. A significant increase in mucin 2 and SGLT1 expression was detected in the obese duodenum. Expression levels of transcription factors required for differentiation of absorptive and secretory cell lineages were altered. We propose that in obesity, there is deregulation in differentiation of intestinal epithelial cell lineages that may influence the levels of released gut hormones. Post-LSG cellular differentiation profile is restored. An understanding of molecular mechanisms controlling epithelial cell differentiation in the obese intestine assists in the development of non-invasive therapeutic strategies.
Collapse
|
168
|
Li J, Li R, Liu G, Lv C, Mi Y, Zhang C. Effect of melatonin on renewal of chicken small intestinal mucosa. Poult Sci 2017; 96:2942-2949. [DOI: 10.3382/ps/pex085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/20/2017] [Indexed: 12/27/2022] Open
|
169
|
Tsamandouras N, Chen WLK, Edington CD, Stokes CL, Griffith LG, Cirit M. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. AAPS JOURNAL 2017; 19:1499-1512. [PMID: 28752430 DOI: 10.1208/s12248-017-0122-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/08/2017] [Indexed: 01/05/2023]
Abstract
Investigation of the pharmacokinetics (PK) of a compound is of significant importance during the early stages of drug development, and therefore several in vitro systems are routinely employed for this purpose. However, the need for more physiologically realistic in vitro models has recently fueled the emerging field of tissue-engineered 3D cultures, also referred to as organs-on-chips, or microphysiological systems (MPSs). We have developed a novel fluidic platform that interconnects multiple MPSs, allowing PK studies in multi-organ in vitro systems along with the collection of high-content quantitative data. This platform was employed here to integrate a gut and a liver MPS together in continuous communication, and investigate simultaneously different PK processes taking place after oral drug administration in humans (e.g., intestinal permeability, hepatic metabolism). Measurement of tissue-specific phenotypic metrics indicated that gut and liver MPSs can be fluidically coupled with circulating common medium without compromising their functionality. The PK of diclofenac and hydrocortisone was investigated under different experimental perturbations, and results illustrate the robustness of this integrated system for quantitative PK studies. Mechanistic model-based analysis of the obtained data allowed the derivation of the intrinsic parameters (e.g., permeability, metabolic clearance) associated with the PK processes taking place in each MPS. Although these processes were not substantially affected by the gut-liver interaction, our results indicate that inter-MPS communication can have a modulating effect (hepatic metabolism upregulation). We envision that our integrative approach, which combines multi-cellular tissue models, multi-MPS platforms, and quantitative mechanistic modeling, will have broad applicability in pre-clinical drug development.
Collapse
Affiliation(s)
- Nikolaos Tsamandouras
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Wen Li Kelly Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Collin D Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | | | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
170
|
Chen WLK, Edington C, Suter E, Yu J, Velazquez JJ, Velazquez JG, Shockley M, Large EM, Venkataramanan R, Hughes DJ, Stokes CL, Trumper DL, Carrier RL, Cirit M, Griffith LG, Lauffenburger DA. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol Bioeng 2017; 114:2648-2659. [PMID: 28667746 PMCID: PMC5614865 DOI: 10.1002/bit.26370] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
Abstract
A capability for analyzing complex cellular communication among tissues is important in drug discovery and development, and in vitro technologies for doing so are required for human applications. A prominent instance is communication between the gut and the liver, whereby perturbations of one tissue can influence behavior of the other. Here, we present a study on human gut‐liver tissue interactions under normal and inflammatory contexts, via an integrative multi‐organ platform comprising human liver (hepatocytes and Kupffer cells), and intestinal (enterocytes, goblet cells, and dendritic cells) models. Our results demonstrated long‐term (>2 weeks) maintenance of intestinal (e.g., barrier integrity) and hepatic (e.g., albumin) functions in baseline interaction. Gene expression data comparing liver in interaction with gut, versus isolation, revealed modulation of bile acid metabolism. Intestinal FGF19 secretion and associated inhibition of hepatic CYP7A1 expression provided evidence of physiologically relevant gut‐liver crosstalk. Moreover, significant non‐linear modulation of cytokine responses was observed under inflammatory gut‐liver interaction; for example, production of CXCR3 ligands (CXCL9,10,11) was synergistically enhanced. RNA‐seq analysis revealed significant upregulation of IFNα/β/γ signaling during inflammatory gut‐liver crosstalk, with these pathways implicated in the synergistic CXCR3 chemokine production. Exacerbated inflammatory response in gut‐liver interaction also negatively affected tissue‐specific functions (e.g., liver metabolism). These findings illustrate how an integrated multi‐tissue platform can generate insights useful for understanding complex pathophysiological processes such as inflammatory organ crosstalk. Biotechnol. Bioeng. 2017;114: 2648–2659. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wen L K Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Collin Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Emily Suter
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Jiajie Yu
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Jeremy J Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Jason G Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Michael Shockley
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Emma M Large
- CN Bio Innovations, Welwyn Garden City, Hertfordshire, UK
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David J Hughes
- CN Bio Innovations, Welwyn Garden City, Hertfordshire, UK
| | | | - David L Trumper
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
171
|
Robinson SC, Klobucar K, Pierre CC, Ansari A, Zhenilo S, Prokhortchouk E, Daniel JM. Kaiso differentially regulates components of the Notch signaling pathway in intestinal cells. Cell Commun Signal 2017. [PMID: 28637464 PMCID: PMC5480165 DOI: 10.1186/s12964-017-0178-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background In mammalian intestines, Notch signaling plays a critical role in mediating cell fate decisions; it promotes the absorptive (or enterocyte) cell fate, while concomitantly inhibiting the secretory cell fate (i.e. goblet, Paneth and enteroendocrine cells). We recently reported that intestinal-specific Kaiso overexpressing mice (KaisoTg) exhibited chronic intestinal inflammation and had increased numbers of all three secretory cell types, hinting that Kaiso might regulate Notch signaling in the gut. However, Kaiso’s precise role in Notch signaling and whether the KaisoTg secretory cell fate phenotype was linked to Kaiso-induced inflammation had yet to be elucidated. Methods Intestines from 3-month old Non-transgenic and KaisoTg mice were “Swiss” rolled and analysed for the expression of Notch1, Dll-1, Jagged-1, and secretory cell markers by immunohistochemistry and immunofluorescence. To evaluate inflammation, morphological analyses and myeloperoxidase assays were performed on intestines from 3-month old KaisoTg and control mice. Notch1, Dll-1 and Jagged-1 expression were also assessed in stable Kaiso-depleted colon cancer cells and isolated intestinal epithelial cells using real time PCR and western blotting. To assess Kaiso binding to the DLL1, JAG1 and NOTCH1 promoter regions, chromatin immunoprecipitation was performed on three colon cancer cell lines. Results Here we demonstrate that Kaiso promotes secretory cell hyperplasia independently of Kaiso-induced inflammation. Moreover, Kaiso regulates several components of the Notch signaling pathway in intestinal cells, namely, Dll-1, Jagged-1 and Notch1. Notably, we found that in KaisoTg mice intestines, Notch1 and Dll-1 expression are significantly reduced while Jagged-1 expression is increased. Chromatin immunoprecipitation experiments revealed that Kaiso associates with the DLL1 and JAG1 promoter regions in a methylation-dependent manner in colon carcinoma cell lines, suggesting that these Notch ligands are putative Kaiso target genes. Conclusion Here, we provide evidence that Kaiso’s effects on intestinal secretory cell fates precede the development of intestinal inflammation in KaisoTg mice. We also demonstrate that Kaiso inhibits the expression of Dll-1, which likely contributes to the secretory cell phenotype observed in our transgenic mice. In contrast, Kaiso promotes Jagged-1 expression, which may have implications in Notch-mediated colon cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0178-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaiya C Robinson
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada
| | - Kristina Klobucar
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada.,Current address: Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8N 3Z5, ON, Canada
| | - Christina C Pierre
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada.,Current address: Department of Life Science, University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| | - Amna Ansari
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada
| | - Svetlana Zhenilo
- Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation, 117312
| | - Egor Prokhortchouk
- Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation, 117312
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada.
