151
|
The role of Vδ2-negative γδ T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 2010; 116:2164-72. [DOI: 10.1182/blood-2010-01-255166] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Reactivation of cytomegalovirus (CMV) remains a serious complication after allogeneic stem cell transplantation, but the role of γδ T cells is undefined. We have studied the immune reconstitution of Vδ2negative (Vδ2neg) γδ T cells, including Vδ1 and Vδ3 subsets and Vδ2positive (Vδ2pos) γδ T cells in 40 patients during the first 24 months after stem cell transplantation. Significant long-term expansions of Vδ2neg but not Vδ2pos γδ T cells were observed during CMV reactivation early after transplantation, suggesting direct involvement of γδ T cells in anti-CMV immune responses. Similarly, significantly higher numbers of Vδ2neg γδ T cells were detected in CMV-seropositive healthy persons compared with seronegative donors; the absolute numbers of Vδ2pos cells were not significantly different. The expansion of Vδ2neg γδ T cells appeared to be CMV-related because it was absent in CMV-negative/Epstein-Barr virus-positive patients. T-cell receptor-δ chain determining region 3 spectratyping of Vδ2neg γδ T cells in healthy subjects and patients showed restricted clonality. Polyclonal Vδ2neg cell lines generated from CMV-seropositive healthy donors and from a recipient of a graft from a CMV-positive donor lysed CMV-infected targets in all cases. Our study shows new evidence for role of γδ T cells in the immune response to CMV reactivation in transplantation recipients.
Collapse
|
152
|
Yamamoto-Furusho JK. Genetic Susceptibility in Inflammatory Bowel Disease. Clin Rev Bone Miner Metab 2010. [DOI: 10.1007/s12018-009-9068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
153
|
Guzman E, Birch JR, Ellis SA. Cattle MIC is a ligand for the activating NK cell receptor NKG2D. Vet Immunol Immunopathol 2010; 136:227-34. [DOI: 10.1016/j.vetimm.2010.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/01/2010] [Accepted: 03/15/2010] [Indexed: 11/26/2022]
|
154
|
HIF-1α accumulation upregulates MICA and MICB expression on human cardiomyocytes and enhances NK cell cytotoxicity during hypoxia-reoxygenation. Life Sci 2010; 87:111-9. [DOI: 10.1016/j.lfs.2010.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/11/2010] [Accepted: 05/20/2010] [Indexed: 01/28/2023]
|
155
|
Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YYL, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 2010; 8:e1000407. [PMID: 20613858 PMCID: PMC2893946 DOI: 10.1371/journal.pbio.1000407] [Citation(s) in RCA: 502] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/18/2010] [Indexed: 12/11/2022] Open
Abstract
A first indication of the biological role of mucosal associated invariant T (MAIT) cells reveals that this discrete T cell subset is broadly reactive to bacterial infection. In particular MAIT cells recognize Mycobacterium tuberculosis-infected lung airway epithelial cells via the most evolutionarily conserved major histocompatibility molecule. Control of infection with Mycobacterium tuberculosis (Mtb) requires Th1-type immunity, of which CD8+ T cells play a unique role. High frequency Mtb-reactive CD8+ T cells are present in both Mtb-infected and uninfected humans. We show by limiting dilution analysis that nonclassically restricted CD8+ T cells are universally present, but predominate in Mtb-uninfected individuals. Interestingly, these Mtb-reactive cells expressed the Vα7.2 T-cell receptor (TCR), were restricted by the nonclassical MHC (HLA-Ib) molecule MR1, and were activated in a transporter associated with antigen processing and presentation (TAP) independent manner. These properties are all characteristics of mucosal associated invariant T cells (MAIT), an “innate” T-cell population of previously unknown function. These MAIT cells also detect cells infected with other bacteria. Direct ex vivo analysis demonstrates that Mtb-reactive MAIT cells are decreased in peripheral blood mononuclear cells (PBMCs) from individuals with active tuberculosis, are enriched in human lung, and respond to Mtb-infected MR1-expressing lung epithelial cells. Overall, these findings suggest a generalized role for MAIT cells in the detection of bacterially infected cells, and potentially in the control of bacterial infection. About one-third of the world's population is infected with Mycobacterium tuberculosis (Mtb), yet thanks to a robust immune response most infected people remain healthy. CD8 T cells are unique in detecting intracellular infections. Surprisingly, Mtb-reactive CD8 T cells are found in humans with no prior exposure to Mtb. We show that mucosal associated invariant T (MAIT) cells, which have no previously known in vivo function, make up a proportion of these Mtb-reactive CD8 T cells and detect Mtb-infected cells via a specific major histocompatibility molecule called MHC-related molecule 1, which is evolutionarily conserved among mammals. Mtb-reactive MAIT cells are enriched in lung and detect primary Mtb-infected lung epithelial cells from the airway where initial exposure to Mtb occurs. We go on to show that MAIT cells are not specific for Mtb since they can detect cells infected with a variety of other bacteria. Curiously, Mtb-reactive MAIT cells are absent in the blood of individuals with active tuberculosis. We postulate that MAIT cells are innate detectors of bacterial infection poised to play a role in control of intracellular infection.
Collapse
Affiliation(s)
- Marielle C. Gold
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- * E-mail: (MCG), (DML)
| | - Stefania Cerri
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Susan Smyk-Pearson
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Meghan E. Cansler
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Todd M. Vogt
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jacob Delepine
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Ervina Winata
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gwendolyn M. Swarbrick
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Wei-Jen Chua
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yik Y. L. Yu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Olivier Lantz
- Laboratoire d'Immunologie et Unité, Inserm 932, Institut Curie Paris, France
| | - Matthew S. Cook
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Megan D. Null
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Melanie J. Harriff
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Deborah A. Lewinsohn
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ted H. Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (MCG), (DML)
| |
Collapse
|
156
|
Nedellec S, Sabourin C, Bonneville M, Scotet E. NKG2D Costimulates Human Vγ9Vδ2 T Cell Antitumor Cytotoxicity through Protein Kinase Cθ-Dependent Modulation of Early TCR-Induced Calcium and Transduction Signals. THE JOURNAL OF IMMUNOLOGY 2010; 185:55-63. [DOI: 10.4049/jimmunol.1000373] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
157
|
Viny AD, Clemente MJ, Jasek M, Askar M, Ishwaran H, Nowacki A, Zhang A, Maciejewski JP. MICA polymorphism identified by whole genome array associated with NKG2D-mediated cytotoxicity in T-cell large granular lymphocyte leukemia. Haematologica 2010; 95:1713-21. [PMID: 20460636 DOI: 10.3324/haematol.2010.021865] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Large granular lymphocyte leukemia is a semi-autonomous clonal proliferation of cytotoxic T cells accompanied by immune cytopenias and various autoimmune conditions. Due to the rarity of this disease and its association with autoimmune diseases, a theoretical germline or somatic mutation might have significant penetrance, thus enabling detection, even from samples of suboptimal size, through genome-wide association studies. DESIGN AND METHODS To investigate a non-mendelian genetic predisposition to large granular lymphocyte leukemia, we used a step-wise method for gene discovery. First, a modified 'random forests' technique was used for candidate gene identification: this was followed by traditional allele-specific polymerase chain reaction, sequencing modalities, and mechanistic assays. RESULTS Our analysis found an association with MICA, a non-peptide-presenting, tightly regulated, stress-induced MHC-like molecule and cognate receptor for NKG2D, found abundantly on large granular lymphocyte leukemia cells. Sequencing of germline DNA revealed a higher frequency of MICA*00801/A5.1 in patients with large granular lymphocyte leukemia than in matched controls (64% versus 41%, P<0.001, homozygous 40% versus 15%, P<0.001). Flow cytometry was employed to determine the expression of MICA within hematologic compartments, showing that the signal intensity of MICA was increased in granulocytes from neutropenic patients with large granular lymphocyte leukemia in comparison with that in controls (P=0.033). Furthermore, neutrophil counts were inversely correlated with MICA expression (R(2)=0.50, P=0.035). Finally, large granular lymphocyte leukemia cells were able to selectively kill MICA(+) Ba/F3 lymphocytes transfected with human MICA*019 in a dose-dependent manner compared to naïve cells (P<0.001), an effect mitigated by administration of an anti-NKG2D antibody (P=0.033). CONCLUSIONS Our results illustrate that MICA-NKG2D played a role in disease pathogenesis in the majority of patients in our cohort of cases of large granular lymphocyte leukemia and further investigation into this signaling axis may provide potent therapeutic targets.
Collapse
Affiliation(s)
- Aaron D Viny
- Department of Translational Hematologic and Oncologic Research, Taussig Cancer Center R/40, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, La Mendola C, Guggino G, D'Asaro M, Orlando V, Scarpa F, Roberts A, Caccamo N, Stassi G, Dieli F, Hayday AC. In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 2010; 161:290-7. [PMID: 20491785 DOI: 10.1111/j.1365-2249.2010.04167.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The potent anti-tumour activities of gammadelta T cells have prompted the development of protocols in which gammadelta-agonists are administered to cancer patients. Encouraging results from small Phase I trials have fuelled efforts to characterize more clearly the application of this approach to unmet clinical needs such as metastatic carcinoma. To examine this approach in breast cancer, a Phase I trial was conducted in which zoledronate, a Vgamma9Vdelta2 T cell agonist, plus low-dose interleukin (IL)-2 were administered to 10 therapeutically terminal, advanced metastatic breast cancer patients. Treatment was well tolerated and promoted the effector maturation of Vgamma9Vdelta2 T cells in all patients. However, a statistically significant correlation of clinical outcome with peripheral Vgamma9Vdelta2 T cell numbers emerged, as seven patients who failed to sustain Vgamma9Vdelta2 T cells showed progressive clinical deterioration, while three patients who sustained robust peripheral Vgamma9Vdelta2 cell populations showed declining CA15-3 levels and displayed one instance of partial remission and two of stable disease, respectively. In the context of an earlier trial in prostate cancer, these data emphasize the strong linkage of Vgamma9Vdelta2 T cell status to reduced carcinoma progression, and suggest that zoledronate plus low-dose IL-2 offers a novel, safe and feasible approach to enhance this in a subset of treatment-refractory patients with advanced breast cancer.
