151
|
Pipitone RM, Ciccioli C, Infantino G, La Mantia C, Parisi S, Tulone A, Pennisi G, Grimaudo S, Petta S. MAFLD: a multisystem disease. Ther Adv Endocrinol Metab 2023; 14:20420188221145549. [PMID: 36726391 PMCID: PMC9885036 DOI: 10.1177/20420188221145549] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/26/2022] [Indexed: 01/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), affecting about 25% of general population and more than 50% of dysmetabolic patients, is an emerging cause of chronic liver disease and its complications. Recently, an international consensus of experts proposed to rename this disease as 'Metabolic dysfunction-Associated Fatty Liver Disease' (MAFLD) to focus on the bidirectional interplay between fatty liver and metabolic alterations and to stress the need of assessing fatty liver independently from alcohol consumption and other coexisting causes of liver disease. The peculiarity of NAFLD/MAFLD lies in the presence of a higher risk of not only - as expected - liver-related events but also of extrahepatic events, mostly cardiovascular and cancers. Available evidence suggests that these associations are not only the expression of sharing the same risk factors but shed light about the ability of NAFLD/MAFLD and particularly of its progressive form - nonalcoholic/metabolic dysfunction-associated steatohepatitis - to act as an independent risk factor via promotion of atherogenic dyslipidemia and a proinflammatory, profibrogenic, and procoagulant systemic environment. The present review summarizes available epidemiological and clinical evidence supporting the concept of NAFLD/MAFLD as a multisystemic disease, and highlights potential explanatory mechanisms underlying the association between NAFLD/MAFLD and extrahepatic disorders.
Collapse
Affiliation(s)
- Rosaria Maria Pipitone
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Carlo Ciccioli
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Giuseppe Infantino
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Claudia La Mantia
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Stefanie Parisi
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Adele Tulone
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Grazia Pennisi
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | | |
Collapse
|
152
|
Yu P, Yang H, Qi X, Bai R, Zhang S, Gong J, Mei Y, Hu P. Gender differences in the ideal cutoffs of visceral fat area for predicting MAFLD in China. Lipids Health Dis 2022; 21:148. [PMID: 36585702 PMCID: PMC9805250 DOI: 10.1186/s12944-022-01763-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Since the discovery of metabolic-associated fatty liver disease (MAFLD) in 2020, no report on the connection between the visceral fat area (VFA) and MAFLD has been published in China, and the ideal cutoffs of VFA for predicting MAFLD has not been determined so far. Thus, the purpose of this research was to clarify the relationship between VFA and MAFLD and the ideal cutoffs of VFA to predict MAFLD in the Chinese population. METHODS Five thousand three hundred forty subjects were included in this research, with 30% randomly selected for the validation set (n = 1602) and 70% for the Training set (n = 3738). The association between VFA and MAFLD was determined by multiple logistic regression. ROC curves were used to evaluate the prediction effect of VFA on MAFLD. RESULTS Multiple logistic regression analysis revealed that the VFA ORs (95% CIs) were 1.25 (1.20, 1.29) for women and 1.15 (1.12, 1.17) for men. Meanwhile, the VFA quartile OR (95% CI) were 3.07 (1.64, 5.75), 7.22 (3.97, 13.14), 18.91 (10.30, 34.71) for women and 3.07 (1.64, 5.75), 7.22 (3.97, 13.14),18.91 (10.30, 34.71) for men in the Q2, Q3, and Q4 groups compared with Q1. The ROC curve showed the VFA, WC, WHR, and WHtR to predict MAFLD, the AUC value of VFA was the highest and the prediction effect was the best. The ideal cutoffs of VFA to predict MAFLD was 115.55 cm2 for women and 178.35 cm2 for men, and the AUC was 0.788 and 0.795, respectively. Finally, the AUC was 0.773 for women and 0.800 for men in the validation set. CONCLUSION VFA was an independent predictive factor for MAFLD, and the ideal cutoff of VFA to predict MAFLD was 115.55 cm2 in women and 178.35 cm2 in men.
