151
|
Dean B, Thomas N, Lai CY, Chen WJ, Scarr E. Changes in cholinergic and glutamatergic markers in the striatum from a sub-set of subjects with schizophrenia. Schizophr Res 2015; 169:83-88. [PMID: 26545297 DOI: 10.1016/j.schres.2015.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND/OBJECTIVES Having separated a sub-group of people with schizophrenia based on a marked loss of cortical [(3)H]pirenzepine binding (MRDS); we wished to determine if MRDS had lower levels of [(3)H]pirenzepine and other muscarinic receptor antagonist binding to the striatum and if this was due to loss of pre- or post-synaptic neurons or glia measured using surrogate markers (25 kilodalton synaptosomal-associated protein (SNAP 25), postsynaptic density protein 95 (PSD 95), glial fibrillary acidic protein (GFAP) 41/43) of cell number. METHODS [(3)H]pirenzepine, [(3)H]AF-DX 384 and [(3)H]4-DAMP binding to the striatum from 37 subjects with schizophrenia (19 MRDS) and 20 controls as well as SNAP 25, PSD 95 and GFAP 41/43 in crude particulate membrane were measured. RESULTS [(3)H]pirenzepine and [(3)H]AF-DX 384 binding to the striatum were significantly lower in schizophrenia due to lower binding of both radioligands in the striatum from MRDS. Levels of PSD 95 were higher in schizophrenia, predominantly due to higher levels in MRDS. CONCLUSIONS Our data suggest muscarinic M1 ([(3)H]pirenzepine) and M2 and/or M4 receptors ([(3)H]AF-DX 384) are lower in the striatum from MRDS which could mediate inappropriate adaption to internal and external cues which, in turn, would affect motivation, cognition and motor control. Increased levels of PSD 95 could indicate increased post-synaptic boutons or changes in NMDA receptor-mediated signalling in MRDS.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia; The Department of Psychiatry, The University of Melbourne, Parkville, Australia.
| | - Natalie Thomas
- The Department of Psychiatry, The University of Melbourne, Parkville, Australia; The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| | - Chi-Yu Lai
- The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia; The Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Genetic Epidemiologic Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei J Chen
- The Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Genetic Epidemiologic Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Australia; The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| |
Collapse
|
152
|
Zhou X, Zhu Q, Han X, Chen R, Liu Y, Fan H, Yin X. Quantitative-profiling of neurotransmitter abnormalities in the disease progression of experimental diabetic encephalopathy rat. Can J Physiol Pharmacol 2015; 93:1007-13. [PMID: 26426748 DOI: 10.1139/cjpp-2015-0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Diabetic encephalopathy (DE) is one of the most prevalent chronic complications of diabetes mellitus (DM), with neither effective prevention nor proven therapeutic regimen. This study aims to uncover the potential dysregulation pattern of the neurotransmitters in a rat model of streptozotocin (STZ)-induced experimental DE. For that purpose, male Sprague–Dawley (SD) rats were treated with a single intraperitoneal injection of STZ. Cognitive performance was detected with the Morris water maze (MWM) test. Serum, cerebrospinal fluid (CSF), and brain tissues were collected to measure the levels of neurotransmitters. Compared with the control rats, the acetylcholine (ACh) levels in serum, CSF, hippocampus, and cortex were all significantly down-regulated as early as 6 weeks in the STZ treatment group. In contrast, the glutamate (Glu) levels were decreased in CSF and the hippocampus, but unaffected in the serum and cortex of STZ-treated rats. As for γ-aminobutyric acid (GABA), it was down-regulated in serum, but up-regulated in CSF, hippocampus, and the cortex in the STZ-treated group. The mRNA expressions of neurotransmitter-related rate limiting enzymes (including AChE, GAD1, and GAD2) and pro-inflammatory cytokines (including IL-1β and TNF-α) were all increased in the DE rats. Our data suggest that DM induces isoform-dependent and tissue-specific neurotransmitter abnormalities, and that neuroinflammation may underlay the nervous system dysfunction observed in the progression of DE.
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Qiuxiang Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Xiaowen Han
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Renguo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Yaowu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Huaihai West Road 99, 221004 Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| |
Collapse
|
153
|
Yue W, Li Y, Zhang T, Jiang M, Qian Y, Zhang M, Sheng N, Feng S, Tang K, Yu X, Shu Y, Yue C, Jing N. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer's Disease in Mouse Models. Stem Cell Reports 2015; 5:776-790. [PMID: 26489896 PMCID: PMC4649256 DOI: 10.1016/j.stemcr.2015.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
Degeneration of basal forebrain cholinergic neurons (BFCNs) is associated with cognitive impairments of Alzheimer’s disease (AD), implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs) are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD. Mouse and human ESCs differentiate into basal forebrain cholinergic neurons (BFCNs) ESC-derived BFCNs exhibit functional properties in vitro and transplanted in vivo ESC-derived BFCNs functionally integrate into the basal forebrain of AD mice The AD model mice grafted with BFCNs exhibit improvements in cognitive abilities
Collapse
Affiliation(s)
- Wei Yue
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanyuan Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Man Jiang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Qian
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nengyin Sheng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Su Feng
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Ke Tang
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiang Yu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yousheng Shu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunmei Yue
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
154
|
Golden EC, Josephs KA. Minds on replay: musical hallucinations and their relationship to neurological disease. Brain 2015; 138:3793-802. [PMID: 26446167 DOI: 10.1093/brain/awv286] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/09/2015] [Indexed: 11/14/2022] Open
Abstract
The phenomenon of musical hallucinations, in which individuals perceive music in the absence of an external auditory stimulus, has been described sparingly in the literature through small case reports and series. Musical hallucinations have been linked to multiple associated conditions, including psychiatric and neurologic disease, brain lesions, drug effect, and hearing impairment. This study aimed to review the demographics of subjects with musical hallucinations and to determine the prevalence of neurological disorders, particularly neurodegenerative disease. Through the Mayo medical record, 393 subjects with musical hallucinations were identified and divided into five categories based on comorbid conditions that have been associated with musical hallucinations: neurological, psychiatric, structural, drug effect and not otherwise classifiable. Variables, including hearing impairment and the presence of visual and other auditory hallucinations, were evaluated independently in all five groups. The mean age at onset of the hallucinations was 56 years, ranging from 18 to 98 years, and 65.4% of the subjects were female. Neurological disease and focal brain lesions were found in 25% and 9% of the total subjects, respectively. Sixty-five subjects were identified with a neurodegenerative disorder, with the Lewy body disorders being the most common. Visual hallucinations were more common in the group with neurological disease compared to the psychiatric, structural, and not otherwise classifiable groups (P < 0.001), whereas auditory hallucinations were more common in the psychiatric group compared to all other groups (P < 0.001). Structural lesions associated with musical hallucinations involved both hemispheres with a preference towards the left, and all but two included the temporal lobe. Hearing impairment was common, particularly in the not otherwise classifiable category where 67.2% had documented hearing impairment, more than in any other group (P < 0.001). Those with an underlying neurodegenerative disorder or isolated hearing impairment tended to hear more persistent music, which was often religious and patriotic compared to those with a structural lesion, where more modern music was heard, and those with psychiatric disorders where music was mood-congruent. This case series shows that musical hallucinations can occur in association with a wide variety of conditions, of which neurological disease and brain lesions represent a substantial proportion, and that Lewy body disorders are the most commonly associated neurodegenerative diseases. A future prospective study would be helpful to further delineate an association between musical hallucinations and neurodegenerative disease.
