151
|
Additive effect of BLA GABAA receptor mechanism and (+)-MK-801 on memory retention deficit, an isobologram analysis. Pharmacol Biochem Behav 2016; 143:57-64. [DOI: 10.1016/j.pbb.2016.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 11/21/2022]
|
152
|
Maldonado-Devincci AM, Kampov-Polevoi A, McKinley RE, Morrow DH, O'Buckley TK, Morrow AL. Chronic Intermittent Ethanol Exposure Alters Stress Effects on (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) Immunolabeling of Amygdala Neurons in C57BL/6J Mice. Front Cell Neurosci 2016; 10:40. [PMID: 26973459 PMCID: PMC4777881 DOI: 10.3389/fncel.2016.00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/02/2016] [Indexed: 12/02/2022] Open
Abstract
The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone) is decreased in various brain regions of C57BL/6J mice following exposure to an acute stressor or chronic intermittent ethanol (CIE) exposure and withdrawal. It is well established that there are complex interactions between stress and ethanol drinking, with mixed literature regarding the effects of stress on ethanol intake. However, there is little research examining how chronic ethanol exposure alters stress responses. The present work examined the impact of CIE exposure and withdrawal on changes in brain levels of 3α,5α-THP, as well as hormonal and behavioral responses to forced swim stress (FSS). Adult male C57BL/6J mice were exposed to four cycles of CIE to induce ethanol dependence. Following 8 h or 72 h withdrawal, mice were subjected to FSS for 10 min, and 50 min later brains were collected for immunohistochemical analysis of cellular 3α,5α-THP. Behavioral and circulating corticosterone responses to FSS were quantified. Following 8 h withdrawal, ethanol exposure potentiated the corticosterone response to FSS. Following 72 h withdrawal, this difference was no longer observed. Following 8 h withdrawal, stress-exposed mice showed no differences in immobility, swimming or struggling behavior. However, following 72 h withdrawal, ethanol-exposed mice showed less immobility and greater swimming behavior compared to air-exposed mice. Interestingly, cellular 3α,5α-THP levels were increased in the lateral amygdala 8 h and 72 h post-withdrawal in stressed ethanol-exposed mice compared to ethanol-exposed/non-stressed mice. In the paraventricular nucleus of the hypothalamus, stress exposure decreased 3α,5α-THP levels compared to controls following 72 h withdrawal, but no differences were observed 8 h post-withdrawal. There were no differences in cellular 3α,5α-THP levels in the nucleus accumbens shell at either withdrawal time point. These data suggest that there are different mechanisms mediating hormonal, behavioral, and brain responses to stress following CIE exposure. The lateral amygdala appears to be an extremely sensitive brain region exhibiting changes in cellular 3α,5α-THP levels following CIE and exposure to swim stress. It is likely that these changes in cellular 3α,5α-THP levels in the lateral amygdala contribute to the behavioral effects observed following 72 h withdrawal.
Collapse
Affiliation(s)
| | - Alexander Kampov-Polevoi
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Raechel E McKinley
- Department of Biology, North Carolina Agricultural and Technical State University Greensboro, NC, USA
| | - Danielle H Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| |
Collapse
|
153
|
Hrybouski S, Aghamohammadi-Sereshki A, Madan CR, Shafer AT, Baron CA, Seres P, Beaulieu C, Olsen F, Malykhin NV. Amygdala subnuclei response and connectivity during emotional processing. Neuroimage 2016; 133:98-110. [PMID: 26926791 DOI: 10.1016/j.neuroimage.2016.02.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023] Open
Abstract
The involvement of the human amygdala in emotion-related processing has been studied using functional magnetic resonance imaging (fMRI) for many years. However, despite the amygdala being comprised of several subnuclei, most studies investigated the role of the entire amygdala in processing of emotions. Here we combined a novel anatomical tracing protocol with event-related high-resolution fMRI acquisition to study the responsiveness of the amygdala subnuclei to negative emotional stimuli and to examine intra-amygdala functional connectivity. The greatest sensitivity to the negative emotional stimuli was observed in the centromedial amygdala, where the hemodynamic response amplitude elicited by the negative emotional stimuli was greater and peaked later than for neutral stimuli. Connectivity patterns converge with extant findings in animals, such that the centromedial amygdala was more connected with the nuclei of the basal amygdala than with the lateral amygdala. Current findings provide evidence of functional specialization within the human amygdala.
Collapse
Affiliation(s)
- Stanislau Hrybouski
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | - Christopher R Madan
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA
| | - Andrea T Shafer
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Corey A Baron
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | - Fraser Olsen
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada; Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada.
| |
Collapse
|
154
|
Tsvetkov EA, Krasnoshchekova EI, Vesselkin NP, Kharazova AD. Amygdala: Neuroanatomy and neurophysiology of fear. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093015060022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
155
|
Krishnan B, Scott MT, Pollandt S, Schroeder B, Kurosky A, Shinnick-Gallagher P. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala. Neurobiol Learn Mem 2016; 128:65-79. [PMID: 26748024 PMCID: PMC4744522 DOI: 10.1016/j.nlm.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022]
Abstract
Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.
Collapse
MESH Headings
- Amygdala/enzymology
- Amygdala/physiology
- Animals
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Cyclopropanes/pharmacology
- Electric Stimulation
- Excitatory Postsynaptic Potentials/drug effects
- Fear/drug effects
- Fear/physiology
- Fructose-Bisphosphate Aldolase/metabolism
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Long-Term Potentiation/drug effects
- Male
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Phospholipase D/antagonists & inhibitors
- Phospholipase D/metabolism
- Phospholipase D/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Thalamus/physiology
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States; UTMB Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States.
| | - Michael T Scott
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sebastian Pollandt
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bradley Schroeder
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alexander Kurosky
- UTMB NHLBI Proteomics Center, Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
156
|
Rausch A, Zhang W, Haak KV, Mennes M, Hermans EJ, van Oort E, van Wingen G, Beckmann CF, Buitelaar JK, Groen WB. Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study. Mol Autism 2016; 7:13. [PMID: 26823966 PMCID: PMC4730628 DOI: 10.1186/s13229-015-0060-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 12/07/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Amygdala dysfunction is hypothesized to underlie the social deficits observed in autism spectrum disorders (ASD). However, the neurobiological basis of this hypothesis is underspecified because it is unknown whether ASD relates to abnormalities of the amygdaloid input or output nuclei. Here, we investigated the functional connectivity of the amygdaloid social-perceptual input nuclei and emotion-regulation output nuclei in ASD versus controls. METHODS We collected resting state functional magnetic resonance imaging (fMRI) data, tailored to provide optimal sensitivity in the amygdala as well as the neocortex, in 20 adolescents and young adults with ASD and 25 matched controls. We performed a regular correlation analysis between the entire amygdala (EA) and the whole brain and used a partial correlation analysis to investigate whole-brain functional connectivity uniquely related to each of the amygdaloid subregions. RESULTS Between-group comparison of regular EA correlations showed significantly reduced connectivity in visuospatial and superior parietal areas in ASD compared to controls. Partial correlation analysis revealed that this effect was driven by the left superficial and right laterobasal input subregions, but not the centromedial output nuclei. CONCLUSIONS These results indicate reduced connectivity of specifically the amygdaloid sensory input channels in ASD, suggesting that abnormal amygdalo-cortical connectivity can be traced down to the socio-perceptual pathways.