Collapse
Affiliation(s)
- Pingping Yu
- Department of Health Management, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huachao Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoya Qi
- Department of Health Management, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Bai
- Department of Health Management, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shouqin Zhang
- Department of Health Management, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Mei
- Department of Health Management, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
153
|
Dai X, Zhou G, Xu L. Associations between red blood cell count and metabolic dysfunction-associated fatty liver disease(MAFLD). PLoS One 2022; 17:e0279274. [PMID: 36574367 PMCID: PMC9794081 DOI: 10.1371/journal.pone.0279274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/03/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Some studies found that red blood cell count (RBC) was an unrecognized risk factor for non-alcoholic fatty liver disease (NAFLD). While the epidemiological data underpinning the evidence is very limited. As there are some differences between the latest criteria of metabolic dysfunction-associated fatty liver disease (MAFLD) and NAFLD, itis necessary to evaluate the relationship between RBC and MAFLD. METHODS We performed a cross-sectional analysis of the National Health and Nutritional Examination Survey (NHANES)2017-2018 cohort, including 4477 participants. Hepatic steatosis was determined when the value of controlled attenuation parameter (CAP) obtained by Fibroscan was ≥274 dB/m. Multivariate logistic regression analysis was used to estimate the association between RBC and MAFLD. We estimated the adjusted odds ratio (OR) of RBC for MAFLD, and the nonlinear relationship between RBC and MAFLD was further described using smooth curve fittings and threshold-effect analysis. RESULTS We found that MAFLD risk was significantly higher according to RBC quartiles. The adjusted odds ratio (OR) and 95% confidence intervals (CIs)for the highest RBC quartile were 1.5(1.0, 2.3) for male and 1.1 (0.8, 1.6) for female, respectively. As for male, a non-linear relationship was discovered between RBCs and MAFLD, with a RBC threshold of 4.2. The effect sizes and confidence intervals on the right side of the inflection point were 1.5 (1.0, 2.0) (P for nonlinearity = 0.027). The sensitivity analysis showed a similar result. CONCLUSION We demonstrated that that elevated RBC level is associated with the higher risk of MAFLD in male. The positive relationship was not significant in females after full adjustment. Our finding provided novel evidence indicating that RBCs might be a potential biomarker for MAFLD.
Collapse
Affiliation(s)
- Xinyi Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Guowei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Luzhou Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- * E-mail:
| |
Collapse
|
154
|
Malnick SDH, Alin P, Somin M, Neuman MG. Fatty Liver Disease-Alcoholic and Non-Alcoholic: Similar but Different. Int J Mol Sci 2022; 23:16226. [PMID: 36555867 PMCID: PMC9783455 DOI: 10.3390/ijms232416226] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In alcohol-induced liver disease (ALD) and in non-alcoholic fatty liver disease (NAFLD), there are abnormal accumulations of fat in the liver. This phenomenon may be related to excessive alcohol consumption, as well as the combination of alcohol consumption and medications. There is an evolution from simple steatosis to steatohepatitis, fibrosis and cirrhosis leading to hepatocellular carcinoma (HCC). Hepatic pathology is very similar regarding non-alcoholic fatty liver disease (NAFLD) and ALD. Initially, there is lipid accumulation in parenchyma and progression to lobular inflammation. The morphological changes in the liver mitochondria, perivenular and perisinusoidal fibrosis, and hepatocellular ballooning, apoptosis and necrosis and accumulation of fibrosis may lead to the development of cirrhosis and HCC. Medical history of ethanol consumption, laboratory markers of chronic ethanol intake, AST/ALT ratio on the one hand and features of the metabolic syndrome on the other hand, may help in estimating the contribution of alcohol intake and the metabolic syndrome, respectively, to liver steatosis.