Collapse
Affiliation(s)
- S Meraviglia
- Dipartimento di Biopatologia e Metodologie Biomediche, Universita di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Nedellec S, Bonneville M, Scotet E. Human Vgamma9Vdelta2 T cells: from signals to functions. Semin Immunol 2010; 22:199-206. [PMID: 20447835 DOI: 10.1016/j.smim.2010.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/05/2010] [Indexed: 01/04/2023]
Abstract
Human Vgamma9Vdelta2 T cells, a major innate-like peripheral T cell subset, are thought to play in vivo a key role in innate and adaptive immune responses to infection agents and tumors. Vgamma9Vdelta2 T cell activation is tightly regulated by a variety of activating or inhibitory receptors which are specific for constitutively expressed or stress-modulated ligands. However, the mechanisms and signal transduction pathways regulating their broad effector functions, such as cytotoxicity and cytokine responses, remain poorly understood. Here we provide an updated overview of the activation modalities of Vgamma9Vdelta2 T cells by highlighting the respective role played by T cell receptor (TCR) versus non-TCR stimuli, and focus on recent studies showing how Vgamma9Vdelta2 T cells integrate the numerous activating and inhibitory signals and translate them into a particular effector and biological function. A better understanding of these critical issues should help optimize immunotherapeutic approaches targeting Vgamma9Vdelta2 T cells.
Collapse
Affiliation(s)
- Steven Nedellec
- INSERM, U892, Centre de Recherche en Cancérologie Nantes-Angers, Nantes, France
| | | | | |
Collapse
|
160
|
The prognostic significance of soluble NKG2D ligands in B-cell chronic lymphocytic leukemia. Leukemia 2010; 24:1152-9. [PMID: 20428196 DOI: 10.1038/leu.2010.74] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Soluble or membrane-anchored ligands of NKG2D and their receptor have a critical role in the elimination of tumor cells and disease progression. Plasma samples of 98 patients with B-cell chronic lymphocytic leukemia (CLL) were analyzed with specific ELISA systems for soluble major histocompatibility complex class I-related chains (sMICA and sMICB) and UL-16-binding proteins (ULBP1, 2, and 3). The flow cytometric analysis of MICA on CLL cells and natural killer group 2 member D (NKG2D) receptors on NK cells was performed after thawing of frozen peripheral blood lymphocytes of CLL patients (N=51). Levels of sMICA, sMICB, and sULBP2 were significantly increased (P<0.001) compared with 48 controls, whereas sULBP1 3 were not detectable in patients and controls. Levels of sMICA>990 pg/ml (P=0.014), sMICB>200 pg/ml (P=0.0001), and sULBP2>105 pg/ml (P<0.0001) were associated with poor treatment-free survival (TFS). Neither MICA nor NKG2D expression could be related to clinical parameters. In multivariate analysis Binet stage (P=0.002), sULBP2 (P=0.002) and ZAP-70 (P=0.002) were independent predictive factors for TFS. In patients with Binet stage A, sULBP2 levels>105 pg/ml were strongly associated (P=0.0025) with poor TFS. Our data show that soluble but not membrane-anchored NKG2D ligands or receptors are of prognostic significance in CLL. Moreover, sULBP2 seems to be useful to identify early-stage patients with risk of disease progression.
Collapse
|
161
|
Repertoire development and the control of cytotoxic/effector function in human gammadelta T cells. Clin Dev Immunol 2010; 2010:732893. [PMID: 20396597 PMCID: PMC2854522 DOI: 10.1155/2010/732893] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/16/2010] [Indexed: 11/18/2022]
Abstract
T cells develop into two major populations distinguished by their T cell receptor (TCR) chains. Cells with the alphabeta TCR generally express CD4 or CD8 lineage markers and mostly fall into helper or cytotoxic/effector subsets. Cells expressing the alternate gammadelta TCR in humans generally do not express lineage markers, do not require MHC for antigen presentation, and recognize nonpeptidic antigens. We are interested in the dominant Vgamma2Vdelta2+ T cell subset in human peripheral blood and the control of effector function in this population. We review the literature on gammadelta T cell generation and repertoire selection, along with recent work on CD56 expression and defining a cytotoxic/effector lineage within the phosphoantigen-reactive Vgamma2Vdelta2 cells. A unique mechanism for MHC-independent repertoire selection is linked to the control of effector function that is vital to the role for gammadelta T cells in tumor surveillance. Better understanding of these mechanisms will improve our ability to exploit this population for tumor immunotherapy.
Collapse
|
162
|
Angaswamy N, Saini D, Ramachandran S, Nath DS, Phelan D, Hachem R, Trulock E, Patterson GA, Mohanakumar T. Development of antibodies to human leukocyte antigen precedes development of antibodies to major histocompatibility class I-related chain A and are significantly associated with development of chronic rejection after human lung transplantation. Hum Immunol 2010; 71:560-5. [PMID: 20211214 DOI: 10.1016/j.humimm.2010.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/09/2010] [Accepted: 02/18/2010] [Indexed: 01/06/2023]
Abstract
The development of antibodies (Abs) to major histocompatibility (MHC) class I-related chain A (MICA) and human leukocyte antigen (HLA) and their role in the immunopathogenesis of chronic rejection (bronchiolitis obliterans syndrome [BOS]) after human lung transplantation (LTx) was analyzed. Sera from 80 LTx recipients were analyzed for anti-MICA and anti-HLA Abs using Luminex and flow PRA (panel reactive assay). Development of Abs either to MICA alone or MICA and HLA together significantly correlated (p < 0.01) with development of BOS. Kinetic analysis in the post-LTx period revealed that development of anti-HLA Abs (7.6 +/- 4.7 months) preceded the development of anti-MICA Abs (10.0 +/- 3.5 months). Abs to MICA alleles (*001 and *009) developed approximately 6 months after LTx and peak titers were present at the time of clinical diagnosis of BOS (16.3 +/- 2.7 months). The development of Abs to both MICA and HLA was strongly associated with the development of BOS thereby suggesting a synergistic effect. Furthermore, immune response to mismatched HLA can lead to development of Abs to other MHC related antigens expressed on the airway epithelial cells. Cumulatively, these immune responses contribute to the pathogenesis of chronic rejection following human LTx.
Collapse
Affiliation(s)
- Nataraju Angaswamy
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
D'Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina M, Guggino G, Meraviglia S, Caccamo N, Messina A, Salerno A, Di Raimondo F, Vigneri P, Stassi G, Fourniè JJ, Dieli F. V gamma 9V delta 2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:3260-8. [PMID: 20154204 DOI: 10.4049/jimmunol.0903454] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Imatinib mesylate (imatinib), a competitive inhibitor of the BCR-ABL tyrosine kinase, is highly effective against chronic myelogenous leukemia (CML) cells. However, because 20-30% of patients affected by CML display either primary or secondary resistance to imatinib, intentional activation of Vgamma9Vdelta2 T cells by phosphoantigens or by agents that cause their accumulation within cells, such as zoledronate, may represent a promising strategy for the design of a novel and highly innovative immunotherapy capable to overcome imatinib resistance. In this study, we show that Vgamma9Vdelta2 T lymphocytes recognize, trogocytose, and efficiently kill imatinib-sensitive and -resistant CML cell lines pretreated with zoledronate. Vgamma9Vdelta2 T cell cytotoxicity was largely dependent on the granule exocytosis- and partly on TRAIL-mediated pathways, was TCR-mediated, and required isoprenoid biosynthesis by zoledronate-treated CML cells. Importantly, Vgamma9Vdelta2 T cells from patients with CML can be induced by zoledronate to develop antitumor activity against autologous and allogeneic zoledronate-treated leukemia cells, both in vitro and when transferred into immunodeficient mice in vivo. We conclude that intentional activation of Vgamma9Vdelta2 T cells by zoledronate may substantially increase their antileukemia activities and represent a novel strategy for CML immunotherapy.