Collapse
Affiliation(s)
- Annika Rausch
- Department of Cognitive Neuroscience, Radboud University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Wei Zhang
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Maarten Mennes
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Erno J Hermans
- Department of Cognitive Neuroscience, Radboud University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Erik van Oort
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands ; MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Guido van Wingen
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands ; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Radboud University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands ; Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands ; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Wouter B Groen
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands ; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| |
Collapse
|
157
|
De Jesús-Burgos MI, González-García S, Cruz-Santa Y, Pérez-Acevedo NL. Amygdalar activation of group I metabotropic glutamate receptors produces anti- and pro-conflict effects depending upon animal sex in a sexually dimorphic conditioned conflict-based anxiety model. Behav Brain Res 2016; 302:200-12. [PMID: 26777900 PMCID: PMC4839301 DOI: 10.1016/j.bbr.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/02/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
Women are more susceptible than men to develop anxiety disorders, however, the mechanisms involved are still unclear. In this study, we investigated the role of group I metabotropic glutamate receptors (mGluRs), a target for anxiety disorders, and whether estradiol may modulate conflict-based anxiety in female rats by using the Vogel Conflict Test (VCT). We used ovariectomized female rats with high (OVX+EB) and low (OVX) estradiol levels and intact male rats to evaluate sex differences. Infusion of (S)-3,5-Dihydroxyphenylglycine (DHPG), a group I mGluR agonist, into the basolateral amygdala, a region involved in anxiety-responses, statistically increased the number of shocks in OVX, but not OVX+EB female rats at 0.1, nor at 1.0 μM. In contrast, DHPG statistically decreased the number of shocks in male rats at 1.0 μM only. DHPG (0.1 μM) increased the number of recoveries in OVX, but not OVX+EB or male rats. Sex differences were detected for the number of shocks, recoveries and punished licks, where female rats displayed more conflict than male rats. Western blot analyses showed that protein expression of mGluR1, but not mGluR5 was higher in OVX+EB>OVX>male rats in the amygdala, whereas no significant differences were detected in the hippocampus, olfactory bulb and/or the periaqueductal gray. Therefore, DHPG produced paradoxical effects that are sex dependent; producing anxiolytic-like effects in female rats, while anxiogenic-like effects in male rats according to the VCT. These results highlight the importance of including female experimental models to underpin the neural circuitry of anxiety according to sex and for the screening of novel anxiolytic compounds.
Collapse
Affiliation(s)
- María I De Jesús-Burgos
- Department of Biology, University of Puerto Rico, Cayey Campus, PO Box 372230, Cayey, PR 00737-2230, USA
| | | | - Yanira Cruz-Santa
- Department of Social Sciences, University of Puerto Rico, Cayey Campus, PO Box 372230, Cayey, PR 00737-2230, USA
| | - Nivia L Pérez-Acevedo
- Department of Anatomy and Neurobiology, School of Medicine, UPR-MSC, PO Box 365067, San Juan, PR 00936-5067, USA.
| |
Collapse
|
158
|
Perusini JN, Meyer EM, Long VA, Rau V, Nocera N, Avershal J, Maksymetz J, Spigelman I, Fanselow MS. Induction and Expression of Fear Sensitization Caused by Acute Traumatic Stress. Neuropsychopharmacology 2016; 41:45-57. [PMID: 26329286 PMCID: PMC4677128 DOI: 10.1038/npp.2015.224] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 02/08/2023]
Abstract
Fear promotes adaptive responses to threats. However, when the level of fear is not proportional to the level of threat, maladaptive fear-related behaviors characteristic of anxiety disorders result. Post-traumatic stress disorder develops in response to a traumatic event, and patients often show sensitized reactions to mild stressors associated with the trauma. Stress-enhanced fear learning (SEFL) is a rodent model of this sensitized responding, in which exposure to a 15-shock stressor nonassociatively enhances subsequent fear conditioning training with only a single trial. We examined the role of corticosterone (CORT) in SEFL. Administration of the CORT synthesis blocker metyrapone prior to the stressor, but not at time points after, attenuated SEFL. Moreover, CORT co-administered with metyrapone rescued SEFL. However, CORT alone without the stressor was not sufficient to produce SEFL. In these same animals, we then looked for correlates of SEFL in terms of changes in excitatory receptor expression. Western blot analysis of the basolateral amygdala (BLA) revealed an increase in the GluA1 AMPA receptor subunit that correlated with SEFL. Thus, CORT is permissive to trauma-induced changes in BLA function.
Collapse
Affiliation(s)
- Jennifer N Perusini
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edward M Meyer
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Virginia A Long
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vinuta Rau
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nathaniel Nocera
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacob Avershal
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - James Maksymetz
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Michael S Fanselow
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
159
|
Bazelot M, Bocchio M, Kasugai Y, Fischer D, Dodson PD, Ferraguti F, Capogna M. Hippocampal Theta Input to the Amygdala Shapes Feedforward Inhibition to Gate Heterosynaptic Plasticity. Neuron 2015; 87:1290-1303. [PMID: 26402610 PMCID: PMC4590554 DOI: 10.1016/j.neuron.2015.08.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/02/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022]
Abstract
The dynamic interactions between hippocampus and amygdala are critical for emotional memory. Theta synchrony between these structures occurs during fear memory retrieval and may facilitate synaptic plasticity, but the cellular mechanisms are unknown. We report that interneurons of the mouse basal amygdala are activated during theta network activity or optogenetic stimulation of ventral CA1 pyramidal cell axons, whereas principal neurons are inhibited. Interneurons provide feedforward inhibition that transiently hyperpolarizes principal neurons. However, synaptic inhibition attenuates during theta frequency stimulation of ventral CA1 fibers, and this broadens excitatory postsynaptic potentials. These effects are mediated by GABAB receptors and change in the Cl− driving force. Pairing theta frequency stimulation of ventral CA1 fibers with coincident stimuli of the lateral amygdala induces long-term potentiation of lateral-basal amygdala excitatory synapses. Hence, feedforward inhibition, known to enforce temporal fidelity of excitatory inputs, dominates hippocampus-amygdala interactions to gate heterosynaptic plasticity. Video Abstract
Theta stimulation of CA1 ventral hippocampal fibers activates amygdala interneurons Interneurons induce feedforward inhibition that hyperpolarizes principal neurons Theta-evoked inhibition attenuates to broaden excitation on principal neurons Feedforward inhibition gates heterosynaptic plasticity via GABAB receptors
Collapse
Affiliation(s)
- Michaël Bazelot
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Yu Kasugai
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - David Fischer
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Paul D Dodson
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|
160
|
Chattarji S, Tomar A, Suvrathan A, Ghosh S, Rahman MM. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat Neurosci 2015; 18:1364-75. [PMID: 26404711 DOI: 10.1038/nn.4115] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023]
Abstract
The fact that exposure to severe stress leads to the development of psychiatric disorders serves as the basic rationale for animal models of stress disorders. Clinical and neuroimaging studies have shown that three brain areas involved in learning and memory--the hippocampus, amygdala and prefrontal cortex--undergo distinct structural and functional changes in individuals with stress disorders. These findings from patient studies pose several challenges for animal models of stress disorders. For instance, why does stress impair cognitive function, yet enhance fear and anxiety? Can the same stressful experience elicit contrasting patterns of plasticity in the hippocampus, amygdala and prefrontal cortex? How does even a brief exposure to traumatic stress lead to long-lasting behavioral abnormalities? Thus, animal models of stress disorders must not only capture the unique spatio-temporal features of structural and functional alterations in these brain areas, but must also provide insights into the underlying neuronal plasticity mechanisms. This Review will address some of these key questions by describing findings from animal models on how stress-induced plasticity varies across different brain regions and thereby gives rise to the debilitating emotional and cognitive symptoms of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Sumantra Chattarji
- Centre for Brain Development and Repair, Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, India
| | - Anupratap Tomar
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan
| | - Aparna Suvrathan
- Department of Neurobiology, Stanford University, Stanford, California, USA
| | - Supriya Ghosh
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Mohammed Mostafizur Rahman
- Centre for Brain Development and Repair, Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, India
| |
Collapse
|
161
|
Wood J, Ahmari SE. A Framework for Understanding the Emerging Role of Corticolimbic-Ventral Striatal Networks in OCD-Associated Repetitive Behaviors. Front Syst Neurosci 2015; 9:171. [PMID: 26733823 PMCID: PMC4681810 DOI: 10.3389/fnsys.2015.00171] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
Significant interest in the mechanistic underpinnings of obsessive-compulsive disorder (OCD) has fueled research on the neural origins of compulsive behaviors. Converging clinical and preclinical evidence suggests that abnormal repetitive behaviors are driven by dysfunction in cortico-striatal-thalamic-cortical (CSTC) circuits. These findings suggest that compulsive behaviors arise, in part, from aberrant communication between lateral orbitofrontal cortex (OFC) and dorsal striatum. An important body of work focused on the role of this network in OCD has been instrumental to progress in the field. Disease models focused primarily on these regions, however, fail to capture an important aspect of the disorder: affective dysregulation. High levels of anxiety are extremely prevalent in OCD, as is comorbidity with major depressive disorder. Furthermore, deficits in processing rewards and abnormalities in processing emotional stimuli are suggestive of aberrant encoding of affective information. Accordingly, OCD can be partially characterized as a disease in which behavioral selection is corrupted by exaggerated or dysregulated emotional states. This suggests that the networks producing OCD symptoms likely expand beyond traditional lateral OFC and dorsal striatum circuit models, and highlights the need to cast a wider net in our investigation of the circuits involved in generating and sustaining OCD symptoms. Here, we address the emerging role of medial OFC, amygdala, and ventral tegmental area projections to the ventral striatum (VS) in OCD pathophysiology. The VS receives strong innervation from these affect and reward processing regions, and is therefore poised to integrate information crucial to the generation of compulsive behaviors. Though it complements functions of dorsal striatum and lateral OFC, this corticolimbic-VS network is less commonly explored as a potential source of the pathology underlying OCD. In this review, we discuss this network's potential role as a locus of OCD pathology and effective treatment.