| |
Collapse
|
172
|
Mend Your Fences: The Epithelial Barrier and its Relationship With Mucosal Immunity in Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2017; 4:33-46. [PMID: 28560287 PMCID: PMC5439240 DOI: 10.1016/j.jcmgh.2017.03.007] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium can be easily disrupted during gut inflammation as seen in inflammatory bowel disease (IBD), such as ulcerative colitis or Crohn's disease. For a long time, research into the pathophysiology of IBD has been focused on immune cell-mediated mechanisms. Recent evidence, however, suggests that the intestinal epithelium might play a major role in the development and perpetuation of IBD. It is now clear that IBD can be triggered by disturbances in epithelial barrier integrity via dysfunctions in intestinal epithelial cell-intrinsic molecular circuits that control the homeostasis, renewal, and repair of intestinal epithelial cells. The intestinal epithelium in the healthy individual represents a semi-permeable physical barrier shielding the interior of the body from invasions of pathogens on the one hand and allowing selective passage of nutrients on the other hand. However, the intestinal epithelium must be considered much more than a simple physical barrier. Instead, the epithelium is a highly dynamic tissue that responds to a plenitude of signals including the intestinal microbiota and signals from the immune system. This epithelial response to these signals regulates barrier function, the composition of the microbiota, and mucosal immune homeostasis within the lamina propria. The epithelium can thus be regarded as a translator between the microbiota and the immune system and aberrant signal transduction between the epithelium and adjacent immune cells might promote immune dysregulation in IBD. This review summarizes the important cellular and molecular barrier components of the intestinal epithelium and emphasizes the mechanisms leading to barrier dysfunction during intestinal inflammation.
Collapse
Key Words
- BMP, bone morphogenic protein
- CD, Crohn's disease
- Fz, frizzled
- HD, humans α-defensin
- IBD, inflammatory bowel disease
- IECs, intestinal epithelial cells
- IL, interleukin
- Immune-Epithelial Crosstalk
- Intestinal Epithelial Barrier
- Intestinal Inflammation
- JAMs, junctional adhesion molecules
- Lgr5, leucine rich repeat containing G-protein coupled receptor 5
- MARVEL, myelin and lymphocyte and related proteins for vesicle trafficking and membrane link
- MLCK, myosin light chain kinase
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOD-2, nucleotide-binding oligomerization domain-containing protein 2
- STAT, signal transducer and activator of transcription
- TAMP, tight junction–associated MARVEL protein
- TJ, tight junction
- TNF, tumor necrosis factor
- TSLP, thymic stromal lymphopoietin
- UC, ulcerative colitis
Collapse
|
173
|
Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol 2017; 66:81-93. [PMID: 28161556 DOI: 10.1016/j.semcdb.2017.01.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
The intestine is a vital organ responsible for nutrient absorption, bile and waste excretion, and a major site of host immunity. In order to keep up with daily demands, the intestine has evolved a mechanism to expand the absorptive surface area by undergoing a morphogenetic process to generate finger-like units called villi. These villi house specialized cell types critical for both absorbing nutrients from food, and for protecting the host from commensal and pathogenic microbes present in the adult gut. In this review, we will discuss mechanisms that coordinate intestinal development, growth, and maturation of the small intestine, starting from the formation of the early gut tube, through villus morphogenesis and into early postnatal life when the intestine must adapt to the acquisition of nutrients through food intake, and to interactions with microbes.
Collapse
Affiliation(s)
- Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Megan Aurora
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
174
|
Kurashima Y, Kiyono H. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing. Annu Rev Immunol 2017; 35:119-147. [PMID: 28125357 DOI: 10.1146/annurev-immunol-051116-052424] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.
