151
|
Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, Ennerfelt HE, Shapiro D, Nguyen BH, Frost EL, Lammert CR, Kipnis J, Lukens JR. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun 2020; 11:4524. [PMID: 32913280 PMCID: PMC7483525 DOI: 10.1038/s41467-020-18113-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/06/2020] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading global cause of death and disability. Here we demonstrate in an experimental mouse model of TBI that mild forms of brain trauma cause severe deficits in meningeal lymphatic drainage that begin within hours and last out to at least one month post-injury. To investigate a mechanism underlying impaired lymphatic function in TBI, we examined how increased intracranial pressure (ICP) influences the meningeal lymphatics. We demonstrate that increased ICP can contribute to meningeal lymphatic dysfunction. Moreover, we show that pre-existing lymphatic dysfunction before TBI leads to increased neuroinflammation and negative cognitive outcomes. Finally, we report that rejuvenation of meningeal lymphatic drainage function in aged mice can ameliorate TBI-induced gliosis. These findings provide insights into both the causes and consequences of meningeal lymphatic dysfunction in TBI and suggest that therapeutics targeting the meningeal lymphatic system may offer strategies to treat TBI.
Collapse
Affiliation(s)
- Ashley C Bolte
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA
- Immunology Training Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Arun B Dutta
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mariah E Hurt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Igor Smirnov
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Michael A Kovacs
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA
- Immunology Training Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Celia A McKee
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hannah E Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel Shapiro
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Bao H Nguyen
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Elizabeth L Frost
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Catherine R Lammert
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA.
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA.
- Immunology Training Program, University of Virginia, Charlottesville, VA, 22908, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
152
|
Kozlova EV, Hegde S, Roundy CM, Golovko G, Saldaña MA, Hart CE, Anderson ER, Hornett EA, Khanipov K, Popov VL, Pimenova M, Zhou Y, Fovanov Y, Weaver SC, Routh AL, Heinz E, Hughes GL. Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME JOURNAL 2020; 15:93-108. [PMID: 32895494 PMCID: PMC7852612 DOI: 10.1038/s41396-020-00763-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
How microbe–microbe interactions dictate microbial complexity in the mosquito gut is unclear. Previously we found that, Serratia, a gut symbiont that alters vector competence and is being considered for vector control, poorly colonized Aedes aegypti yet was abundant in Culex quinquefasciatus reared under identical conditions. To investigate the incompatibility between Serratia and Ae. aegypti, we characterized two distinct strains of Serratia marcescens from Cx. quinquefasciatus and examined their ability to infect Ae. aegypti. Both Serratia strains poorly infected Ae. aegypti, but when microbiome homeostasis was disrupted, the prevalence and titers of Serratia were similar to the infection in its native host. Examination of multiple genetically diverse Ae. aegypti lines found microbial interference to S. marcescens was commonplace, however, one line of Ae. aegypti was susceptible to infection. Microbiome analysis of resistant and susceptible lines indicated an inverse correlation between Enterobacteriaceae bacteria and Serratia, and experimental co-infections in a gnotobiotic system recapitulated the interference phenotype. Furthermore, we observed an effect on host behavior; Serratia exposure to Ae. aegypti disrupted their feeding behavior, and this phenotype was also reliant on interactions with their native microbiota. Our work highlights the complexity of host–microbe interactions and provides evidence that microbial interactions influence mosquito behavior.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christopher M Roundy
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Paediatrics and Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Hart
- The Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Global Health and Translational Science and SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Enyia R Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fovanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
153
|
Genome diversity of Chinese indigenous chicken and the selective signatures in Chinese gamecock chicken. Sci Rep 2020; 10:14532. [PMID: 32883984 PMCID: PMC7471287 DOI: 10.1038/s41598-020-71421-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Gamecock chickens are one of the earliest recorded birds in China, and have accumulated some unique morphological and behavioral signatures such as large body size, muscularity and aggressive behavior, whereby being excellent breeding materials and a good model for studying bird muscular development and behavior. In this study, we sequenced 126 chicken genomes from 19 populations, including four commercial chicken breeds that are commonly farmed in China, 13 nationwide Chinese typical indigenous chicken breeds (including two Chinese gamecock breeds), one red jungle fowl from Guangxi Province of China and three gamecock chickens from Laos. Combined with 31 published chicken genomes from three populations, a comparative genomics analysis was performed across 157 chickens. We found a severe confounding effect on potential cold adaptation exerted by introgression from commercial chickens into Chinese indigenous chickens, and argued that the genetic introgression from commercial chickens into indigenous chickens should be seriously considered for identifying selection footprint in indigenous chickens. LX gamecock chickens might have played a core role in recent breeding and conservation of other Chinese gamecock chickens. Importantly, AGMO (Alkylglycerol monooxygenase) and CPZ (Carboxypeptidase Z) might be crucial for determining the behavioral pattern of gamecock chickens, while ISPD (Isoprenoid synthase domain containing) might be essential for the muscularity of gamecock chickens. Our results can further the understanding of the evolution of Chinese gamecock chickens, especially the genetic basis of gamecock chickens revealed here was valuable for us to better understand the mechanisms underlying the behavioral pattern and the muscular development in chicken.
Collapse
|
154
|
Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun 2020; 11:4410. [PMID: 32879310 PMCID: PMC7468160 DOI: 10.1038/s41467-020-17197-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/12/2020] [Indexed: 12/02/2022] Open
Abstract
The hypothalamic suprachiasmatic (SCN) clock contains several neurochemically defined cell groups that contribute to the genesis of circadian rhythms. Using cell-specific and genetically targeted approaches we have confirmed an indispensable role for vasoactive intestinal polypeptide-expressing SCN (SCNVIP) neurons, including their molecular clock, in generating the mammalian locomotor activity (LMA) circadian rhythm. Optogenetic-assisted circuit mapping revealed functional, di-synaptic connectivity between SCNVIP neurons and dorsomedial hypothalamic neurons, providing a circuit substrate by which SCNVIP neurons may regulate LMA rhythms. In vivo photometry revealed that while SCNVIP neurons are acutely responsive to light, their activity is otherwise behavioral state invariant. Single-nuclei RNA-sequencing revealed that SCNVIP neurons comprise two transcriptionally distinct subtypes, including putative pacemaker and non-pacemaker populations. Altogether, our work establishes necessity of SCNVIP neurons for the LMA circadian rhythm, elucidates organization of circadian outflow from and modulatory input to SCNVIP cells, and demonstrates a subpopulation-level molecular heterogeneity that suggests distinct functions for specific SCNVIP subtypes. Cell groups in the hypothalamic suprachiasmatic clock contribute to the genesis of circadian rhythms. The authors identified two populations of vasoactive intestinal polypeptide-expressing neurons in the suprachiasmatic nucleus which regulate locomotor circadian rhythm in mice.
Collapse
|
155
|
Luebeck J, Coruh C, Dehkordi SR, Lange JT, Turner KM, Deshpande V, Pai DA, Zhang C, Rajkumar U, Law JA, Mischel PS, Bafna V. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nat Commun 2020; 11:4374. [PMID: 32873787 PMCID: PMC7463033 DOI: 10.1038/s41467-020-18099-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary driver of focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA's structure is a first step in deciphering the mechanisms of its genesis and the fCNA's subsequent biological consequences. We introduce a computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150 kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating its performance through multiple simulation strategies, AR reconstructed fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, a breakage-fusion-bridge and other complex rearrangements. By reconstructing the rearrangement signatures associated with an fCNA's generative mechanism, AR enables a more thorough understanding of the origins of fCNAs.
Collapse
Affiliation(s)
- Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Joshua T Lange
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Kristen M Turner
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Viraj Deshpande
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Dave A Pai
- Bionano Genomics, Inc., San Diego, CA, 92121, USA
| | - Chao Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Pathology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
156
|
Mudd AB, Bredeson JV, Baum R, Hockemeyer D, Rokhsar DS. Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. Commun Biol 2020; 3:480. [PMID: 32873878 PMCID: PMC7463020 DOI: 10.1038/s42003-020-1096-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/06/2020] [Indexed: 01/29/2023] Open
Abstract
Closely related muntjac deer show striking karyotype differences. Here we describe chromosome-scale genome assemblies for Chinese and Indian muntjacs, Muntiacus reevesi (2n = 46) and Muntiacus muntjak vaginalis (2n = 6/7), and analyze their evolution and architecture. The genomes show extensive collinearity with each other and with other deer and cattle. We identified numerous fusion events unique to and shared by muntjacs relative to the cervid ancestor, confirming many cytogenetic observations with genome sequence. One of these M. muntjak fusions reversed an earlier fission in the cervid lineage. Comparative Hi-C analysis showed that the chromosome fusions on the M. muntjak lineage altered long-range, three-dimensional chromosome organization relative to M. reevesi in interphase nuclei including A/B compartment structure. This reshaping of multi-megabase contacts occurred without notable change in local chromatin compaction, even near fusion sites. A few genes involved in chromosome maintenance show evidence for rapid evolution, possibly associated with the dramatic changes in karyotype.
Collapse
Affiliation(s)
- Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rachel Baum
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| |
Collapse
|
157
|
Pongor LS, Munkácsy G, Vereczkey I, Pete I, Győrffy B. Currently favored sampling practices for tumor sequencing can produce optimal results in the clinical setting. Sci Rep 2020; 10:14403. [PMID: 32873813 PMCID: PMC7463012 DOI: 10.1038/s41598-020-71382-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 08/10/2020] [Indexed: 11/25/2022] Open
Abstract
Tumor heterogeneity is a consequence of clonal evolution, resulting in a fractal-like architecture with spatially separated main clones, sub-clones and single-cells. As sequencing an entire tumor is not feasible, we ask the question whether there is an optimal clinical sampling strategy that can handle heterogeneity and hypermutations? Here, we tested the effect of sample size, pooling strategy as well as sequencing depth using whole-exome sequencing of ovarian tumor specimens paired with normal blood samples. Our study has an emphasis on clinical application—hence we compared single biopsy, combined local biopsies and combined multi-regional biopsies. Our results show that sequencing from spatially neighboring regions show similar genetic compositions, with few private mutations. Pooling samples from multiple distinct regions of the primary tumor did not increase the overall number of identified mutations but may increase the robustness of detecting clonal mutations. Hypermutating tumors are a special case, since increasing sample size can easily dilute sub-clonal private mutations below detection thresholds. In summary, we compared the effects of sampling strategies (single biopsy, multiple local samples, pooled global sample) on mutation detection by next generation sequencing. In view of the limitations of present tools and technologies, only one sequencing run per sample combined with high coverage (100–300 ×) sequencing is affordable and practical, regardless of the number of samples taken from the same patient.