Collapse
Affiliation(s)
- Jesse Wood
- Translational Neuroscience Program, Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
| | - Susanne E. Ahmari
- Translational Neuroscience Program, Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
162
|
Abstract
The hypothalamic-pituitary-adrenal axis provides physiological adaptations to various environmental stimuli in mammals. These stimuli including maternal care, diet, immune challenge, stress, and others have the potential to stably modify or program the functioning of the HPA axis when experienced early in life or at later critical stages of development. Epigenetic mechanisms mediate the biological embedding of environmental stimuli or conditions. These changes are influenced by the genotype and both, environment and genotype contribute to the development of a specific phenotype with regard to the stress response that might be more susceptible or resilient to the development of mental conditions. The effects of stress might be a result of cumulative stress or a mismatch between the environments experienced early in life versus the conditions much later. These effects including the associated epigenetic modifications are potentially reversible.
Collapse
Affiliation(s)
- Jan P Buschdorf
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Canadian Neuroepigenetics Network, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
163
|
Htr2a-Expressing Cells in the Central Amygdala Control the Hierarchy between Innate and Learned Fear. Cell 2015; 163:1153-1164. [DOI: 10.1016/j.cell.2015.10.047] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/03/2015] [Accepted: 10/09/2015] [Indexed: 01/26/2023]
|
164
|
Acute tianeptine treatment selectively modulates neuronal activation in the central nucleus of the amygdala and attenuates fear extinction. Mol Psychiatry 2015; 20:1420-7. [PMID: 25560759 DOI: 10.1038/mp.2014.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022]
Abstract
Antidepressant drugs are commonly prescribed treatments for anxiety disorders, and there is growing interest in understanding how these drugs impact fear extinction because extinction learning is pivotal to successful exposure-based therapy (EBT). A key objective within this domain is understanding how antidepressants alter the activation of specific elements of the limbic-based network that governs such fear processing. Chronic treatment with the antidepressant tianeptine has been shown to reduce the acquisition of extinction learning in rats, yet the drug's acute influence on activation in prefrontal and amygdalar regions, and on extinction learning are not well understood. To assess its influence on cellular activation, rats were injected with tianeptine and Fos immunoreactivity was measured in these regions. Acute tianeptine treatment selectively altered Fos expression within subdivisions of the central nucleus of the amygdala (CEA) in a bidirectional manner that varied in relation to ongoing activation within the capsular subdivision and its prefrontal and intra-amygdalar inputs. This pattern of results suggests that the drug can conditionally modulate the activation of CEA subdivisions, which contain microcircuits strongly implicated in fear processing. The effect of acute tianeptine was also examined with respect to the acquisition, consolidation and expression of fear extinction in rats. Acute tianeptine attenuated extinction learning as well as the recall of extinction memory, which underscores that acute dosing with the drug could alter learning during EBT. Together these findings provide a new perspective for understanding the mechanism supporting tianeptine's clinical efficacy, as well as its potential influence on CEA-based learning mechanisms.
Collapse
|
165
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|
166
|
Stimpson CD, Barger N, Taglialatela JP, Gendron-Fitzpatrick A, Hof PR, Hopkins WD, Sherwood CC. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Soc Cogn Affect Neurosci 2015; 11:413-22. [PMID: 26475872 DOI: 10.1093/scan/nsv128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/07/2015] [Indexed: 01/18/2023] Open
Abstract
Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees.
Collapse
Affiliation(s)
- Cheryl D Stimpson
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052,
| | - Nicole Barger
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616
| | - Jared P Taglialatela
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144
| | | | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, and Department of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| |
Collapse
|
167
|
Gungor NZ, Yamamoto R, Paré D. Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. J Neurophysiol 2015; 114:2903-11. [PMID: 26400259 DOI: 10.1152/jn.00677.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
It has been proposed that the central amygdala (CeA), particularly its medial sector (CeM), generates brief fear responses to discrete conditioned cues, whereas the bed nucleus of the stria terminalis (BNST) promotes long-lasting, anxiety-like states in response to more diffuse contingencies. Although it is believed that BNST-CeA interactions determine the transition between short- and long-duration responses, the nature of these interactions remains unknown. To shed light on this question, we used a double viral strategy to drive the expression of channelrhodopsin (ChR2) in BNST cells that project to CeA. Next, using patch-clamp recordings in vitro, we investigated the connectivity of infected cells to noninfected cells in BNST and compared the influence of BNST axons on neurons in the medial and lateral (CeL) parts of CeA. CeA-projecting BNST cells were concentrated in the anterolateral (AL) and anteroventral (AV) sectors of BNST. Dense plexuses of BNST axons were observed throughout CeA. In CeA and BNST, light-evoked excitatory postsynaptic potentials accounted for a minority of responses (0-9% of tested cells); inhibition prevailed. The incidence of inhibitory responses was higher in CeM than in CeL (66% and 43% of tested cells, respectively). Within BNST, the connections from CeA-projecting to non-CeA-targeting cells varied as a function of the BNST sector: 50% vs. 9% of tested cells exhibited light-evoked responses in BNST-AL vs. BNST-AV, respectively. Overall, these results suggest that via its projection to CeA, BNST exerts an inhibitory influence over cued fear and that BNST neurons projecting to CeA form contrasting connections in different BNST subnuclei.
Collapse
Affiliation(s)
- Nur Zeynep Gungor
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Ryo Yamamoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
168
|
Jiao X, Beck KD, Myers CE, Servatius RJ, Pang KCH. Altered activity of the medial prefrontal cortex and amygdala during acquisition and extinction of an active avoidance task. Front Behav Neurosci 2015; 9:249. [PMID: 26441578 PMCID: PMC4569748 DOI: 10.3389/fnbeh.2015.00249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/27/2015] [Indexed: 11/25/2022] Open
Abstract
Altered medial prefrontal cortex (mPFC) and amygdala function is associated with anxiety-related disorders. While the mPFC-amygdala pathway has a clear role in fear conditioning, these structures are also involved in active avoidance. Given that avoidance perseveration represents a core symptom of anxiety disorders, the neural substrate of avoidance, especially its extinction, requires better understanding. The present study was designed to investigate the activity, particularly, inhibitory neuronal activity in mPFC and amygdala during acquisition and extinction of lever-press avoidance in rats. Neural activity was examined in the mPFC, intercalated cell clusters (ITCs) lateral (LA), basal (BA) and central (CeA) amygdala, at various time points during acquisition and extinction, using induction of the immediate early gene product, c-Fos. Neural activity was greater in the mPFC, LA, BA, and ITC during the extinction phase as compared to the acquisition phase. In contrast, the CeA was the only region that was more activated during acquisition than during extinction. Our results indicate inhibitory neurons are more activated during late phase of acquisition and extinction in the mPFC and LA, suggesting the dynamic involvement of inhibitory circuits in the development and extinction of avoidance response. Together, these data start to identify the key brain regions important in active avoidance behavior, areas that could be associated with avoidance perseveration in anxiety disorders.