Collapse
Affiliation(s)
- Yosuke Kurashima
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; .,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Institute for Global Prominent Research, Chiba University, Chiba 260-8670, Japan.,Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccine, La Jolla, CA 92093
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; .,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccine, La Jolla, CA 92093.,Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
175
|
Gomes JR, Ayub LC, dos Reis CA, Machado MJ, da Silva J, Omar NF, de Miranda Soares MA. Goblet cells and intestinal Alkaline phosphatase expression (IAP) during the development of the rat small intestine. Acta Histochem 2017; 119:71-77. [PMID: 27939968 DOI: 10.1016/j.acthis.2016.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023]
Abstract
This study aimed to evaluate the temporal and spacial distribution of the mucins produced by goblet cells and intestinal alkaline phosphatase (IAP) expression during the development of the small intestine of the rat. Intestines were removed from rats on the 15th, 17th and 18th days of intratuterine life (i.u.) and on the 3rd, 10th, 17th and 25th days after birth (a.b.). Intestines were processed for routine histological procedures and sections were submitted to histochemistry using PAS to stain neutral glycoproteins and Alcian blue for acidic glycoproteins, as well as immunohistochemistry to detect IAP. In rats, glycoprotein production was seen to begin in the intestinal epithelium cell at around the 17th day of i.u. life; however, this production was not accompanied by morphological indications of the presence of goblet cells. By the 18th i.u. day, the villus epithelium was undergoing differentiation and the first goblet cells could be identified from this time. At around the 10th day a.b., both compartments of the small intestine were detected; i.e. the villi and the crypts. At this timepoint, goblet cells were present in the villi, and also in the upper regions of the crypts. On the 3rd, 10th 17th and 25th days a.b., the presence of the goblet cells increased and presented regional differences in the sections evaluated. IAP was not detected during i.u. life, but was weakly detected in the cells of the villi from the 3rd day a.b., along the entire extension of the villi. On the 10th day, IAP was detected at the tip of the villi, while on the 25th day, it was detected along the extension of the villi, but with a weaker intensity. In conclusion, a temporal and spacial distribution of goblet cells and IAP activity occurs during the development of the small intestine, suggesting a possible regulatory control in accordance with the suckling and weaning phases of food intake in the rat's life.
Collapse
|
176
|
Abstract
Although largely deprived from exogenous stimuli in utero, the mucosal barriers of the neonate after birth are bombarded by environmental, nutritional, and microbial exposures. The microbiome is established concurrently with the developing immune system. The nature and timing of discrete interactions between these two factors underpins the long-term immune characteristics of these organs, and can set an individual on a trajectory towards or away from disease. Microbial exposures in the gastrointestinal and respiratory tracts are some of the key determinants of the overall immune tone at these mucosal barriers and represent a leading target for future intervention strategies. In this review, we discuss immune maturation in the gut and lung and how microbes have a central role in this process.
Collapse
|
177
|
Abstract
The utilization of human pluripotent stem cells (hPSCs) offers new avenues in the generation of organs and opportunities to understand development and diseases. The hPSC-derived human intestinal organoids (HIOs) provide a new tool to gain insights in small intestinal development, physiology, and associated diseases. Herein, we provide a method for orthotropic transplantation of HIOs in immunocompromised mice. This method highlights the specific steps to successful engraftment and provides insight into the study of bioengineered human small intestine.
Collapse
Affiliation(s)
- Maxime M Mahe
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Nicole E Brown
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Holly M Poling
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
178
|
A Novel Role of Spred2 in the Colonic Epithelial Cell Homeostasis and Inflammation. Sci Rep 2016; 6:37531. [PMID: 27869219 PMCID: PMC5116627 DOI: 10.1038/srep37531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
Rapid and adequate mucosal healing is important for a remission of ulcerative colitis (UC) patients. Here, we examined whether Spred2, a member of the Sprouty-related EVH1-domain-containing proteins that inhibit the Ras/Raf/ERK pathway, plays a role in colonic mucosal homeostasis and inflammation by using Spred2 knockout (KO) mice. We first detected increased epithelial cell proliferation and cadherin 1 expression in the colon of naïve Spred2 KO mice compared to wild-type mice. Interestingly, Spred2 KO mice were resistant to dextran sulfate sodium (DSS)-induced acute colitis as indicated by lower levels of body weight loss and disease activity index. Histologically, epithelial cell injury and inflammation were milder in the colonic mucosa of Spred2 KO mice on day 3 and almost undetectable by day 8. Experiments with bone chimeric mice indicated that Spred2-deficiency in non-hematopoietic cells was responsible for the reduced sensitivity to DSS. Finally, Spred2 KO mice developed significantly fewer tumors in response to azoxymethane plus DSS. Taken together, our results demonstrate, for the first time, that Spred2 plays an important role in the regulation of colonic epithelial cell proliferation and inflammation by potentially down-regulating the activation of ERK. Thus, Spred2 may be a new therapeutic target for the treatment of UC.
Collapse
|
179
|
Intestinal, Systemic, and Oral Gluten-related Alterations in Patients With Nonceliac Gluten Sensitivity. J Clin Gastroenterol 2016; 50:849-858. [PMID: 26974761 DOI: 10.1097/mcg.0000000000000515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nonceliac gluten sensitivity (NCGS) is an emergent condition, the framework of which is yet unclear, whereas the diagnosis is suggested only by gluten-dependent symptoms after excluding wheat allergy and celiac disease (CD). Our goal was to highlight intestinal, systemic, and oral alterations to clarify the NCGS pathogenesis and identify new diagnostic tools. STUDY A total of 60 NCGS patients, 20 untreated CD, 20 treated CD, and 20 healthy volunteers were recruited. The differential diagnosis among gluten-related disorders was performed by serological, allergy, and histologic tools. NCGS patients were also subjected to antigliadin antibody (AGA) detection and HLA typing. All participants underwent an oral mucosa patch test for gluten (GOMPT), whereas an oral provocation test (OPT) for gluten was performed in 26 NCGS patients. RESULTS About 6/60 (10%) NCGS patients showed IgG AGA-positive results, whereas 45/60 (75%) patients carried HLA-DQ2 and/or HLA-DQ8 genes. GOMPT showed positive results in 45/60 (75%) NCGS patients, 3/20 (15%) untreated CD patients, 5/20 (25%) treated CD patients, and in no healthy volunteers. No significant difference was found between the severity of symptoms reported by NCGS patients subjected to OPT with gluten-containing croissants and those who underwent OPT with gluten-free croissants. CONCLUSIONS GOMPT seems to be a specific tool for NCGS diagnosis, although further investigations are needed to overcome limits due to the small population studied and to contextualize GOMPT false-positive results.