Collapse
Affiliation(s)
- Erin C Golden
- Department of Neurology, Division of Behavioural Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Keith A Josephs
- Department of Neurology, Division of Behavioural Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
155
|
Fotiou D, Kaltsatou A, Tsiptsios D, Nakou M. Evaluation of the cholinergic hypothesis in Alzheimer's disease with neuropsychological methods. Aging Clin Exp Res 2015; 27:727-33. [PMID: 25749905 DOI: 10.1007/s40520-015-0321-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 11/29/2022]
Abstract
AIM This study aimed at evaluating the cholinergic hypothesis in Alzheimer's disease (AD) patients utilizing the pupillometry method, cognitive tests and Hamilton Depression Rating Scale (HAM-D), as well as to examine whether a correlation between cognitive tests and pupillometry exists. METHODS Forty-two patients with mean age 69.2 ± 7.0 years and documented AD volunteered to participate in this study, while 33 healthy matched subjects served as controls. All subjects underwent a pupillometric measurement and performed the Wechsler Memory Scale (WMS) and Mini Mental State Examination (MMSE). Also, HAM-D was used to assess the severity of depressive symptoms. The pupillometric parameters studied were (1) latency for the onset of constriction (T1), (2) maximum constriction velocity (VCmax), and (3) maximum constriction acceleration (ACmax). RESULTS In AD patients MMSE and WMS score were correlated with ACmax (r = -0.409, p < 0.05 and r = -0.513, p < 0.05, respectively) and VCmax (r = -0.664, p < 0.05 and r = -0.771, p < 0.05), respectively. Moreover, T1 was found to be significantly increased by 23 % (p < 0.05) in AD patients compared to healthy subjects. Conversely, the mean scores of VCmax and ACmax were significantly decreased in AD patients by 46 % (p < 0.05) and by 47 % (p < 0.05), respectively, as compared to healthy subjects. There was no significant difference between the two groups for HAM-D. Additionally, AD patients showed decreased score in WMS by 40 % (p < 0.05) and in MMSE by 28.5 % (p < 0.05) compared to healthy subjects. Of the indices that were studied VCmax and ACmax are governed mainly by the action of the Parasympathetic Nervous System. CONCLUSIONS The results of this study demonstrated that there is a correlation between cognitive tests and pupillometry in AD patients. Thus, pupillometry could be considered as a sensitive technique for the investigation of cholinergic deficits, which indirectly lead to memory and cognitive disorders in AD patients.
Collapse
Affiliation(s)
- Dimitrios Fotiou
- Neuroscience Division, Medicine School, A Neurology Clinic of AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Kaltsatou
- Neuroscience Division, Medicine School, A Neurology Clinic of AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece.
| | - Dimitrios Tsiptsios
- Neuroscience Division, Medicine School, A Neurology Clinic of AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Nakou
- Neuroscience Division, Medicine School, A Neurology Clinic of AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
156
|
Scharpf DT, Sharma M, Deogaonkar M, Rezai A, Bergese SD. Practical considerations and nuances in anesthesia for patients undergoing deep brain stimulation implantation surgery. Korean J Anesthesiol 2015; 68:332-9. [PMID: 26257844 PMCID: PMC4524930 DOI: 10.4097/kjae.2015.68.4.332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 12/02/2022] Open
Abstract
The field of functional neurosurgery has expanded in last decade to include newer indications, new devices, and new methods. This advancement has challenged anesthesia providers to adapt to these new requirements. This review aims to discuss the nuances and practical issues that are faced while administering anesthesia for deep brain stimulation surgery.
Collapse
Affiliation(s)
- Danielle Teresa Scharpf
- Department of Neuroanestheisa, Center of Neuromodulation, Wexner Medical Center, The Ohio State University, OH, USA
| | - Mayur Sharma
- Department of Neurosurgery, Center of Neuromodulation, Wexner Medical Center, The Ohio State University, OH, USA
| | - Milind Deogaonkar
- Department of Neurosurgery, Center of Neuromodulation, Wexner Medical Center, The Ohio State University, OH, USA
| | - Ali Rezai
- Department of Neurosurgery, Center of Neuromodulation, Wexner Medical Center, The Ohio State University, OH, USA
| | - Sergio D Bergese
- Department of Neuroanestheisa, Center of Neuromodulation, Wexner Medical Center, The Ohio State University, OH, USA
| |
Collapse
|
157
|
Wu ZS, Cheng H, Jiang Y, Melcher K, Xu HE. Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery. Acta Pharmacol Sin 2015; 36:895-907. [PMID: 26238288 PMCID: PMC4564887 DOI: 10.1038/aps.2015.66] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) and the 5-HT3 receptors (5-HT3Rs) are cation-selective members of the pentameric ligand-gated ion channels (pLGICs), which are oligomeric protein assemblies that convert a chemical signal into an ion flux through postsynaptic membrane. They are critical components for synaptic transmission in the nervous system, and their dysfunction contributes to many neurological disorders. The diverse subunit compositions of pLGICs give rise to complex mechanisms of ligand recognition, channel gating, and ion-selective permeability, which have been demonstrated in numerous electrophysiological and molecular biological studies, and unraveled by progress in studying the structural biology of this protein family. In this review, we discuss recent insights into the structural and functional basis of two cation-selective pLGICs, the nAChR and the 5-HT3R, including their subunit compositions, ligand binding, and channel gating mechanisms. We also discuss their relevant pharmacology and drug discovery for treating various neurological disorders. Finally, we review a model of two alternative ion conducting pathways based on the latest 5-HT3A crystal structure.
Collapse
|
158
|
Hachisu M, Konishi K, Hosoi M, Tani M, Tomioka H, Kitajima Y, Inamoto A, Hirata A, Koganemaru T, Tomita A, Akashi N, Hori K. Serum Anticholinergic Activity as an Index of Anticholinergic Activity Load in Alzheimer's Disease. NEURODEGENER DIS 2015; 15:134-9. [PMID: 26138490 DOI: 10.1159/000381483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We reported a procedure of serum anticholinergic activity (SAA) measurement and the reliability and reproducibility of the receptor binding assay, and we also described the usefulness of SAA measurement reflecting the anticholinergic activity (AA) in the central nervous system (CNS). According to the results of a 10 times repeated measurement of standard atropine binding, the relative error was between -5.5 and +3.7%, and we considered that measurement of SAA in our studies is accurate and validated. Downregulation of acetylcholine activates inflammation in both CNS and peripheral tissue, which causes AA in both sites. Therefore, changes of AA in the CNS link with SAA in the peripheral system even if a substance having AA does not penetrate through the blood-brain barrier. Then we redescribe issues that require attention in the measurement of SAA. It is generally defined that any SAA greater than the detection limit of a quantitative atropine equivalent level (≥1.95 nM in our study) is positive. According to previous studies, SAA is considered to be positive when its atropine equivalent is ≥1.95 nM and undetectable when this is <1.95 nM. Nevertheless, as a low SAA can act as AA in the CNS, we should assume that SAA might also be positive if its marker concentration is between 0 and 1.95 nM. In addition, SAA should be measured around 11 a.m. or somewhat later because of the diurnal rhythm of cortisol in humans.
Collapse
Affiliation(s)
- Mitsugu Hachisu
- Department of Pharmaceutical Therapeutics, Division of Clinical Pharmacy, School of Pharmacy, Showa University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
OPINION STATEMENT Cerebrovascular disease (CVD) is an important cause of cognitive dysfunction and dementia. The term vascular cognitive impairment (VCI) is used to describe the entire spectrum of cognitive dysfunction-ranging from mild impairment to dementia-attributable to all forms of cerebrovascular disease. Accurate assessment and management of vascular risk factors are a top priority in the treatment of VCI, particularly early in the disease when prevention strategies may prove to be more effective. There are limited treatment options to improve cognition and function in VCI. Several acetylcholinesterase inhibitors and the NMDA receptor antagonist memantine have been studied in large, well-designed trials. These agents are safe and provide modest cognitive benefits in vascular dementia (VaD) but have demonstrated inconsistent efficacy on functional measures. Other therapies, such as aspirin, calcium channel blockers, and vitamin supplementation, have less evidence to support their use in improving cognition in VCI. Although primary prevention trials suggest that treatment of hypertension, adherence to a Mediterranean diet, physical activity, and smoking cessation may reduce the risk of cognitive decline, there is limited evidence regarding these interventions in helping improve cognition in VCI. The pathophysiology and treatment of cerebral autosomal dominant arteriopathy with subcortical infarcts (CADASIL), cerebral amyloid angiopathy (CAA), and subcortical white matter disease (SWMD) deserves special consideration.
Collapse
Affiliation(s)
- Aaron Ritter
- Department of Neurology, Lou Ruvo Center for Brain Health, Cleveland Clinic, 888 West Bonneville Avenue, Las Vegas, NV, 89106, USA,
| | | |
Collapse
|
160
|
Mohamed LA, Qosa H, Kaddoumi A. Age-Related Decline in Brain and Hepatic Clearance of Amyloid-Beta is Rectified by the Cholinesterase Inhibitors Donepezil and Rivastigmine in Rats. ACS Chem Neurosci 2015; 6:725-36. [PMID: 25782004 PMCID: PMC5248655 DOI: 10.1021/acschemneuro.5b00040] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In Alzheimer's disease (AD), accumulation of brain amyloid-β (Aβ) depends on imbalance between production and clearance of Aβ. Several pathways for Aβ clearance have been reported including transport across the blood-brain barrier (BBB) and hepatic clearance. The incidence of AD increases with age and failure of Aβ clearance correlates with AD. The cholinesterase inhibitors (ChEIs) donepezil and rivastigmine are used to ease the symptoms of dementia associated with AD. Besides, both drugs have been reported to provide neuroprotective and disease-modifying effects. Here, we investigated the effect of ChEIs on age-related reduced Aβ clearance. Findings from in vitro and in vivo studies demonstrated donepezil and rivastigmine to enhance (125)I-Aβ40 clearance. Also, the increase in brain and hepatic clearance of (125)I-Aβ40 was more pronounced in aged compared to young rats, and was associated with significant reduction in brain Aβ endogenous levels determined by ELISA. Furthermore, the enhanced clearance was concomitant with up-regulation in the expression of Aβ major transport proteins P-glycoprotein and LRP1. Collectively, our findings that donepezil and rivastigmine enhance Aβ clearance across the BBB and liver are novel and introduce an additional mechanism by which both drugs could affect AD pathology. Thus, optimizing their clinical use could help future drug development by providing new drug targets and possible mechanisms involved in AD pathology.