Collapse
Affiliation(s)
- Xilu Jiao
- Neurobehavioral Laboratory, Veterans Bio-Medical Research Institute (VBRI) East Orange, NJ, USA
| | - Kevin D Beck
- Neurobehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System East Orange, NJ, USA ; Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences Newark, NJ, USA
| | - Catherine E Myers
- Neurobehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System East Orange, NJ, USA ; Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences Newark, NJ, USA
| | - Richard J Servatius
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences Newark, NJ, USA ; Syracuse VA Medical Center, Department of Veterans Affairs Syracuse, NY, USA
| | - Kevin C H Pang
- Neurobehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System East Orange, NJ, USA ; Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences Newark, NJ, USA
| |
Collapse
|
169
|
Perusini JN, Fanselow MS. Neurobehavioral perspectives on the distinction between fear and anxiety. ACTA ACUST UNITED AC 2015; 22:417-25. [PMID: 26286652 PMCID: PMC4561408 DOI: 10.1101/lm.039180.115] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/09/2015] [Indexed: 01/17/2023]
Abstract
In this review, we discuss the usefulness of the distinction between fear and anxiety. The clinical use of the labels is ambiguous, often defining one in terms of the other. We first consider what a useful, objective, and scientifically valid definition would entail and then evaluate several fear/anxiety distinctions that have been made in the neurobiological literature. A strong distinction should specify the difference in conditions that lead to fear versus anxiety. Additionally, fear and anxiety should generate distinct sets of behaviors. Ideally, the two states should be supported by distinguishable neuroanatomical circuits. Such a conceptualization would be consistent with the National Institute of Mental Health's Research Domain Criteria (RDoc). The majority of neurobiological approaches to the fear versus anxiety distinction fail to differentiate the two states in terms of behavior, often using the exact same behavioral measures as indicators. Of the two that do, only Predatory Imminence Theory provides a distinction both in terms of cause and effect. Indeed, that approach provides a ready distinction of anxiety, fear, and panic in terms of both antecedent conditions and response selection rules. Additionally, it appeals to distinct neural circuits to generate these modes of action.
Collapse
Affiliation(s)
- Jennifer N Perusini
- Department of Psychiatry, Columbia University, New York, New York 10032, USA Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, New York 10032, USA
| | - Michael S Fanselow
- Department of Psychology, University of California at Los Angeles, Los Angeles, California 90095, USA Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
170
|
Limacher-Burrell AM, Bhagwandin A, Gravett N, Maseko BC, Manger PR. Nuclear organization of the rock hyrax (Procavia capensis) amygdaloid complex. Brain Struct Funct 2015; 221:3171-91. [DOI: 10.1007/s00429-015-1094-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 07/25/2015] [Indexed: 11/27/2022]
|
171
|
Fortaleza EAT, Ferreira-Junior NC, Lagatta DC, Resstel LBM, Corrêa FMA. The medial amygdaloid nucleus modulates the baroreflex activity in conscious rats. Auton Neurosci 2015. [PMID: 26213356 DOI: 10.1016/j.autneu.2015.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The medial amygdaloid nucleus (MeA) is involved in cardiovascular control. In the present study we report the effect of MeA pharmacological ablations caused by bilateral microinjections of the nonselective synaptic blocker CoCl2 on cardiac baroreflex responses in rats. MeA synaptic inhibition evoked by local bilateral microinjection of 100 nL of CoCl2 (1 mM) did not affect blood pressure or heart rate baseline, suggesting no tonic MeA influence on resting cardiovascular parameters. However, 10 min after CoCl2 microinjection into the MeA of male Wistar rats, the reflex bradycardic response evoked by intravenous infusion of phenylephrine was significantly enhanced when compared with the reflex bradycardic response observed before CoCl2. The treatment did not affect the tachycardic responses to the intravenous infusion of sodium nitroprusside (SNP). Baroreflex activity returned to control values 60 min after CoCl2 microinjections, confirming a reversible blockade. The present results indicate an involvement of the MeA in baroreflex modulation, suggesting that synapses in the MeA have an inhibitory influence on the bradycardic component of the baroreflex in conscious rats.
Collapse
Affiliation(s)
| | - Nilson Carlos Ferreira-Junior
- Departments of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP 14090-090, Brazil
| | - Davi Campos Lagatta
- Departments of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP 14090-090, Brazil
| | - Leonardo Barbosa Moraes Resstel
- Departments of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP 14090-090, Brazil
| | - Fernando Morgan Aguiar Corrêa
- Departments of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP 14090-090, Brazil.
| |
Collapse
|
172
|
Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature (Austin) 2015; 2:379-91. [PMID: 27227052 PMCID: PMC4843912 DOI: 10.1080/23328940.2015.1066921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 01/06/2023] Open
Abstract
In the past, studies on stress responses and sleep/wake regulation were performed separately. The discovery of orexin (hypocretin) in 1998, however, dramatically changed the course of research and new findings regarding its role in these complex processes provided a better insight into their interactions and intricacies. Orexin-containing neuronal activity has been found to be minimal during sleep. It increases during the waking period and further increases during the active waking period, which includes stress responses and exploratory behaviors. Autonomic regulation of the body, which includes body temperature, blood flow, and ventilation, is also activated along with the change in vigilance states. Our recent findings suggest that orexin neurons act as a conductor of orchestration for vigilance states, behaviors, and autonomic functions. Body temperature regulation by orexin neurons seems to be mediated by one of its cotransmitters while cardiovascular and respiratory regulation are mediated by orexin itself.
Collapse
Affiliation(s)
- Tomoyuki Kuwaki
- Department of Physiology; Kagoshima University Graduate School of Medical and Dental Sciences ; Kagoshima, Japan
| |
Collapse
|
173
|
Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct 2015; 221:2937-62. [PMID: 26169110 DOI: 10.1007/s00429-015-1081-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
The amygdala and medial prefrontal cortex (mPFC) are highly interconnected telencephalic areas critical for cognitive processes, including associative learning and decision making. Both structures strongly innervate the lateral hypothalamus (LHA), an important component of the networks underlying the control of feeding and other motivated behaviors. The amygdala-prefrontal-lateral hypothalamic system is therefore well positioned to exert cognitive control over behavior. However, the organization of this system is not well defined, particularly the topography of specific circuitries between distinct cell groups within these complex, heterogeneous regions. This study used two retrograde tracers to map the connections from the amygdala (central and basolateral area nuclei) and mPFC to the LHA in detail, and to determine whether amygdalar pathways to the mPFC and to LHA originate from the same or different neurons. One tracer was placed into a distinct mPFC area (dorsal anterior cingulate, prelimbic, infralimbic, or rostromedial orbital), and the other into dorsal or ventral LHA. We report that the central nucleus and basolateral area of the amygdala send projections to distinct LHA regions, dorsal and ventral, respectively. The basolateral area, but not central nucleus, also sends substantial projections to the mPFC, topographically organized rostrocaudal to dorsoventral. The entire mPFC, in turn, projects to the LHA, providing a separate route for potential amygdalar influence following mPFC processing. Nearly all amygdalar projections to the mPFC and to the LHA originated from different neurons suggesting amygdala and amygdala-mPFC processing influence the LHA independently, and the balance of these parallel pathways ultimately controls motivated behaviors.
Collapse
|
174
|
Nesfatin-1 signaling in the basom edial amygdala modulates the gastric distension-sensitive neurons discharge and decreases gastric motility via melanocortin 3/4 receptors and modified by the arcuate nucleus. Eur J Pharmacol 2015; 764:164-172. [PMID: 26144374 DOI: 10.1016/j.ejphar.2015.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/27/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022]
Abstract
Nesfatin-1 is a novel anorexigenic peptide that regulates feeding behavior and gastrointestinal function. This study aimed to explore the effects of nesfatin-1 on gastric distension (GD)-sensitive neurons in the basomedial amygdala (BMA) and the potential mechanism for nesfatin-1 to regulate gastric motility through the arcuate nucleus (Arc). The projection of nerve fiber and expression of nesfatin-1 were observed by retrograde tracing and fluo-immunohistochemistry staining. Single-unit discharges in the BMA were recorded extracellularly, and gastric motility in conscious rats was monitored. Results showed that the nesfatin-1/ fluorogold-double labeled neurons were observed in the Arc. Nesfatin-1 could excite the GD-excitatory neurons and inhibit the GD-inhibitory neurons in the BMA. Gastric motility and gastric emptying were significantly reduced by nesfatin-1 administration to the BMA in a dose-dependent manner. The effects of nesfatin-1 could be partially blocked by melanocortin 3/4 receptors antagonist, SHU9119. Electrical stimulation of the Arc significantly excited the response of GD neurons to nesfatin-1 and promoted gastric motility. Nevertheless, these effects could be mitigated by pretreatment with anti-NUCB2/nesfatin-1 antibody. It is suggested that nesfatin-1 in the BMA plays an important role in decreasing gastric motility and the Arc may be involved in this regulation process.