Collapse
|
180
|
DeSesso JM. Vascular ontogeny within selected thoracoabdominal organs and the limbs. Reprod Toxicol 2016; 70:3-20. [PMID: 27810254 DOI: 10.1016/j.reprotox.2016.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 01/03/2023]
Abstract
The cardiovascular system is fundamental to life. Its vessels are the conduits for delivery of nutrients and oxygen to organs and the removal of wastes. During embryonic development, the vascular system is instrumental in the formation of organs. It contributes to the form and pattern of organs as diverse as the limbs and the gonads. Recent advances in molecular biology and genomics have afforded great insight to the control of vascular development at subcellular levels of organization. Nevertheless, there is little assembled information concerning the vascular development of the organ systems of the body. This paper begins by reviewing the modes of formation of embryonic blood vessels. This is followed by summaries of the ontogeny of the vasculature that supplies selected major thoracic and abdominal organs (heart, gut, liver, gonads, and kidney). The paper concludes with a description of the arterial development of the upper and lower extremities.
Collapse
Affiliation(s)
- John M DeSesso
- Exponent, Inc., Alexandria, VA, United States; Georgetown University School of Medicine Washington, District of Columbia, United States.
| |
Collapse
|
181
|
Miyoshi H, VanDussen KL, Malvin NP, Ryu SH, Wang Y, Sonnek NM, Lai CW, Stappenbeck TS. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J 2016; 36:5-24. [PMID: 27797821 DOI: 10.15252/embj.201694660] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022] Open
Abstract
Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound-associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE2) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β-catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE2-Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE2 and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury.
Collapse
Affiliation(s)
- Hiroyuki Miyoshi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole P Malvin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stacy H Ryu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yi Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi M Sonnek
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chin-Wen Lai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
182
|
Kumar N, Srivillibhuthur M, Joshi S, Walton KD, Zhou A, Faller WJ, Perekatt AO, Sansom OJ, Gumucio DL, Xing J, Bonder EM, Gao N, White E, Verzi MP. A YY1-dependent increase in aerobic metabolism is indispensable for intestinal organogenesis. Development 2016; 143:3711-3722. [PMID: 27802136 PMCID: PMC5087649 DOI: 10.1242/dev.137992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/25/2016] [Indexed: 12/28/2022]
Abstract
During late gestation, villi extend into the intestinal lumen to dramatically increase the surface area of the intestinal epithelium, preparing the gut for the neonatal diet. Incomplete development of the intestine is the most common gastrointestinal complication in neonates, but the causes are unclear. We provide evidence in mice that Yin Yang 1 (Yy1) is crucial for intestinal villus development. YY1 loss in the developing endoderm had no apparent consequences until late gestation, after which the intestine differentiated poorly and exhibited severely stunted villi. Transcriptome analysis revealed that YY1 is required for mitochondrial gene expression, and ultrastructural analysis confirmed compromised mitochondrial integrity in the mutant intestine. We found increased oxidative phosphorylation gene expression at the onset of villus elongation, suggesting that aerobic respiration might function as a regulator of villus growth. Mitochondrial inhibitors blocked villus growth in a fashion similar to Yy1 loss, thus further linking oxidative phosphorylation with late-gestation intestinal development. Interestingly, we find that necrotizing enterocolitis patients also exhibit decreased expression of oxidative phosphorylation genes. Our study highlights the still unappreciated role of metabolic regulation during organogenesis, and suggests that it might contribute to neonatal gastrointestinal disorders.
Collapse
Affiliation(s)
- Namit Kumar
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Manasa Srivillibhuthur
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Shilpy Joshi
- Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Katherine D Walton
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anbo Zhou
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | | | - Ansu O Perekatt
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Deborah L Gumucio
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jinchuan Xing
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Michael P Verzi
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| |
Collapse
|
183
|
Effects of spermine supplementation on the morphology, digestive enzyme activities, and antioxidant capacity of intestine in weaning rats. ACTA ACUST UNITED AC 2016; 2:370-375. [PMID: 29767070 PMCID: PMC5941048 DOI: 10.1016/j.aninu.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/31/2016] [Accepted: 09/18/2016] [Indexed: 12/27/2022]
Abstract
The main objective of this study was to investigate the effects of different doses of spermine and its extended supplementation on the morphology, digestive enzyme activities, and intestinal antioxidant capacity in weaning rats. Nineteen-day-old male rats received intragastric spermine at doses of 0.2 and 0.4 μmol/g BW for 3 or 7 d, whereas control rats received similar doses of saline. The results are as follows: 1) In the jejunum, the seven-day supplementation with both doses of spermine significantly increased crypt depth (P < 0.05) compared with the control group; the supplementation extension of the high spermine dose increased villus height and crypt depth (P < 0.05); in the ileum, the low spermine dose significantly increased villus height and crypt depth compared with the control group for 7 days (P < 0.05). 2) The 3-day supplementation with high spermine dose increased alkaline phosphatase activity in the jejunum (P < 0.05). 3) In the jejunum, the anti-hydroxyl radical (AHR), total superoxide dismutase (T-SOD), catalase (CAT), and total antioxidant capacity (T-AOC) activities were increased (P < 0.05); however, the malondialdehyde (MDA) content was reduced (P < 0.05) in groups supplemented with the high spermine dose relative to those in the control groups after 3 and 7 d; moreover, the anti-superoxide anion (ASA) and glutathione (GSH) contents increased with the high spermine dose that lasted for 3 days (P < 0.05). Furthermore, the T-SOD and CAT activities (after 3 and 7 d), ASA (after 3 d), and AHR (after 7 d) increased with the high spermine dose compared with those of the low spermine dose (P < 0.05). Extending the supplementation duration (7 d) of the high spermine dose decreased the MDA content and ASA and T-AOC activities (P < 0.05). These results suggested that spermine supplementation can modulate gut development and enhance the antioxidant status of the jejunum in weaning rats, and a dosage of 0.4 μmol spermine/g BW had better effects than the dosage of 0.2 μmol spermine/g BW on accelerating gut development and increasing antioxidant capacity.