Collapse
Affiliation(s)
- Matilde D'Asaro
- Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Li Y, Xia B, Lü M, Ge L, Zhang X. MICB0106 gene polymorphism is associated with ulcerative colitis in central China. Int J Colorectal Dis 2010; 25:153-9. [PMID: 19662431 PMCID: PMC2803256 DOI: 10.1007/s00384-009-0787-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND The highly polymorphic nonclassical MHC class I chain-related genes A and B (MICA and MICB) encode stress-inducible glycoproteins expressed on various epithelial cells including intestinal epithelial cells. MICA and MICB gene polymorphisms and expressions are associated with autoimmune diseases but not known in ulcerative colitis (UC). AIMS To investigate the association of MICB exon 2-4 polymorphisms and soluble MICA (sMICA) expression with the susceptibility of UC in central China. MATERIALS AND METHODS Genomic DNA was isolated from peripheral blood. The allele frequencies of MICB exon 2-4 were genotyped in 105 UC patients and 213 healthy controls by PCR single-stranded conformation polymorphism method. Thirty-two patients and 32 controls were selected for determining serum sMICA expression by ELISA. RESULTS Allele frequency of MICB0106 was significantly higher in UC patients than in healthy controls (19.0% vs. 8.9%, corrected P (Pc) = 0.0006), especially in patients with extensive colitis (24.4% vs. 8.9%, Pc = 0.0006), moderate and severe disease (24.1% vs. 8.9%, Pc = 0.0006), extraintestinal manifestations (20.5% vs. 8.9%, Pc = 0.012), male patients (22.1% vs. 8.0%, Pc = 0.006), and patients over the age of 40 years (28.8% vs. 8.3%, Pc = 0.0006). The sMICA level was significantly higher in UC than in healthy controls (604.41 +/- 480.43 pg/ml vs. 175.37 +/- 28.31 pg/ml, P = 0.0001) but not associated with the MICB0106 genotypes. CONCLUSIONS Overall, MICB0106 allele was positively associated with UC in the Han Chinese in central China. sMICA was highly expressed in UC but not associated with the MICB0106 genotype.
Collapse
Affiliation(s)
- Yi Li
- Department of Gastroenterology and Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, People’s Republic of China ,Clinical Research Center for Intestinal and Colorectal Diseases and Key Laboratory of Allergy and Immune-related Diseases of Hubei Province, Wuhan, People’s Republic of China ,Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bing Xia
- Department of Gastroenterology and Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, People’s Republic of China ,Clinical Research Center for Intestinal and Colorectal Diseases and Key Laboratory of Allergy and Immune-related Diseases of Hubei Province, Wuhan, People’s Republic of China ,Department of Gastroenterology, Wuhan University Zhongnan Hospital, Donghu Road 169, Wuhan, 430071, Hubei Province People’s Republic of China
| | - Min Lü
- Department of Gastroenterology and Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, People’s Republic of China ,Clinical Research Center for Intestinal and Colorectal Diseases and Key Laboratory of Allergy and Immune-related Diseases of Hubei Province, Wuhan, People’s Republic of China
| | - Liuqing Ge
- Department of Gastroenterology and Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, People’s Republic of China ,Clinical Research Center for Intestinal and Colorectal Diseases and Key Laboratory of Allergy and Immune-related Diseases of Hubei Province, Wuhan, People’s Republic of China
| | - Xiaolian Zhang
- Clinical Research Center for Intestinal and Colorectal Diseases and Key Laboratory of Allergy and Immune-related Diseases of Hubei Province, Wuhan, People’s Republic of China
| |
Collapse
|
165
|
Immune Suppression by γδ T-cells as a Potential Regulatory Mechanism After Cancer Vaccination With IL-12 Secreting Dendritic Cells. J Immunother 2010; 33:40-52. [DOI: 10.1097/cji.0b013e3181b51447] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
166
|
Qin G, Mao H, Zheng J, Sia SF, Liu Y, Chan PL, Lam KT, Peiris JSM, Lau YL, Tu W. Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J Infect Dis 2009; 200:858-65. [PMID: 19656068 PMCID: PMC7110194 DOI: 10.1086/605413] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BackgroundInfluenza virus is a cause of substantial annual morbidity and mortality worldwide. The potential emergence of a new pandemic strain (eg, avian influenza virus) is a major concern. Currently available vaccines and anti-influenza drugs have limited effectiveness for influenza virus infections, especially for new pandemic strains. Therefore, there is an acute need to develop alternative strategies for influenza therapy. γδ T cells have potent antiviral activities against different viruses, but no data are available concerning their antiviral activity against influenza viruses MethodsIn this study, we used virus-infected primary human monocyte-derived macrophages (MDMs) to examine the antiviral activity of phosphoantigen isopentenyl pyrophosphate (IPP)–expanded human Vγ9Vδ2 T cells against influenza viruses ResultsVγ9Vδ2 T cells were selectively activated and expanded by IPP from peripheral blood mononuclear cells. IPP-expanded Vγ9Vδ2 T cells efficiently killed MDMs infected with human (H1N1) or avian (H9N2 or H5N1) influenza virus and significantly inhibited viral replication. The cytotoxicity of Vγ9Vδ2 T cells against influenza virus–infected MDMs was dependent on NKG2D activation and was mediated by Fas–Fas ligand and perforin–granzyme B pathways ConclusionOur findings suggest a potentially novel therapeutic approach to seasonal, zoonotic avian, and pandemic influenza—the use of phosphoantigens to activate γδ T cells against influenza virus infections
Collapse
Affiliation(s)
- Gang Qin
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Special Administrative Region, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Yokobori N, Schierloh P, Geffner L, Balboa L, Romero M, Musella R, Castagnino J, De Stéfano G, Alemán M, de la Barrera S, Abbate E, Sasiain MC. CD3 expression distinguishes two gammadeltaT cell receptor subsets with different phenotype and effector function in tuberculous pleurisy. Clin Exp Immunol 2009; 157:385-94. [PMID: 19664147 PMCID: PMC2745033 DOI: 10.1111/j.1365-2249.2009.03974.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2009] [Indexed: 12/16/2022] Open
Abstract
Tuberculous pleurisy is a naturally occurring site of Mycobacterium tuberculosis (Mtb) infection. Herein, we describe the expression of activation, natural killer (NK) and cell migration markers, as well as effector functions from gammadeltaT cells in peripheral blood (PB) and pleural effusion (PE) from tuberculosis patients (TB). We observed a decreased percentage of circulating gammadeltaT from TB patients and differential expression of NK as well as of chemokine receptors on PB and PE. Two subsets of gammadeltaT cells were differentiated by the CD3/gammadeltaT cell receptor (gammadeltaTCR) complex. The gammadeltaTCR(low) subset had a higher CD3 to TCR ratio and was enriched in Vdelta2(+) cells, whereas most Vdelta1(+) cells belonged to the gammadeltaTCR(high) subset. In PB from TB, most gammadeltaTCR(high) were CD45RA(+)CCR7(-) and gammadeltaTCR(low) were CD45RA(+/-)CCR7(+)CXCR3(+). In the pleural space the proportion of CD45RA(-)CCR7(+)CXCR3(+) cells was higher. Neither spontaneous nor Mtb-induced interferon (IFN)-gamma production was observed in PB-gammadeltaT cells from TB; however, PE-gammadeltaT cells showed a strong response. Both PB- and PE-gammadelta T cells expressed surface CD107a upon stimulation with Mtb. Notably, PE-gammadeltaTCR(low) cells were the most potent effector cells. Thus, gammadeltaT cells from PB would acquire a further activated phenotype within the site of Mtb infection and exert full effector functions. As gammadeltaT cells produce IFN-gamma within the pleural space, they would be expected to play a beneficial role in tuberculous pleurisy by helping to maintain a T helper type 1 profile.
Collapse
Affiliation(s)
- N Yokobori
- Departamento de Inmunología, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, 1425 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Polymorphisms of NKG2D ligands: diverse RAET1/ULBP genes in northeastern Thais. Immunogenetics 2009; 61:611-7. [PMID: 19688209 DOI: 10.1007/s00251-009-0394-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
Unique long 16 (UL-16)-binding proteins (ULBP) or retinoic acid early transcripts-1 (RAET1) are ligands to the activating receptor, NKG2D. The human RAET1/ULBP gene family is identified as ten members (RAET1E to N) with six loci encoding for potentially functional proteins. These are ULBP1 or RAET1I, ULBP2 or RAET1H, ULBP3 or RAET1N, and RAET1L, which are glycosylinositol phospholipid (GPI)-linked glycoproteins and ULBP4 or RAET1E and ULBP5 or RAET1G, which are transmembrane glycoproteins. The RAET1 products contain the alpha1 and alpha2 domains but lack the alpha3 domain and do not associate with beta2-microglobulin. RAET1/ULBPs have tissue-specific expressions, and some of them are also polymorphic. In the present study, polymorphic exons 2 and 3 of the RAET1E, G, H, I, L, and N were analyzed using sequence-based typing. One hundred and seventy-six unrelated healthy Northeastern Thais were included in this study. For RAET1E, RAET1G, RAET1H, and RAET1L, there were seven, two, five, and four single nucleotide polymorphisms (SNPs), respectively. Six of these are new SNPs, which are rare in this population. Of these, six new SNPs, two of two in RAET1E, two of three in RAET1H, and none of one in RAET1L are nonsynonymous substitutions. Interestingly, although the RAET1N is polymorphic in Caucasians, RAET1N and RAET1I had no variation in Thais indicating diverse RAET1 genes in different ethnic groups. These data provide the important basis for future analysis on the role of RAET1 genes in immune responses especially in cancer and infectious diseases.