Collapse
|
175
|
Morisot N, Rouibi K, Contarino A. CRF2 Receptor Deficiency Eliminates the Long-Lasting Vulnerability of Motivational States Induced by Opiate Withdrawal. Neuropsychopharmacology 2015; 40:1990-2000. [PMID: 25672976 PMCID: PMC4839523 DOI: 10.1038/npp.2015.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/06/2015] [Accepted: 02/08/2015] [Indexed: 01/07/2023]
Abstract
Vulnerability to stressful life events is a hallmark of drug dependence that may persist long after cessation of drug intake and dramatically fuel key clinical features, such as deregulated up-shifted motivational states and craving. However, to date, no effective therapy is available for reducing vulnerability to stressful events in former drug users and drug-dependent patients, mostly because of poor knowledge of the mechanisms underlying it. In this study, we report that genetic inactivation of the stress-responsive corticotropin-releasing factor receptor-2 (CRF2-/-) completely eliminates the reemergence of increased nonrewarded nose-pokes, reflecting up-shifted motivational states, triggered by ethological environmental stressors long after cessation of morphine administration in mice. Accordingly, CRF2 receptor deficiency completely abolishes the increase in biomarkers of synthesis of major brain motivational substrates, such as ventral tegmental area (VTA) dopamine (DA) and amygdala γ-aminobutyric acid (GABA) systems, associated with the stress-induced reemergence of up-shifted motivational states long after opiate withdrawal. Nevertheless, neither CRF2 receptor deficiency nor long-term opiate withdrawal affects amygdala CRF or hypothalamus CRF expression, indicating preserved brain stress-coping systems. Moreover, CRF2 receptor deficiency does not influence the locomotor or the anxiety-like effect of long-term opiate withdrawal. Thus, the present results reveal an essential and specific role for the CRF2 receptor in the stress-induced reemergence of up-shifted motivational states and related alterations in brain motivational systems long after opiate withdrawal. These findings suggest new strategies for the treatment of the severe and long-lasting vulnerability that inexorably follows drug withdrawal and hinder drug abstinence.
Collapse
Affiliation(s)
- Nadège Morisot
- Université Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Khalil Rouibi
- Université Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Angelo Contarino
- Université Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France,Université Bordeaux, INCIA, UMR 5287, 146 rue Léo Saignat, F-33076 Bordeaux, Cedex France, Tel: +33 5 57 57 95 27, Fax: +33 5 56 90 14 21, E-mail:
| |
Collapse
|
176
|
Shang C, Liu Z, Chen Z, Shi Y, Wang Q, Liu S, Li D, Cao P. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 2015; 348:1472-7. [DOI: 10.1126/science.aaa8694] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
177
|
Wilson MA, Grillo CA, Fadel JR, Reagan LP. Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala. Neurobiol Stress 2015; 1:195-208. [PMID: 26844236 PMCID: PMC4721288 DOI: 10.1016/j.ynstr.2015.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
Neuroplasticity may be defined as the ability of the central nervous system (CNS) to respond to changes in the internal and external environment and it is well established that some stimuli have the ability to facilitate or impair neuroplasticity depending on the pre-existing milieu. A classic example of a stimulus that can both facilitate and impair neuroplasticity is stress. Indeed, the ability of CNS to respond to acute stress is often dependent upon the prior stress history of the individual. While responses to acute stress are often viewed as adaptive in nature, stress reactivity in subjects with prior chronic stress experiences are often linked to neuropsychiatric disorders, including major depressive disorder, post-traumatic stress disorder (PTSD) and anxiety. In rodent studies, chronic stress exposure produces structural and functional alterations in the hippocampus and medial prefrontal cortex that are consistent across different types of stress paradigms. Conversely, the amygdala appears to exhibit differential structural and functional responses to stress that are dependent on a variety of factors, including the type of stressor performed and the duration of the stress paradigm. This is most evident in output measures including morphological analysis of amygdala neurons, measurement of glutamatergic tone in amygdalar subdivisions and the analysis of amygdala-centric behaviors. Accordingly, this review will provide an overview of the effects of stress on the structural and functional plasticity of the rodent amygdala, especially in relation to the differential effects of repeated or chronic stress paradigms on dendritic architecture, neurochemistry of the glutamatergic system and behavior.
Collapse
Affiliation(s)
- Marlene A. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Claudia A. Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
- Corresponding author. Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, D40, Columbia, SC 29208, USA.
| |
Collapse
|
178
|
Stress, trauma and PTSD: translational insights into the core synaptic circuitry and its modulation. Brain Struct Funct 2015; 221:2401-26. [PMID: 25985955 DOI: 10.1007/s00429-015-1056-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/30/2015] [Indexed: 12/19/2022]
Abstract
Evidence is considered as to whether behavioral criteria for diagnosis of post-traumatic stress disorder (PTSD) are applicable to that of traumatized animals and whether the phenomena of acquisition, extinction and reactivation of fear behavior in animals are also successfully applicable to humans. This evidence suggests an affirmative answer in both cases. Furthermore, the deficits in gray matter found in PTSD, determined with magnetic resonance imaging, are also observed in traumatized animals, lending neuropsychological support to the use of animals to probe what has gone awry in PTSD. Such animal experiments indicate that the core synaptic circuitry mediating behavior following trauma consists of the amygdala, ventral-medial prefrontal cortex and hippocampus, all of which are modulated by the basal ganglia. It is not clear if this is the case in PTSD as the observations using fMRI are equivocal and open to technical objections. Nevertheless, the effects of the basal ganglia in controlling glutamatergic synaptic transmission through dopaminergic and serotonergic synaptic mechanisms in the core synaptic circuitry provides a ready explanation for why modifying these mechanisms delays extinction in animal models and predisposes towards PTSD. In addition, changes of brain-derived neurotrophic factor (BDNF) in the core synaptic circuitry have significant effects on acquisition and extinction in animal experiments with single nucleotide polymorphisms in the BDNF gene predisposing to PTSD.
Collapse
|
179
|
Pang YY, Chen XY, Xue Y, Han XH, Chen L. Effects of secretin on neuronal activity and feeding behavior in central amygdala of rats. Peptides 2015; 66:1-8. [PMID: 25698232 DOI: 10.1016/j.peptides.2015.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/15/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that secretin and secretin receptors are expressed in central amygdala neurons. By using both in vivo extracellular recording as well as behavioral test, we investigated the direct electrophysiological effects of secretin in the central amygdala and its involvement in feeding behavior. Micro-pressure ejection of secretin increased the spontaneous firing rate by 104.22±26.18% in 13 out of the 27 central amygdala neurons. In other 6 out of the 27 neurons, secretin decreased the firing rate by 68.80±12.10%. Firing patter analysis showed that secretin did not change the firing pattern significantly. Further electrophysiological recordings revealed that secretin decreased the firing rate of glucose-sensitive neurons. In behavioral test, microinjection of secretin into the central amygdala significantly reduced cumulative food intake through cAMP-activated protein kinase activation. Based on the present electrophysiological and behavioral findings, we hypothesized that secretin may suppress food intake by its modulation of spontaneous firing of central amygdala neurons.