Collapse
|
184
|
Lili LN, Farkas AE, Gerner-Smidt C, Overgaard CE, Moreno CS, Parkos CA, Capaldo CT, Nusrat A. Claudin-based barrier differentiation in the colonic epithelial crypt niche involves Hopx/Klf4 and Tcf7l2/Hnf4-α cascades. Tissue Barriers 2016; 4:e1214038. [PMID: 27583195 DOI: 10.1080/21688370.2016.1214038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022] Open
Abstract
Colonic enterocytes form a rapidly renewing epithelium and barrier to luminal antigens. During renewal, coordinated expression of the claudin family of genes is vital to maintain the epithelial barrier. Disruption of this process contributes to barrier compromise and mucosal inflammatory diseases. However, little is known about the regulation of this critical aspect of epithelial cell differentiation. In order to identify claudin regulatory factors we utilized high-throughput gene microarrays and correlation analyses. We identified complex expression gradients for the transcription factors Hopx, Hnf4a, Klf4 and Tcf7l2, as well as 12 claudins, during differentiation. In vitro confirmatory methods identified 2 pathways that stimulate claudin expression; Hopx/Klf4 activation of Cldn4, 7 and 15, and Tcf7l2/Hnf4a up-regulation of Cldn23. Chromatin immunoprecipitation confirmed a Tcf7l2/Hnf4a/Claudin23 cascade. Furthermore, Hnf4a conditional knockout mice fail to induce Cldn23 during colonocyte differentiation. In conclusion, we report a comprehensive screen of colonic claudin gene expression and discover spatiotemporal Hopx/Klf4 and Tcf7l2/Hnf4a signaling as stimulators of colonic epithelial barrier differentiation.
Collapse
Affiliation(s)
- Loukia N Lili
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA, USA
| | - Attila E Farkas
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Christian Gerner-Smidt
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA, USA
| | | | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA, USA
| | - Charles A Parkos
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Asma Nusrat
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
185
|
Peck BCE, Sincavage J, Feinstein S, Mah AT, Simmons JG, Lund PK, Sethupathy P. miR-30 Family Controls Proliferation and Differentiation of Intestinal Epithelial Cell Models by Directing a Broad Gene Expression Program That Includes SOX9 and the Ubiquitin Ligase Pathway. J Biol Chem 2016; 291:15975-84. [PMID: 27261459 PMCID: PMC4965549 DOI: 10.1074/jbc.m116.733733] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Proliferation and differentiation of intestinal epithelial cells (IECs) occur in part through precise regulation of key transcription factors, such as SOX9. MicroRNAs (miRNAs) have emerged as prominent fine-tuners of transcription factor expression and activity. We hypothesized that miRNAs, in part through the regulation of SOX9, may mediate IEC homeostasis. Bioinformatic analyses of the SOX9 3'-UTR revealed highly conserved target sites for nine different miRNAs. Of these, only the miR-30 family members were both robustly and variably expressed across functionally distinct cell types of the murine jejunal epithelium. Inhibition of miR-30 using complementary locked nucleic acids (LNA30bcd) in both human IECs and human colorectal adenocarcinoma-derived Caco-2 cells resulted in significant up-regulation of SOX9 mRNA but, interestingly, significant down-regulation of SOX9 protein. To gain mechanistic insight into this non-intuitive finding, we performed RNA sequencing on LNA30bcd-treated human IECs and found 2440 significantly increased genes and 2651 significantly decreased genes across three time points. The up-regulated genes are highly enriched for both predicted miR-30 targets, as well as genes in the ubiquitin-proteasome pathway. Chemical suppression of the proteasome rescued the effect of LNA30bcd on SOX9 protein levels, indicating that the regulation of SOX9 protein by miR-30 is largely indirect through the proteasome pathway. Inhibition of the miR-30 family led to significantly reduced IEC proliferation and a dramatic increase in markers of enterocyte differentiation. This in-depth analysis of a complex miRNA regulatory program in intestinal epithelial cell models provides novel evidence that the miR-30 family likely plays an important role in IEC homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - P Kay Lund
- From the Curriculum in Genetics & Molecular Biology, Cell Biology and Physiology, and
| | - Praveen Sethupathy
- From the Curriculum in Genetics & Molecular Biology, the Departments of Genetics, the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
186
|
Park JH, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, Usui Y, Hatano N, Shinohara M, Saito Y, Murata Y, Matozaki T. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS One 2016; 11:e0156334. [PMID: 27232601 PMCID: PMC4883796 DOI: 10.1371/journal.pone.0156334] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
The life span of intestinal epithelial cells (IECs) is short (3–5 days), and its regulation is thought to be important for homeostasis of the intestinal epithelium. We have now investigated the role of commensal bacteria in regulation of IEC turnover in the small intestine. The proliferative activity of IECs in intestinal crypts as well as the migration of these cells along the crypt-villus axis were markedly attenuated both in germ-free mice and in specific pathogen–free (SPF) mice treated with a mixture of antibiotics, with antibiotics selective for Gram-positive bacteria being most effective in this regard. Oral administration of chloroform-treated feces of SPF mice to germ-free mice resulted in a marked increase in IEC turnover, suggesting that spore-forming Gram-positive bacteria contribute to this effect. Oral administration of short-chain fatty acids (SCFAs) as bacterial fermentation products also restored the turnover of IECs in antibiotic-treated SPF mice as well as promoted the development of intestinal organoids in vitro. Antibiotic treatment reduced the phosphorylation levels of ERK, ribosomal protein S6, and STAT3 in IECs of SPF mice. Our results thus suggest that Gram-positive commensal bacteria are a major determinant of IEC turnover, and that their stimulatory effect is mediated by SCFAs.
Collapse
Affiliation(s)
- Jung-ha Park
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail: (TM); (TK)
| | - Tasuku Konno
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jajar Setiawan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuaki Kitamura
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Imada
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaro Usui
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Hatano
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail: (TM); (TK)
| |
Collapse
|
187
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
188
|
Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease. Mucosal Immunol 2016; 9:647-58. [PMID: 26376367 PMCID: PMC4854977 DOI: 10.1038/mi.2015.88] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/27/2015] [Indexed: 02/04/2023]
Abstract
DNA methylation is one of the major epigenetic mechanisms implicated in regulating cellular development and cell-type-specific gene expression. Here we performed simultaneous genome-wide DNA methylation and gene expression analysis on purified intestinal epithelial cells derived from human fetal gut, healthy pediatric biopsies, and children newly diagnosed with inflammatory bowel disease (IBD). Results were validated using pyrosequencing, real-time PCR, and immunostaining. The functional impact of DNA methylation changes on gene expression was assessed by employing in-vitro assays in intestinal cell lines. DNA methylation analyses allowed identification of 214 genes for which expression is regulated via DNA methylation, i.e. regulatory differentially methylated regions (rDMRs). Pathway and functional analysis of rDMRs suggested a critical role for DNA methylation in regulating gene expression and functional development of the human intestinal epithelium. Moreover, analysis performed on intestinal epithelium of children newly diagnosed with IBD revealed alterations in DNA methylation within genomic loci, which were found to overlap significantly with those undergoing methylation changes during intestinal development. Our study provides novel insights into the physiological role of DNA methylation in regulating functional maturation of the human intestinal epithelium. Moreover, we provide data linking developmentally acquired alterations in the DNA methylation profile to changes seen in pediatric IBD.