Collapse
Affiliation(s)
- Loqman A. Mohamed
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201, United States
| | - Hisham Qosa
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201, United States
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201, United States
| |
Collapse
|
161
|
Pillay S, Liu X, Baracskay P, Hudetz AG. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats. Brain Connect 2015; 4:523-34. [PMID: 25090190 DOI: 10.1089/brain.2014.0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.
Collapse
Affiliation(s)
- Siveshigan Pillay
- 1 Department of Anesthesiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
162
|
Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, Zhang T, Chen X, Huang J, Sun X, Li Q, Fang S, Xu J, Yao Z, Gu H. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer's disease. Neurobiol Aging 2015; 36:1792-807. [PMID: 25771396 DOI: 10.1016/j.neurobiolaging.2015.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid β (Aβ) peptide aggregation and cholinergic neurodegeneration. Therefore, in this paper, we examined silibinin, a flavonoid extracted from Silybum marianum, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for AD treatment. To achieve this, we used molecular docking and molecular dynamics simulations to examine the affinity of silibinin with Aβ and AChE in silico. Next, we used circular dichroism and transmission electron microscopy to study the anti-Aβ aggregation capability of silibinin in vitro. Moreover, a Morris Water Maze test, enzyme-linked immunosorbent assay, immunohistochemistry, 5-bromo-2-deoxyuridine double labeling, and a gene gun experiment were performed on silibinin-treated APP/PS1 transgenic mice. In molecular dynamics simulations, silibinin interacted with Aβ and AChE to form different stable complexes. After the administration of silibinin, AChE activity and Aβ aggregations were down-regulated, and the quantity of AChE also decreased. In addition, silibinin-treated APP/PS1 transgenic mice had greater scores in the Morris Water Maze. Moreover, silibinin could increase the number of newly generated microglia, astrocytes, neurons, and neuronal precursor cells. Taken together, these data suggest that silibinin could act as a dual inhibitor of AChE and Aβ peptide aggregation, therefore suggesting a therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Songwei Duan
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyin Guan
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Runxuan Lin
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xincheng Liu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Yan
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ruibang Lin
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tianqi Zhang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xueman Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xicui Sun
- Guangzhou Brain and Psychiatric Hospital, Guangzhou, China
| | - Qingqing Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaoliang Fang
- Key Lab of High Performance Computing of Guangdong Province, Guangzhou, China
| | - Jun Xu
- Research Center for Drug Discovery and Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhibin Yao
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Huaiyu Gu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
163
|
Colombo ML, Sweedler JV, Shen M. Nanopipet-Based Liquid-Liquid Interface Probes for the Electrochemical Detection of Acetylcholine, Tryptamine, and Serotonin via Ionic Transfer. Anal Chem 2015; 87:5095-100. [PMID: 25877788 PMCID: PMC4483307 DOI: 10.1021/ac504151e] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanoscale interface between two immiscible electrolyte solutions (ITIES) provides a unique analytical platform for the detection of ionic species of biological interest such as neurotransmitters and neuromodulators, especially those that are otherwise difficult to detect directly on a carbon electrode without electrode modification. We report the detection of acetylcholine, serotonin, and tryptamine on nanopipet electrode probes with sizes ranging from a radius of ≈7 to 35 nm. The transfer of these analytes across a 1,2-dichloroethane/water interface was studied by cyclic voltammetry and amperometry. Well-defined sigmoidal voltammograms were observed on the nanopipet electrodes within the potential window of artificial seawater for acetylcholine and tryptamine. The half wave transfer potential, E1/2, of acetylcholine, tryptamine, and serotonin were found to be -0.11, -0.25, and -0.47 V vs E(1/2,TEA) (term is defined later in experimental), respectively. The detection was linear in the range of 0.25-6 mM for acetylcholine and of 0.5-10 mM for tryptamine in artificial seawater. Transfer of serotonin was linear in the range of 0.15-8 mM in LiCl solution. The limit of detection for serotonin in LiCl on a radius ≈21 nm nanopipet electrode was 77 μM, for acetylcholine on a radius ≈7 nm nanopipet electrode was 205 μM, and for tryptamine on a radius ≈19 nm nanopipet electrode was 86 μM. Nanopipet-supported ITIES probes have great potential to be used in nanometer spatial resolution measurements for the detection of neurotransmitters.
Collapse
Affiliation(s)
- Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
164
|
Individual response speed is modulated by variants of the gene encoding the alpha 4 sub-unit of the nicotinic acetylcholine receptor (CHRNA4). Behav Brain Res 2015; 284:11-8. [PMID: 25639542 DOI: 10.1016/j.bbr.2015.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/16/2015] [Accepted: 01/22/2015] [Indexed: 12/18/2022]
Abstract
Acetylcholine (ACh) is a known modulator of several domains of cognition, among them attention, memory and learning. The neurotransmitter also influences the speed of information processing, particularly the detection of targets and the selection of suitable responses. We examined the effect of the rs1044396 (C/T) polymorphism of the gene encoding the nicotinic acetylcholine receptor α4-subunit (CHRNA4) on response speed and selective visual attention. To this end, we administered a Stroop task, a Negative priming task and an exogenous Posner-Cuing task to healthy participants (n = 157). We found that the CHRNA4 rs1044396 polymorphism modulated the average reaction times (RTs) across all three tasks. Dependent on the C allele dosage, the RTs linearly increased. Homozygous T allele carriers were always fastest, while homozygous C allele carriers were always slowest. We did not observe effects of this polymorphism on selective attention. In sum, we conclude that naturally occurring variations within the cholinergic system influence an important factor of information processing. This effect might possibly be produced by the neuromodulator system rather than the deterministic system of cortical ACh.
Collapse
|
165
|
Sethi M, Joshi SS, Webb RL, Beckett TL, Donohue KD, Murphy MP, O'Hara BF, Duncan MJ. Increased fragmentation of sleep-wake cycles in the 5XFAD mouse model of Alzheimer's disease. Neuroscience 2015; 290:80-9. [PMID: 25637807 PMCID: PMC4361816 DOI: 10.1016/j.neuroscience.2015.01.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 01/19/2023]
Abstract
Sleep perturbations including fragmented sleep with frequent night-time awakenings and daytime naps are common in patients with Alzheimer's disease (AD), and these daily disruptions are a major factor for institutionalization. The objective of this study was to investigate if sleep-wake patterns are altered in 5XFAD mice, a well-characterized double transgenic mouse model of AD which exhibits an early onset of robust AD pathology and memory deficits. These mice have five distinct human mutations in two genes, the amyloid precursor protein (APP) and Presenilin1 (PS1) engineered into two transgenes driven by a neuron-specific promoter (Thy1), and thus develop severe amyloid deposition by 4 months of age. Age-matched (4-6.5 months old) male and female 5XFAD mice were monitored and compared to wild-type littermate controls for multiple sleep traits using a non-invasive, high throughput, automated piezoelectric system which detects breathing and gross body movements to characterize sleep and wake. Sleep-wake patterns were recorded continuously under baseline conditions (undisturbed) for 3 days and after sleep deprivation of 4h, which in mice produces a significant sleep debt and challenge to sleep homeostasis. Under baseline conditions, 5XFAD mice exhibited shorter bout lengths (14% lower values for males and 26% for females) as compared to controls (p<0.001). In females, the 5XFAD mice also showed 12% less total sleep than WT (p<0.01). Bout length reductions were greater during the night (the active phase for mice) than during the day, which does not model the human condition of disrupted sleep at night (the inactive period). However, the overall decrease in bout length suggests increased fragmentation and disruption in sleep consolidation that may be relevant to human sleep. The 5XFAD mice may serve as a useful model for testing therapeutic strategies to improve sleep consolidation in AD patients.