Collapse
Affiliation(s)
- Ya-Yan Pang
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, China
| | - Xin-Yi Chen
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yan Xue
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, China
| | - Xiao-Hua Han
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, China
| | - Lei Chen
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
180
|
Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease. Neuropharmacology 2015; 95:181-91. [PMID: 25797491 DOI: 10.1016/j.neuropharm.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 11/21/2022]
Abstract
Although the medial subdivision of the central nucleus of the amygdala (CeM) and serotonin-1A (5-HT1A) receptors are involved in the regulation of anxiety, their roles in Parkinson's disease (PD)-associated anxiety are still unknown. Here we assessed the importance of CeM 5-HT1A receptors for anxiety in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle (MFB). The lesion induced anxiety-like behaviors, increased the firing rate and burst-firing pattern of CeM γ-aminobutyric acid (GABA) neurons, as well as decreased dopamine (DA) levels in the striatum, medial prefrontal cortex (mPFC), amygdala and ventral part of hippocampus (vHip). Intra-CeM injection of the selective 5-HT1A receptor agonist 8-OH-DPAT produced anxiolytic effects in the lesioned rats, and decreased the firing rate of CeM GABAergic neurons in two groups of rats. Compared to sham-operated rats, the duration of the inhibitory effect on the firing rate of GABAergic neurons was shortened in the lesioned rats. The injection increased DA levels in the mPFC and amygdala in two groups of rats and the vHip in the lesioned rats, and increased 5-HT level in the lesioned rats, whereas it decreased NA levels in the mPFC in two groups of rats and the vHip in the lesioned rats. Moreover, the mean density of 5-HT1A receptor and GABA double-labeled neurons in the CeM was reduced after the lesioning. These results suggest that activation of CeM 5-HT1A receptor produces anxiolytic effects in the 6-OHDA-lesioned rats, which involves decreased firing rate of the GABAergic neurons, and changed monoamine levels in the limbic and limbic-related brain regions.
Collapse
|
181
|
Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs. Epilepsy Res 2015; 111:33-44. [PMID: 25769371 DOI: 10.1016/j.eplepsyres.2015.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/26/2014] [Accepted: 01/14/2015] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is a medical emergency associated with a high rate of mortality if not treated promptly. Exogenous and endogenous cannabinoids have been shown to possess anticonvulsant properties both in vivo and in vitro. Here we study the influence of endocannabinoid metabolism on the development of kainic acid-induced SE in guinea pigs. For this purpose, the inhibitors of endocannabinoid transport, AM404, and enzymatic (fatty acid amide hydrolase) degradation, URB597, were applied. Cannabinoid CB1 receptor antagonist, AM251, was also tested. Animal behavior as well as local electric field potentials in four structures: medial septum, hippocampus, entorhinal cortex and amygdala were analyzed when AM404 (120nmol), URB597 (4.8nmol) or AM251 (20nmol) were administrated alone or together with 0.4μg of kainic acid. All substances were injected i.c.v. AM404, URB597 or AM251 administered alone did not alter markedly local field potentials of all four studied structures in the long-term compared with their basal activity. AM404 and URB597 significantly alleviated kainic acid-induced SE, decreasing behavioral manifestations, duration of seizure events and SE in general without changing the amplitude of local field potentials. AM251 did not produce distinct effects on SE in terms of our experimental paradigm. There was no apparent change of the seizure initiation pattern when kainic acid was coadministrated with AM404, URB597 or AM251. The present study provides electrophysiologic and behavioral evidences that inhibition of endocannabinoid metabolism plays a protective role against kainic acid-induced SE and may be employed for therapeutic purposes. Further investigations of the influences of cannabinoid-related compounds on SE genesis and especially epileptogenesis are required.
Collapse
|
182
|
Abstract
Lines of evidence coming from many branches of neuroscience indicate that anxiety disorders arise from a dysfunction in the modulation of brain circuits which regulate emotional responses to potentially threatening stimuli. The concept of anxiety disorders as a disturbance of emotional response regulation is a useful one as it allows anxiety to be explained in terms of a more general model of aberrant salience and also because it identifies avenues for developing psychological, behavioral, and pharmacological strategies for the treatment of anxiety disorder. These circuits involve bottom-up activity from the amygdala, indicating the presence of potentially threatening stimuli, and top-down control mechanisms originating in the prefrontal cortex, signaling the emotional salience of stimuli. Understanding the factors that control cortical mechanisms may open the way to identification of more effective cognitive behavioral strategies for managing anxiety disorders. The brain circuits in the amygdala are thought to comprise inhibitory networks of γ-aminobutyric acid-ergic (GABAergic) interneurons and this neurotransmitter thus plays a key role in the modulation of anxiety responses both in the normal and pathological state. The presence of allosteric sites on the GABAA receptor allows the level of inhibition of neurons in the amygdala to be regulated with exquisite precision, and these sites are the molecular targets of the principal classes of anxiolytic drugs. Changes in the levels of endogenous modulators of these allosteric sites as well as changes in the subunit composition of the GABAA receptor may represent mechanisms whereby the level of neuronal inhibition is downregulated in pathological anxiety states. Neurosteroids are synthesized in the brain and act as allosteric modulators of the GABAA receptor. Since their synthesis is itself regulated by stress and by anxiogenic stimuli, targeting the neurosteroid-GABAA receptor axis represents an attractive target for the modulation of anxiety.
Collapse
Affiliation(s)
- Philippe Nuss
- Department of Psychiatry, Hôpital St Antoine, AP-HP, Paris, France ; UMR 7203, INSERM ERL 1057 - Bioactive Molecules Laboratory, Pierre and Marie Curie University, Paris, France
| |
Collapse
|
183
|
Grillo C, Risher M, Macht V, Bumgardner A, Hang A, Gabriel C, Mocaër E, Piroli G, Fadel J, Reagan L. Repeated restraint stress-induced atrophy of glutamatergic pyramidal neurons and decreases in glutamatergic efflux in the rat amygdala are prevented by the antidepressant agomelatine. Neuroscience 2015; 284:430-443. [DOI: 10.1016/j.neuroscience.2014.09.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022]
|
184
|
Kim Y, Venkataraju KU, Pradhan K, Mende C, Taranda J, Turaga SC, Arganda-Carreras I, Ng L, Hawrylycz MJ, Rockland KS, Seung HS, Osten P. Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Rep 2014; 10:292-305. [PMID: 25558063 DOI: 10.1016/j.celrep.2014.12.014] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/21/2014] [Accepted: 12/05/2014] [Indexed: 12/22/2022] Open
Abstract
Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.
Collapse
Affiliation(s)
- Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Kith Pradhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Carolin Mende
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Julian Taranda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Srinivas C Turaga
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Ignacio Arganda-Carreras
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | | | - Kathleen S Rockland
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Boston University School of Medicine, Boston, MA 02118, USA
| | - H Sebastian Seung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
185
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
186
|
Encoding of fear learning and memory in distributed neuronal circuits. Nat Neurosci 2014; 17:1644-54. [PMID: 25413091 DOI: 10.1038/nn.3869] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022]
Abstract
How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory.
Collapse
|
187
|
Raio CM, Phelps EA. The influence of acute stress on the regulation of conditioned fear. Neurobiol Stress 2014; 1:134-46. [PMID: 25530986 PMCID: PMC4268774 DOI: 10.1016/j.ynstr.2014.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/24/2022] Open
Abstract
Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology.
Collapse
Affiliation(s)
- Candace M Raio
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Elizabeth A Phelps
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA; Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| |
Collapse
|
188
|
Wernecke KEA, Vincenz D, Storsberg S, D'Hanis W, Goldschmidt J, Fendt M. Fox urine exposure induces avoidance behavior in rats and activates the amygdalar olfactory cortex. Behav Brain Res 2014; 279:76-81. [PMID: 25449843 DOI: 10.1016/j.bbr.2014.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
Predator odors represent a group of biologically-relevant chemosignals called kairomones. Kairomones enable prey animals to recognize potential predatory threats in their environment and to initiate appropriate defensive responses. Although the behavioral repertoire of anti-predatory responses (e.g. avoidance, freezing, risk assessment) has been investigated extensively, our knowledge about the neural network mediating these innate fear responses is rather limited. In the present study, the GABAA agonist muscimol was bilaterally injected (2.6 nmol/0.3 μl) into the amygdalar olfactory cortex (AOC), a brain area that receives massive olfactory input from both olfactory systems and is strongly interconnected with the medial hypothalamic defense circuit. Temporary inactivation of the AOC substantially disrupted avoidance behavior of rats to fox urine that is strongly avoided under control conditions (saline injections). Taken together, these results demonstrate that the AOC is critically involved in fox urine-induced fear behavior. This suggests that the AOC is part of a brain fear circuit that mediates innate fear responses toward predatory odors.