Collapse
|
189
|
A novel method for imaging sites of paracellular passage of macromolecules in epithelial sheets. J Control Release 2016; 229:70-79. [PMID: 26995760 DOI: 10.1016/j.jconrel.2016.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Understanding the dynamics of intestinal barrier function is key to elucidating oral delivery routes of therapeutics as well as to understanding various diseases that involve the mucosal immune system. Passage of macromolecules across barrier-forming epithelia is classically analyzed by means of various tracer flux measurements. This approach averages over contributions from many cells and lacks labeling of passage-sites. Thus, abundance and nature of involved cells have remained unidentified. We present a novel method that allowed for optical analysis of passage of various macromolecules on large-scale and single-cell level. To achieve tracking of passage loci in epithelia at submicrometer resolution we used biotinylated and fluorescent macromolecules that bind to basolateral membranes pre-labeled with cell-adherent avidin. We applied this method to epithelial cell lines and isolated mucosae in order to 3-dimensionally determine barrier leak properties over time. Tracer passage was found in all epithelia examined. However, it was infrequent, strikingly inhomogeneous, depended on culture duration and tightness of the monolayer. Stimulating passage with barrier-perturbing agents increased the number of leaks exposition time-dependently in cell lines and explanted mucosae. After stepwise opening of the paracellular passage pathway, integrated tracer-signal measured by our assay strictly correlated to simultaneously performed standard fluxes. Thus, our assay allows for the study of transepithelial macromolecule passage in various physiological and pathological conditions.
Collapse
|
190
|
Bloemendaal ALA, Buchs NC, George BD, Guy RJ. Intestinal stem cells and intestinal homeostasis in health and in inflammation: A review. Surgery 2016; 159:1237-48. [PMID: 26936524 DOI: 10.1016/j.surg.2016.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/06/2016] [Accepted: 01/23/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The human intestine is a complex group of organs, highly specialized in processing food and providing nutrients to the body. It is under constant threat from microbials and toxins and has therefore developed a number of protective mechanisms. One important mechanism is the constant shedding of epithelial cells into the lumen; another is the production and maintenance of a double-layered mucous boundary in which there is continuous sampling of the luminal microbiota and a persistent presence of antimicrobial enzymes. However, the gut needs commensal bacteria to effectively break down food into absorbable nutrients, which necessitates constant communication between the luminal bacteria and the intestinal immune cells in homeostasis. Disruption of homeostasis, for whatever reason, will give rise to (chronic) inflammation. DISCUSSION Both medical and surgical management of this disruption is discussed.
Collapse
Affiliation(s)
- Alexander L A Bloemendaal
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom.
| | - Nicolas C Buchs
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| | - Bruce D George
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| | - Richard J Guy
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
191
|
Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains. Sci Rep 2016; 6:20390. [PMID: 26856877 PMCID: PMC4746593 DOI: 10.1038/srep20390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022] Open
Abstract
Absorptive and secretory cells of the small intestine are derived from a single population of Lgr5-expressing stem cells. While key genetic pathways required for differentiation into specific lineages have been defined, epigenetic programs contributing to this process remain poorly characterized. Members of the BET family of chromatin adaptors contain tandem bromodomains that mediate binding to acetylated lysines on target proteins to regulate gene expression. In this study, we demonstrate that mice treated with a small molecule inhibitor of BET bromodomains, CPI203, exhibit greater than 90% decrease in tuft and enteroendocrine cells in both crypts and villi of the small intestine, with no changes observed in goblet or Paneth cells. BET bromodomain inhibition did not alter the abundance of Lgr5-expressing stem cells in crypts, but rather exerted its effects on intermediate progenitors, in part through regulation of Ngn3 expression. When BET bromodomain inhibition was combined with the chemotherapeutic gemcitabine, pervasive apoptosis was observed in intestinal crypts, revealing an important role for BET bromodomain activity in intestinal homeostasis. Pharmacological targeting of BET bromodomains defines a novel pathway required for tuft and enteroendocrine differentiation and provides an important tool to further dissect the progression from stem cell to terminally differentiated secretory cell.
Collapse
|
192
|
Raup-Konsavage WM, Cooper TK, Yochum GS. A Role for MYC in Lithium-Stimulated Repair of the Colonic Epithelium After DSS-Induced Damage in Mice. Dig Dis Sci 2016; 61:410-22. [PMID: 26320084 DOI: 10.1007/s10620-015-3852-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic inflammation disrupts the colonic epithelial layer in patients afflicted by ulcerative colitis (UC). The use of inhibitors of glycogen synthase kinase three beta (GSK3β) has proven efficacious to mitigate disease symptoms in rodent models of UC by reducing the pro-inflammatory response. Less is known about whether these inhibitors promote colonic regeneration by stimulating proliferation of colonic epithelial cells. AIMS We investigated whether delivery of the GSK3β inhibitor, lithium chloride (LiCl), during the recovery period from acute DSS-induced colitis in mice promoted colonic regeneration and ameliorated disease symptoms. We also tested whether the c-MYC transcription factor (MYC) was involved in this response. METHODS Acute colitis was induced by administration of 2.5 % dextran sodium sulfate (DSS) to wild-type C57BL/6 mice for 5 days. During the recovery period, mice received a daily intraperitoneal (IP) injection of LiCl or 1X PBS as a control. Mice were weighed, colon lengths measured, disease activity index (DAI) scores were assessed, and histological analyses were performed on colonic sections. We analyzed transcripts and proteins in purified preparations of the colonic epithelium. We delivered the MYC inhibitor 10058-F4 via IP injection to assess the role of MYC in colonic regeneration. RESULTS Lithium treatments promoted recovery from acute DSS-induced damage by increasing expression of Myc transcripts, MYC proteins, and expression of a subset of Wnt/MYC target genes in the colonic epithelium. Inhibiting MYC function with 10058-F4 blunted the lithium response. CONCLUSIONS By inducing Myc expression in the colonic epithelium, lithium promotes colonic regeneration after DSS-induced colitis. Therefore, the use of lithium may be of therapeutic value to manage individuals afflicted by UC.