Collapse
Affiliation(s)
- M Sethi
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - S S Joshi
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - R L Webb
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - T L Beckett
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - K D Donohue
- Department of Electrical and Computer Engineering, University of Kentucky, KY 40506, USA
| | - M P Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - B F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - M J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
166
|
Bizzarri JV, Giupponi G, Maniscalco I, Schroffenegger P, Conca A, Kapfhammer HP. [Parkinson's disease and psychoses]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2015; 29:1-13. [PMID: 25586068 DOI: 10.1007/s40211-014-0132-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023]
Abstract
Psychotic symptoms are common in Parkinson's disease (PD) and are associated with increased disability, worsened quality of life, and poor long-term prognosis. In this article, clinical features, hypotheses on pathogenesis, and current treatment strategies for Parkinson's disease psychosis (PDP) are reviewed. According to epidemiological studies, the prevalence of PDP is between 20 to 40 %. Complex visual hallucinations are the most common psychotic symptoms and are present in 17-72 % of the patients. Other sensory disturbances encompass tactile hallucinations and minor hallucinatory phenomena, such as sense of presence and visual illusions. Hallucinations are often accompanied by delusions, whose most frequent themes are persecution and jealousy. The pathophysiology of PDP remains unclear. Different factors have been implicated, including Levo-dopa and dopaminergic medications, neurotransmitter imbalances, neuroanatomic alterations, abnormal visuospatial processes, and genetic predisposition. The first-line strategy in the treatment of persistent and problematic PDP is represented by reduction in anti-PD medications. Second-generation antipsychotics are the treatment of choice, with clozapine being demonstrated as the most effective and tolerable drug for PD patients.
Collapse
|
167
|
Bountouni I, Zis P, Chaudhuri KR, Schrag A. Psychosis in Parkinson’s Disease. NEUROPSYCHIATRIC SYMPTOMS OF MOVEMENT DISORDERS 2015. [DOI: 10.1007/978-3-319-09537-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
168
|
Mitsushima D. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons. AIMS Neurosci 2015. [DOI: 10.3934/neuroscience.2015.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
169
|
|
170
|
Sako W, Uluğ AM, Eidelberg D. Functional Imaging to Study Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
171
|
Blanc F, Noblet V, Philippi N, Cretin B, Foucher J, Armspach JP, Rousseau F, the Alzheimer's Disease Neuroimaging Initiative. Right anterior insula: core region of hallucinations in cognitive neurodegenerative diseases. PLoS One 2014; 9:e114774. [PMID: 25479196 PMCID: PMC4257732 DOI: 10.1371/journal.pone.0114774] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Objectives We investigated the neural basis of hallucinations Alzheimer's disease (AD) by applying voxel-based morphometry (VBM) to anatomical and functional data from the AD Neuroimaging Initiative. Methods AD patients with hallucinations, based on the Neuropsychiatric Inventory (NPI-Q) (AD-hallu group; n = 39), were compared to AD patients without hallucinations matched for age, sex, educational level, handedness and MMSE (AD-c group; n = 39). Focal brain volume on MRI was analyzed and compared between the two groups according to the VBM method. We also performed voxel-level correlations between brain volume and hallucinations intensity. A similar paradigm was used for the PET analysis. “Core regions” (i.e. regions identified in both MRI and PET analyses, simply done by retaining the clusters obtained from the two analyses that are overlapping) were then determined. Results Regions with relative atrophy in association with hallucinations were: anterior part of the right insula, left superior frontal gyrus and lingual gyri. Regions with relative hypometabolism in association with hallucinations were a large right ventral and dorsolateral prefrontal area. "Core region" in association with hallucinations was the right anterior part of the insula. Correlations between intensity of hallucinations and brain volume were found in the right anterior insula, precentral gyrus, superior temporal gyrus, and left precuneus. Correlations between intensity of hallucinations and brain hypometabolism were found in the left midcingulate gyrus. We checked the neuropathological status and we found that the 4 patients autopsied in the AD-hallu group had the mixed pathology AD and Dementia with Lewy bodies (DLB). Conclusion Neural basis of hallucinations in cognitive neurodegenerative diseases (AD or AD and DLB) include a right predominant anterior-posterior network, and the anterior insula as the core region. This study is coherent with the top-down/bottom-up hypotheses on hallucinations but also hypotheses of the key involvement of the anterior insula in hallucinations in cognitive neurodegenerative diseases.
Collapse
Affiliation(s)
- Frédéric Blanc
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
- University Hospital of Strasbourg, Day Hospital of Geriatrics, Geriatrics Service, Strasbourg, France
- * E-mail:
| | - Vincent Noblet
- University of Strasbourg and CNRS, ICube laboratory UMR 7357, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Strasbourg, France
| | - Nathalie Philippi
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Benjamin Cretin
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Strasbourg, France
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Jack Foucher
- University of Strasbourg and CNRS, ICube laboratory UMR 7357, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Strasbourg, France
| | - Jean-Paul Armspach
- University of Strasbourg and CNRS, ICube laboratory UMR 7357, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Strasbourg, France
| | - François Rousseau
- University of Strasbourg and CNRS, ICube laboratory UMR 7357, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Strasbourg, France
| | | |
Collapse
|
172
|
The nicotinic cholinergic system function in the human brain. Neuropharmacology 2014; 96:289-301. [PMID: 25446570 DOI: 10.1016/j.neuropharm.2014.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/28/2014] [Accepted: 10/21/2014] [Indexed: 12/22/2022]
Abstract
Research on the nicotinic cholinergic system function in the brain was previously mainly derived from animal studies, yet, research in humans is growing. Up to date, findings allow significant advances on the understanding of nicotinic cholinergic effects on human cognition, emotion and behavior using a range of functional brain imaging approaches such as pharmacological functional magnetic resonance imaging or positron emission tomography. Studies provided insights across various mechanistic psychological domains using different tasks as well as at rest in both healthy individuals and patient populations, with so far partly mixed results reporting both enhancements and decrements of neural activity related to the nicotinic cholinergic system. Moreover, studies on the relation between brain structure and the nicotinic cholinergic system add important information in this context. The present review summarizes the current status of human brain imaging studies and presents the findings within a theoretical and clinical perspective as they may be useful not only for an advancement of the understanding of basic nicotinic cholinergic-related mechanisms, but also for the development and integration of psychological and pharmacological treatment approaches. Patterns of functional neuroanatomy and neural circuitry across various cognitive and emotional domains may be used as neuropsychological markers of mental disorders such as addiction, Alzheimer's disease, Parkinson disease or schizophrenia, where nicotinic cholinergic system changes are characteristic. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
|
173
|
Colorimetric detection of acetylcholine with plasmonic nanomaterials signaling. Anal Bioanal Chem 2014; 406:7591-600. [DOI: 10.1007/s00216-014-8199-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/14/2014] [Accepted: 09/17/2014] [Indexed: 11/27/2022]
|
174
|
Delli Pizzi S, Franciotti R, Taylor JP, Thomas A, Tartaro A, Onofrj M, Bonanni L. Thalamic Involvement in Fluctuating Cognition in Dementia with Lewy Bodies: Magnetic Resonance Evidences. Cereb Cortex 2014; 25:3682-9. [PMID: 25260701 PMCID: PMC4585510 DOI: 10.1093/cercor/bhu220] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is characterized by fluctuation in cognition and attention. Thalamocortical connectivity and integrity of thalami are central to attentional function. We hypothesize that DLB patients with marked and frequent fluctuating cognition (flCog) have a loss of thalamocortical connectivity, an intrinsic disruption to thalamic structure and imbalances in thalamic neurotransmitter levels. To test this, magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) and proton MR spectroscopy on thalami were performed on 16 DLB, 16 Alzheimer's disease (AD) and 13 healthy subjects. MRI and DTI were combined to subdivide thalami according to their cortical connectivity and to investigate microstructural changes in connectivity-defined thalamic regions. Compared with controls, lower N-acetyl-aspartate/total creatine (NAA/tCr) and higher total choline/total creatine (tCho/tCr) values were observed within thalami of DLB patients. tCho/tCr increase was found within right thalamus of DLB patients as compared with AD. This increase correlated with severity and frequency of flCog. As compared with controls, DLB patients showed bilateral damage within thalamic regions projecting to prefrontal and parieto-occipital cortices, whereas AD patients showed bilateral alteration within thalamic region projecting to temporal cortex. We posit that microstructural thalamic damage and cholinergic imbalance may be central to the etiology of flCog in DLB.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences Aging Research Centre, Ce.S.I. and Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Sciences Aging Research Centre, Ce.S.I. and Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - John-Paul Taylor