Collapse
|
169
|
Todaro M, D'Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, Dieli F, Stassi G. Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2009; 182:7287-96. [PMID: 19454726 DOI: 10.4049/jimmunol.0804288] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colon cancer comprises a small population of cancer stem cells (CSC) that is responsible for tumor maintenance and resistant to cancer therapies, possibly allowing for tumor recapitulation once treatment stops. We previously demonstrated that such chemoresistance is mediated by autocrine production of IL-4 through the up-regulation of antiapoptotic proteins. Several innate and adaptive immune effector cells allow for the recognition and destruction of cancer precursors before they constitute the tumor mass. However, cellular immune-based therapies have not been experimented yet in the population of CSCs. Here, we show that the bisphosphonate zoledronate sensitizes colon CSCs to Vgamma9Vdelta2 T cell cytotoxicity. Proliferation and production of cytokines (TNF-alpha and IFN-gamma) and cytotoxic and apoptotic molecules (TRAIL and granzymes) were also induced after exposure of Vgamma9Vdelta2 T cells to sensitized targets. Vgamma9Vdelta2 T cell cytotoxicity was mediated by the granule exocytosis pathway and was highly dependent on isoprenoid production by of tumor cells. Moreover, CSCs recognition and killing was mainly TCR mediated, whereas NKG2D played a role only when tumor targets expressed several NKG2D ligands. We conclude that intentional activation of Vgamma9Vdelta2 T cells by zoledronate may substantially increase antitumor activities and represent a novel strategy for colon cancer immunotherapy.
Collapse
Affiliation(s)
- Matilde Todaro
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood 2009; 114:310-7. [PMID: 19436053 DOI: 10.1182/blood-2008-12-196287] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UL16-binding proteins (ULBPs) belong to a family of ligands for NKG2D activating receptor of human natural killer (NK) cells. We previously reported that RAET1E2, a soluble isoform of the RAET1E (ULBP4), inhibits NKG2D-mediated NK cytotoxicity. In this study, we examined whether ULBP4 could be recognized by gammadeltaT cells via TCRgammadelta. Here we show that immobilized soluble ULBP4 (rULBP4) induces the proliferation of human ovarian epithelial carcinoma- or colonic carcinoma-derived Vdelta2(+) T cells in vitro. These Vdelta2(+) T cells secrete Th1 cytokines and display a strong cytolytic activity toward ULBP4-transfected targets. We also show that ULBP4 binds to a soluble chimeric protein containing TCRgamma9/delta2 and activates TCR(-) Jurkat T cells transfected with TCRgamma9/delta2. Moreover, both TCRgammadelta and NKG2D are involved in ULBP4-induced activation and cytotoxicity of gammadeltaT cells. We found that ULBP4 is expressed not only on human tumor cells, but also on Epstein-Barr virus (EBV)-infected peripheral blood cells. Taken together, our data suggest that ULBP4 functions as a ligand for both TCRgammadelta and NKG2D and may play a key role in immune surveillance of tumor development and clearance of viral infection.
Collapse
|
171
|
Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T, Goto S, Yokokawa K, Suzuki K. Clinical and immunological evaluation of zoledronate-activated Vgamma9gammadelta T-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol 2009; 37:956-68. [PMID: 19409955 DOI: 10.1016/j.exphem.2009.04.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 04/23/2009] [Accepted: 04/23/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the potential anti-tumor activity of zoledronate-activated Vgamma9gammadelta T cells in vivo, we initiated a pilot study involving administration of zoledronate-activated Vgamma9gammadelta T lymphocyte-activated killer (LAK) cells to patients with multiple myeloma. MATERIALS AND METHODS Subjects (n = 6) received four intravenous infusions at 2-week intervals of zoledronate-activated Vgamma9gammadelta T LAK cells generated from the culture of peripheral blood mononuclear cells (PBMCs) in the presence of zoledronate and interleukin-2. If the M-protein level in the patient's serum remained at baseline following four intravenous infusions, the patient underwent four more treatments at 4-week intervals. Subjects (n = 6) received a median of 0.99 x 10(9) Vgamma9gammadelta T LAK cells per infusion. RESULTS No serious treatment-related adverse effects were observed during the study period. The percentage of Vgamma9gammadelta T cells in PBMCs and absolute numbers of Vgamma9gammadelta T cells in peripheral blood, particularly those of CD45RA(-)CD27(-) effector memory (TEM) Vgamma9gammadelta T-cell subsets increased in all the patients. Percentages of Vgamma9gammadelta T cells and TEM Vgamma9gammadelta T cells in bone marrow also increased in all the patients so far tested. M-protein levels in the serum remained at baseline in four of six patients and increased in two of six patients. Soluble major histocompatibility complex class I chain-related antigen A was detected only in the serum of patients whose M-protein level increased. CONCLUSION Administration of zoledronate-activated Vgamma9gammadelta T LAK cells is a safe and promising immunotherapy approach for treatment of patients with multiple myeloma.
Collapse
Affiliation(s)
- Yu Abe
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Li K, Mandai M, Hamanishi J, Matsumura N, Suzuki A, Yagi H, Yamaguchi K, Baba T, Fujii S, Konishi I. Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer: high expression of ULBP2 is an indicator of poor prognosis. Cancer Immunol Immunother 2009; 58:641-52. [PMID: 18791713 PMCID: PMC11030581 DOI: 10.1007/s00262-008-0585-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 08/25/2008] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the clinical significance of the expression of the NKG2D ligands MICA/B and ULBP2 in ovarian cancer. METHODS Eighty-two ovarian cancer patients and six patients without ovarian cancer from Department of Obstetrics and Gynecology of Kyoto University Hospital were enrolled in this study between 1993 and 2003. Expression of MICA/B, ULBP2, and CD57 in ovarian cancer tissue and normal ovary tissue was evaluated by immunohistochemical staining, and the relationship of these results to relevant clinical patient data was analyzed. Expression of MICs, ULBP2, and HLA-class I molecules in 33 ovarian cancer cell lines and two normal ovarian epithelial cell lines, as well as levels of soluble MICs and ULBP2 in the culture supernatants, were measured. RESULTS Expression of MICA/B and ULBP2 was detected in 97.6 and 82.9% of ovarian cancer cells, respectively, whereas neither was expressed on normal ovarian epithelium. The expression of MICA/B in ovarian cancer was highly correlated with that of ULBP2. Strong expression of ULBP2 in ovarian cancer cells was correlated with less intraepithelial infiltration of T cells and bad prognoses for patients, suggesting that ULBP2 expression is a prognostic indicator in ovarian cancer. The expression of NKG2D ligands did not correlate with the levels of the soluble forms of the ligands. CONCLUSIONS High expression of ULBP2 is an indicator of poor prognosis in ovarian cancer and may relate to T cell dysfunction in the tumor microenvironment.
Collapse
Affiliation(s)
- Kui Li
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
- Department of Gynecology and Obstetrics, Peking University First Hospital, 1 Xi’an Men Street, Xicheng District, 100034 Beijing, China
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Ayako Suzuki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Haruhiko Yagi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Shingo Fujii
- Department of Obstetrics and Gynecology, National Hospital Organization, Kyoto Medical Center, 1-1, Fukakusa Mukaihata-cho, Fushimi-ku, Kyoto, 612-8555 Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
173
|
Martinet L, Poupot R, Fournié JJ. Pitfalls on the roadmap to γδ T cell-based cancer immunotherapies. Immunol Lett 2009; 124:1-8. [DOI: 10.1016/j.imlet.2009.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 12/29/2022]
|
174
|
Agüera-González S, Boutet P, Reyburn HT, Valés-Gómez M. Brief residence at the plasma membrane of the MHC class I-related chain B is due to clathrin-mediated cholesterol-dependent endocytosis and shedding. THE JOURNAL OF IMMUNOLOGY 2009; 182:4800-8. [PMID: 19342658 DOI: 10.4049/jimmunol.0800713] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recognition of MHC class I-related chain (MIC) molecules on the surface of target cells by the activating receptor NKG2D leads to their lysis by immune effector cells. Up-regulation of NKG2D ligands is broadly related to stress, although the detailed molecular mechanisms that control the presence of these molecules at the plasma membrane are unclear. To investigate the posttranslational mechanisms that control surface expression of the human NKG2D ligand MICB, we studied the subcellular localization and trafficking of this molecule. We found that in several cellular systems, the expression of MICB molecules on the cell surface is accompanied by an intracellular accumulation of the molecule in the trans-Golgi network and late endosome-related compartments. Surprisingly, MICB has a much shorter half-life at the plasma membrane than MHC molecules and this depends on both recycling to internal compartments and shedding to the extracellular medium. Internalization of MICB depends partially on clathrin, but importantly, the lipid environment of the membrane also plays a crucial role in this process. We suggest that the brief residence of MICB at the plasma membrane modulates, at least in part, the function of this molecule in the immune system.
Collapse
|
175
|
Tamaki S, Kawakami M, Yamanaka Y, Shimomura H, Imai Y, Ishida JI, Yamamoto K, Ishitani A, Hatake K, Kirita T. Relationship between soluble MICA and the MICA A5.1 homozygous genotype in patients with oral squamous cell carcinoma. Clin Immunol 2009; 130:331-7. [DOI: 10.1016/j.clim.2008.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/21/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
|
176
|
Meresse B, Cerf-Bensussan N. Innate T cell responses in human gut. Semin Immunol 2009; 21:121-9. [PMID: 19231234 DOI: 10.1016/j.smim.2009.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/20/2009] [Indexed: 01/27/2023]
Abstract
One arm of the gut-associated immune system is represented by a vast collection of T lymphocytes which participate in the subtle interplay between innate and adaptive immune mechanisms and maintain homeostasis at the main body external surface. Mounting data are providing exciting new insight into the innate-like mechanisms which enable intestinal T cells to rapidly sense local conditions and which broaden the spectrum of their functions and regulation at this strategic location. Herein we discuss how innate-like T cell recognition by unconventional T cell subsets and expression of innate NK receptors might modulate immune T cell responses in the human normal or diseased intestine.