Collapse
Affiliation(s)
- Wesley M Raup-Konsavage
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Dr., H171, Hershey, PA, 17033, USA.
| | - Timothy K Cooper
- Department of Comparative Medicine, The Pennsylvania State University College of Medicine, 500 University Dr., H171, Hershey, PA, 17033, USA. .,Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Dr., H054, Hershey, PA, 17033, USA.
| | - Gregory S Yochum
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Dr., H171, Hershey, PA, 17033, USA.
| |
Collapse
|
193
|
Wang J, Zeng L, Tan B, Li G, Huang B, Xiong X, Li F, Kong X, Liu G, Yin Y. Developmental changes in intercellular junctions and Kv channels in the intestine of piglets during the suckling and post-weaning periods. J Anim Sci Biotechnol 2016; 7:4. [PMID: 26819706 PMCID: PMC4729073 DOI: 10.1186/s40104-016-0063-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
Background The intestinal epithelium is an important barrier that depends on a complex mixture of proteins and these proteins comprise different intercellular junctions. The purpose of this study was to investigate the postnatal and developmental changes in morphology, intercellular junctions and voltage-gated potassium (Kv) channels in the intestine of piglets during the suckling and post-weaning periods. Results Samples of the small intestine were obtained from 1-, 7-, 14-, and 21-d-old suckling piglets and piglets on d 1, 3, 5, and 7 after weaning at 14 d of age. The results showed that the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and alkaline phosphatase (AKP) activity, as well as the abundances of E-cadherin, occludin, and Kv1.5 mRNA and claudin-1, claudin-3, and occludin protein in the jejunum were increased from d 1 to d 21 during the suckling period (P < 0.05). Weaning induced decreases in the percentage of PCNA-positive cells, AKP activity and the abundances of E-cadherin, occludin and zonula occludens (ZO)-1 mRNA or protein in the jejunum on d 1, 3 and 5 post-weaning (P < 0.05). There were lower abundances of E-cadherin, occludin and ZO-1 mRNA as well as claudin-1, claudin-3 and ZO-1 protein in the jejunum of weanling piglets than in 21-d-old suckling piglets (P < 0.05). The abundances of E-cadherin, occludin, ZO-1 and integrin mRNA were positively related to the percentage of PCNA-positive cells. Conclusion Weaning at 14 d of age induced damage to the intestinal morphology and barrier. While there was an adaptive restoration on d 7 post-weaning, the measured values did not return to the pre-weaning levels, which reflected the impairment of intercellular junctions and Kv channels.
Collapse
Affiliation(s)
- Jing Wang
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; University of the Chinese Academy of Sciences, Beijing, 10008 China
| | - Liming Zeng
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; Science College of Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Bie Tan
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan 410000 China
| | - Guangran Li
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; University of the Chinese Academy of Sciences, Beijing, 10008 China
| | - Bo Huang
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; University of the Chinese Academy of Sciences, Beijing, 10008 China
| | - Xia Xiong
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Fengna Li
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Xiangfeng Kong
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Gang Liu
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Yulong Yin
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| |
Collapse
|
194
|
Fung CM, White JR, Brown AS, Gong H, Weitkamp JH, Frey MR, McElroy SJ. Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development. PLoS One 2016; 11:e0146542. [PMID: 26745886 PMCID: PMC4706418 DOI: 10.1371/journal.pone.0146542] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent “first hit”, rendering IUGR intestine susceptible to further injury, infection, or inflammation.
Collapse
Affiliation(s)
- Camille M. Fung
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Jessica R. White
- Division of Neonatology, Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ashley S. Brown
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Huiyu Gong
- Division of Neonatology, Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Jörn-Hendrik Weitkamp
- Division of Neonatology, Pediatrics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark R. Frey
- Department of Pediatrics and Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine and The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | - Steven J. McElroy
- Division of Neonatology, Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
195
|
Fang T, Liu G, Cao W, Wu X, Jia G, Zhao H, Chen X, Wu C, Wang J. Spermine: new insights into the intestinal development and serum antioxidant status of suckling piglets. RSC Adv 2016. [DOI: 10.1039/c6ra05361k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present work aimed at investigating the effects of spermine supplementation and extended spermine administration on the intestinal morphology, enzyme activity, and serum antioxidant capacity of suckling piglets.
Collapse
Affiliation(s)
- Tingting Fang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Guangmang Liu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Wei Cao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xianjian Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Gang Jia
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Hua Zhao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xiaoling Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Caimei Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Jing Wang
- Maize Research Institute
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
196
|
Sampson LL, Davis AK, Grogg MW, Zheng Y. mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice. FASEB J 2015; 30:1263-75. [PMID: 26631481 DOI: 10.1096/fj.15-278606] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
Intestinal stem cells (ISCs) drive small intestinal epithelial homeostasis and regeneration. Mechanistic target of rapamycin (mTOR) regulates stem and progenitor cell metabolism and is frequently dysregulated in human disease, but its physiologic functions in the mammalian small intestinal epithelium remain poorly defined. We disrupted the genes mTOR, Rptor, Rictor, or both Rptor and Rictor in mouse ISCs, progenitors, and differentiated intestinal epithelial cells (IECs) using Villin-Cre. Mutant tissues and wild-type or heterozygous littermate controls were analyzed by histologic immunostaining, immunoblots, and proliferation assays. A total of 10 Gy irradiation was used to injure the intestinal epithelium and induce subsequent crypt regeneration. We report that mTOR supports absorptive enterocytes and secretory Paneth and goblet cell function while negatively regulating chromogranin A-positive enteroendocrine cell number. Through additional Rptor, Rictor, and Rptor/Rictor mutant mouse models, we identify mechanistic target of rapamycin complex 1 as the major IEC regulatory pathway, but mechanistic target of rapamycin complex 2 also contributes to ileal villus maintenance and goblet cell size. Homeostatic adult small intestinal crypt cell proliferation, survival, and canonical wingless-int (WNT) activity are not mTOR dependent, but Olfm4(+) ISC/progenitor population maintenance and crypt regeneration postinjury require mTOR. Overall, we conclude that mTOR regulates multiple IEC lineages and promotes stem and progenitor cell activity during intestinal epithelium repair postinjury.