Collapse
Affiliation(s)
- Lőrinc S Pongor
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Momentum Cancer Biomarker Research Group, Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| | - Gyöngyi Munkácsy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Momentum Cancer Biomarker Research Group, Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| | | | - Imre Pete
- National Institute of Oncology, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary. .,Momentum Cancer Biomarker Research Group, Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary. .,2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
158
|
Takeuchi M, Kuwahara H, Murakami T, Takahashi K, Kajitani R, Toyoda A, Itoh T, Ohkuma M, Hongoh Y. Parallel reductive genome evolution in Desulfovibrio ectosymbionts independently acquired by Trichonympha protists in the termite gut. THE ISME JOURNAL 2020; 14:2288-2301. [PMID: 32483307 PMCID: PMC7608387 DOI: 10.1038/s41396-020-0688-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
Several Trichonympha protist species in the termite gut have independently acquired Desulfovibrio ectosymbionts in apparently different stages of symbiosis. Here, we obtained the near-complete genome sequence of Desulfovibrio phylotype ZnDsv-02, which attaches to the surface of Trichonympha collaris cells, and compared it with a previously obtained genome sequence of 'Candidatus Desulfovibrio trichonymphae' phylotype Rs-N31, which is almost completely embedded in the cytoplasm of Trichonympha agilis. Single-nucleotide polymorphism analysis indicated that although Rs-N31 is almost clonal, the ZnDsv-02 population on a single host cell is heterogeneous. Despite these differences, the genome of ZnDsv-02 has been reduced to 1.6 Mb, which is comparable to that of Rs-N31 (1.4 Mb), but unlike other known ectosymbionts of protists with a genome similar in size to their free-living relatives. Except for the presence of a lactate utilization pathway, cell-adhesion components and anti-phage defense systems in ZnDsv-02, the overall gene-loss pattern between the two genomes is very similar, including the loss of genes responsive to environmental changes. Our study suggests that genome reduction can occur in ectosymbionts, even when they can be transmitted horizontally and obtain genes via lateral transfer, and that the symbiont genome size depends heavily on their role in the symbiotic system.
Collapse
Affiliation(s)
- Mariko Takeuchi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Takumi Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
- Department of Informatics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
159
|
Yang Y, Wang H, Li G, Liu Y, Wang C, He D. Exploring the genetic basis of fatty liver development in geese. Sci Rep 2020; 10:14279. [PMID: 32868783 PMCID: PMC7459336 DOI: 10.1038/s41598-020-71210-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
Although geese possess an adaptive physiological capacity for lipid storage, few candidate genes contributing to this ability are characterised. By comparing the genomes of individuals with extremely high and low fatty liver weights (FLW), candidate genes were identified, including ARAP2, GABRE, and IL6. Single-nucleotide polymorphisms in or near these genes were significantly (p < 0.05) associated with carcass traits (FLW) and biochemical indexes (very-low-density lipoprotein and N-terminal procollagen III), suggesting contribution to trait variation. A common variant at the 5'-end of LCORL explained ~ 18% and ~ 26% of the phenotypic variance in body weight with/without overfeeding and had significant effects on FLW (p < 0.01). ZFF36L1, ARHGEF1 and IQCJ, involved in bile acid metabolism, blood pressure, and lipid concentration modulation, were also identified. The presence of highly divergent haplotypes within these genes suggested involvement in protection against negative effects from excessive lipids in the liver or circulatory system. Based on this and transcriptomic data, we concluded that geese hepatosteatosis results from severe imbalance between lipid accumulation and secretion, comparable to human non-alcohol fatty liver disease but involving other genes. Our results provided valuable insights into the genesis of geese fatty liver and detected potential target genes for treatment of lipid-related diseases.
Collapse
Affiliation(s)
- Yunzhou Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, People's Republic of China.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Uppsala, Sweden.
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, People's Republic of China
| | - Guangquan Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, People's Republic of China
| | - Yi Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, People's Republic of China
| | - Cui Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, People's Republic of China
| | - Daqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, People's Republic of China.
| |
Collapse
|
160
|
Fikere M, Barbulescu DM, Malmberg MM, Spangenberg GC, Cogan NOI, Daetwyler HD. Meta-analysis of GWAS in canola blackleg (Leptosphaeria maculans) disease traits demonstrates increased power from imputed whole-genome sequence. Sci Rep 2020; 10:14300. [PMID: 32868838 PMCID: PMC7459325 DOI: 10.1038/s41598-020-71274-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
Blackleg disease causes yield losses in canola (Brassica napus L.). To identify resistance genes and genomic regions, genome-wide association studies (GWAS) of 585 diverse winter and spring canola accessions were performed using imputed whole-genome sequence (WGS) and transcriptome genotype-by-sequencing (GBSt). Blackleg disease phenotypes were collected across three years in six trials. GWAS were performed in several ways and their respective power was judged by the number of significant single nucleotide polymorphisms (SNP), the false discovery rate (FDR), and the percentage of SNP that validated in additional field trials in two subsequent years. WGS GWAS with 1,234,708 million SNP detected a larger number of significant SNP, achieved a lower FDR and a higher validation rate than GBSt with 64,072 SNP. A meta-analysis combining survival and average internal infection resulted in lower FDR but also lower validation rates. The meta-analysis GWAS identified 79 genomic regions (674 SNP) conferring potential resistance to L. maculans. While several GWAS signals localised in regions of known Rlm genes, fifty-three new potential resistance regions were detected. Seventeen regions had underlying genes with putative functions related to disease defence or stress response in Arabidopsis thaliana. This study provides insight into the genetic architecture and potential molecular mechanisms underlying canola L. maculans resistance.
Collapse
Affiliation(s)
- M Fikere
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia.,Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - D M Barbulescu
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3401, Australia
| | - M M Malmberg
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia
| | - G C Spangenberg
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia
| | - N O I Cogan
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia
| | - H D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia. .,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
161
|
Palatini U, Masri RA, Cosme LV, Koren S, Thibaud-Nissen F, Biedler JK, Krsticevic F, Johnston JS, Halbach R, Crawford JE, Antoshechkin I, Failloux AB, Pischedda E, Marconcini M, Ghurye J, Rhie A, Sharma A, Karagodin DA, Jenrette J, Gamez S, Miesen P, Masterson P, Caccone A, Sharakhova MV, Tu Z, Papathanos PA, Van Rij RP, Akbari OS, Powell J, Phillippy AM, Bonizzoni M. Improved reference genome of the arboviral vector Aedes albopictus. Genome Biol 2020; 21:215. [PMID: 32847630 PMCID: PMC7448346 DOI: 10.1186/s13059-020-02141-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of the Ae. albopictus genome is essential to develop new approaches that involve genetic manipulation of mosquitoes. RESULTS We use long-read sequencing methods and modern scaffolding techniques (PacBio, 10X, and Hi-C) to produce AalbF2, a dramatically improved assembly of the Ae. albopictus genome. AalbF2 reveals widespread viral insertions, novel microRNAs and piRNA clusters, the sex-determining locus, and new immunity genes, and enables genome-wide studies of geographically diverse Ae. albopictus populations and analyses of the developmental and stage-dependent network of expression data. Additionally, we build the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. CONCLUSION The AalbF2 genome assembly represents the most up-to-date collective knowledge of the Ae. albopictus genome. These resources represent a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures.
Collapse
Affiliation(s)
- Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Reem A Masri
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Luciano V Cosme
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511-8934, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892-2152, MD, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - James K Biedler
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Flavia Krsticevic
- Department of Entomology, Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Rebecca Halbach
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Anna-Bella Failloux
- Department of Virology, Arbovirus and Insect Vectors Units, Institut Pasteur, Paris, 75015, France
| | - Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Jay Ghurye
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892-2152, MD, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892-2152, MD, USA
| | - Atashi Sharma
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Dmitry A Karagodin
- Laboratory of Evolutionary Genomics of Insects, The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Jeremy Jenrette
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Stephanie Gamez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0349, USA
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511-8934, USA
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
- Laboratory of Evolutionary Genomics of Insects, The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, 634041, Russia
| | - Zhijian Tu
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Philippos A Papathanos
- Department of Entomology, Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ronald P Van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Omar S Akbari
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0349, USA
| | - Jeffrey Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511-8934, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892-2152, MD, USA
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy.
| |
Collapse
|
162
|
Gakuhari T, Nakagome S, Rasmussen S, Allentoft ME, Sato T, Korneliussen T, Chuinneagáin BN, Matsumae H, Koganebuchi K, Schmidt R, Mizushima S, Kondo O, Shigehara N, Yoneda M, Kimura R, Ishida H, Masuyama T, Yamada Y, Tajima A, Shibata H, Toyoda A, Tsurumoto T, Wakebe T, Shitara H, Hanihara T, Willerslev E, Sikora M, Oota H. Ancient Jomon genome sequence analysis sheds light on migration patterns of early East Asian populations. Commun Biol 2020; 3:437. [PMID: 32843717 PMCID: PMC7447786 DOI: 10.1038/s42003-020-01162-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Anatomically modern humans reached East Asia more than 40,000 years ago. However, key questions still remain unanswered with regard to the route(s) and the number of wave(s) in the dispersal into East Eurasia. Ancient genomes at the edge of the region may elucidate a more detailed picture of the peopling of East Eurasia. Here, we analyze the whole-genome sequence of a 2,500-year-old individual (IK002) from the main-island of Japan that is characterized with a typical Jomon culture. The phylogenetic analyses support multiple waves of migration, with IK002 forming a basal lineage to the East and Northeast Asian genomes examined, likely representing some of the earliest-wave migrants who went north from Southeast Asia to East Asia. Furthermore, IK002 shows strong genetic affinity with the indigenous Taiwan aborigines, which may support a coastal route of the Jomon-ancestry migration. This study highlights the power of ancient genomics to provide new insights into the complex history of human migration into East Eurasia. Takashi Gakuhari, Shigeki Nakagome et al. report the genomic analysis on a 2.5 kya individual from the ancient Jomon culture in present-day Japan. Phylogenetic analysis with comparison to other Eurasian sequences suggests early migration patterns in Asia and provides insight into the genetic affinities between peoples of the region.
Collapse
Affiliation(s)
- Takashi Gakuhari
- Center for Cultural Resource Studies, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.,Kitasato University School of Medicine, Sagamihara, Japan
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Simon Rasmussen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Trace and Environmental DNA (TrEnD) laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Thorfinn Korneliussen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Ryan Schmidt
- Kitasato University School of Medicine, Sagamihara, Japan
| | - Souichiro Mizushima
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Osamu Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nobuo Shigehara
- Nara National Research Institute for Cultural Properties, Nara, Japan
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Kimura
- Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Hajime Ishida
- Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Toshiyuki Tsurumoto
- Department of Macroscopic Anatomy, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Tetsuaki Wakebe
- Department of Macroscopic Anatomy, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Hiromi Shitara
- Department of Archaeology, The University of Tokyo, Tokyo, Japan
| | | | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,GeoGenetics Groups, Department of Zoology, University of Cambridge, Cambridge, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Hiroki Oota
- Kitasato University School of Medicine, Sagamihara, Japan. .,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
163
|
Whole-genome sequencing and gene network modules predict gemcitabine/carboplatin-induced myelosuppression in non-small cell lung cancer patients. NPJ Syst Biol Appl 2020; 6:25. [PMID: 32839457 PMCID: PMC7445166 DOI: 10.1038/s41540-020-00146-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Gemcitabine/carboplatin chemotherapy commonly induces myelosuppression, including neutropenia, leukopenia, and thrombocytopenia. Predicting patients at risk of these adverse drug reactions (ADRs) and adjusting treatments accordingly is a long-term goal of personalized medicine. This study used whole-genome sequencing (WGS) of blood samples from 96 gemcitabine/carboplatin-treated non-small cell lung cancer (NSCLC) patients and gene network modules for predicting myelosuppression. Association of genetic variants in PLINK found 4594, 5019, and 5066 autosomal SNVs/INDELs with p ≤ 1 × 10−3 for neutropenia, leukopenia, and thrombocytopenia, respectively. Based on the SNVs/INDELs we identified the toxicity module, consisting of 215 unique overlapping genes inferred from MCODE-generated gene network modules of 350, 345, and 313 genes, respectively. These module genes showed enrichment for differentially expressed genes in rat bone marrow, human bone marrow, and human cell lines exposed to carboplatin and gemcitabine (p < 0.05). Then using 80% of the patients as training data, random LASSO reduced the number of SNVs/INDELs in the toxicity module into a feasible prediction model consisting of 62 SNVs/INDELs that accurately predict both the training and the test (remaining 20%) data with high (CTCAE 3–4) and low (CTCAE 0–1) maximal myelosuppressive toxicity completely, with the receiver-operating characteristic (ROC) area under the curve (AUC) of 100%. The present study shows how WGS, gene network modules, and random LASSO can be used to develop a feasible and tested model for predicting myelosuppressive toxicity. Although the proposed model predicts myelosuppression in this study, further evaluation in other studies is required to determine its reproducibility, usability, and clinical effect.