Collapse
Affiliation(s)
- Stephen D. H. Malnick
- Department of Internal Medicine, Kaplan Medical Center, Affiliated to Hebrew University, Rehovot 76100, Israel
| | - Pavel Alin
- Department of Internal Medicine, Kaplan Medical Center, Affiliated to Hebrew University, Rehovot 76100, Israel
| | - Marina Somin
- Department of Internal Medicine, Kaplan Medical Center, Affiliated to Hebrew University, Rehovot 76100, Israel
| | - Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G OA3, Canada
| |
Collapse
|
155
|
Cheng YM, Wang CC, Kao JH. Metabolic associated fatty liver disease better identifying patients at risk of liver and cardiovascular complications. Hepatol Int 2022; 17:350-356. [PMID: 36471232 DOI: 10.1007/s12072-022-10449-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND/PURPOSE A nomenclature of "metabolic associated fatty liver disease" (MAFLD) with a new definition was proposed in 2020 instead of the previous "non-alcoholic fatty liver disease" (NAFLD). Whether it better coheres with the clinical demand remains controversial. METHODS The participants with fatty liver on ultrasonography in Taiwan bio-bank cohorts were included. MAFLD is defined as the presence of fatty liver, plus any of the following three conditions: overweight/obesity, type 2 diabetes mellitus (DM), or metabolic dysfunction. The severity of liver fibrosis was determined using fibrosis-4 (FIB-4) index and NAFLD fibrosis score (NFS). The risk of atherosclerotic cardiovascular disease was assessed using intima-media thickness (IMT) or plaques of carotid duplex ultrasound. RESULTS A total of 9,719 subjects (ages 55.9 ± 10.8; males 42.6%) were distributed among 4 groups: "overlapping group", "MAFLD only", "NAFLD only", and "neither fatty liver disease (FLD)" with the percentages of 79.7, 12, 7.1, and 1.2%, respectively. Compared with NAFLD patients, MAFLD patients had a greater percentage of males, higher levels of BMI, waist circumference, HbA1c, and triglyceride. In addition, they had higher levels of serum ALT, AST, GGT, fatty liver index (FLI), NFS, and IMT, but no difference in FIB-4 index and the percentage of carotid plaques. To note, "MAFLD only group" had greater levels of AST, ALT, GGT, FLI, FIB-4, NFS, IMT and a higher percentage of carotid plaques than the "NAFLD only group". CONCLUSION The grand, population-based study showed MAFLD with new diagnostic criteria to aid in identifying a greater number of high-risk patients of metabolic, liver, and cardiovascular complications, suggesting MAFLD may be a better nomenclature than NAFLD in clinical practice.
Collapse
|
156
|
Méndez-Sánchez N, Fan JG, El-Kassas M, Girala M. MAFLD: A quick fact check. Liver Int 2022; 42:2903-2906. [PMID: 36082586 DOI: 10.1111/liv.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease has taken importance during the last two years, given the new criteria for diagnosis compared to the previous criteria used to define non-alcoholic fatty liver disease. Multiple studies have also shown that this definition better adjusts to the pathogenesis and patient characteristics with fatty liver.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Marcos Girala
- Departamento de Gastroenterología y Endoscopia Digestiva, Hospital de Clínicas, Universidad Nacional de Asunción, Asunción, Paraguay
| |
Collapse
|
157
|
Méndez-Sánchez N, Pal SC. New terms for fatty liver disease other than MAFLD: Time for a reality check. J Hepatol 2022; 77:1716-1717. [PMID: 35988685 DOI: 10.1016/j.jhep.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| | - Shreya C Pal
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
158
|
Wang YJ, Jin CH, Ke JF, Wang JW, Ma YL, Lu JX, Li MF, Li LX. Decreased Serum Osteocalcin is an Independent Risk Factor for Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:3717-3728. [PMID: 36471670 PMCID: PMC9719286 DOI: 10.2147/dmso.s389794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The association between serum osteocalcin (OCN) levels and metabolic dysfunction-associated fatty liver disease (MAFLD) is still controversial. Moreover, few studies have explored their relationship in type 2 diabetes mellitus (T2DM) patients so far. The present study aimed to investigate the association of serum OCN levels with MAFLD in Chinese T2DM patients. METHODS This cross-sectional, real-world study included 1889 Chinese T2DM inpatients. MAFLD was diagnosed by abdominal ultrasonography. Participants were divided into four groups according to serum OCN quartiles, among which the clinical characteristics were