Collapse
Affiliation(s)
- Leesa L Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley K Davis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew W Grogg
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
197
|
Elliott EN, Kaestner KH. Epigenetic regulation of the intestinal epithelium. Cell Mol Life Sci 2015; 72:4139-56. [PMID: 26220502 PMCID: PMC4607638 DOI: 10.1007/s00018-015-1997-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium is an ideal model system for the study of normal and pathological differentiation processes. The mammalian intestinal epithelium is a single cell layer comprising proliferative crypts and differentiated villi. The crypts contain both proliferating and quiescent stem cell populations that self-renew and produce all the differentiated cell types, which are replaced every 3-5 days. The genetics of intestinal development, homeostasis, and disease are well defined, but less is known about the contribution of epigenetics in modulating these processes. Epigenetics refers to heritable phenotypic traits, including gene expression, which are independent of mutations in the DNA sequence. We have known for several decades that human colorectal cancers contain hypomethylated DNA, but the causes and consequences of this phenomenon are not fully understood. In contrast, tumor suppressor gene promoters are often hypermethylated in colorectal cancer, resulting in decreased expression of the associated gene. In this review, we describe the role that epigenetics plays in intestinal homeostasis and disease, with an emphasis on results from mouse models. We highlight the importance of producing and analyzing next-generation sequencing data detailing the epigenome from intestinal stem cell to differentiated intestinal villus cell.
Collapse
Affiliation(s)
- Ellen N Elliott
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, 12-126 Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, 12-126 Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
198
|
De Santis C, Taylor JF, Martinez-Rubio L, Boltana S, Tocher DR. Influence of Development and Dietary Phospholipid Content and Composition on Intestinal Transcriptome of Atlantic Salmon (Salmo salar). PLoS One 2015; 10:e0140964. [PMID: 26488165 PMCID: PMC4619195 DOI: 10.1371/journal.pone.0140964] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/25/2015] [Indexed: 11/19/2022] Open
Abstract
The inclusion of intact phospholipids in the diet is essential during larval development and can improve culture performance of many fish species. The effects of supplementation of dietary phospholipid from marine (krill) or plant (soy lecithin) sources were investigated in Atlantic salmon, Salmo salar. First feeding fry were fed diets containing either krill oil or soybean lecithin supplying phospholipid at 2.6%, 3.2%, 3.6% and 4.2% of diet. Fish were sampled at ~ 2.5 g (~1,990°day post fertilization, dpf) and ~10 g (2,850°dpf). By comparison of the intestinal transcriptome in specifically chosen contrasts, it was determined that by 2,850°dpf fish possessed a profile that resembled that of mature and differentiated intestinal cell types with a number of changes specific to glycerophospholipid metabolism. It was previously shown that intact phospholipids and particularly phosphatidylcholine are essential during larval development and that this requirement is associated with the inability of enterocytes in young fry to endogenously synthesize sufficient phospholipid for the efficient export of dietary lipid. In the immature phase (~1,990°dpf), the dietary phospholipid content as well as its class composition impacted on several biochemical and morphological parameters including growth, but these differences were not associated with differences in intestinal transcriptomes. The results of this study have made an important contribution to our understanding of the mechanisms associated with lipid transport and phospholipid biosynthesis in early life stages of fish.
Collapse
Affiliation(s)
- Christian De Santis
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
- * E-mail:
| | - John F. Taylor
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| | - Laura Martinez-Rubio
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| | - Sebastian Boltana
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| | - Douglas R. Tocher
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| |
Collapse
|
199
|
Novak EA, Mollen KP. Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol 2015; 3:62. [PMID: 26484345 PMCID: PMC4589667 DOI: 10.3389/fcell.2015.00062] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) represents a group of idiopathic disorders characterized by chronic or recurring inflammation of the gastrointestinal tract. While the exact etiology of disease is unknown, IBD is recognized to be a complex, multifactorial disease that results from an intricate interplay of genetic predisposition, an altered immune response, changes in the intestinal microbiota, and environmental factors. Together, these contribute to a destruction of the intestinal epithelial barrier, increased gut permeability, and an influx of immune cells. Given that most cellular functions as well as maintenance of the epithelial barrier is energy-dependent, it is logical to assume that mitochondrial dysfunction may play a key role in both the onset and recurrence of disease. Indeed several studies have demonstrated evidence of mitochondrial stress and alterations in mitochondrial function within the intestinal epithelium of patients with IBD and mice undergoing experimental colitis. Although the hallmarks of mitochondrial dysfunction, including oxidative stress and impaired ATP production are known to be evident in the intestines of patients with IBD, it is as yet unclear whether these processes occur as a cause of consequence of disease. We provide a current review of mitochondrial function in the setting of intestinal inflammation during IBD.
Collapse
Affiliation(s)
- Elizabeth A Novak
- Department of Surgery, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Kevin P Mollen
- Department of Surgery, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
200
|
Farkas AE, Gerner-Smidt C, Lili L, Nusrat A, Capaldo CT. Cryosectioning Method for Microdissection of Murine Colonic Mucosa. J Vis Exp 2015:e53112. [PMID: 26274554 PMCID: PMC4544980 DOI: 10.3791/53112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The colonic mucosal tissue provides a vital barrier to luminal antigens. This barrier is composed of a monolayer of simple columnar epithelial cells. The colonic epithelium is dynamically turned over and epithelial cells are generated in the stem cell containing crypts of Lieberkühn. Progenitor cells produced in the crypt-bases migrate toward the luminal surface, undergoing a process of cellular differentiation before being shed into the gut lumen. In order to study these processes at the molecular level, we have developed a simple method for the microdissection of two spatially distinct regions of the colonic mucosa; the proliferative crypt zone, and the differentiated surface epithelial cells. Our objective is to isolate specific crypt and surface epithelial cell populations from mouse colonic mucosa for the isolation of RNA and protein.
Collapse
Affiliation(s)
- Attila E Farkas
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Christian Gerner-Smidt
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Loukia Lili
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Christopher T Capaldo
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia;
| |
Collapse
|