Collapse
|
164
|
Kim HK, Lee SY, Koike N, Kim E, Wirianto M, Burish MJ, Yagita K, Lee HK, Chen Z, Chung JM, Abdi S, Yoo SH. Circadian regulation of chemotherapy-induced peripheral neuropathic pain and the underlying transcriptomic landscape. Sci Rep 2020; 10:13844. [PMID: 32796949 PMCID: PMC7427990 DOI: 10.1038/s41598-020-70757-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence demonstrates circadian rhythms of pain hypersensitivity in various chronic disorders. In chemotherapy-induced peripheral neuropathy (CIPN), agents such as paclitaxel are known to elicit chronic neuropathic pain in cancer patients and seriously compromise their quality of life. Here, we report that the mechanical threshold for allodynia in paclitaxel-treated rats exhibited a robust circadian oscillation, reaching the nadir during the daytime (inactive phase). Using Per2::LucSV circadian reporter mice expressing a PER2::LUC fusion protein, we isolated dorsal root ganglia (DRG), the primary sensory cell body for peripheral nerve injury generated hypersensitivity, and monitored ex vivo reporter bioluminescence. We observed strong circadian reporter rhythms in DRG neurons which are highly entrainable by external cues. Paclitaxel treatment significantly lengthened DRG circadian periods, with little effects on the amplitude of oscillation. We further observed the core protein BMAL1 and PER2 in DRG neurons and satellite cells. Using DRG and dorsal horn (DH; another key structure for CIPN pain response) tissues from vehicle and paclitaxel treated rats, we performed RNA-sequencing and identified diurnal expression of core clock genes as well as clock-controlled genes in both sites. Interestingly, 20.1% and 30.4% of diurnal differentially expressed genes (DEGs) overlapped with paclitaxel-induced DEGs in the DRG and the DH respectively. In contrast, paclitaxel-induced DEGs displayed only a modest overlap between daytime and nighttime (Zeitgeber Time 8 and 20). Furthermore, paclitaxel treatment induced de novo diurnal DEGs, suggesting reciprocal interaction of circadian rhythms and chemotherapy. Our study therefore demonstrates a circadian oscillation of CIPN and its underlying transcriptomic landscape.
Collapse
Affiliation(s)
- Hee Kee Kim
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sun-Yeul Lee
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Mark J Burish
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin St., Houston, TX, 77030, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hyun Kyoung Lee
- Department of Pediatrics, Baylor College of Medicine, Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Jin Mo Chung
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Salahadin Abdi
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA.
| |
Collapse
|
165
|
Romero-Hidalgo S, Flores-Rivera J, Rivas-Alonso V, Barquera R, Villarreal-Molina MT, Antuna-Puente B, Macias-Kauffer LR, Villalobos-Comparán M, Ortiz-Maldonado J, Yu N, Lebedeva TV, Alosco SM, García-Rodríguez JD, González-Torres C, Rosas-Madrigal S, Ordoñez G, Guerrero-Camacho JL, Treviño-Frenk I, Escamilla-Tilch M, García-Lechuga M, Tovar-Méndez VH, Pacheco-Ubaldo H, Acuña-Alonzo V, Bortolini MC, Gallo C, Bedoya G, Rothhammer F, González-Jose R, Ruiz-Linares A, Canizales-Quinteros S, Yunis E, Granados J, Corona T. Native American ancestry significantly contributes to neuromyelitis optica susceptibility in the admixed Mexican population. Sci Rep 2020; 10:13706. [PMID: 32792643 PMCID: PMC7426416 DOI: 10.1038/s41598-020-69224-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Neuromyelitis Optica (NMO) is an autoimmune disease with a higher prevalence in non-European populations. Because the Mexican population resulted from the admixture between mainly Native American and European populations, we used genome-wide microarray, HLA high-resolution typing and AQP4 gene sequencing data to analyze genetic ancestry and to seek genetic variants conferring NMO susceptibility in admixed Mexican patients. A total of 164 Mexican NMO patients and 1,208 controls were included. On average, NMO patients had a higher proportion of Native American ancestry than controls (68.1% vs 58.6%; p = 5 × 10-6). GWAS identified a HLA region associated with NMO, led by rs9272219 (OR = 2.48, P = 8 × 10-10). Class II HLA alleles HLA-DQB1*03:01, -DRB1*08:02, -DRB1*16:02, -DRB1*14:06 and -DQB1*04:02 showed the most significant associations with NMO risk. Local ancestry estimates suggest that all the NMO-associated alleles within the HLA region are of Native American origin. No novel or missense variants in the AQP4 gene were found in Mexican patients with NMO or multiple sclerosis. To our knowledge, this is the first study supporting the notion that Native American ancestry significantly contributes to NMO susceptibility in an admixed population, and is consistent with differences in NMO epidemiology in Mexico and Latin America.
Collapse
Affiliation(s)
- Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico City, Mexico.
| | - José Flores-Rivera
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), 14269, Mexico City, Mexico
| | - Verónica Rivas-Alonso
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), 14269, Mexico City, Mexico
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, 14030, Mexico City, Mexico.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | | | | | - Luis Rodrigo Macias-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a La Salud, Facultad de Química, UNAM/INMEGEN, 04510, Mexico City, Mexico
| | - Marisela Villalobos-Comparán
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico City, Mexico
| | - Jair Ortiz-Maldonado
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), 14269, Mexico City, Mexico
| | - Neng Yu
- HLA Laboratory, The American Red Cross Northeast Division, Dedham, MA, 02026, USA
| | - Tatiana V Lebedeva
- HLA Laboratory, The American Red Cross Northeast Division, Dedham, MA, 02026, USA
| | - Sharon M Alosco
- HLA Laboratory, The American Red Cross Northeast Division, Dedham, MA, 02026, USA
| | - Juan Daniel García-Rodríguez
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico City, Mexico
| | | | | | | | | | - Irene Treviño-Frenk
- Department of Neurology, Instituto Nacional de Ciencias Medicas y Nutrición "Salvador Zubirán" (INCMNSZ), 14080, Mexico City, Mexico.,Neurologic Center, ABC Medical Center, Mexico City, Mexico
| | | | | | | | - Hanna Pacheco-Ubaldo
- Molecular Genetics Laboratory, National School of Anthropology and History, 14030, Mexico City, Mexico
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, 14030, Mexico City, Mexico
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, 91501-970, Brasil
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Peru
| | - Gabriel Bedoya
- GENMOL (Genetica Molecular), Universidad de Antioquia, 5001000, Medellin, Colombia
| | - Francisco Rothhammer
- Departamento de Tecnología Médica, Facultad de Ciencias de La Salud, Universidad de Tarapaca, 1000009, Arica, Chile
| | - Rolando González-Jose
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica Y Evolucion, Puerto Madryn U912OACD, Argentina
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a La Salud, Facultad de Química, UNAM/INMEGEN, 04510, Mexico City, Mexico
| | - Edmond Yunis
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Julio Granados
- Department of Transplantation, INCMNSZ, 14080, Mexico City, Mexico.
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), 14269, Mexico City, Mexico.
| |
Collapse
|
166
|
Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression. Commun Biol 2020; 3:432. [PMID: 32792560 PMCID: PMC7426833 DOI: 10.1038/s42003-020-01172-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns (r > 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression.
Collapse
|
167
|
Czech B, Guldbrandtsen B, Szyda J. Patterns of DNA variation between the autosomes, the X chromosome and the Y chromosome in Bos taurus genome. Sci Rep 2020; 10:13641. [PMID: 32788585 PMCID: PMC7423949 DOI: 10.1038/s41598-020-70380-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/23/2020] [Indexed: 11/15/2022] Open
Abstract
The new ARS-UCD1.2 assembly of the bovine genome has considerable improvements over the previous assembly and thus more accurate identification of patterns of genetic variation can be achieved with it. We explored differences in genetic variation between autosomes, the X chromosome, and the Y chromosome. In particular, variant densities, annotations, lengths (only for InDels), nucleotide divergence, and Tajima’s D statistics between chromosomes were considered. Whole-genome DNA sequences of 217 individuals representing different cattle breeds were examined. The analysis included the alignment to the new reference genome and variant identification. 23,655,295 SNPs and 3,758,781 InDels were detected. In contrast to autosomes, both sex chromosomes had negative values of Tajima’s D and lower nucleotide divergence. That implies a correlation between nucleotide diversity and recombination rate, which is obviously reduced for sex chromosomes. Moreover, the accumulation of nonsynonymous mutations on the Y chromosome could be associated with loss of recombination. Also, the relatively lower effective population size for sex chromosomes leads to a lower expected density of variants.
Collapse
Affiliation(s)
- Bartosz Czech
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wrocław, Poland.
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.,Department of Animal Sciences, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wrocław, Poland.,Institute of Animal Breeding, Krakowska 1, 32-083, Balice, Poland
| |
Collapse
|
168
|
Cairns J, Jokela R, Becks L, Mustonen V, Hiltunen T. Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation. Nat Ecol Evol 2020; 4:1385-1394. [PMID: 32778754 DOI: 10.1038/s41559-020-1272-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022]
Abstract
In an era of pervasive anthropogenic ecological disturbances, there is a pressing need to understand the factors that constitute community response and resilience. A detailed understanding of disturbance response needs to go beyond associations and incorporate features of disturbances, species traits, rapid evolution and dispersal. Multispecies microbial communities that experience antibiotic perturbation represent a key system with important medical dimensions. However, previous microbiome studies on this theme have relied on high-throughput sequencing data from uncultured species without the ability to explicitly account for the role of species traits and immigration. Here, we serially passage a 34-species defined bacterial community through different levels of pulse antibiotic disturbance, manipulating the presence or absence of species immigration. To understand the ecological community response measured using amplicon sequencing, we combine initial trait data measured for each species separately and metagenome sequencing data revealing adaptive mutations during the experiment. We found that the ecological community response was highly repeatable within the experimental treatments, which could be attributed in part to key species traits (antibiotic susceptibility and growth rate). Increasing antibiotic levels were also coupled with an increasing probability of species extinction, making species immigration critical for community resilience. Moreover, we detected signals of antibiotic-resistance evolution occurring within species at the same time scale, leaving evolutionary changes in communities despite recovery at the species compositional level. Together, these observations reveal a disturbance response that presents as classic species sorting, but is nevertheless accompanied by rapid within-species evolution.