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences Aging Research Centre, Ce.S.I. and
| | - Armando Tartaro
- Department of Neuroscience, Imaging and Clinical Sciences Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences Aging Research Centre, Ce.S.I. and
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences Aging Research Centre, Ce.S.I. and
| |
Collapse
|
175
|
Gould RW, Duke AN, Nader MA. PET studies in nonhuman primate models of cocaine abuse: translational research related to vulnerability and neuroadaptations. Neuropharmacology 2014; 84:138-51. [PMID: 23458573 PMCID: PMC3692588 DOI: 10.1016/j.neuropharm.2013.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 01/11/2023]
Abstract
The current review highlights the utility of positron emission tomography (PET) imaging to study the neurobiological substrates underlying vulnerability to cocaine addiction and subsequent adaptations following chronic cocaine self-administration in nonhuman primate models of cocaine abuse. Environmental (e.g., social rank) and sex-specific influences on dopaminergic function and sensitivity to the reinforcing effects of cocaine are discussed. Cocaine-related cognitive deficits have been hypothesized to contribute to high rates of relapse and are described in nonhuman primate models. Lastly, the long-term consequences of cocaine on neurobiology are discussed. PET imaging and longitudinal, within-subject behavioral studies in nonhuman primates have provided a strong framework for designing pharmacological and behavioral treatment strategies to aid drug-dependent treatment seekers. Non-invasive PET imaging will allow for individualized treatment strategies. Recent advances in radiochemistry of novel PET ligands and other imaging modalities can further advance our understanding of stimulant use on the brain. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Angela N Duke
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| |
Collapse
|
176
|
Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol 2014; 122:24-44. [PMID: 25172271 DOI: 10.1016/j.pneurobio.2014.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/03/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
This document reviews the literature on local brain manipulation of general anesthesia in animals, focusing on behavioral and electrographic effects related to hypnosis or loss of consciousness. Local inactivation or lesion of wake-active areas, such as locus coeruleus, dorsal raphe, pedunculopontine tegmental nucleus, perifornical area, tuberomammillary nucleus, ventral tegmental area and basal forebrain, enhanced general anesthesia. Anesthesia enhancement was shown as a delayed emergence (recovery of righting reflex) from anesthesia or a decrease in the minimal alveolar concentration that induced loss of righting. Local activation of various wake-active areas, including pontis oralis and centromedial thalamus, promoted behavioral or electrographic arousal during maintained anesthesia and facilitated emergence. Lesion of the sleep-active ventrolateral preoptic area resulted in increased wakefulness and decreased isoflurane sensitivity, but only for 6 days after lesion. Inactivation of any structure within limbic circuits involving the medial septum, hippocampus, nucleus accumbens, ventral pallidum, and ventral tegmental area, amygdala, entorhinal and piriform cortex delayed emergence from anesthesia, and often reduced anesthetic-induced behavioral excitation. In summary, the concept that anesthesia works on the sleep-wake system has received strong support from studies that inactivated/lesioned or activated wake-active areas, and weak support from studies that lesioned sleep-active areas. In addition to the conventional wake-sleep areas, limbic structures such as the medial septum, hippocampus and prefrontal cortex are also involved in the behavioral response to general anesthesia. We suggest that hypnosis during general anesthesia may result from disrupting the wake-active neuronal activities in multiple areas and suppressing an atropine-resistant cortical activation associated with movements.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | - Tao Luo
- Department of Anesthesiology, Peking University, Shenzhen Hospital, China
| | - Jingyi Ma
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Ian Herrick
- Department of Anaesthesiology and Perioperative Medicine, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
177
|
Mans RA, Warmus BA, Smith CC, McMahon LL. An acetylcholinesterase inhibitor, eserine, induces long-term depression at CA3-CA1 synapses in the hippocampus of adult rats. J Neurophysiol 2014; 112:2388-97. [PMID: 25143547 DOI: 10.1152/jn.00048.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies in humans and rodents support a role for muscarinic ACh receptor (mAChR) and nicotinic AChR in learning and memory, and both regulate hippocampal synaptic plasticity using complex and often times opposing mechanisms. Acetylcholinesterase (AChE) inhibitors are commonly prescribed to enhance cholinergic signaling in Alzheimer's disease in hopes of rescuing cognitive function, caused, in part, by degeneration of cholinergic innervation to the hippocampus and cortex. Unfortunately, therapeutic efficacy is moderate and inconsistent, perhaps due to unanticipated mechanisms. M1 mAChRs bidirectionally control synaptic strength at CA3-CA1 synapses; weak pharmacological activation using carbachol (CCh) facilitates potentiation, whereas strong agonism induces muscarinic long-term depression (mLTD) via an ERK-dependent mechanism. Here, we tested the prediction that accumulation of extracellular ACh via inhibition of AChE is sufficient to induce LTD at CA3-CA1 synapses in hippocampal slices from adult rats. Although AChE inhibition with eserine induces LTD, it unexpectedly does not share properties with mLTD induced by CCh, as reported previously. Eserine-LTD was prevented by the M3 mAChR-preferring antagonist 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), and pharmacological inhibition of MEK was completely ineffective. Additionally, pharmacological inhibition of p38 MAPK prevents mLTD but has no effect on eserine-LTD. Finally, long-term expression of eserine-LTD is partially dependent on a decrease in presynaptic release probability, likely caused by tonic activation of mAChRs by the sustained increase in extracellular ACh. Thus these findings extend current literature by showing that pharmacological AChE inhibition causes a prolonged decrease in presynaptic glutamate release at CA3-CA1 synapses, in addition to inducing a likely postsynaptic form of LTD.
Collapse
Affiliation(s)
- Robert Alan Mans
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Brian A Warmus
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Caroline C Smith
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lori L McMahon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
178
|
Influence of toxoplasmosis on acetylcholinesterase activity, nitric oxide levels and cellular lesion on the brain of mice. Pathol Res Pract 2014; 210:526-32. [DOI: 10.1016/j.prp.2014.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 01/09/2023]
|
179
|
Wutzler A, Becker R, Lämmler G, Haverkamp W, Steinhagen-Thiessen E. The anticipatory proportion as an indicator of language impairment in early-stage cognitive disorder in the elderly. Dement Geriatr Cogn Disord 2014; 36:300-9. [PMID: 24022211 DOI: 10.1159/000350808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The anticipatory proportion (AP), the ratio between perseverative and anticipatory speech errors, is reduced in patients with brain injury. However, it is unknown whether the AP is also reduced in elderly speakers with cognitive impairment. METHODS 20 elderly speakers with a Mini Mental State Examination (MMSE) score of 25-27 and 20 elderly speakers with an MMSE score of 28-30 were assessed using a tongue-twister-based speech test, the Regensburg Word Fluency Test (RWT) and an object naming test. RESULTS The AP in the group of speakers with an MMSE score of 25-27 was significantly lower. Accordingly, the AP and scores in the RWT and the object naming test were higher in persons with an MMSE score of 28-30. CONCLUSION Language alterations in mild cognitive dysfunction are detectable with the AP. Further longitudinal studies are needed to evaluate the predictive value of the AP.
Collapse
Affiliation(s)
- Alexander Wutzler
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
180
|
Lawson RP, Rees G, Friston KJ. An aberrant precision account of autism. Front Hum Neurosci 2014; 8:302. [PMID: 24860482 PMCID: PMC4030191 DOI: 10.3389/fnhum.2014.00302] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/25/2014] [Indexed: 12/15/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by problems with social-communication, restricted interests and repetitive behavior. A recent and thought-provoking article presented a normative explanation for the perceptual symptoms of autism in terms of a failure of Bayesian inference (Pellicano and Burr, 2012). In response, we suggested that when Bayesian inference is grounded in its neural instantiation—namely, predictive coding—many features of autistic perception can be attributed to aberrant precision (or beliefs about precision) within the context of hierarchical message passing in the brain (Friston et al., 2013). Here, we unpack the aberrant precision account of autism. Specifically, we consider how empirical findings—that speak directly or indirectly to neurobiological mechanisms—are consistent with the aberrant encoding of precision in autism; in particular, an imbalance of the precision ascribed to sensory evidence relative to prior beliefs.