Collapse
Affiliation(s)
- K E A Wernecke
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - D Vincenz
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - S Storsberg
- Institute for Anatomy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - W D'Hanis
- Institute for Anatomy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - J Goldschmidt
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - M Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
189
|
Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 2014; 158:1348-1361. [PMID: 25215491 DOI: 10.1016/j.cell.2014.07.049] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
Abstract
Animals display a range of innate social behaviors that play essential roles in survival and reproduction. While the medial amygdala (MeA) has been implicated in prototypic social behaviors such as aggression, the circuit-level mechanisms controlling such behaviors are not well understood. Using cell-type-specific functional manipulations, we find that distinct neuronal populations in the MeA control different social and asocial behaviors. A GABAergic subpopulation promotes aggression and two other social behaviors, while neighboring glutamatergic neurons promote repetitive self-grooming, an asocial behavior. Moreover, this glutamatergic subpopulation inhibits social interactions independently of its effect to promote self-grooming, while the GABAergic subpopulation inhibits self-grooming, even in a nonsocial context. These data suggest that social versus repetitive asocial behaviors are controlled in an antagonistic manner by inhibitory versus excitatory amygdala subpopulations, respectively. These findings provide a framework for understanding circuit-level mechanisms underlying opponency between innate behaviors, with implications for their perturbation in psychiatric disorders.
Collapse
|
190
|
Maldonado-Devincci AM, Cook JB, O'Buckley TK, Morrow DH, McKinley RE, Lopez MF, Becker HC, Morrow AL. Chronic intermittent ethanol exposure and withdrawal alters (3α,5α)-3-hydroxy-pregnan-20-one immunostaining in cortical and limbic brain regions of C57BL/6J mice. Alcohol Clin Exp Res 2014; 38:2561-71. [PMID: 25293837 DOI: 10.1111/acer.12530] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/15/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP; allopregnanolone) has been studied during withdrawal from ethanol (EtOH) in humans, rats, and mice. Serum 3α,5α-THP levels decreased, and brain levels were not altered following acute EtOH administration (2 g/kg) in male C57BL/6J mice; however, the effects of chronic intermittent ethanol (CIE) exposure on 3α,5α-THP levels have not been examined. Given that CIE exposure changes subsequent voluntary EtOH drinking in a time-dependent fashion following repeated cycles of EtOH exposure, we conducted a time-course analysis of CIE effects on 3α,5α-THP levels in specific brain regions known to influence drinking behavior. METHODS Adult male C57BL/6J mice were exposed to 4 cycles of CIE to induce EtOH dependence. All mice were sacrificed and perfused at 1 of 2 time points, 8 or 72 hours following the final exposure cycle. Free-floating brain sections (40 μm; 3 to 5 sections/region/animal) were immunostained and analyzed to determine relative levels of cellular 3α,5α-THP. RESULTS Withdrawal from CIE exposure produced time-dependent and region-specific effects on immunohistochemical detection of 3α,5α-THP levels across cortical and limbic brain regions. A transient reduction in 3α,5α-THP immunoreactivity was observed in the central nucleus of the amygdala 8 hours after withdrawal from CIE (-31.4 ± 9.3%). Decreases in 3α,5α-THP immunoreactivity were observed 72 hours following withdrawal in the medial prefrontal cortex (-25.0 ± 9.3%), nucleus accumbens core (-29.9 ± 6.6%), and dorsolateral striatum (-18.5 ± 6.0%), while an increase was observed in the CA3 pyramidal cell layer of the hippocampus (+42.8 ± 19.5%). Sustained reductions in 3α,5α-THP immunoreactivity were observed at both time points in the lateral amygdala (8 hours -28.3 ± 12.8%; 72 hours -27.5 ± 12.4%) and in the ventral tegmental area (8 hours -26.5 ± 9.9%; 72 hours -31.6 ± 13.8%). CONCLUSIONS These data suggest that specific neuroadaptations in 3α,5α-THP levels may be present in regions of brain that mediate anxiety, stress, and reinforcement relevant to EtOH dependence. The changes that occur at different time points likely modulate neurocircuitry involved in EtOH withdrawal as well as the elevated drinking observed after CIE exposure.
Collapse
Affiliation(s)
- Antoniette M Maldonado-Devincci
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
191
|
McCue MG, LeDoux JE, Cain CK. Medial amygdala lesions selectively block aversive pavlovian-instrumental transfer in rats. Front Behav Neurosci 2014; 8:329. [PMID: 25278858 PMCID: PMC4166994 DOI: 10.3389/fnbeh.2014.00329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/03/2014] [Indexed: 11/13/2022] Open
Abstract
Pavlovian conditioned stimuli (CSs) play an important role in the reinforcement and motivation of instrumental active avoidance (AA). Conditioned threats can also invigorate ongoing AA responding [aversive Pavlovian-instrumental transfer (PIT)]. The neural circuits mediating AA are poorly understood, although lesion studies suggest that lateral, basal, and central amygdala nuclei, as well as infralimbic prefrontal cortex, make key, and sometimes opposing, contributions. We recently completed an extensive analysis of brain c-Fos expression in good vs. poor avoiders following an AA test (Martinez et al., 2013, Learning and Memory). This analysis identified medial amygdala (MeA) as a potentially important region for Pavlovian motivation of instrumental actions. MeA is known to mediate defensive responding to innate threats as well as social behaviors, but its role in mediating aversive Pavlovian-instrumental interactions is unknown. We evaluated the effect of MeA lesions on Pavlovian conditioning, Sidman two-way AA conditioning (shuttling) and aversive PIT in rats. Mild footshocks served as the unconditioned stimulus in all conditioning phases. MeA lesions had no effect on AA but blocked the expression of aversive PIT and 22 kHz ultrasonic vocalizations in the AA context. Interestingly, MeA lesions failed to affect Pavlovian freezing to discrete threats but reduced freezing to contextual threats when assessed outside of the AA chamber. These findings differentiate MeA from lateral and central amygdala, as lesions of these nuclei disrupt Pavlovian freezing and aversive PIT, but have opposite effects on AA performance. Taken together, these results suggest that MeA plays a selective role in the motivation of instrumental avoidance by general or uncertain Pavlovian threats.
Collapse
Affiliation(s)
- Margaret G McCue
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research , Orangeburg, NY , USA
| | - Joseph E LeDoux
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research , Orangeburg, NY , USA ; Center for Neural Science, New York University , New York, NY , USA
| | - Christopher K Cain
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research , Orangeburg, NY , USA ; Child and Adolescent Psychiatry, New York University Medical School , New York, NY , USA
| |
Collapse
|
192
|
Guanfacine modulates the emotional biasing of amygdala-prefrontal connectivity for cognitive control. Eur Neuropsychopharmacol 2014; 24:1444-53. [PMID: 25059532 PMCID: PMC4146697 DOI: 10.1016/j.euroneuro.2014.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 04/30/2014] [Accepted: 06/24/2014] [Indexed: 11/23/2022]
Abstract
Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders.
Collapse
|
193
|
Abiri D, Douglas CE, Calakos KC, Barbayannis G, Roberts A, Bauer EP. Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala. Behav Brain Res 2014; 271:234-9. [PMID: 24946071 PMCID: PMC5126972 DOI: 10.1016/j.bbr.2014.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/14/2014] [Accepted: 06/09/2014] [Indexed: 02/05/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is released during periods of anxiety and modulates learning and memory formation. One region with particularly dense concentrations of CRF receptors is the basolateral nucleus of the amygdala (BLA), a critical structure for both Pavlovian fear conditioning and fear extinction. While CRF has the potential to modify amygdala-dependent learning, its effect on fear extinction has not yet been assessed. In the present study, we examined the modulatory role of CRF on within-session extinction and fear extinction consolidation. Intra-BLA infusions of the CRF binding protein ligand inhibitor CRF(6-33) which increases endogenous levels of free CRF, or intra-BLA infusions of exogenous CRF made prior to fear extinction learning did not affect either fear expression or within-session extinction learning. However, when these animals were tested twenty-four hours later, drug free, they showed impairments in extinction memory. Conversely, intra-BLA infusions of the CRF receptor antagonist α-helical CRF(9-41) enhanced memory of fear extinction. These results suggest that increased CRF levels within the BLA at the time of fear extinction learning actively impair the consolidation of long-term fear extinction.