Collapse
Affiliation(s)
- Johannes Cairns
- Wellcome Sanger Institute, Cambridge, UK. .,Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, University of Helsinki, Helsinki, Finland. .,Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Roosa Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland.,Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Helsinki, Finland. .,Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
169
|
Hill L, Ebert A, Jaritz M, Wutz G, Nagasaka K, Tagoh H, Kostanova-Poliakova D, Schindler K, Sun Q, Bönelt P, Fischer M, Peters JM, Busslinger M. Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature 2020; 584:142-147. [PMID: 32612238 PMCID: PMC7116900 DOI: 10.1038/s41586-020-2454-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
Abstract
Nuclear processes, such as V(D)J recombination, are orchestrated by the three-dimensional organization of chromosomes at multiple levels, including compartments1 and topologically associated domains (TADs)2,3 consisting of chromatin loops4. TADs are formed by chromatin-loop extrusion5-7, which depends on the loop-extrusion function of the ring-shaped cohesin complex8-12. Conversely, the cohesin-release factor Wapl13,14 restricts loop extension10,15. The generation of a diverse antibody repertoire, providing humoral immunity to pathogens, requires the participation of all V genes in V(D)J recombination16, which depends on contraction of the 2.8-Mb-long immunoglobulin heavy chain (Igh) locus by Pax517,18. However, how Pax5 controls Igh contraction in pro-B cells remains unknown. Here we demonstrate that locus contraction is caused by loop extrusion across the entire Igh locus. Notably, the expression of Wapl is repressed by Pax5 specifically in pro-B and pre-B cells, facilitating extended loop extrusion by increasing the residence time of cohesin on chromatin. Pax5 mediates the transcriptional repression of Wapl through a single Pax5-binding site by recruiting the polycomb repressive complex 2 to induce bivalent chromatin at the Wapl promoter. Reduced Wapl expression causes global alterations in the chromosome architecture, indicating that the potential to recombine all V genes entails structural changes of the entire genome in pro-B cells.
Collapse
Affiliation(s)
- Louisa Hill
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Anja Ebert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kota Nagasaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | - Karina Schindler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Qiong Sun
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Bönelt
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Maria Fischer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
170
|
Primary mammary angiosarcomas harbor frequent mutations in KDR and PIK3CA and show evidence of distinct pathogenesis. Mod Pathol 2020; 33:1518-1526. [PMID: 32123305 DOI: 10.1038/s41379-020-0511-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Angiosarcoma (AS) is the most frequent primary sarcoma of the breast but nevertheless remains uncommon, accounting for <0.05% of breast malignancies. Secondary mammary AS arise following radiation therapy for breast cancer, in contrast to primary AS which occur sporadically. Essentially all show aggressive clinical behavior independent of histologic grade and most are treated by mastectomy. MYC amplification is frequently identified in radiation-induced AS but only rarely in primary mammary AS (PMAS). As a heterogeneous group, AS from various anatomic sites have been shown to harbor recurrent alterations in TP53, MAP kinase pathway genes, and genes involved in angiogenic signaling including KDR (VEGFR2) and PTPRB. In part due to its rarity, the pathogenesis of PMAS has not been fully characterized. In this study, we examined the clinical, pathologic, and genomic features of ten cases of PMAS, including one patient with bilateral disease. Recurrent genomic alterations were identified in KDR (70%), PIK3CA/PIK3R1 (70%), and PTPRB (30%), each at higher frequencies than reported in AS across all sites. Six tumors harbored a KDR p.T771R hotspot mutation, and all seven KDR-mutant cases showed evidence suggestive of biallelism (four with loss of heterozygosity and three with two aberrations). Of the seven tumors with PI3K alterations, six harbored pathogenic mutations other than in the canonical PIK3CA residues which are most frequent in breast cancer. Three AS were hypermutated (≥10 mutations/megabase (Mb)); hypermutation was seen concurrent with KDR or PIK3CA mutations. The patient with bilateral disease demonstrated shared alterations, indicative of contralateral metastasis. No MYC or TP53 aberrations were detected in this series. Immunohistochemistry for VEGFR2 was unable to discriminate between KDR-mutant tumors and benign vascular lesions of the breast. These findings highlight the underrecognized frequency of KDR and PIK3CA mutation in PMAS, and a significant subset with hypermutation, suggesting a pathogenesis distinct from other AS.
Collapse
|
171
|
Da Cruz Paula A, da Silva EM, Segura SE, Pareja F, Bi R, Selenica P, Kim SH, Ferrando L, Vahdatinia M, Soslow RA, Vidal A, Gatius S, Przybycin CG, Abu-Rustum NR, Matias-Guiu X, Rubin BP, Reis-Filho JS, DeLair DF, Weigelt B. Genomic profiling of primary and recurrent adult granulosa cell tumors of the ovary. Mod Pathol 2020; 33:1606-1617. [PMID: 32203090 PMCID: PMC7390666 DOI: 10.1038/s41379-020-0514-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Adult-type granulosa cell tumor (aGCT) is a rare malignant ovarian sex cord-stromal tumor, harboring recurrent FOXL2 c.C402G/p.C134W hotspot mutations in 97% of cases. These tumors are considered to have a favorable prognosis, however aGCTs have a tendency for local spread and late recurrences, which are associated with poor survival rates. We sought to determine the genetic alterations associated with aGCT disease progression. We subjected primary non-recurrent aGCTs (n = 7), primary aGCTs that subsequently recurred (n = 9) and their matched recurrences (n = 9), and aGCT recurrences without matched primary tumors (n = 10) to targeted massively parallel sequencing of ≥410 cancer-related genes. In addition, three primary non-recurrent aGCTs and nine aGCT recurrences were subjected to FOXL2 and TERT promoter Sanger sequencing analysis. All aGCTs harbored the FOXL2 C134W hotspot mutation. TERT promoter mutations were found to be significantly more frequent in recurrent (18/28, 64%) than primary aGCTs (5/19, 26%, p = 0.017). In addition, mutations affecting TP53, MED12, and TET2 were restricted to aGCT recurrences. Pathway annotation of altered genes demonstrated that aGCT recurrences displayed an enrichment for genetic alterations affecting cell cycle pathway-related genes. Analysis of paired primary and recurrent aGCTs revealed that TERT promoter mutations were either present in both primary tumors and matched recurrences or were restricted to the recurrence and absent in the respective primary aGCT. Clonal composition analysis of these paired samples further revealed that aGCTs display intra-tumor genetic heterogeneity and harbor multiple clones at diagnosis and relapse. We observed that in a subset of cases, recurrences acquired additional genetic alterations not present in primary aGCTs, including TERT, MED12, and TP53 mutations and CDKN2A/B homozygous deletions. Albeit harboring relatively simple genomes, our data provide evidence to suggest that aGCTs are genetically heterogeneous tumors and that TERT promoter mutations and/or genetic alterations affecting other cell cycle-related genes may be associated with disease progression and recurrences.
Collapse
Affiliation(s)
- Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edaise M da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sheila E Segura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Bi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah H Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenzo Ferrando
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Mahsa Vahdatinia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert A Soslow
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - August Vidal
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, CIBERONC, Barcelona, Spain
| | - Sonia Gatius
- Department of Pathology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, University of Lleida, CIBERONC, Lleida, Spain
| | - Christopher G Przybycin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nadeem R Abu-Rustum
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, CIBERONC, Barcelona, Spain
- Department of Pathology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, University of Lleida, CIBERONC, Lleida, Spain
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deborah F DeLair
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pathology, NYU Langone Health, New York, NY, USA.
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
172
|
Genomic epidemiology of Mycobacterium tuberculosis in Santa Catarina, Southern Brazil. Sci Rep 2020; 10:12891. [PMID: 32732910 PMCID: PMC7393130 DOI: 10.1038/s41598-020-69755-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the pathogen responsible for tuberculosis (TB) poses as the major cause of death among infectious diseases. The knowledge about the molecular diversity of M.tb enables the implementation of more effective surveillance and control measures and, nowadays, Whole Genome Sequencing (WGS) holds the potential to produce high-resolution epidemiological data in a high-throughput manner. Florianópolis, the state capital of Santa Catarina (SC) in south Brazil, shows a high TB incidence (46.0/100,000). Here we carried out a WGS-based evaluation of the M.tb strain diversity, drug-resistance and ongoing transmission in the capital metropolitan region. Resistance to isoniazid, rifampicin, streptomycin was identified respectively in 4.0% (n = 6), 2.0% (n = 3) and 1.3% (n = 2) of the 151 studied strains by WGS. Besides, resistance to pyrazinamide and ethambutol was detected in 0.7% (n = 1) and reistance to ethionamide and fluoroquinolone (FQ) in 1.3% (n = 2), while a single (0.7%) multidrug-resistant (MDR) strain was identified. SNP-based typing classified all isolates into M.tb Lineage 4, with high proportion of sublineages LAM (60.3%), T (16.4%) and Haarlem (7.9%). The average core-genome distance between isolates was 420.3 SNPs, with 43.7% of all isolates grouped across 22 genomic clusters thereby showing the presence of important ongoing TB transmission events. Most clusters were geographically distributed across the study setting which highlights the need for an urgent interruption of these large transmission chains. The data conveyed by this study shows the presence of important and uncontrolled TB transmission in the metropolitan area and provides precise data to support TB control measures in this region.
Collapse
|
173
|
Partridge EC, Chhetri SB, Prokop JW, Ramaker RC, Jansen CS, Goh ST, Mackiewicz M, Newberry KM, Brandsmeier LA, Meadows SK, Messer CL, Hardigan AA, Coppola CJ, Dean EC, Jiang S, Savic D, Mortazavi A, Wold BJ, Myers RM, Mendenhall EM. Occupancy maps of 208 chromatin-associated proteins in one human cell type. Nature 2020; 583:720-728. [PMID: 32728244 PMCID: PMC7398277 DOI: 10.1038/s41586-020-2023-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/09/2020] [Indexed: 01/02/2023]
Abstract
Transcription factors are DNA-binding proteins that have key roles in gene regulation1,2. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes3–6. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP–seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium. ChIP–seq and CETCh–seq data are used to analyse binding maps for 208 transcription factors and other chromatin-associated proteins in a single human cell type, providing a comprehensive catalogue of the transcription factor landscape and gene regulatory networks in these cells.
Collapse
Affiliation(s)
| | - Surya B Chhetri
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MA, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ryne C Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Camden S Jansen
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Say-Tar Goh
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - C Luke Messer
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Andrew A Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Candice J Coppola
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Emma C Dean
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shan Jiang
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Daniel Savic
- Pharmaceutical Sciences Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Barbara J Wold
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Eric M Mendenhall
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA. .,Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA.
| |
Collapse
|
174
|
Aragona M, Sifrim A, Malfait M, Song Y, Van Herck J, Dekoninck S, Gargouri S, Lapouge G, Swedlund B, Dubois C, Baatsen P, Vints K, Han S, Tissir F, Voet T, Simons BD, Blanpain C. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature 2020; 584:268-273. [PMID: 32728211 DOI: 10.1038/s41586-020-2555-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
The ability of the skin to grow in response to stretching has been exploited in reconstructive surgery1. Although the response of epidermal cells to stretching has been studied in vitro2,3, it remains unclear how mechanical forces affect their behaviour in vivo. Here we develop a mouse model in which the consequences of stretching on skin epidermis can be studied at single-cell resolution. Using a multidisciplinary approach that combines clonal analysis with quantitative modelling and single-cell RNA sequencing, we show that stretching induces skin expansion by creating a transient bias in the renewal activity of epidermal stem cells, while a second subpopulation of basal progenitors remains committed to differentiation. Transcriptional and chromatin profiling identifies how cell states and gene-regulatory networks are modulated by stretching. Using pharmacological inhibitors and mouse mutants, we define the step-by-step mechanisms that control stretch-mediated tissue expansion at single-cell resolution in vivo.