Collapse
Affiliation(s)
- Bertrand Meresse
- INSERM U793, Université Paris Descartes, Medical School, 156 rue de Vaugirard, 75737 Paris Cedex 15, France.
| | | |
Collapse
|
177
|
Yang D, Wang H, Ni B, He Y, Li J, Tang Y, Fu X, Wang Q, Xu G, Li K, Yang Z, Wu Y. Mutual activation of CD4+ T cells and monocytes mediated by NKG2D-MIC interaction requires IFN-gamma production in systemic lupus erythematosus. Mol Immunol 2009; 46:1432-42. [PMID: 19200602 DOI: 10.1016/j.molimm.2008.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/11/2008] [Accepted: 12/16/2008] [Indexed: 01/30/2023]
Abstract
The activating receptor NKG2D is mainly expressed by human CD8(+) T cells and NK cells but normally absent on CD4(+) T cells. However, a subset of autoreactive NKG2D(+)CD4(+) T cells has been found to exist in some autoimmune disease such as rheumatoid arthritis (RA) and to participate in the imbalance of immune response and inflammation. Up to date this observation has been extended to some autoimmune diseases such as RA and Crohn's disease and the mechanism underlying the presence of this type of NKG2D(+)CD4(+) T cells has not been delineated yet. In this study, we found that a substantial proportion of CD4(+) T cells expressed NKG2D in the PBMC of SLE patients. We also found that monocytes in SLE aberrantly expressed the NKG2D ligand of MHC class I chain-related (MIC) molecules and membrane-bound IL-15 (mIL-15) at the cell surface. When cultured with the sera from SLE patients, the monocytes from healthy volunteers could be induced to express MIC and mIL-15. However, this induced expression of MIC and mIL-15 could be blocked with anti-IFN-gamma receptor (anti-IFN-gammaR) antibody. We further demonstrated that NKG2D could be induced on normal CD4(+) T cells either cocultured with monocytes from patients with SLE, or monocytes from healthy volunteers but pretreated with IFN-gamma. Moreover, Th1 cytokines were found to be produced by NKG2D(+)CD4(+) T cells in the coculture system. By transwell assay, we found that both NKG2D expression and Th1 cytokines production depended on the cell-cell contact. These results indicate that the elevated sera IFN-gamma may be responsible for MIC and mIL-15 induction on monocytes in SLE; mIL-15 on monocytes contribute to NKG2D receptor induction on a subset of CD4(+) T cells. Moreover, CD14(+) monocytes promote NKG2D(+)CD4(+) T cells activation through the NKG2D-MIC engagement in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Di Yang
- The Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate. Leukemia 2009; 23:641-8. [PMID: 19151770 DOI: 10.1038/leu.2008.354] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Engagement of NKG2D by their ligands (NKG2D-L), as the human major histocompatibility complex class I-related molecules MIC-A and the UL16-binding proteins, on cytolytic lymphocytes leads to the enhancement of antitumour effector functions. These ligands are missing or expressed at very low levels on leukaemic cells; furthermore, they can be shed by tumour cells and inhibit cytolytic activity of lymphocytes. Herein, we show that in vivo administration of all-trans-retinoic acid (ATRA) or the histone deacetylase inhibitor sodium valproate (VPA) to patients affected with acute myeloid leukaemia (AML) M3 or M1 respectively, leads to the induction of transcription and expression of NKG2D-L at the surface of leukaemic cells. Apparently, no detectable shedding of the soluble form of these molecules was found in patients' sera. Conversely, AML blasts from patients treated with chemotherapy not including ATRA or VPA did not show any induction of NKG2D-L transcription. Furthermore, upon therapy with ATRA or VPA, leukaemic blasts become able to trigger lytic granule exocytosis by autologous CD8(+) T and natural killer lymphocytes, as shown by CD107a mobilization assay, followed by leukaemic cell lysis. These findings indicate that ATRA and VPA may contribute to the activation of cytolytic effector lymphocytes in vivo, possibly enhancing their anti-leukaemic effect.
Collapse
|
179
|
Detuning CD8+ T lymphocytes by down-regulation of the activating receptor NKG2D: role of NKG2D ligands released by activated T cells. Blood 2009; 113:2955-64. [PMID: 19124832 DOI: 10.1182/blood-2008-06-165944] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NKG2D is an activating receptor expressed on CD8(+)alphabeta(+) T cells, gammadelta(+) T cells, natural killer (NK) cells, and some CD4(+) T cells. For a long time, the interaction of NKG2D with its ligands (NKG2DLs) MICA, MICB, and ULBP1-3 has been considered a mechanism for recognition and elimination of tumor, infected, or otherwise "stressed" cells. However, a new role for NKG2D as an immunoregulatory receptor is emerging. Here, we show that NKG2D is strongly down-modulated on antigen-activated CD8(+) T cells but only if CD4(+) T cells are present. Down-modulation was caused by soluble factors produced by CD4(+) T cells, and in particular soluble NKG2DLs were found in the supernatants of antigen-activated T-cell cultures. MICB was the ligand released at higher levels when CD4(+) T cells were present in the cell cultures, suggesting that it could be the major player of NKG2D down-modulation. CD8(+) T cells expressing low levels of NKG2D had impaired effector functions, as evaluated by proliferation, cytokine production, and cytotoxicity assays after combined triggering of NKG2D and TCR-CD3 complex. These findings show that activated CD4(+) T cells expressing NKG2DLs can efficiently prevent NKG2D-mediated CD8(+) T-cell functions, and suggest that the NKG2D/NKG2DL interaction can regulate immune responses.
Collapse
|
180
|
Kloss M, Decker P, Baltz KM, Baessler T, Jung G, Rammensee HG, Steinle A, Krusch M, Salih HR. Interaction of monocytes with NK cells upon Toll-like receptor-induced expression of the NKG2D ligand MICA. THE JOURNAL OF IMMUNOLOGY 2008; 181:6711-9. [PMID: 18981088 DOI: 10.4049/jimmunol.181.10.6711] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Reciprocal interactions between NK cells and dendritic cells have been shown to influence activation of NK cells, maturation, or lysis of dendritic cells and subsequent adaptive immune responses. However, little is known about the crosstalk between monocytes and NK cells and the receptors involved in this interaction. We report in this study that human monocytes, upon TLR triggering, up-regulate MHC class I-Related Chain (MIC) A, but not other ligands for the activating immunoreceptor NKG2D like MICB or UL-16 binding proteins 1-3. MICA expression was associated with CD80, MHC class I and MHC class II up-regulation, secretion of proinflammatory cytokines, and apoptosis inhibition, but was not accompanied by release of MIC molecules in soluble form. TLR-induced MICA on the monocyte cell surface was detected by autologous NK cells as revealed by NKG2D down-regulation. Although MICA expression did not render monocytes susceptible for NK cell cytotoxicity, LPS-treated monocytes stimulated IFN-gamma production of activated NK cells which was substantially dependent on MICA-NKG2D interaction. No enhanced NK cell proliferation or cytotoxicity against third-party target cells was observed after stimulation of NK cells with LPS-activated monocytes. Our data indicate that MICA-NKG2D interaction constitutes a mechanism by which monocytes and NK cells as an early source of IFN-gamma may communicate directly during an innate immune response to infections in humans.
Collapse
Affiliation(s)
- Mercedes Kloss
- Department of Hematology, Eberhard Karls University of Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Kilic SS, Akbulut HH, Ozden M, Bulut V. Gamma/delta T cells in patients with acute brucellosis. Clin Exp Med 2008; 9:101-4. [PMID: 19048184 DOI: 10.1007/s10238-008-0021-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/29/2008] [Indexed: 11/25/2022]
Abstract
We aimed to investigate the population of gamma/delta T (gamma/delta T) cells in patients with acute brucellosis. When the bacteria penetrate to the host, the innate immune response aims to prevent the attack by non-activated professional phagocytes. At that moment, macrophages trigger the other cells of the immune system. The cells that can respond immediately are natural killer and gamma/delta T cells. The study included 40 cases of acute brucellosis and 20 healthy volunteers. In this study, it was aimed to compare gamma/delta and alpha/beta (alpha/beta) receptors of the T cells at pre- and post treatment period of patients diagnosed as brucellosis, especially to evaluate the levels of gamma/delta T cells at monitoring of the disease, using flow cytometry. As a result, it was observed that gamma/delta T cells significantly increased in peripheral blood in patients with brucellosis compared with the healthy individuals (13.23 +/- 4.7 and 5.25 +/- 1.4, respectively (p = 0.0001)). gamma/delta T cells were significantly decreased after the brucellosis treatment (p < 0.01). The results of the present study indicate that considerable counts of gamma/delta T cells are involved in acute brucellosis cases. Our findings suggest that gamma/delta TCR bearing cell counts may be used as a supplementary marker for monitoring brucellosis.