Collapse
Affiliation(s)
- Dina Abiri
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Christina E Douglas
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Katina C Calakos
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Georgia Barbayannis
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Andrea Roberts
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Elizabeth P Bauer
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States.
| |
Collapse
|
194
|
Abstract
Opioids are commonly used for pain relief, but their strong rewarding effects drive opioid misuse and abuse. How pain affects the liability of opioid abuse is unknown at present. In this study, we identified an epigenetic regulating cascade activated by both pain and the opioid morphine. Both persistent pain and repeated morphine upregulated the transcriptional regulator MeCP2 in mouse central nucleus of the amygdala (CeA). Chromatin immunoprecipitation analysis revealed that MeCP2 bound to and repressed the transcriptional repressor histone dimethyltransferase G9a, reducing G9a-catalyzed repressive mark H3K9me2 in CeA. Repression of G9a activity increased expression of brain-derived neurotrophic factor (BDNF). Behaviorally, persistent inflammatory pain increased the sensitivity to acquiring morphine-induced, reward-related behavior of conditioned place preference in mice. Local viral vector-mediated MeCP2 overexpression, Cre-induced G9a knockdown, and CeA application of BDNF mimicked, whereas MeCP2 knockdown inhibited, the pain effect. These results suggest that MeCP2 directly represses G9a as a shared mechanism in central amygdala for regulation of emotional responses to pain and opioid reward, and for their behavioral interaction.
Collapse
|
195
|
Costanzi M, Saraulli D, Cannas S, D'Alessandro F, Florenzano F, Rossi-Arnaud C, Cestari V. Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning. Front Behav Neurosci 2014; 8:279. [PMID: 25202244 PMCID: PMC4142342 DOI: 10.3389/fnbeh.2014.00279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/29/2014] [Indexed: 12/20/2022] Open
Abstract
Fear allows organisms to cope with dangerous situations and remembering these situations has an adaptive role preserving individuals from injury and death. However, recalling traumatic memories can induce re-experiencing the trauma, thus resulting in a maladaptive fear. A failure to properly regulate fear responses has been associated with anxiety disorders, like Posttraumatic Stress Disorder (PTSD). Thus, re-establishing the capability to regulate fear has an important role for its adaptive and clinical relevance. Strategies aimed at erasing fear memories have been proposed, although there are limits about their efficiency in treating anxiety disorders. To re-establish fear regulation, here we propose a new approach, based on the re-evaluation of the aversive value of traumatic experience. Mice were submitted to a contextual-fear-conditioning paradigm in which a neutral context was paired with an intense electric footshock. Three weeks after acquisition, conditioned mice were treated with a less intense footshock (pain threshold). The effectiveness of this procedure in reducing fear expression was assessed in terms of behavioral outcomes related to PTSD (e.g., hyper-reactivity to a neutral tone, anxiety levels in a plus maze task, social avoidance, and learning deficits in a spatial water maze) and of amygdala activity by evaluating c-fos expression. Furthermore, a possible role of lateral orbitofrontal cortex (lOFC) in mediating the behavioral effects induced by the re-evaluation procedure was investigated. We observed that this treatment: (i) significantly mitigates the abnormal behavioral outcomes induced by trauma; (ii) persistently attenuates fear expression without erasing contextual memory; (iii) prevents fear reinstatement; (iv) reduces amygdala activity; and (v) requires an intact lOFC to be effective. These results suggest that an effective strategy to treat pathological anxiety should address cognitive re-evaluation of the traumatic experience mediated by lOFC.
Collapse
Affiliation(s)
- Marco Costanzi
- Cell Biology and Neurobiology Institute (IBCN), CNR/IRCCS Fondazione Santa Lucia Rome, Italy ; Department of Human Sciences, Libera Università Maria SS. Assunta Rome, Italy
| | - Daniele Saraulli
- Cell Biology and Neurobiology Institute (IBCN), CNR/IRCCS Fondazione Santa Lucia Rome, Italy ; Department of Psychology, Sapienza University Rome, Italy
| | - Sara Cannas
- Cell Biology and Neurobiology Institute (IBCN), CNR/IRCCS Fondazione Santa Lucia Rome, Italy
| | - Francesca D'Alessandro
- Cell Biology and Neurobiology Institute (IBCN), CNR/IRCCS Fondazione Santa Lucia Rome, Italy ; Department of Human Sciences, Libera Università Maria SS. Assunta Rome, Italy
| | - Fulvio Florenzano
- Confocal Microscopy Unit, EBRI-European Brain Research Institute Rome, Italy
| | | | - Vincenzo Cestari
- Cell Biology and Neurobiology Institute (IBCN), CNR/IRCCS Fondazione Santa Lucia Rome, Italy ; Department of Psychology and "Daniel Bovet" Center, Sapienza University Rome, Italy
| |
Collapse
|
196
|
Morgan JT, Amaral DG. Comparative analysis of the dendritic organization of principal neurons in the lateral and central nuclei of the rhesus macaque and rat amygdala. J Comp Neurol 2014; 522:689-716. [PMID: 24114951 DOI: 10.1002/cne.23467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/23/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022]
Abstract
The amygdala plays a critical role in emotional processing and has been implicated in the etiology of numerous psychiatric disorders. It is an evolutionarily ancient structure that is enlarged in primates relative to rodents. Certain amygdala nuclei, such as the lateral nucleus, show relatively greater phylogenetic expansion than other nuclei. However, it is unknown whether there is also differential alteration in neuronal features. To address this question, we examined the dendritic arbors of principal neurons, visualized by using the Golgi method, in the lateral and central nuclei of young adult rhesus macaques and rats. Total dendritic length is greater in the macaque than in the rat. Dendritic trees are increased by 250% in length in the lateral nucleus of the monkey compared with the rat (6,009 μm vs. 2,473 μm); dendritic tree length in the central nucleus is increased by 50% (1,786 μm vs. 1,232 μm). Somal volume is increased 62% between species in the lateral nucleus and 48% in the central nucleus. Spine density is lower on macaque lateral nucleus dendrites compared with rat (-22%) but equivalent in the central nucleus. Spines are equally long in the lateral nucleus of rat and macaque, but spines are longer by about 20% in the central nucleus of the macaque. The alterations in dendritic structure that we observed between the two species suggest differences in the number and spacing of inputs into these nuclei that undoubtedly influence amygdala function.
Collapse
Affiliation(s)
- John T Morgan
- Department of Psychiatry and Behavioral Sciences, The M.I.N.D. Institute, Center for Neuroscience and California National Primate Research Center, University of California, Davis, Sacramento, California, 95817
| | | |
Collapse
|
197
|
Abstract
We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning.
Collapse
|
198
|
Cai H, Haubensak W, Anthony TE, Anderson DJ. Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 2014; 17:1240-8. [PMID: 25064852 PMCID: PMC4146747 DOI: 10.1038/nn.3767] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/22/2014] [Indexed: 12/12/2022]
Abstract
Feeding can be inhibited by multiple cues, including those associated with satiety, sickness or unpalatable food. How such anorexigenic signals inhibit feeding at the neural circuit level is not completely understood. Although some inhibitory circuits have been identified, it is not yet clear whether distinct anorexigenic influences are processed in a convergent or parallel manner. The amygdala central nucleus (CEA) has been implicated in feeding control, but its role is controversial. The lateral subdivision of CEA (CEl) contains a subpopulation of GABAergic neurons that are marked by protein kinase C-δ (PKC-δ). We found that CEl PKC-δ(+) neurons in mice were activated by diverse anorexigenic signals in vivo, were required for the inhibition of feeding by such signals and strongly suppressed food intake when activated. They received presynaptic inputs from anatomically distributed neurons activated by different anorexigenic agents. Our data suggest that CEl PKC-δ(+) neurons constitute an important node that mediates the influence of multiple anorexigenic signals.
Collapse
Affiliation(s)
- Haijiang Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Wulf Haubensak
- 1] Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA. [2]
| | - Todd E Anthony
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - David J Anderson
- 1] Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA. [2] Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
199
|
Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. Mol Psychiatry 2014; 19:811-22. [PMID: 24589888 PMCID: PMC4074447 DOI: 10.1038/mp.2014.12] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/21/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023]
Abstract
The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress.
Collapse
|
200
|
Amygdala responses to valence and its interaction by arousal revealed by MEG. Int J Psychophysiol 2014; 93:121-33. [DOI: 10.1016/j.ijpsycho.2013.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/17/2013] [Accepted: 05/10/2013] [Indexed: 11/24/2022]
|