Collapse
Affiliation(s)
- Mariaceleste Aragona
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Alejandro Sifrim
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Milan Malfait
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Jens Van Herck
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Sophie Dekoninck
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Souhir Gargouri
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Gaëlle Lapouge
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Baatsen
- Electron Microscopy Platform of VIB Bio Imaging Core, Leuven, Belgium
| | - Katlijn Vints
- Electron Microscopy Platform of VIB Bio Imaging Core, Leuven, Belgium
| | - Seungmin Han
- The Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Benjamin D Simons
- The Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK. .,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK. .,Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium. .,WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
175
|
Gordon SP, Contreras-Moreira B, Levy JJ, Djamei A, Czedik-Eysenberg A, Tartaglio VS, Session A, Martin J, Cartwright A, Katz A, Singan VR, Goltsman E, Barry K, Dinh-Thi VH, Chalhoub B, Diaz-Perez A, Sancho R, Lusinska J, Wolny E, Nibau C, Doonan JH, Mur LAJ, Plott C, Jenkins J, Hazen SP, Lee SJ, Shu S, Goodstein D, Rokhsar D, Schmutz J, Hasterok R, Catalan P, Vogel JP. Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors. Nat Commun 2020; 11:3670. [PMID: 32728126 PMCID: PMC7391716 DOI: 10.1038/s41467-020-17302-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.
Collapse
Affiliation(s)
- Sean P Gordon
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Joshua J Levy
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Armin Djamei
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben. Stadt Seeland, Seeland, Germany
| | | | - Virginia S Tartaglio
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam Session
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Joel Martin
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | | | - Andrew Katz
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | | | | | - Kerrie Barry
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Vinh Ha Dinh-Thi
- Organization and evolution of complex genomes (OECG) Institut national de la Recherche agronomique (INRA), Université d'Evry Val d'Essonne (UEVE), Evry, France
| | - Boulos Chalhoub
- Organization and evolution of complex genomes (OECG) Institut national de la Recherche agronomique (INRA), Université d'Evry Val d'Essonne (UEVE), Evry, France
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, 310058, Hangzhou, China
| | - Antonio Diaz-Perez
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain
- Instituto de Genética, Facultad de Agronomía, Universidad Central de Venezuela, 2102, Maracay, Venezuela
| | - Ruben Sancho
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain
| | - Joanna Lusinska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Elzbieta Wolny
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Candida Nibau
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - John H Doonan
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Scott J Lee
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | | | - Daniel Rokhsar
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeremy Schmutz
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Pilar Catalan
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain.
- Institute of Biology, Tomsk State University, Tomsk, 634050, Russia.
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA.
- University California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
176
|
A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:282-293. [PMID: 32737856 DOI: 10.1007/s11427-020-1738-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/19/2020] [Indexed: 01/15/2023]
Abstract
Oryza rufipogon Griff. is a wild progenitor of the Asian cultivated rice Oryza sativa. To better understand the genomic diversity of the wild rice, high-quality reference genomes of O. rufipogon populations are needed, which also facilitate utilization of the wild genetic resources in rice breeding. In this study, we generated a chromosome-level genome assembly of O. rufipogon using a combination of short-read sequencing, single-molecule sequencing, BioNano and Hi-C platforms. The genome sequence (399.8 Mb) was assembled into 46 scaffolds on the 12 chromosomes, with contig N50 and scaffold N50 of 13.2 Mb and 20.3 Mb, respectively. The genome contains 36,520 protein-coding genes, and 49.37% of the genome consists of repetitive elements. The genome has strong synteny with those of the O. sativa subspecies indica and japonica, but containing some large structural variations. Evolutionary analysis unveiled the polyphyletic origins of O. sativa, in which the japonica and indica genome formations involved different divergent O. rufipogon (including O. nivara) lineages, accompanied by introgression of genomic regions between japonica and indica. This high-quality reference genome provides insight on the genome evolution of the wild rice and the origins of the O. sativa subspecies, and valuable information for basic research and rice breeding.
Collapse
|
177
|
Differences in local population history at the finest level: the case of the Estonian population. Eur J Hum Genet 2020; 28:1580-1591. [PMID: 32712624 PMCID: PMC7575549 DOI: 10.1038/s41431-020-0699-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Several recent studies detected fine-scale genetic structure in human populations. Hence, groups conventionally treated as single populations harbour significant variation in terms of allele frequencies and patterns of haplotype sharing. It has been shown that these findings should be considered when performing studies of genetic associations and natural selection, especially when dealing with polygenic phenotypes. However, there is little understanding of the practical effects of such genetic structure on demography reconstructions and selection scans when focusing on recent population history. Here we tested the impact of population structure on such inferences using high-coverage (~30×) genome sequences of 2305 Estonians. We show that different regions of Estonia differ in both effective population size dynamics and signatures of natural selection. By analyzing identity-by-descent segments we also reveal that some Estonian regions exhibit evidence of a bottleneck 10-15 generations ago reflecting sequential episodes of wars, plague and famine, although this signal is virtually undetected when treating Estonia as a single population. Besides that, we provide a framework for relating effective population size estimated from genetic data to actual census size and validate it on the Estonian population. This approach may be widely used both to cross-check estimates based on historical sources as well as to get insight into times and/or regions with no other information available. Our results suggest that the history of human populations within the last few millennia can be highly region specific and cannot be properly studied without taking local genetic structure into account.
Collapse
|
178
|
Li Y, Li B, Li W, Wang Y, Akgül S, Treisman DM, Heist KA, Pierce BR, Hoff B, Ho CY, Ferguson DO, Rehemtulla A, Zheng S, Ross BD, Li JZ, Zhu Y. Murine models of IDH-wild-type glioblastoma exhibit spatial segregation of tumor initiation and manifestation during evolution. Nat Commun 2020; 11:3669. [PMID: 32699356 PMCID: PMC7376246 DOI: 10.1038/s41467-020-17382-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
Recent characterization of spatiotemporal genomic architecture of IDH-wild-type multifocal glioblastomas (M-GBMs) suggests a clinically unobserved common-ancestor (CA) with a less aggressive phenotype, generating highly genetically divergent malignant gliomas/GBMs in distant brain regions. Using serial MRI/3D-reconstruction, whole-genome sequencing and spectral karyotyping-based single-cell phylogenetic tree building, we show two distinct types of tumor evolution in p53-mutant driven mouse models. Malignant gliomas/GBMs grow as a single mass (Type 1) and multifocal masses (Type 2), respectively, despite both exhibiting loss of Pten/chromosome 19 (chr19) and PI3K/Akt activation with sub-tetraploid/4N genomes. Analysis of early biopsied and multi-segment tumor tissues reveals no evidence of less proliferative diploid/2N lesions in Type 1 tumors. Strikingly, CA-derived relatively quiescent tumor precursors with ancestral diploid/2N genomes and normal Pten/chr19 are observed in the subventricular zone (SVZ), but are distantly segregated from multi focal Type 2 tumors. Importantly, PI3K/Akt inhibition by Rictor/mTORC2 deletion blocks distant dispersal, restricting glioma growth in the SVZ.
Collapse
Affiliation(s)
- Yinghua Li
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
| | - Bo Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA
| | - Yuan Wang
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
| | - Seçkin Akgül
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Sid Faithfull Brain Cancer Laboratory, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Daniel M Treisman
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kevin A Heist
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brianna R Pierce
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
| | - Benjamin Hoff
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Cheng-Ying Ho
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA
| | - David O Ferguson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian D Ross
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA.
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA.
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
179
|
Kamp JA, van Schendel R, Dilweg IW, Tijsterman M. BRCA1-associated structural variations are a consequence of polymerase theta-mediated end-joining. Nat Commun 2020; 11:3615. [PMID: 32680986 PMCID: PMC7368036 DOI: 10.1038/s41467-020-17455-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/01/2020] [Indexed: 12/03/2022] Open
Abstract
Failure to preserve the integrity of the genome is a hallmark of cancer. Recent studies have revealed that loss of the capacity to repair DNA breaks via homologous recombination (HR) results in a mutational profile termed BRCAness. The enzymatic activity that repairs HR substrates in BRCA-deficient conditions to produce this profile is currently unknown. We here show that the mutational landscape of BRCA1 deficiency in C. elegans closely resembles that of BRCA1-deficient tumours. We identify polymerase theta-mediated end-joining (TMEJ) to be responsible: knocking out polq-1 suppresses the accumulation of deletions and tandem duplications in brc-1 and brd-1 animals. We find no additional back-up repair in HR and TMEJ compromised animals; non-homologous end-joining does not affect BRCAness. The notion that TMEJ acts as an alternative to HR, promoting the genome alteration of HR-deficient cells, supports the idea that polymerase theta is a promising therapeutic target for HR-deficient tumours.
Collapse
Affiliation(s)
- J A Kamp
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - R van Schendel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - I W Dilweg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - M Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
180
|
Buonasera T, Eerkens J, de Flamingh A, Engbring L, Yip J, Li H, Haas R, DiGiuseppe D, Grant D, Salemi M, Nijmeh C, Arellano M, Leventhal A, Phinney B, Byrd BF, Malhi RS, Parker G. A comparison of proteomic, genomic, and osteological methods of archaeological sex estimation. Sci Rep 2020; 10:11897. [PMID: 32681049 PMCID: PMC7368048 DOI: 10.1038/s41598-020-68550-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/19/2020] [Indexed: 11/09/2022] Open
Abstract
Sex estimation of skeletons is fundamental to many archaeological studies. Currently, three approaches are available to estimate sex-osteology, genomics, or proteomics, but little is known about the relative reliability of these methods in applied settings. We present matching osteological, shotgun-genomic, and proteomic data to estimate the sex of 55 individuals, each with an independent radiocarbon date between 2,440 and 100 cal BP, from two ancestral Ohlone sites in Central California. Sex estimation was possible in 100% of this burial sample using proteomics, in 91% using genomics, and in 51% using osteology. Agreement between the methods was high, however conflicts did occur. Genomic sex estimates were 100% consistent with proteomic and osteological estimates when DNA reads were above 100,000 total sequences. However, more than half the samples had DNA read numbers below this threshold, producing high rates of conflict with osteological and proteomic data where nine out of twenty conditional DNA sex estimates conflicted with proteomics. While the DNA signal decreased by an order of magnitude in the older burial samples, there was no decrease in proteomic signal. We conclude that proteomics provides an important complement to osteological and shotgun-genomic sex estimation.