Collapse
Affiliation(s)
- S S Kilic
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Firat University Hospital, 23119 Elazig, Turkey
| | | | | | | |
Collapse
|
182
|
Sarikonda G, Wang H, Puan KJ, Liu XH, Lee HK, Song Y, Distefano MD, Oldfield E, Prestwich GD, Morita CT. Photoaffinity antigens for human gammadelta T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7738-50. [PMID: 19017963 PMCID: PMC2696061 DOI: 10.4049/jimmunol.181.11.7738] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vgamma2Vdelta2 T cells comprise the major subset of peripheral blood gammadelta T cells in humans and expand during infections by recognizing small nonpeptide prenyl pyrophosphates. These molecules include (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate (HMBPP), a microbial isoprenoid intermediate, and isopentenyl pyrophosphate, an endogenous isoprenoid intermediate. Recognition of these nonpeptide Ags is mediated by the Vgamma2Vdelta2 T cell Ag receptor. Several findings suggest that prenyl pyrophosphates are presented by an Ag-presenting molecule: contact between T cells and APC is required, the Ags do not bind the Vgamma2Vdelta2 TCR directly, and Ag recognition is abrogated by TCR mutations in CDRs distant from the putative Ag recognition site. Identification of the putative Ag-presenting molecule, however, has been hindered by the inability to achieve stable association of nonpeptide prenyl pyrophosphate Ags with the presenting molecule. In this study, we show that photoaffinity analogues of HMBPP, meta/para-benzophenone-(methylene)-prenyl pyrophosphates (m/p-BZ-(C)-C(5)-OPP), can crosslink to the surface of tumor cell lines and be presented as Ags to gammadelta T cells. Mutant tumor cell lines lacking MHC class I, MHC class II, beta(2)-microglobulin, and CD1, as well as tumor cell lines from a variety of tissues and individuals, will all crosslink to and present m-BZ-C(5)-OPP. Finally, pulsing of BZ-(C)-C(5)-OPP is inhibited by isopentenyl pyrophosphate and an inactive analog, suggesting that they bind to the same molecule. Taken together, these results suggest that nonpeptide Ags are presented by a novel-Ag-presenting molecule that is widely distributed and nonpolymorphic, but not classical MHC class I, MHC class II, or CD1.
Collapse
Affiliation(s)
- Ghanashyam Sarikonda
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Hong Wang
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Kia-Joo Puan
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Xiao-hui Liu
- Department of Medicinal Chemistry, University of Utah School of Pharmacy, Salt Lake City, UT 84112 USA
| | - Hoi K. Lee
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Yongcheng Song
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 and the Center for Biophysics and Computational Biology, 607 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 and the Center for Biophysics and Computational Biology, 607 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah School of Pharmacy, Salt Lake City, UT 84112 USA
| | - Craig T. Morita
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| |
Collapse
|
183
|
Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM, Smyth MJ, Colonna M. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. ACTA ACUST UNITED AC 2008; 205:2965-73. [PMID: 19029380 PMCID: PMC2605240 DOI: 10.1084/jem.20081752] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.
Collapse
Affiliation(s)
- Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that monitor cell surfaces of autologous cells for an aberrant expression of MHC class I molecules and cell stress markers. Since their first description more than 30 years ago, NK cells have been implicated in the immune defence against tumours. Here, we review the broadly accumulating evidence for a crucial contribution of NK cells to the immunosurveillance of tumours and the molecular mechanisms that allow NK cells to distinguish malignant from healthy cells. Particular emphasis is placed on the activating NK receptor NKG2D, which recognizes a variety of MHC class I-related molecules believed to act as 'immuno-alerters' on malignant cells, and on tumour-mediated counterstrategies promoting escape from NKG2D-mediated recognition.
Collapse
Affiliation(s)
- I Waldhauer
- Department of Immunology, Interfacultary Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
185
|
Gold MC, Ehlinger HD, Cook MS, Smyk-Pearson SK, Wille PT, Ungerleider RM, Lewinsohn DA, Lewinsohn DM. Human innate Mycobacterium tuberculosis-reactive alphabetaTCR+ thymocytes. PLoS Pathog 2008; 4:e39. [PMID: 18282101 PMCID: PMC2242840 DOI: 10.1371/journal.ppat.0040039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 01/07/2008] [Indexed: 02/02/2023] Open
Abstract
The control of Mycobacterium tuberculosis (Mtb) infection is heavily dependent on the adaptive Th1 cellular immune response. Paradoxically, optimal priming of the Th1 response requires activation of priming dendritic cells with Th1 cytokine IFN-γ. At present, the innate cellular mechanisms required for the generation of an optimal Th1 T cell response remain poorly characterized. We hypothesized that innate Mtb-reactive T cells provide an early source of IFN-γ to fully activate Mtb-exposed dendritic cells. Here, we report the identification of a novel population of Mtb-reactive CD4− αβTCR+ innate thymocytes. These cells are present at high frequencies, respond to Mtb-infected cells by producing IFN-γ directly ex vivo, and display characteristics of effector memory T cells. This novel innate population of Mtb-reactive T cells will drive further investigation into the role of these cells in the containment of Mtb following infectious exposure. Furthermore, this is the first demonstration of a human innate pathogen-specific αβTCR+ T cell and is likely to inspire further investigation into innate T cells recognizing other important human pathogens. Mycobacterium tuberculosis (Mtb) infects about one-third of the world's population. Most people who are exposed remain healthy, but control of this intracellular bacterium requires a robust cellular immune response. Production of the pro-inflammatory cytokine IFN-γ from cells in the adaptive immune response is critically important in the immune control of Mtb. However, this cytokine is also essential in initiating an optimal adaptive immune response. We hypothesized that innate cells could provide an early source of IFN-γ to aid in generation of an optimal adaptive immune response. We looked for IFN-γ producing cells in human neonates that were unlikely to have been previously exposed to either Mtb or other environmental mycobacteria. Here, we report the identification of a novel T cell population from the thymus that produces IFN-γ in response to Mtb-infected cells. Mtb-reactive thymocytes are present at high frequencies, are present in nearly all newborns tested, and display characteristics of T cells normally associated with a memory response. This novel innate population of Mtb-reactive cells will drive further investigation into the role of these cells in the containment of Mtb following infectious exposure and is likely to inspire further investigation into innate T cells recognizing other important human pathogens.
Collapse
Affiliation(s)
- Marielle C Gold
- Department of Pulmonary and Critical Care Medicine, Portland VA Medical Center, Oregon Health and Science University, Portland, Oregon, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Cao W, Xi X, Wang Z, Dong L, Hao Z, Cui L, Ma C, He W. Four novel ULBP splice variants are ligands for human NKG2D. Int Immunol 2008; 20:981-91. [PMID: 18544572 DOI: 10.1093/intimm/dxn057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UL16-binding proteins [ULBPs, also termed as retinoic acid early transcripts (RAET1) molecules] are frequently expressed by malignant transformed cells and stimulate anti-tumor immune responses mediated by NKG2D-positive NK cells, CD8(+) alphabeta T cells and gammadelta T cells in vitro and in vivo. In this study, we identified four novel functional splice variants of ULBPs including ULBP4-I, ULBP4-II, ULBP4-III and RAET1G3 in HepG2 liver carcinoma cells, WISH human amnion cells, Hep-2 larynx carcinoma cells and K562 leukemia cells, respectively, by reverse transcription-PCR and T vector cloning strategy. Analysis of alignments of amino acid sequences of the splice variants illustrated that there were important modifications between splice variants and their individual parental ULBP. All ULBP4 splice variants (ULBP4-I, ULBP4-II and ULBP4-III) were type 1 membrane-spanning molecules and had the ability to bind with human NKG2D receptor in vitro. Ectopic expressions of ULBP4 and ULBP4 splice variants resulted in the enhanced cytotoxic sensitivity of target cells against NK cells, which could be blocked by anti-NKG2D mAb. Moreover, co-culture-free soluble forms of ULBP4 splice variants (their alpha1 + alpha2 ectodomains) and RAET1G3 (soluble splice variant of RAET1G2) with NK cells down-regulated the cell surface expression of NKG2D. Finally, immobilized in a plate-bound form of RAET1G3 stimulated NK cells to secrete IFN-gamma. Taken together, all the identified functional splice variants will help to advance our knowledge regarding the overall functions of ULBP gene family.
Collapse
Affiliation(s)
- Wei Cao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Induction of NKG2D ligands by gamma radiation and tumor necrosis factor-alpha may participate in the tissue damage during acute graft-versus-host disease. Transplantation 2008; 85:911-5. [PMID: 18360276 DOI: 10.1097/tp.0b013e31816691ef] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunopathology of acute graft-versus-host disease (aGVHD) involves secretion of proinflammatory cytokines with subsequent expression of danger signals by injured host tissues. This explanation, however, does not explain the cluster of aGVHD target organs (skin, gut, and liver). NKG2D ligands (MICA/B and ULBP1-3 proteins) are stress-induced molecules that act as danger signals to alert NK and alphabeta or gammadelta CD8 T cells through engagement of the activating NKG2D receptor. We observed a strong and reversible induction of MICA/B expression in skin and liver sections during aGVHD. Tumor necrosis factor-alpha and gamma-radiation up-regulated expression of MICA/B and ULBP proteins in vitro on skin and intestine epithelial cell lines and ex vivo in normal skin explants. This NKG2D-ligand induction was regulated by a complex interplay between NFkB and JNK activation pathways. Our data suggest that NKG2D ligand induction might participate in the amplification loop that leads to tissue damage during aGVHD.