Collapse
Affiliation(s)
- Rebecca P Lawson
- Wellcome Trust Centre for Neuroimaging, University College London London, UK
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, University College London London, UK ; Institute of Cognitive Neuroscience, University College London London, UK
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London London, UK
| |
Collapse
|
181
|
Gurevicius K, Lipponen A, Minkeviciene R, Tanila H. Short- and long-term habituation of auditory event-related potentials in the rat. F1000Res 2014; 2:182. [PMID: 25132958 PMCID: PMC4118758 DOI: 10.12688/f1000research.2-182.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 11/20/2022] Open
Abstract
An auditory oddball paradigm in humans generates a long-duration cortical negative potential, often referred to as mismatch negativity. Similar negativity has been documented in monkeys and cats, but it is controversial whether mismatch negativity also exists in awake rodents. To this end, we recorded cortical and hippocampal evoked responses in rats during alert immobility under a typical passive oddball paradigm that yields mismatch negativity in humans. The standard stimulus was a 9 kHz tone and the deviant either 7 or 11 kHz tone in the first condition. We found no evidence of a sustained potential shift when comparing evoked responses to standard and deviant stimuli. Instead, we found repetition-induced attenuation of the P60 component of the combined evoked response in the cortex, but not in the hippocampus. The attenuation extended over three days of recording and disappeared after 20 intervening days of rest. Reversal of the standard and deviant tones resulted is a robust enhancement of the N40 component not only in the cortex but also in the hippocampus. Responses to standard and deviant stimuli were affected similarly. Finally, we tested the effect of scopolamine in this paradigm. Scopolamine attenuated cortical N40 and P60 as well as hippocampal P60 components, but had no specific effect on the deviant response. We conclude that in an oddball paradigm the rat demonstrates repetition-induced attenuation of mid-latency responses, which resembles attenuation of the N1-component of human auditory evoked potential, but no mismatch negativity.
Collapse
Affiliation(s)
| | - Arto Lipponen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Rimante Minkeviciene
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
182
|
Long-term effects of maternal deprivation on cholinergic system in rat brain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:636574. [PMID: 24711997 PMCID: PMC3966323 DOI: 10.1155/2014/636574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
Abstract
Numerous clinical studies have demonstrated an association between early stressful life events and adult life psychiatric disorders including schizophrenia. In rodents, early life exposure to stressors such as maternal deprivation (MD) produces numerous hormonal, neurochemical, and behavioral changes and is accepted as one of the animal models of schizophrenia. The stress induces acetylcholine (Ach) release in the forebrain and the alterations in cholinergic neurotransmitter system are reported in schizophrenia. The aim of this study was to examine long-term effects of maternal separation on acetylcholinesterase (AChE) activity in different brain structures and the density of cholinergic fibers in hippocampus and retrosplenial (RS) cortex. Wistar rats were separated from their mothers on the postnatal day (P) 9 for 24 h and sacrificed on P60. Control group of rats was bred under the same conditions, but without MD. Brain regions were collected for AChE activity measurements and morphometric analysis. Obtained results showed significant decrease of the AChE activity in cortex and increase in the hippocampus of MD rats. Density of cholinergic fibers was significantly increased in CA1 region of hippocampus and decreased in RS cortex. Our results indicate that MD causes long-term structure specific changes in the cholinergic system.
Collapse
|
183
|
Mild Hyperhomocysteinemia Increases Brain Acetylcholinesterase and Proinflammatory Cytokine Levels in Different Tissues. Mol Neurobiol 2014; 50:589-96. [DOI: 10.1007/s12035-014-8660-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/11/2014] [Indexed: 01/05/2023]
|
184
|
Scarr E, Dean B. Role of the cholinergic system in the pathology and treatment of schizophrenia. Expert Rev Neurother 2014; 9:73-86. [DOI: 10.1586/14737175.9.1.73] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
185
|
Rangaswamy M, Porjesz B. Understanding alcohol use disorders with neuroelectrophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:383-414. [PMID: 25307587 DOI: 10.1016/b978-0-444-62619-6.00023-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurocognitive deficits associated with impairments in various brain regions and neural circuitries, particularly involving frontal lobes, have been associated with chronic alcoholism, as well as with a predisposition to develop alcohol use and related disorders (AUDs). AUD is a multifactorial disorder caused by complex interactions between behavioral, genetic, and environmental liabilities. Neuroelectrophysiologic techniques are instrumental in understanding brain and behavior relationships and have also proved very useful in evaluating the genetic diathesis of alcoholism. This chapter describes findings from neuroelectrophysiologic measures (electroencephalogram, event-related potentials, and event-related oscillations) related to acute and chronic effects of alcohol on the brain and those that reflect underlying deficits related to a predisposition to develop AUDs and related disorders. The utility of these measures as effective endophenotypes to identify and understand genes associated with brain electrophysiology, cognitive networks, and AUDs has also been discussed.
Collapse
Affiliation(s)
- Madhavi Rangaswamy
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
186
|
Xi Y, Wang M, Zhang W, Bai M, Du Y, Zhang Z, Li Z, Miao J. Neuronal damage, central cholinergic dysfunction and oxidative damage correlate with cognitive deficits in rats with chronic cerebral hypoperfusion. Neurobiol Learn Mem 2013; 109:7-19. [PMID: 24315928 DOI: 10.1016/j.nlm.2013.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 11/14/2013] [Accepted: 11/24/2013] [Indexed: 12/31/2022]
Abstract
Chronic cerebral hypoperfusion has been identified to be a risk factor for cognitive decline in aging, vascular dementia, and Alzheimer's disease. Substantial evidence has shown that chronic cerebral hypoperfusion may cause cognitive impairment, but the underlying neurobiological mechanism is poorly understood so far. In this study, we used a rat model of chronic cerebral hypoperfusion by permanent bilateral common carotid artery occlusion (BCCAO) to investigate the alterations of neuronal damage, glial activation oxidative stress and central cholinergic dysfunction, and their causal relationship with the cognitive deficits induced by chronic cerebral hypoperfusion. We found that BCCAO rats exhibited spatial learning and memory impairments and working memory dysfunction 12 weeks after BCCAO compared with sham-operated rats, simultaneously accompanied by significantly increased neuronal damage and glial cell activation in the cerebral cortex and hippocampus. Twelve weeks of BCCAO treatment in rats resulted in central cholinergic dysfunction and increased oxidative damage compared with sham-operated rats. Correlational analyses revealed that spatial learning and memory impairments and working memory dysfunction were significantly correlated with the measures of neuronal damage, central cholinergic dysfunction and oxidative damage in the cerebral cortex and hippocampus of rats with BCCAO. Moreover, the measures of neuronal damage and central cholinergic dysfunction were significantly correlated with the indexes of oxidative damage in rats with BCCAO. Collectively, this study provides novel evidence that neuronal damage and central cholinergic dysfunction is likely due to increased oxidative stress under the condition of chronic cerebral hypoperfusion. Furthermore, the results of the present study suggest that neuronal damage, central cholinergic dysfunction and oxidative damage in the brain following the reduction of cerebral blood flow could be involved in cognitive deficits induced by chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ye Xi
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Man Wang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China; Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Miao Bai
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China; Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China; Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China; Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China.
| | - Jianting Miao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China.
| |
Collapse
|
187
|
Golub E, Freeman R, Willner I. Hemin/G-quadruplex-catalyzed aerobic oxidation of thiols to disulfides: application of the process for the development of sensors and aptasensors and for probing acetylcholine esterase activity. Anal Chem 2013; 85:12126-33. [PMID: 24299064 DOI: 10.1021/ac403305k] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study describes the novel hemin/G-quadruplex DNAzyme-catalyzed aerobic oxidation of thiols to disulfides and the respective mechanism. The mechanism of the reaction involves the DNAzyme-catalyzed oxidation of thiols to disulfides and the thiol-mediated autocatalytic generation of H2O2 from oxygen. The coupling of a concomitant H2O2-mediated hemin/G-quadruplex-catalyzed oxidation of Amplex Red to the fluorescent resorufin as a transduction module provides a fluorescent signal for probing the catalyzed oxidation of the thiol to disulfides and for probing sensing processes that yield the hemin/G-quadruplex as a functional label. Accordingly, a versatile sensing method for analyzing thiols (L-cysteine, glutathione) using the H2O2-mediated DNAzyme-catalyzed oxidation of Amplex Red to the resorufin was developed. Also, the L-cysteine and Amplex Red system was implemented as an auxiliary fluorescent transduction module for probing recognition events that form the catalytic hemin/G-quadruplex structures. This is exemplified with the development of thrombin aptasensor. The thrombin/thrombin binding aptamer recognition complex binds hemin, and the resulting catalytic complex activates the auxiliary transduction module, involving the aerobic oxidation of l-cysteine and the concomitant formation of the fluorescent resorufin. Finally, the hemin/G-quadruplex DNAzyme/Amplex Red system was used to follow the activity of acetylcholine esterase, AChE, and to probe its inhibition. The AChE-catalyzed hydrolysis of acetylthiocholine to the thiol-functionalized thiocholine enabled the probing of the enzymatic activity of AChE through the hemin/G-quadruplex-catalyzed aerobic oxidation of thiocholine to the respective disulfide and the concomitant generation of the fluorescent resorufin product.