Collapse
Affiliation(s)
- Tammy Buonasera
- Department of Environmental Toxicology, University of California, Rm 5241B Meyer Hall, 1 Shields Ave, Davis, CA, 95616, USA. .,Department of Anthropology, University of California, Davis, USA.
| | - Jelmer Eerkens
- Department of Anthropology, University of California, Davis, USA
| | - Alida de Flamingh
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana-Champaign, USA
| | - Laurel Engbring
- Far Western Anthropological Research Group, Inc, Davis, CA, USA
| | - Julia Yip
- Department of Environmental Toxicology, University of California, Rm 5241B Meyer Hall, 1 Shields Ave, Davis, CA, 95616, USA
| | - Hongjie Li
- Department of Anthropology, University of Illinois, Urbana-Champaign, USA
| | - Randall Haas
- Department of Anthropology, University of California, Davis, USA
| | | | - Dave Grant
- D&D Osteological Services, LLC, San Jose, CA, USA
| | - Michelle Salemi
- Proteomic Core Facility, Genome Center, University of California, Davis, CA, USA
| | - Charlene Nijmeh
- Muwekma Ohlone Tribe of the San Francisco Bay Area, Milpitas, CA, USA
| | - Monica Arellano
- Muwekma Ohlone Tribe of the San Francisco Bay Area, Milpitas, CA, USA
| | - Alan Leventhal
- Muwekma Ohlone Tribe of the San Francisco Bay Area, Milpitas, CA, USA.,Department of Anthropology, San Jose State University, San Jose, CA, USA
| | - Brett Phinney
- Proteomic Core Facility, Genome Center, University of California, Davis, CA, USA
| | - Brian F Byrd
- Far Western Anthropological Research Group, Inc, Davis, CA, USA
| | - Ripan S Malhi
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana-Champaign, USA.,Department of Anthropology, University of Illinois, Urbana-Champaign, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, USA
| | - Glendon Parker
- Department of Environmental Toxicology, University of California, Rm 5241B Meyer Hall, 1 Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
181
|
Kim TM, Yang IS, Seung BJ, Lee S, Kim D, Ha YJ, Seo MK, Kim KK, Kim HS, Cheong JH, Sur JH, Nam H, Kim S. Cross-species oncogenic signatures of breast cancer in canine mammary tumors. Nat Commun 2020; 11:3616. [PMID: 32680987 PMCID: PMC7367841 DOI: 10.1038/s41467-020-17458-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Genomic and precision medicine research has afforded notable advances in human cancer treatment, yet applicability to other species remains uncertain. Through whole-exome and transcriptome analyses of 191 spontaneous canine mammary tumors (CMTs) that exhibit the archetypal features of human breast cancers, we found a striking resemblance of genomic characteristics including frequent PIK3CA mutations (43.1%), aberrations of the PI3K-Akt pathway (61.7%), and key genes involved in cancer initiation and progression. We also identified three gene expression-based CMT subtypes, one of which segregated with basal-like human breast cancer subtypes with activated epithelial-to-mesenchymal transition, low claudin expression, and unfavorable disease prognosis. A relative lack of ERBB2 amplification and Her2-enrichment subtype in CMT denoted species-specific molecular mechanisms. Taken together, our results elucidate cross-species oncogenic signatures for a better understanding of universal and context-dependent mechanisms in breast cancer development and provide a basis for precision diagnostics and therapeutics for domestic dogs.
Collapse
Affiliation(s)
- Tae-Min Kim
- Department of Medical Informatics and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - In Seok Yang
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Byung-Joon Seung
- Department of Veterinary Pathology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Sejoon Lee
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Dohyun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Yoo-Jin Ha
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Mi-Kyoung Seo
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ka-Kyung Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hyun Seok Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae-Ho Cheong
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jung-Hyang Sur
- Department of Veterinary Pathology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
182
|
Voronina TA, Nesmelov AA, Kondratyeva SA, Deviatiiarov RM, Miyata Y, Tokumoto S, Cornette R, Gusev OA, Kikawada T, Shagimardanova EI. New group of transmembrane proteins associated with desiccation tolerance in the anhydrobiotic midge Polypedilum vanderplanki. Sci Rep 2020; 10:11633. [PMID: 32669703 PMCID: PMC7363813 DOI: 10.1038/s41598-020-68330-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Larvae of the sleeping chironomid Polypedilum vanderplanki are known for their extraordinary ability to survive complete desiccation in an ametabolic state called "anhydrobiosis". The unique feature of P. vanderplanki genome is the presence of expanded gene clusters associated with anhydrobiosis. While several such clusters represent orthologues of known genes, there is a distinct set of genes unique for P. vanderplanki. These include Lea-Island-Located (LIL) genes with no known orthologues except two of LEA genes of P. vanderplanki, PvLea1 and PvLea3. However, PvLIL proteins lack typical features of LEA such as the state of intrinsic disorder, hydrophilicity and characteristic LEA_4 motif. They possess four to five transmembrane domains each and we confirmed membrane targeting for three PvLILs. Conserved amino acids in PvLIL are located in transmembrane domains or nearby. PvLEA1 and PvLEA3 proteins are chimeras combining LEA-like parts and transmembrane domains, shared with PvLIL proteins. We have found that PvLil genes are highly upregulated during anhydrobiosis induction both in larvae of P. vanderplanki and P. vanderplanki-derived cultured cell line, Pv11. Thus, PvLil are a new intriguing group of genes that are likely to be associated with anhydrobiosis due to their common origin with some LEA genes and their induction during anhydrobiosis.
Collapse
Affiliation(s)
- Taisiya A Voronina
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander A Nesmelov
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sabina A Kondratyeva
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ruslan M Deviatiiarov
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yugo Miyata
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shoko Tokumoto
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Richard Cornette
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Oleg A Gusev
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Japan
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Takahiro Kikawada
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Elena I Shagimardanova
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
183
|
A first genetic linage map construction and QTL mapping for growth traits in Larimichthys polyactis. Sci Rep 2020; 10:11621. [PMID: 32669609 PMCID: PMC7363912 DOI: 10.1038/s41598-020-68592-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/30/2020] [Indexed: 11/08/2022] Open
Abstract
Larimichthys polyactis is a commercially important marine fish species in Eastern Asia, yet very few genetic resources exist. In particular, genetic linkage maps are critical tools for genetic breeding. In this study, we generated a high resolution linkage map from a family of 110 individuals and their parents by resequencing the individuals. 3,802 effective SNPs were mapped to 24 linkage groups (LGs). The map spanned 2,567.39 cm, with an average marker interval of 0.66 cm. We used the map to conduct QTL analysis for growth traits, and found 31 markers were significantly associated with growth-related traits. Specifically, three SNPs were identified for total length, nineteen SNPs for body length, and nine SNPs for body weight. The identified SNPs could explain 15.2-22.6% of the phenotypic variation. SNPs associated with growth traits were distributed on LG6 and LG11, and candidate genes included, kif26b, bat1, gna1, gbgt1, and amfr, which may regulate growth. The linkage map and mapped QTLs would be useful for improving the quality of L. polyactis via marker-assisted selection.
Collapse
|
184
|
Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat Microbiol 2020; 5:1271-1284. [PMID: 32661313 PMCID: PMC7529909 DOI: 10.1038/s41564-020-0756-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of biofilm-associated prosthetic joint infection (PJI), resulting in significant disability and prolonged treatment. It is known that host leukocyte IL-10 production is required for S. aureus biofilm persistence in PJI. A S. aureus bursa aurealis Tn library consisting of 1,952 non-essential genes was screened for mutants that failed to induce IL-10 in myeloid-derived suppressor cells (MDSCs), which identified a critical role for bacterial lactic acid biosynthesis. We generated a S. aureus ddh/ldh1/ldh2 triple Tn mutant that cannot produce D- or L-lactate. Co-culture of MDSCs or macrophages with ddh/ldh1/ldh2 mutant biofilm produced substantially less IL-10 compared with wild type S. aureus, which was also observed in a mouse model of PJI and led to reduced biofilm burden. Using MDSCs recovered from the mouse PJI model and in vitro leukocyte-biofilm co-cultures we show that bacterial-derived lactate inhibits histone deacetylase 11 (HDAC11), causing unchecked HDAC6 activity and increased histone 3 acetylation at the Il-10 promoter, resulting in enhanced Il-10 transcription in MDSCs and macrophages. Finally, we show that synovial fluid of patients with PJI contains elevated amounts of D-lactate and IL-10 compared with control subjects, and bacterial lactate increases IL-10 production by human monocyte-derived macrophages. Biofilms are bacterial communities that are difficult to treat because of their tolerance to antibiotics and ability to evade immune-mediated clearance. Prosthetic joint infection (PJI), a devastating complication of arthroplasty, is characterized by biofilm formation. The current study has discovered a central role for lactic acid biosynthesis in S. aureus biofilm formation during PJI. Mechanistically, bacterial-derived lactate inhibits histone deacetylase 11 (HDAC11) activity, which causes extensive epigenetic changes at the promoters of numerous host genes, including the key anti-inflammatory cytokine Il-10. Indeed, IL-10 production by myeloid-derived suppressor cells (MDSCs) and macrophages is critical for biofilm persistence during PJI. HDAC11 inhibition by S. aureus lactate results in unchecked HDAC6 activity, a positive regulator of IL-10, thereby increasing IL-10 production by MDSCs and macrophages in vitro and in vivo. Similarly, S. aureus lactate promotes IL-10 production in human monocyte-derived macrophages following biofilm exposure. This study highlights how bacterial metabolism can influence the host immune response to promote infection persistence.
Collapse
|
185
|
Mat AM, Sarrazin J, Markov GV, Apremont V, Dubreuil C, Eché C, Fabioux C, Klopp C, Sarradin PM, Tanguy A, Huvet A, Matabos M. Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus. Nat Commun 2020; 11:3454. [PMID: 32651383 PMCID: PMC7351958 DOI: 10.1038/s41467-020-17284-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Biological rhythms are a fundamental property of life. The deep ocean covers 66% of our planet surface and is one of the largest biomes. The deep sea has long been considered as an arrhythmic environment because sunlight is totally absent below 1,000 m depth. In the present study, we have sequenced the temporal transcriptomes of a deep-sea species, the ecosystem-structuring vent mussel Bathymodiolus azoricus. We reveal that tidal cycles predominate in the transcriptome and physiology of mussels fixed directly at hydrothermal vents at 1,688 m depth at the Mid-Atlantic Ridge, whereas daily cycles prevail in mussels sampled after laboratory acclimation. We identify B. azoricus canonical circadian clock genes, and show that oscillations observed in deep-sea mussels could be either a direct response to environmental stimulus, or be driven endogenously by one or more biological clocks. This work generates in situ insights into temporal organisation in a deep-sea organism. Little is known about gene expression of organisms in the deep sea, partially owing to constraints on sampling these organisms in situ. Here the authors circumvent this problem, fixing tissue of a deep-sea mussel at 1,688 m in depth, and later analyzing transcriptomes to reveal gene expression patterns showing tidal oscillations.