Collapse
|
188
|
Fuertes MB, Girart MV, Molinero LL, Domaica CI, Rossi LE, Barrio MM, Mordoh J, Rabinovich GA, Zwirner NW. Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2008; 180:4606-14. [PMID: 18354183 DOI: 10.4049/jimmunol.180.7.4606] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most tumors grow in immunocompetent hosts despite expressing NKG2D ligands (NKG2DLs) such as the MHC class I chain-related genes A and B (MICA/B). However, their participation in tumor cell evasion is still not completely understood. Here we demonstrate that several human melanomas (cell lines and freshly isolated metastases) do not express MICA on the cell surface but have intracellular deposits of this NKG2DL. Susceptibility to NK cell-mediated cytotoxicity correlated with the ratio of NKG2DLs to HLA class I molecules but not with the amounts of MICA on the cell surface of tumor cells. Transfection-mediated overexpression of MICA restored cell surface expression and resulted in an increased in vitro cytotoxicity and IFN-gamma secretion by human NK cells. In xenografted nude mice, these melanomas exhibited a delayed growth and extensive in vivo apoptosis. Retardation of tumor growth was due to NK cell-mediated antitumor activity against MICA-transfected tumors, given that this effect was not observed in NK cell-depleted mice. Also, mouse NK cells killed MICA-overexpressing melanomas in vitro. A mechanistic analysis revealed the retention of MICA in the endoplasmic reticulum, an effect that was associated with accumulation of endoH-sensitive (immature) forms of MICA, retrograde transport to the cytoplasm, and degradation by the proteasome. Our study identifies a novel strategy developed by melanoma cells to evade NK cell-mediated immune surveillance based on the intracellular sequestration of immature forms of MICA in the endoplasmic reticulum. Furthermore, this tumor immune escape strategy can be overcome by gene therapy approaches aimed at overexpressing MICA on tumor cells.
Collapse
Affiliation(s)
- Mercedes B Fuertes
- Laboratorio de Inmunogenética, Hospital de Clínicas and Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Association between soluble MICA levels and disease stage IV oral squamous cell carcinoma in Japanese patients. Hum Immunol 2008; 69:88-93. [PMID: 18361932 DOI: 10.1016/j.humimm.2008.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 11/21/2022]
Abstract
The soluble form of major histocompatibility complex class I-related chain A (MICA) is released from the surface of tumor cells of epithelial origin. Although MICA expressed on the cell surface stimulates the immunoreceptor natural killer (NK) group 2, member D (NKG2D), the secreted form downregulates NKG2D activity, thus allowing the tumor to escape immunosurveillance by NKG2D-expressing cells. In this study, we examined the association between serum levels of soluble MICA and the severity of disease in patients with oral squamous cell carcinoma (OSCC). We used enzyme-linked immunoabsorbent assay to measure serum levels of soluble MICA in OSCC patients and normal control individuals. Among patients categorized according to most disease parameters tested (tumor size, location, grade of differentiation, regional lymph node status, disease stage), soluble MICA levels in sera did not statistically differ from those in normal control individuals. Patients with stage IV disease and/or regional lymph node metastasis did, however, exhibit significantly higher serum levels of soluble MICA than control individuals (95% confidence interval (CI), 0.65-2.45, p = 0.021, and 95% CI, 0.62-4.42, p = 0.031, respectively). Overall survival rates were significantly higher for OSCC patients with low soluble MICA levels (<50 pg/ml) than for those with high soluble MICA levels (>50 pg/ml) (95% CI, 0.43-2.75, p = 0.03). Serum levels of soluble MICA may be useful in the diagnosis of advanced stage OSCC and as an indicator of regional lymph node metastasis.
Collapse
|
190
|
Bukowski JF, Percival SS. L-theanine intervention enhances human γδ T lymphocyte function. Nutr Rev 2008; 66:96-102. [DOI: 10.1111/j.1753-4887.2007.00013.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
191
|
Takahara M, Miyai M, Tomiyama M, Mutou M, Nicol AJ, Nieda M. Copulsing tumor antigen-pulsed dendritic cells with zoledronate efficiently enhance the expansion of tumor antigen-specific CD8+ T cells via Vgamma9gammadelta T cell activation. J Leukoc Biol 2007; 83:742-54. [PMID: 18156189 DOI: 10.1189/jlb.0307185] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We demonstrate that Vgamma9gammadelta T cells activated by zoledronate can link innate and acquired immunity through crosstalk with dendritic cells (DCs) in a way that can amplify activation and proliferation of tumor antigen-specific CD8+ T cells. DCs pulsed with antigen alone or antigen plus zoledronate were used to stimulate the in vitro expansion of antigen-specific CD8+ T cells. MART-1-modified peptide (A27L peptide) and apoptotic HLA-A*0201-positive, MART-1-positive JCOCB tumor cell lines were used as tumor antigen sources. The percentage of A27L-specific CD8+ T cells within the responding lymphocytes on Day 7 when immature DCs (imDCs) were cultured in the presence of A27L peptide and 0.01 microM zoledronate was significantly higher (P=0.002, n=11) than that observed when imDCs were cultured with the lymphocytes in the presence of the A27L peptide alone. This enhancing effect of zoledronate was significantly reduced when gammadelta T cells were depleted from responding lymphocytes (P=0.030, n=5), indicating that the effect is mediated mainly through Vgamma9gammadelta T cells activated by zoledronate-pulsed imDCs. When imDCs copulsed with zoledronate and apoptotic JCOCB tumor cell lines were used, the percentage of A27L-specific CD8+ T cells was higher than that observed using imDCs with the apoptotic JCOCB lines alone, suggesting that zoledronate treatment of imDCs enhances the cross-presentation ability of DCs. These findings suggest a potentially valuable role for Vgamma9gammadelta T cell activation for expanding antigen-specific CD8+T cells using DCs copulsed with tumor antigen and zoledronate in the design of vaccine therapies for malignancy.
Collapse
Affiliation(s)
- Masashi Takahara
- Medinet Medical Institute, Medinet Co. Ltd., 4-20-18 Seta, Setagaya-ku, Tokyo 158-0095, Japan
| | | | | | | | | | | |
Collapse
|
192
|
Innate immune functions of human gammadelta T cells. Immunobiology 2007; 213:173-82. [PMID: 18406365 DOI: 10.1016/j.imbio.2007.10.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/17/2007] [Indexed: 11/24/2022]
Abstract
gammadelta T cells expressing the Vgamma9Vdelta2 T cell receptor (TCR) account for 1-10% of CD3(+) peripheral blood T lymphocytes. Vgamma9Vdelta2 T cells use their TCR as a pattern recognition receptor to sense the presence of infection through specific recognition of intermediates of the microbial non-mevalonate pathway of isoprenoid biosynthesis. Such phosphoantigens rapidly and selectively activate human gammadelta T cells to produce proinflammatory cytokines, notably interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). In addition, human gammadelta T cells express certain Toll-like receptors (TLR) and directly respond to the corresponding ligands. We have demonstrated expression of TLR3 in Vgamma9Vdelta2 T cells and striking costimulatory effects of the ligand polyinosinic-polycytidylic acid (polyI:C) on TCR-stimulated IFN-gamma production. Gene expression studies by microarray analysis identified additional genes that were up-regulated by combined TCR- and TLR3 stimulation. We discuss these findings in the context of the suspected role of human Vgamma9Vdelta2 T cells as a link between innate and adaptive immune responses.
Collapse
|
193
|
Martino A, Casetti R, Sacchi A, Poccia F. Central memory Vgamma9Vdelta2 T lymphocytes primed and expanded by bacillus Calmette-Guérin-infected dendritic cells kill mycobacterial-infected monocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:3057-64. [PMID: 17709520 DOI: 10.4049/jimmunol.179.5.3057] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans, innate immune recognition of mycobacteria, including Mycobacterium tuberculosis and bacillus Calmette-Guérin (BCG), is a feature of cells as dendritic cells (DC) and gammadelta T cells. In this study, we show that BCG infection of human monocyte-derived DC induces a rapid activation of Vgamma9Vdelta2 T cells (the major subset of gammadelta T cell pool in human peripheral blood). Indeed, in the presence of BCG-infected DC, Vgamma9Vdelta2 T cells increase both their expression of CD69 and CD25 and the production of TNF-alpha and IFN-gamma, in contrast to DC treated with Vgamma9Vdelta2 T cell-specific Ags. Without further exogenous stimuli, BCG-infected DC expand a functionally cytotoxic central memory Vgamma9Vdelta2 T cell population. This subset does not display lymph node homing receptors, but express a high amount of perforin. They are highly efficient in the killing of mycobacterial-infected primary monocytes or human monocytic THP-1 cells preserving the viability of cocultured, infected DC. This study provides further evidences about the complex relationship between important players of innate immunity and suggests an immunoregulatory role of Vgamma9Vdelta2 T cells in the control of mycobacterial infection.
Collapse
Affiliation(s)
- Angelo Martino
- Unit of Cellular Immunology Fabrizio Poccia, National Institute for Infectious Diseases Lazzaro Spallanzani, Instituto di Ricovero e Cura a Carattere Scientifico, Via Portuense 292, Rome, Italy.
| | | | | | | |
Collapse
|
194
|
Wang H, Ruan Z, Wang Y, Han J, Fu X, Zhao T, Yang D, Xu W, Yang Z, Wang L, Chen Y, Wu Y. MHC class I chain-related molecules induced on monocytes by IFN-gamma promote NK cell activation. Mol Immunol 2007; 45:1548-56. [PMID: 18062910 DOI: 10.1016/j.molimm.2007.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
NKG2D receptor-ligand interaction triggers NK cell-mediated cytolysis and IFN-gamma secretion. IFN-gamma produced by NK cells has been found to promote the interaction between NK cells and monocytes; however, the underlying mechanism remains elusive. We demonstrate here that IFN-gamma exclusively induced or upregulated the expression of MHC class I chain-related (MIC) molecules, which are ligands of the NKG2D receptor, on the surface of human monocytes of the PBMC population. The IFN-gamma-induced MIC molecules on monocytes played an essential role in triggering the activation of NK cells because mAb-mediated masking of the MIC molecules and the inhibition of cell-to-cell contact using transwell inserts significantly abolished NK cell activation. Meanwhile, membrane-bound IL-15 (mIL-15) was concomitantly induced with MIC molecules on IFN-gamma-treated monocytes and played an essential role in protecting NK cells cocultured with monocytes from MIC-induced NKG2D down-modulation. Therefore, we conclude that the IFN-gamma-induced MIC molecules participated in monocyte/NK cell interaction and that this interaction also involved mIL-15.