Collapse
Affiliation(s)
- Eyal Golub
- The Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
188
|
Jacob CP, Weber H, Retz W, Kittel-Schneider S, Heupel J, Renner T, Lesch KP, Reif A. Acetylcholine-metabolizing butyrylcholinesterase (BCHE) copy number and single nucleotide polymorphisms and their role in attention-deficit/hyperactivity syndrome. J Psychiatr Res 2013; 47:1902-8. [PMID: 24041656 DOI: 10.1016/j.jpsychires.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/12/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022]
Abstract
A previous genome-wide screen for copy number variations (CNVs) in attention deficit/hyperactivity disorder (ADHD) revealed a de novo chromosome 3q26.1 deletion in one of the patients. Candidate genes at this locus include the acetylcholine-metabolizing butyrylcholinesterase (BCHE) expressing gene (OMIM #177400), which is of particular interest. The present study investigates the hypothesis that the heterozygous deletion of the BCHE gene is associated with adult ADHD (aADHD). Ina first step, we screened 348 aADHD patients and 352 controls for stretches of loss of heterozygosity (LOH) across the entire BCHE gene to screen for the deletion. Our second aim was to clarify whether BCHE single nucleotide polymorphisms (SNPs) themselves influence the risk towards ADHD. Putative functional consequences of associated SNPs as well as their un-typed proxies were predicted by several bioinformatic tools. 96 individuals displayed entirely homozygous genotype reads in all 12 examined SNPs, making them possible candidates to harbor a heterozygous BCHE deletion. DNA from these 96 probands was further analyzed by real-time PCR using a BCHE-specific CNV assay. However, no deletion was found. Of the 12 tag SNPs that passed inclusion criteria, rs4680612 and rs829508 were significantly associated with aADHD, as their minor alleles occurred more often in cases than in controls (p = 0.018 and p = 0.039, respectively). The risk variant rs4680612 is located in the transcriptional control region of the gene and predicted to disrupt a binding site for MYT-1, which has previously been associated with mental disorders. However, when examining a second independent adult ADHD sample of 353 cases, the association did not replicate. When looking up the deletion in three genome-wide screens for CNV in ADHD and combining it with the present study, it became apparent that 3 from a total of 1030 ADHD patients, but none of 5787 controls, featured a deletion of the BCHE promoter region including rs4680612 (p = 0.00004). Taken together, there are several lines of evidence suggesting a potential involvement of BCHE in the etiopathology of ADHD, as a rare hemizygous deletion as well as a common SNP in the same region are associated with disease, although with different penetrance. Both variations result in the disruption of the binding site of the transcription factor MYT-1 suggesting epistatic effects of BCHE and MYT-1 in the pathogenesis of ADHD. As we were not able to replicate the SNP association, our findings should be considered preliminary and call for larger studies in extended phenotypes.
Collapse
Affiliation(s)
- Christian P Jacob
- Department of Psychiatry and Psychotherapy, University of Wuerzburg, Fuechsleinstr. 15, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 2013; 21:1190-222. [PMID: 24206937 DOI: 10.1016/j.jagp.2013.09.005] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Delirium is a neurobehavioral syndrome caused by dysregulation of neuronal activity secondary to systemic disturbances. Over time, a number of theories have been proposed in an attempt to explain the processes leading to the development of delirium. Each proposed theory has focused on a specific mechanism or pathologic process (e.g., dopamine excess or acetylcholine deficiency theories), observational and experiential evidence (e.g., sleep deprivation, aging), or empirical data (e.g., specific pharmacologic agents' association with postoperative delirium, intraoperative hypoxia). This article represents a review of published literature and summarizes the top seven proposed theories and their interrelation. This review includes the "neuroinflammatory," "neuronal aging," "oxidative stress," "neurotransmitter deficiency," "neuroendocrine," "diurnal dysregulation," and "network disconnectivity" hypotheses. Most of these theories are complementary, rather than competing, with many areas of intersection and reciprocal influence. The literature suggests that many factors or mechanisms included in these theories lead to a final common outcome associated with an alteration in neurotransmitter synthesis, function, and/or availability that mediates the complex behavioral and cognitive changes observed in delirium. In general, the most commonly described neurotransmitter changes associated with delirium include deficiencies in acetylcholine and/or melatonin availability; excess in dopamine, norepinephrine, and/or glutamate release; and variable alterations (e.g., either a decreased or increased activity, depending on delirium presentation and cause) in serotonin, histamine, and/or γ-aminobutyric acid. In the end, it is unlikely that any one of these theories is fully capable of explaining the etiology or phenomenologic manifestations of delirium but rather that two or more of these, if not all, act together to lead to the biochemical derangement and, ultimately, to the complex cognitive and behavioral changes characteristic of delirium.
Collapse
Affiliation(s)
- José R Maldonado
- Departments of Psychiatry, Internal Medicine & Surgery and the Psychosomatic Medicine Service, Stanford University School of Medicine, and Board of Directors, American Delirium Society, Stanford, CA.
| |
Collapse
|
190
|
Taylor JP, Colloby SJ, McKeith IG, O'Brien JT. Covariant perfusion patterns provide clues to the origin of cognitive fluctuations and attentional dysfunction in dementia with Lewy bodies. Int Psychogeriatr 2013; 25:1917-28. [PMID: 24148774 PMCID: PMC3819183 DOI: 10.1017/s1041610213001488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Fluctuating cognition (FC), particularly in attention, is a core and defining symptom in dementia with Lewy bodies (DLB) but is seen much less frequently in Alzheimer's dementia (AD). However, its neurobiological origin is poorly understood. The aim of our study was therefore to characterize perfusion patterns in DLB patients that are associated with the severity and frequency of FC as measured both clinically and using objective neuropsychological assessments. METHODS Spatial covariance analyses were applied to data derived from single photon emission computed tomography (SPECT) HMPAO brain imaging in 19 DLB and 23 AD patients. Patients underwent clinical assessment of their FC and cognitive function as well as objective testing of their attention. RESULTS Covariant perfusion principal components (PCs) were not associated with either FC or cognitive or attentional measures in AD. However, in DLB patients, the second PC (defined as DLB-cognitive motor pattern, DLB-PCI2) which was characterized by bilateral relative increases in cerebellum, basal ganglia, and supplementary motor areas and widespread bilateral decreases in parietal regions, positively correlated with poorer cognitive function, increased FC and worse attentional function measured both clinically and neurophysiologically (p < 0.05) as well as with the severity of bradykinesia (p = 0.04). CONCLUSIONS FC in DLB appears distinct from those seen in AD, and likely to be driven by internal neurobiological perturbations in brain circuitry as evidenced using spatial covariance analyses of cerebral perfusion. FC and certain aspects of attentional dysfunction in DLB may, in part, depend upon both distributed motor and non-motor networks.
Collapse
Affiliation(s)
- John-Paul Taylor
- Institute for Ageing and Health, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Sean J. Colloby
- Institute for Ageing and Health, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Ian G. McKeith
- Institute for Ageing and Health, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - John T. O'Brien
- Institute for Ageing and Health, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, UK
| |
Collapse
|
191
|
Frauenknecht K, Katzav A, Grimm C, Chapman J, Sommer CJ. Altered receptor binding densities in experimental antiphospholipid syndrome despite only moderately enhanced autoantibody levels and absence of behavioral features. Immunobiology 2013; 219:341-9. [PMID: 24332889 DOI: 10.1016/j.imbio.2013.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/27/2022]
Abstract
Experimental antiphospholipid syndrome (eAPS) in Balb/c mice causes neuropsychiatric abnormalities including hyperactivity, increased explorative behavior and cognitive deficits. Recently, we have demonstrated that these behavioral changes were linked to an upregulation of serotonergic 5-HT1A receptor binding densities in cortical and hippocampal regions while excitatory and inhibitory neurotransmitter receptors remain largely unchanged. To examine whether the observed behavioral features depend on a critical antibody concentration, mice with only moderately enhanced antiphospholipid antibodies (aPL), about 50-80% of high levels, were analyzed and compared to controls. The staircase test was used to test animals for hyperactivity and explorative behavior. The brains were analyzed for tissue integrity and inflammation. Ligand binding densities of NMDA, AMPA, GABAA, 5-HT1A, M1 and M2 muscarinic acetylcholine receptors, respectively, were analyzed by in vitro receptor autoradiography and compared to brains of mice from our previous study with high levels of aPL. Mice with only moderately enhanced aPL did not develop significant behavioral changes. Brain parenchyma remained intact and neither inflammation nor glial activation was detectable. However, there was a significant decrease of NMDA receptor binding densities in the motor cortex as well as an increase in M1 binding densities in cortical and hippocampal regions, whereas the other receptors analyzed were not altered. Lack of neuropsychiatric symptoms may be due to modulations of receptors resulting in normal behavior. In conclusion, our results support the hypothesis that high levels of aPL are required for the manifestation of neuropsychiatric involvement while at lower antibody levels compensatory mechanisms may preserve normal behavior.