Collapse
Affiliation(s)
- Audrey M Mat
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France. .,Ifremer, EEP, F-29280, Plouzané, France.
| | | | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Vincent Apremont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France.,Ifremer, EEP, F-29280, Plouzané, France
| | | | - Camille Eché
- GeT-PlaGe, Genotoul, INRA Auzeville, Auzeville, France
| | - Caroline Fabioux
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | | | | - Arnaud Tanguy
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
186
|
Goodman JV, Yamada T, Yang Y, Kong L, Wu DY, Zhao G, Gabel HW, Bonni A. The chromatin remodeling enzyme Chd4 regulates genome architecture in the mouse brain. Nat Commun 2020; 11:3419. [PMID: 32647123 PMCID: PMC7347877 DOI: 10.1038/s41467-020-17065-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
The development and function of the brain require tight control of gene expression. Genome architecture is thought to play a critical regulatory role in gene expression, but the mechanisms governing genome architecture in the brain in vivo remain poorly understood. Here, we report that conditional knockout of the chromatin remodeling enzyme Chd4 in granule neurons of the mouse cerebellum increases accessibility of gene regulatory sites genome-wide in vivo. Conditional knockout of Chd4 promotes recruitment of the architectural protein complex cohesin preferentially to gene enhancers in granule neurons in vivo. Importantly, in vivo profiling of genome architecture reveals that conditional knockout of Chd4 strengthens interactions among developmentally repressed contact domains as well as genomic loops in a manner that tightly correlates with increased accessibility, enhancer activity, and cohesin occupancy at these sites. Collectively, our findings define a role for chromatin remodeling in the control of genome architecture organization in the mammalian brain.
Collapse
Affiliation(s)
- Jared V Goodman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Yue Yang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Lingchun Kong
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
187
|
Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 2020; 584:602-607. [PMID: 32641831 DOI: 10.1038/s41586-020-2467-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/16/2020] [Indexed: 12/22/2022]
Abstract
Species often include multiple ecotypes that are adapted to different environments1. However, it is unclear how ecotypes arise and how their distinctive combinations of adaptive alleles are maintained despite hybridization with non-adapted populations2-4. Here, by resequencing 1,506 wild sunflowers from 3 species (Helianthus annuus, Helianthus petiolaris and Helianthus argophyllus), we identify 37 large (1-100 Mbp in size), non-recombining haplotype blocks that are associated with numerous ecologically relevant traits, as well as soil and climate characteristics. Limited recombination in these haplotype blocks keeps adaptive alleles together, and these regions differentiate sunflower ecotypes. For example, haplotype blocks control a 77-day difference in flowering between ecotypes of the silverleaf sunflower H. argophyllus (probably through deletion of a homologue of FLOWERING LOCUS T (FT)), and are associated with seed size, flowering time and soil fertility in dune-adapted sunflowers. These haplotypes are highly divergent, frequently associated with structural variants and often appear to represent introgressions from other-possibly now-extinct-congeners. These results highlight a pervasive role of structural variation in ecotypic adaptation.
Collapse
|
188
|
Aitken SJ, Anderson CJ, Connor F, Pich O, Sundaram V, Feig C, Rayner TF, Lukk M, Aitken S, Luft J, Kentepozidou E, Arnedo-Pac C, Beentjes SV, Davies SE, Drews RM, Ewing A, Kaiser VB, Khamseh A, López-Arribillaga E, Redmond AM, Santoyo-Lopez J, Sentís I, Talmane L, Yates AD, Semple CA, López-Bigas N, Flicek P, Odom DT, Taylor MS. Pervasive lesion segregation shapes cancer genome evolution. Nature 2020; 583:265-270. [PMID: 32581361 PMCID: PMC7116693 DOI: 10.1038/s41586-020-2435-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.
Collapse
Affiliation(s)
- Sarah J Aitken
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Craig J Anderson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Vasavi Sundaram
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Christine Feig
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Tim F Rayner
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Margus Lukk
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Juliet Luft
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sjoerd V Beentjes
- School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ruben M Drews
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ailith Ewing
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Vera B Kaiser
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ava Khamseh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, UK
| | - Erika López-Arribillaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aisling M Redmond
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Inés Sentís
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lana Talmane
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew D Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paul Flicek
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany.
| | - Martin S Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
189
|
Armache A, Yang S, Martínez de Paz A, Robbins LE, Durmaz C, Cheong JQ, Ravishankar A, Daman AW, Ahimovic DJ, Klevorn T, Yue Y, Arslan T, Lin S, Panchenko T, Hrit J, Wang M, Thudium S, Garcia BA, Korb E, Armache KJ, Rothbart SB, Hake SB, Allis CD, Li H, Josefowicz SZ. Histone H3.3 phosphorylation amplifies stimulation-induced transcription. Nature 2020; 583:852-857. [PMID: 32699416 PMCID: PMC7517595 DOI: 10.1038/s41586-020-2533-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes1-3. Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription4-7. However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND118,9. We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.
Collapse
Affiliation(s)
- Anja Armache
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Shuang Yang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Alexia Martínez de Paz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lexi E Robbins
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ceyda Durmaz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jin Q Cheong
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arjun Ravishankar
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew W Daman
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dughan J Ahimovic
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thaís Klevorn
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yuan Yue
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Tanja Arslan
- Adolf-Butenandt Institute, Ludwig-Maximilians University, Munich, Germany
| | - Shu Lin
- Epigenetics Institute, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya Panchenko
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Joel Hrit
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Miao Wang
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Samuel Thudium
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Adolf-Butenandt Institute, Ludwig-Maximilians University, Munich, Germany
| | - Erica Korb
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Sandra B Hake
- Adolf-Butenandt Institute, Ludwig-Maximilians University, Munich, Germany
- Institute for Genetics, Justus-Liebig-University, Giessen, Germany
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| | - Steven Z Josefowicz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
190
|
Fitak RR, Mohandesan E, Corander J, Yadamsuren A, Chuluunbat B, Abdelhadi O, Raziq A, Nagy P, Walzer C, Faye B, Burger PA. Genomic signatures of domestication in Old World camels. Commun Biol 2020; 3:316. [PMID: 32561887 PMCID: PMC7305198 DOI: 10.1038/s42003-020-1039-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/28/2020] [Indexed: 12/30/2022] Open
Abstract
Domestication begins with the selection of animals showing less fear of humans. In most domesticates, selection signals for tameness have been superimposed by intensive breeding for economical or other desirable traits. Old World camels, conversely, have maintained high genetic variation and lack secondary bottlenecks associated with breed development. By re-sequencing multiple genomes from dromedaries, Bactrian camels, and their endangered wild relatives, here we show that positive selection for candidate genes underlying traits collectively referred to as 'domestication syndrome' is consistent with neural crest deficiencies and altered thyroid hormone-based signaling. Comparing our results with other domestic species, we postulate that the core set of domestication genes is considerably smaller than the pan-domestication set - and overlapping genes are likely a result of chance and redundancy. These results, along with the extensive genomic resources provided, are an important contribution to understanding the evolutionary history of camels and the genomic features of their domestication.
Collapse
Affiliation(s)
- Robert Rodgers Fitak
- Institute of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| | - Elmira Mohandesan
- Institute of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Jukka Corander
- Wellcome Sanger Institute, Hinxton, UK
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, FIN-00014, Helsinki, Finland
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
| | - Adiya Yadamsuren
- Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Jia No.20 North, DaTun road, ChaoYang District, Beijing, China
- Wild Camel Protection Foundation Mongolia. Jukov avenue, Bayanzurh District, Ulaanbaatar, 13343, Mongolia
| | - Battsetseg Chuluunbat
- Laboratory of Genetics, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Peace avenue-54b, Bayarzurh District, Ulaanbaatar, 210351, Mongolia
| | - Omer Abdelhadi
- University of Khartoum, Department for Meat Sciences, Khartoum, Sudan
| | - Abdul Raziq
- Camelait, Alain Farms for Livestock Production, Alain Dubai Road, Alain, United Arab Emirates
| | - Peter Nagy
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, PO Box 294236, Dubai, Umm Nahad, United Arab Emirates
| | - Chris Walzer
- Wildlife Conservation Society, Wildlife Health Program, Bronx, NY, USA
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Bernard Faye
- CIRAD-ES, UMR 112, Campus International de Baillarguet, TA C/112A, 34398, Montpellier, France
| | - Pamela Anna Burger
- Institute of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| |
Collapse
|
191
|
Pollard K, Banerjee J, Doan X, Wang J, Guo X, Allaway R, Langmead S, Slobogean B, Meyer CF, Loeb DM, Morris CD, Belzberg AJ, Blakeley JO, Rodriguez FJ, Guinney J, Gosline SJC, Pratilas CA. A clinically and genomically annotated nerve sheath tumor biospecimen repository. Sci Data 2020; 7:184. [PMID: 32561749 PMCID: PMC7305302 DOI: 10.1038/s41597-020-0508-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
Nerve sheath tumors occur as a heterogeneous group of neoplasms in patients with neurofibromatosis type 1 (NF1). The malignant form represents the most common cause of death in people with NF1, and even when benign, these tumors can result in significant disfigurement, neurologic dysfunction, and a range of profound symptoms. Lack of human tissue across the peripheral nerve tumors common in NF1 has been a major limitation in the development of new therapies. To address this unmet need, we have created an annotated collection of patient tumor samples, patient-derived cell lines, and patient-derived xenografts, and carried out high-throughput genomic and transcriptomic characterization to serve as a resource for further biologic and preclinical therapeutic studies. In this work, we release genomic and transcriptomic datasets comprised of 55 tumor samples derived from 23 individuals, complete with clinical annotation. All data are publicly available through the NF Data Portal and at http://synapse.org/jhubiobank. Measurement(s) | gene expression • gene_variant | Technology Type(s) | RNA sequencing • exome sequencing • DNA sequencing | Factor Type(s) | tumor type | Sample Characteristic - Organism | Homo sapiens • Homo sapiens/Mus musculus xenograft |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12037599
Collapse
Affiliation(s)
- Kai Pollard
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | | | - Jiawan Wang
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | | | - Shannon Langmead
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Bronwyn Slobogean
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Christian F Meyer
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David M Loeb
- Albert Einstein College of Medicine, New York, USA
| | - Carol D Morris
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Allan J Belzberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jaishri O Blakeley
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Fausto J Rodriguez
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | | | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
192
|
Dissecting intratumour heterogeneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels. Nat Cell Biol 2020; 22:896-906. [PMID: 32541878 DOI: 10.1038/s41556-020-0532-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 05/10/2020] [Indexed: 12/31/2022]
Abstract
Tumour heterogeneity encompasses both the malignant cells and their microenvironment. While heterogeneity between individual patients is known to affect the efficacy of cancer therapy, most personalized treatment approaches do not account for intratumour heterogeneity. We addressed this issue by studying the heterogeneity of nodal B-cell lymphomas by single-cell RNA-sequencing and transcriptome-informed flow cytometry. We identified transcriptionally distinct malignant subpopulations and compared their drug-response and genomic profiles. Malignant subpopulations from the same patient responded strikingly differently to anti-cancer drugs ex vivo, which recapitulated subpopulation-specific drug sensitivity during in vivo treatment. Infiltrating T cells represented the majority of non-malignant cells, whose gene-expression signatures were similar across all donors, whereas the frequencies of T-cell subsets varied significantly between the donors. Our data provide insights into the heterogeneity of nodal B-cell lymphomas and highlight the relevance of intratumour heterogeneity for personalized cancer therapy.