Collapse
Affiliation(s)
- Huiming Wang
- Institute of Immunology, PLA, The Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Rodríguez-Bores L, Fonseca GC, Villeda MA, Yamamoto-Furusho JK. Novel genetic markers in inflammatory bowel disease. World J Gastroenterol 2007; 13:5560-70. [PMID: 17948929 PMCID: PMC4172734 DOI: 10.3748/wjg.v13.i42.5560] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genetic factors play a significant role in determining inflammatory bowel disease (IBD) susceptibility. Epidemiologic data support genetic contribution to the pathogenesis of IBD, which include familial aggregation, twin studies, racial and ethnic differences in disease prevalence. Linkage studies have identified several susceptibility genes contained in different genomic regions named IBD1 to IBD9. Nucleotide oligomerization domain (NOD2) and human leukocyte antigen (HLA) genes are the most extensively studied genetic regions (IBD1 and IBD3 respectively) in IBD. Mutations of the NOD2 gene are associated with Crohn's disease (CD) and several HLA genes are associated with ulcerative colitis (UC) and CD. Toll like receptors (TLRs) have an important role in the innate immune response against infections by mediating recognition of pathogen-associated microbial patterns. Studying single-nucleotide polymorphisms (SNPs) in molecules involved in bacterial recognition seems to be essential to define genetic backgrounds at risk of IBD. Recently, numerous new genes have been identified to be involved in the genetic susceptibility to IBD: NOD1/Caspase-activation recruitment domains 4 (CARD4), Chemokine ligand 20 (CCL20), IL-11, and IL-18 among others. The characterization of these novel genes potentially will lead to the identification of therapeutic agents and clinical assessment of phenotype and prognosis in patients with IBD.
Collapse
|
196
|
Rowe CA, Nantz MP, Bukowski JF, Percival SS. Specific Formulation ofCamellia sinensisPrevents Cold and Flu Symptoms and Enhances γδ T Cell Function: A Randomized, Double-Blind, Placebo-Controlled Study. J Am Coll Nutr 2007; 26:445-52. [PMID: 17914132 DOI: 10.1080/07315724.2007.10719634] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Determine if a specific formulation of Camellia sinensis (CSF) can prevent illness and symptoms due to cold and flu, and enhance gammadelta T cell function METHODS DESIGN Randomized, double-blind, placebo-controlled study. SUBJECTS Healthy adults 18-70 years old. INTERVENTION Proprietary formulation of Camellia sinensis (green tea) capsules, or a placebo, twice a day, for 3 months. MEASURES OF OUTCOME As assessed by daily symptom logs, percentage of subjects experiencing cold and flu symptoms, number of days subjects experienced symptoms, and percentage of subjects seeking medical treatment. Mean in vivo and ex vivo proliferative and interferon gamma responses of subjects' peripheral blood mononuclear cells to gammadelta T cell antigen stimulation. RESULTS Among subjects taking CSF there were 32.1% fewer subjects with symptoms (P = 0.035), 22.9% fewer overall illnesses of at least 2 days duration (P = 0.092), and 35.6% fewer symptom days (P < 0.002), compared to subjects taking placebo. gammadelta T cells from subjects taking CSF proliferated 28% more (P = 0.017) and secreted 26% more IFN-gamma (P = 0.046) in response to gammadelta T cell antigens, as compared to gammadelta T cells from subjects taking placebo. CSF was well-tolerated. CONCLUSIONS This proprietary formulation of CSF is a safe and effective dietary supplement for preventing cold and flu symptoms, and for enhancing gammadelta T cell function.
Collapse
Affiliation(s)
- Cheryl A Rowe
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
197
|
Rodríguez-Rodero S, González S, Rodrigo L, Fernández-Morera JL, Martínez-Borra J, López-Vázquez A, López-Larrea C. Transcriptional regulation of MICA and MICB: a novel polymorphism in MICB promoter alters transcriptional regulation by Sp1. Eur J Immunol 2007; 37:1938-53. [PMID: 17557375 DOI: 10.1002/eji.200737031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I-related genes A/B (MICA/B) are ligands of the NKG2D receptor expressed on T and NK cells. Their expression is highly restricted in normal tissues, but is up-regulated in tumoral and infected cells. We show that the minimal promoter of both genes contains a CCAAT box, which binds to NF-Y, and a GC box, which binds to Sp1, Sp3 and Sp4. We also demonstrate that MICB promoter is polymorphic, showing three single nucleotide polymorphisms (C>G at +16, -341, -408) and a deletion of two base pairs at -66 (AG>--) that is located close to the CCAAT box (-70) and the GC box (-86). Transcriptional activity associated with MICB promoter variants carrying this deletion, present in the 45.3% of Spanish population, showed a remarkable decrease (18-fold, p <0.01). By functional analysis, we show that the deletion plays a critical role in MICB promoter activity by diminishing Sp1 transcriptional activation. These important variations in MICB expression among normal individuals could imply a significant difference in the natural immune response against infections or tumor transformation, and might thereby contribute to an increased aberrant immune response against self cells, providing the molecular basis for the associations of the MICB gene to different autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Unidad de Histocompatibilidad y Transplantes, Hospital Universitario Central de Asturias Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
198
|
Wrobel P, Shojaei H, Schittek B, Gieseler F, Wollenberg B, Kalthoff H, Kabelitz D, Wesch D. Lysis of a broad range of epithelial tumour cells by human gamma delta T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand J Immunol 2007; 66:320-8. [PMID: 17635809 DOI: 10.1111/j.1365-3083.2007.01963.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human gammadelta T cells expressing a V gamma 9V delta 2 T-cell receptor (TCR) kill various tumour cells including autologous tumours. In addition to TCR-dependent recognition, activation of NKG2D-positive gammadelta T cells by tumour cell-expressed NKG2D ligands can also trigger cytotoxic effector function. In this study, we investigated the involvement of TCR versus NKG2D in tumour cell recognition as a prerequisite to identify tumour types suitable for gammadelta T-cell-based immunotherapy. We have characterized epithelial tumour cells of different origin with respect to cell surface expression of the known NKG2D ligands MHC class I-chain-related antigens (MIC) A/B and UL16-binding proteins (ULBP), and susceptibility to gammadelta T-cell killing. Most tumour cells expressed comparable levels of MICA and MICB as well as ULBP with the exception of ULBP-1 which was absent or only weakly expressed. Most epithelial tumours were susceptible to allogeneic gammadelta T-cell lysis and in the case of an established ovarian carcinoma to autologous gammadelta T-cell killing. Lysis of resistant cells was enhanced by pre-treatment of tumour cells with aminobisphosphonates or pre-activation of gammadelta T cells with phosphoantigens. A potential involvement of TCR and/or NKG2D was investigated by antibody blockade. These experiments revealed three patterns of inhibition, i.e. preferential inhibition by anti-TCR antibody, preferential inhibition by anti-NKG2D antibody, or additive blockade by anti-TCR plus anti-NKG2D antibodies. Our results indicate for the first time that the NKG2D pathway is involved in the lysis of different melanomas, pancreatic adenocarcinomas, squamous cell carcinomas of the head and neck, and lung carcinoma.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/therapy
- Adult
- Caco-2 Cells
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/therapy
- Cell Line
- Cytotoxicity, Immunologic
- Female
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/therapy
- Humans
- Ligands
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Male
- Melanoma/immunology
- Melanoma/therapy
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily K
- Neoplasms, Glandular and Epithelial/immunology
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, Natural Killer Cell
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P Wrobel
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Beetz S, Marischen L, Kabelitz D, Wesch D. Human gamma delta T cells: candidates for the development of immunotherapeutic strategies. Immunol Res 2007; 37:97-111. [PMID: 17695246 DOI: 10.1007/bf02685893] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A numerically small subset of human T lymphocytes expresses a gamma delta T cell receptor (TCR). These gamma delta T cells share certain effector functions with alpha beta T cells as well as with NK cells and NKT cells. The major peripheral blood gamma delta T cell subset in healthy adults expresses a Vgamma9Vdelta2 TCR, which recognizes small phosphorylated metabolites referred to as phosphoantigens. Vdelta1 gamma delta T cells mainly occur in the intestine. They recognize the stress-induced MICA/B and CD1c. Furthermore, gamma delta T cells express a variety of NK cell and pattern-recognition receptors which are responsible for the "fine-tuning" of effector functions. In recent years, gamma delta T cells start to emerge as a rewarding target for immunotherapeutic strategies against viral infections and cancer. A better understanding of factors that modulate gamma gamma delta T cell function will further eluminate the potential of these cells.
Collapse
Affiliation(s)
- Susann Beetz
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| | | | | | | |
Collapse
|
200
|
Abstract
The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D-ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection.
Collapse
Affiliation(s)
- Anita R Mistry
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | | |
Collapse
|