Collapse
Affiliation(s)
- Katrin Frauenknecht
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Aviva Katzav
- Department of Neurology, Chaim Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Hashomer, Israel
| | - Christina Grimm
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Joab Chapman
- Department of Neurology, Chaim Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Hashomer, Israel
| | - Clemens J Sommer
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
192
|
Gurevicius K, Lipponen A, Minkeviciene R, Tanila H. Short- and long-term habituation of auditory event-related potentials in the rat. F1000Res 2013; 2:182. [PMID: 25132958 PMCID: PMC4118758 DOI: 10.12688/f1000research.2-182.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 05/27/2025] Open
Abstract
An auditory oddball paradigm in humans generates a long-duration cortical negative potential, often referred to as mismatch negativity. Similar negativity has been documented in monkeys and cats, but it is controversial whether mismatch negativity also exists in awake rodents. To this end, we recorded cortical and hippocampal evoked responses in rats during alert immobility under a typical passive oddball paradigm that yields mismatch negativity in humans. The standard stimulus was a 9 kHz tone and the deviant either 7 or 11 kHz tone in the first condition. We found no evidence of a sustained potential shift when comparing evoked responses to standard and deviant stimuli. Instead, we found repetition-induced attenuation of the P60 component of the combined evoked response in the cortex, but not in the hippocampus. The attenuation extended over three days of recording and disappeared after 20 intervening days of rest. Reversal of the standard and deviant tones resulted is a robust enhancement of the N40 component not only in the cortex but also in the hippocampus. Responses to standard and deviant stimuli were affected similarly. Finally, we tested the effect of scopolamine in this paradigm. Scopolamine attenuated cortical N40 and P60 as well as hippocampal P60 components, but had no specific effect on the deviant response. We conclude that in an oddball paradigm the rat demonstrates repetition-induced attenuation of mid-latency responses, which resembles attenuation of the N1-component of human auditory evoked potential, but no mismatch negativity.
Collapse
Affiliation(s)
| | - Arto Lipponen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Rimante Minkeviciene
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
193
|
Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 2013; 715:381-94. [DOI: 10.1016/j.ejphar.2013.04.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 11/18/2022]
|
194
|
Wang F, Liu X, Lu CH, Willner I. Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors. ACS NANO 2013; 7:7278-7286. [PMID: 23829431 DOI: 10.1021/nn402810x] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The cysteine-stimulated aggregation of Au nanoparticles (Au NPs) is used as an auxiliary reporting system for the optical detection of H2O2, for optical probing of the glucose oxidase (GOx) and the catalyzed oxidation of glucose, for probing the biocatalytic cascade composed of acetylcholine esterase/choline oxidase (AChE/ChOx), and for following the inhibition of AChE. The analytical paradigm is based on the I(-)-catalyzed oxidation of cysteine by H2O2 to cystine, a process that prohibits the cysteine-triggered aggregation of the Au NPs. The system enabled the analysis of H2O2 with a detection limit of 2 μM. As the GOx-biocatalyzed oxidation of glucose yields H2O2, and the AChE/ChOx cascade leads to the formation of H2O2, the two biocatalytic processes could be probed by the cysteine-stimulated aggregation of the Au NPs. Since AChE is inhibited by 1,5-bis(4-allyldimethylammonium phenyl)pentane-3-one dibromide, the biocatalytic AChE/ChOx cascade is inhibited by the inhibitor, thus leading to the enhanced cysteine-mediated aggregation of the NPs. The results suggest the potential implementation of the cysteine-mediated aggregation of Au NPs in the presence of AChE/ChOx as a sensing platform for the optical detection of chemical warfare agents.
Collapse
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
195
|
Gould TJ, Leach PT. Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiol Learn Mem 2013; 107:108-32. [PMID: 23973448 DOI: 10.1016/j.nlm.2013.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: (1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, (2) how nicotine usurps the cellular mechanisms of synaptic plasticity, (3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal deficits in learning, and (4) the role of genetics and developmental stage (i.e., adolescence) in these effects.
Collapse
Affiliation(s)
- Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
196
|
Kim B, Song HS, Jin HJ, Park EJ, Lee SH, Lee BY, Park TH, Hong S. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors. NANOTECHNOLOGY 2013; 24:285501. [PMID: 23792421 DOI: 10.1088/0957-4484/24/28/285501] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Byeongju Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci U S A 2013; 110:12078-83. [PMID: 23818597 DOI: 10.1073/pnas.1307849110] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cognitive function of the highly evolved dorsolateral prefrontal cortex (dlPFC) is greatly influenced by arousal state, and is gravely afflicted in disorders such as schizophrenia, where there are genetic insults in α7 nicotinic acetylcholine receptors (α7-nAChRs). A recent behavioral study indicates that ACh depletion from dlPFC markedly impairs working memory [Croxson PL, Kyriazis DA, Baxter MG (2011) Nat Neurosci 14(12):1510-1512]; however, little is known about how α7-nAChRs influence dlPFC cognitive circuits. Goldman-Rakic [Goldman-Rakic (1995) Neuron 14(3):477-485] discovered the circuit basis for working memory, whereby dlPFC pyramidal cells excite each other through glutamatergic NMDA receptor synapses to generate persistent network firing in the absence of sensory stimulation. Here we explore α7-nAChR localization and actions in primate dlPFC and find that they are enriched in glutamate network synapses, where they are essential for dlPFC persistent firing, with permissive effects on NMDA receptor actions. Blockade of α7-nAChRs markedly reduced, whereas low-dose stimulation selectively enhanced, neuronal representations of visual space. These findings in dlPFC contrast with the primary visual cortex, where nAChR blockade had no effect on neuronal firing [Herrero JL, et al. (2008) Nature 454(7208):1110-1114]. We additionally show that α7-nAChR stimulation is needed for NMDA actions, suggesting that it is key for the engagement of dlPFC circuits. As ACh is released in cortex during waking but not during deep sleep, these findings may explain how ACh shapes differing mental states during wakefulness vs. sleep. The results also explain why genetic insults to α7-nAChR would profoundly disrupt cognitive experience in patients with schizophrenia.
Collapse
|
198
|
Sohn IY, Kim DJ, Jung JH, Yoon OJ, Nguyen Thanh T, Tran Quang T, Lee NE. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosens Bioelectron 2013; 45:70-6. [DOI: 10.1016/j.bios.2013.01.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/28/2012] [Accepted: 01/23/2013] [Indexed: 12/16/2022]
|
199
|
Nardone R, Golaszewski S, Höller Y, Christova M, Trinka E, Brigo F. Neurophysiological insights into the pathophysiology of REM sleep behavior disorders: A review. Neurosci Res 2013; 76:106-12. [DOI: 10.1016/j.neures.2013.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/08/2013] [Accepted: 03/20/2013] [Indexed: 11/24/2022]
|
200
|
Garibotto V, Tettamanti M, Marcone A, Florea I, Panzacchi A, Moresco R, Virta JR, Rinne J, Cappa SF, Perani D. Cholinergic activity correlates with reserve proxies in Alzheimer's disease. Neurobiol Aging 2013; 34:2694.e13-8. [PMID: 23820589 DOI: 10.1016/j.neurobiolaging.2013.05.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 04/22/2013] [Accepted: 05/19/2013] [Indexed: 12/28/2022]
Abstract
The clinical expression of Alzheimer's disease (AD) occurs as neuropathology exceeds the brain "reserve capacity." A possible association between the cholinergic system and reserve is suggested by preclinical observations that the cholinergic system allows cortical plasticity and by clinical observations of variable responses to cholinergic treatments depending on the patient's educational level. The aim of this study was to investigate the association of reserve proxies, that is, education and occupation, with acetylcholinesterase (AChE) activity, measured voxelwise by [(11)C]-MP4A and positron emission tomography (PET), in 9 healthy controls (HC), 7 patients with early probable AD, and 9 subjects with mild cognitive impairment (MCI) at the time of PET imaging, who progressed to AD at follow-up (prodromal AD). The analysis of prodromal and early AD showed positive correlations between education and AChE activity in the hippocampus, bilaterally, and between occupation and AChE activity in the right posterior cingulate gyrus. The significant correlation between AChE activity in structures belonging to the memory network and reserve proxies suggests that the brain reserve in AD is associated with a preserved/stimulated cholinergic neurotransmission.
Collapse
|