Collapse
|
193
|
Wang L, Wang B, Yu H, Guo H, Lin T, Kou L, Wang A, Shao N, Ma H, Xiong G, Li X, Yang J, Chu J, Li J. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 2020; 583:277-281. [PMID: 32528176 DOI: 10.1038/s41586-020-2382-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/24/2020] [Indexed: 01/21/2023]
Abstract
Plant hormones known as strigolactones control plant development and interactions between host plants and symbiotic fungi or parasitic weeds1-4. In Arabidopsis thaliana and rice, the proteins DWARF14 (D14), MORE AXILLARY GROWTH 2 (MAX2), SUPPRESSOR OF MAX2-LIKE 6, 7 and 8 (SMXL6, SMXL7 and SMXL8) and their orthologues form a complex upon strigolactone perception and play a central part in strigolactone signalling5-10. However, whether and how strigolactones activate downstream transcription remains largely unknown. Here we use a synthetic strigolactone to identify 401 strigolactone-responsive genes in Arabidopsis, and show that these plant hormones regulate shoot branching, leaf shape and anthocyanin accumulation mainly through transcriptional activation of the BRANCHED 1, TCP DOMAIN PROTEIN 1 and PRODUCTION OF ANTHOCYANIN PIGMENT 1 genes. We find that SMXL6 targets 729 genes in the Arabidopsis genome and represses the transcription of SMXL6, SMXL7 and SMXL8 by binding directly to their promoters, showing that SMXL6 serves as an autoregulated transcription factor to maintain the homeostasis of strigolactone signalling. These findings reveal an unanticipated mechanism through which a transcriptional repressor of hormone signalling can directly recognize DNA and regulate transcription in higher plants.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Guo
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Tao Lin
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Anqi Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Shao
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Ma
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guosheng Xiong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqiang Li
- CAS Key Laboratory of Energy Regulation, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yang
- CAS Key Laboratory of Energy Regulation, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
194
|
Abstract
It remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) in Vitis species. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes. By resolving twenty Vitis SDR haplotypes, we compare male, female, and hermaphrodite haplotype structures and identify sex-linked regions. Coupled with gene expression data, we identify a candidate male-sterility mutation in the VviINP1 gene and potential female-sterility function associated with the transcription factor VviYABBY3. Our data suggest that dioecy has been lost during domestication through a rare recombination event between male and female haplotypes. This work significantly advances the understanding of the genetic basis of sex determination in Vitis and provides the information necessary to rapidly identify sex types in grape breeding programs. Grapevine is one of a few ancestrally dioecious crops that are reverted to hermaphroditism during domestication. Here, the authors identify candidate genes related to male- and female-sterility in grapes and describe the genetic process that led to hermaphroditism during domestication.
Collapse
|
195
|
Alam SK, Wang L, Ren Y, Hernandez CE, Kosari F, Roden AC, Yang R, Hoeppner LH. ASCL1-regulated DARPP-32 and t-DARPP stimulate small cell lung cancer growth and neuroendocrine tumour cell proliferation. Br J Cancer 2020; 123:819-832. [PMID: 32499571 PMCID: PMC7463034 DOI: 10.1038/s41416-020-0923-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
Background Small cell lung cancer (SCLC) is the most aggressive form of lung cancer, and new molecular insights are necessary for prognostic and therapeutic advances. Methods Dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32) and its N-terminally truncated splice variant, t-DARPP, were stably overexpressed or ablated in human DMS-53 and H1048 SCLC cells. Functional assays and immunoblotting were used to assess how DARPP-32 isoforms regulate SCLC cell growth, proliferation, and apoptosis. DARPP-32-modulated SCLC cells were orthotopically injected into the lungs of SCID mice to evaluate how DARPP-32 and t-DARPP regulate neuroendocrine tumour growth. Immunostaining for DARPP-32 proteins was performed in SCLC patient-derived specimens. Bioinformatics analysis and subsequent transcription assays were used to determine the mechanistic basis of DARPP-32-regulated SCLC growth. Results We demonstrate in mice that DARPP-32 and t-DARPP promote SCLC growth through increased Akt/Erk-mediated proliferation and anti-apoptotic signalling. DARPP-32 isoforms are overexpressed in SCLC patient-derived tumour tissue, but undetectable in physiologically normal lung. Achaete-scute homologue 1 (ASCL1) transcriptionally activates DARPP-32 isoforms in human SCLC cells. Conclusions We reveal new regulatory mechanisms of SCLC oncogenesis that suggest DARPP-32 isoforms may represent a negative prognostic indicator for SCLC and serve as a potential target for the development of new therapies.
Collapse
Affiliation(s)
- Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yanan Ren
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | | | - Farhad Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
196
|
Liu Q, Bischof S, Harris CJ, Zhong Z, Zhan L, Nguyen C, Rashoff A, Barshop WD, Sun F, Feng S, Potok M, Gallego-Bartolome J, Zhai J, Wohlschlegel JA, Carey MF, Long JA, Jacobsen SE. The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis. Nat Commun 2020; 11:2798. [PMID: 32493925 PMCID: PMC7271234 DOI: 10.1038/s41467-020-16651-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active states. Mediator is a multiprotein complex required to activate gene transcription by RNAPII. Here, the authors report that MED12 and MED13 are conditional positive regulators that facilitate the expression of genes depleted in active chromatin marks and the induction of gene expression in response to environmental stimuli in Arabidopsis.
Collapse
Affiliation(s)
- Qikun Liu
- School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China. .,Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Sylvain Bischof
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - C Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Basic Forestry and Proteomics Center, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lingyu Zhan
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Calvin Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrew Rashoff
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Fei Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Magdalena Potok
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Javier Gallego-Bartolome
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey A Long
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
197
|
Sanborn MA, Li T, Victor K, Siegfried H, Fung C, Rothman AL, Srikiatkhachorn A, Fernandez S, Ellison D, Jarman RG, Friberg H, Maljkovic Berry I, Currier JR, Waickman AT. Analysis of cell-associated DENV RNA by oligo(dT) primed 5' capture scRNAseq. Sci Rep 2020; 10:9047. [PMID: 32493997 PMCID: PMC7270085 DOI: 10.1038/s41598-020-65939-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 01/12/2023] Open
Abstract
Dengue is one of the most widespread vector-borne viral diseases in the world. However, the size, heterogeneity, and temporal dynamics of the cell-associated viral reservoir during acute dengue virus (DENV) infection remains unclear. In this study, we analyzed cells infected in vitro with DENV and PBMC from an individual experiencing a natural DENV infection utilizing 5’ capture single cell RNA sequencing (scRNAseq). Both positive- and negative-sense DENV RNA was detected in reactions containing either an oligo(dT) primer alone, or in reactions supplemented with a DENV-specific primer. The addition of a DENV-specific primer did not increase the total amount of DENV RNA captured or the fraction of cells identified as containing DENV RNA. However, inclusion of a DENV-specific cDNA primer did increase the viral genome coverage immediately 5’ to the primer binding site. Furthermore, while the majority of intracellular DENV sequence captured in this analysis mapped to the 5’ end of the viral genome, distinct patterns of enhanced coverage within the DENV polyprotein coding region were observed. The 5’ capture scRNAseq analysis of PBMC not only recapitulated previously published reports by detecting virally infected memory and naïve B cells, but also identified cell-associated genomic variants not observed in contemporaneous serum samples. These results demonstrate that oligo(dT) primed 5’ capture scRNAseq can detect DENV RNA and quantify virus-infected cells in physiologically relevant conditions, and provides insight into viral sequence variability within infected cells.
Collapse
Affiliation(s)
- Mark A Sanborn
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kaitlin Victor
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hayden Siegfried
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christian Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alan L Rothman
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Anon Srikiatkhachorn
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA.,Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Damon Ellison
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Adam T Waickman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
198
|
The transcriptional repressor Blimp1/PRDM1 regulates the maternal decidual response in mice. Nat Commun 2020; 11:2782. [PMID: 32493987 PMCID: PMC7270082 DOI: 10.1038/s41467-020-16603-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
The transcriptional repressor Blimp1 controls cell fate decisions in the developing embryo and adult tissues. Here we describe Blimp1 expression and functional requirements within maternal uterine tissues during pregnancy. Expression is robustly up-regulated at early post-implantation stages in the primary decidual zone (PDZ) surrounding the embryo. Conditional inactivation results in defective formation of the PDZ barrier and abnormal trophectoderm invasion. RNA-Seq analysis demonstrates down-regulated expression of genes involved in cell adhesion and markers of decidualisation. In contrast, genes controlling immune responses including IFNγ are up-regulated. ChIP-Seq experiments identify candidate targets unique to the decidua as well as those shared across diverse cell types including a highly conserved peak at the Csf-1 gene promoter. Interestingly Blimp1 inactivation results in up-regulated Csf1 expression and macrophage recruitment into maternal decidual tissues. These results identify Blimp1 as a critical regulator of tissue remodelling and maternal tolerance during early stages of pregnancy.
Collapse
|
199
|
Markodimitraki CM, Rang FJ, Rooijers K, de Vries SS, Chialastri A, de Luca KL, Lochs SJA, Mooijman D, Dey SS, Kind J. Simultaneous quantification of protein-DNA interactions and transcriptomes in single cells with scDam&T-seq. Nat Protoc 2020; 15:1922-1953. [PMID: 32350457 PMCID: PMC7779467 DOI: 10.1038/s41596-020-0314-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Protein-DNA interactions are essential for establishing cell type-specific chromatin architecture and gene expression. We recently developed scDam&T-seq, a multi-omics method that can simultaneously quantify protein-DNA interactions and the transcriptome in single cells. The method effectively combines two existing methods: DNA adenine methyltransferase identification (DamID) and CEL-Seq2. DamID works through the tethering of a protein of interest (POI) to the Escherichia coli DNA adenine methyltransferase (Dam). Upon expression of this fusion protein, DNA in proximity to the POI is methylated by Dam and can be selectively digested and amplified. CEL-Seq2, in contrast, makes use of poly-dT primers to reverse transcribe mRNA, followed by linear amplification through in vitro transcription. scDam&T-seq is the first technique capable of providing a combined readout of protein-DNA contact and transcription from single-cell samples. Once suitable cell lines have been established, the protocol can be completed in 5 d, with a throughput of hundreds to thousands of cells. The processing of raw sequencing data takes an additional 1-2 d. Our method can be used to understand the transcriptional changes a cell undergoes upon the DNA binding of a POI. It can be performed in any laboratory with access to FACS, robotic and high-throughput-sequencing facilities.
Collapse
Affiliation(s)
- Corina M Markodimitraki
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Franka J Rang
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koos Rooijers
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra S de Vries
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Kim L de Luca
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Silke J A Lochs
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dylan Mooijman
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Jop Kind
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
200
|
Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med 2020; 26:1063-1069. [PMID: 32483361 DOI: 10.1038/s41591-020-0908-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The mucosal epithelium is a common target of damage by chronic bacterial infections and the accompanying toxins, and most cancers originate from this tissue. We investigated whether colibactin, a potent genotoxin1 associated with certain strains of Escherichia coli2, creates a specific DNA-damage signature in infected human colorectal cells. Notably, the genomic contexts of colibactin-induced DNA double-strand breaks were enriched for an AT-rich hexameric sequence motif, associated with distinct DNA-shape characteristics. A survey of somatic mutations at colibactin target sites of several thousand cancer genomes revealed notable enrichment of this motif in colorectal cancers. Moreover, the exact double-strand-break loci corresponded with mutational hot spots in cancer genomes, reminiscent of a trinucleotide signature previously identified in healthy colorectal epithelial cells3. The present study provides evidence for the etiological role of colibactin in human cancer.
Collapse
|