compared. The association of serum OCN levels with the presence of MAFLD was also analyzed in subjects. RESULTS After controlling for sex, age, and diabetes duration, the prevalence of MAFLD significantly decreased across the serum OCN quartiles (55.3%, 52.0%, 48.6%, and 42.1% for the first, second, third, and fourth quartiles, respectively, P < 0.001 for trend). A fully adjusted multiple logistic regression analysis showed that serum OCN levels were independently and negatively associated with the presence of MAFLD in T2DM patients (odds ratio, 0.832; 95% confidence interval, 0.719-0.962; P = 0.013). Furthermore, there were significant decreases in HOMA-IR (P = 0.001 for trend) and C-reactive protein (P < 0.001 for trend) levels across the serum OCN quartiles after controlling for sex, age, and diabetes duration. CONCLUSION Serum OCN levels were independently and negatively associated with the presence of MAFLD in Chinese T2DM patients, partially due to the improvement of insulin resistance and inflammation mediated by OCN. Serum OCN may be used as a biomarker to assess the risk of MAFLD in T2DM patients.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Chun-Hua Jin
- Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, People’s Republic of China
| | - Jiang-Feng Ke
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Yi-Lin Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Jun-Xi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Mei-Fang Li
- Department of Emergency, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| |
Collapse
|
159
|
Liu Q, Zhao G, Li Q, Wu W, Zhang Y, Bian H. A comparison of NAFLD and MAFLD diagnostic criteria in contemporary urban healthy adults in China: a cross-sectional study. BMC Gastroenterol 2022; 22:471. [PMID: 36402947 PMCID: PMC9675196 DOI: 10.1186/s12876-022-02576-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Background A recently proposed diagnostic criteria of metabolic dysfunction-associated fatty liver disease (MAFLD) is more available for various clinical situations than nonalcoholic fatty liver disease (NAFLD), but understanding about differences between NAFLD and MAFLD in clinical practice remains limited in the general adult urban population in China. Methods A total of 795 subjects were recruited from Wu Song Branch of Zhongshan Hospital who participated in the general health assessment. Examination results was obtained through analysis of blood samples and abdominal ultrasonography. Participants were divided into four subgroups according to whether they had NAFLD or MAFLD (NAFLD- MAFLD-, NAFLD + MAFLD-, NAFLD- MAFLD + and NAFLD + MAFLD+). Results Among the urban healthy adults investigated, 345 people (43.4%) were diagnosed with NAFLD and 356 people (44.8%) with MAFLD. No significant differences in the prevalence, age, fasting blood glucose, glycosylated hemoglobin, liver enzyme examination, percentage of overweight, hypertension or dyslipidaemia were found between NAFLD and MAFLD patients. Patients with MAFLD had worse metabolic disorders than NAFLD + MAFLD- patients. The NAFLD fibrosis score (NFS) of the NAFLD- MAFLD + group was higher than that of the NAFLD + MAFLD- group. Higher proportion of patients in the NAFLD- MAFLD + group have NFS ≥-1.455. Conclusion MAFLD criteria have similar prevalence and patient characteristics compared with previous NAFLD but help to identify a group of patients with high risks of metabolic disorders and liver fibrosis who have been missed with NAFLD, and has superior utility.
Collapse
|
160
|
Drożdż K, Nabrdalik K, Kwiendacz H, Hendel M, Olejarz A, Tomasik A, Bartman W, Nalepa J, Gumprecht J, Lip GYH. Risk factors for cardiovascular disease in patients with metabolic-associated fatty liver disease: a machine learning approach. Cardiovasc Diabetol 2022; 21:240. [PMID: 36371249 PMCID: PMC9655870 DOI: 10.1186/s12933-022-01672-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease is associated with an increased cardiovascular disease (CVD) risk, although the exact mechanism(s) are less clear. Moreover, the relationship between newly redefined metabolic-associated fatty liver disease (MAFLD) and CVD risk has been poorly investigated. Data-driven machine learning (ML) techniques may be beneficial in discovering the most important risk factors for CVD in patients with MAFLD. METHODS In this observational study, the patients with MAFLD underwent subclinical atherosclerosis assessment and blood biochemical analysis. Patients were split into two groups based on the presence of CVD (defined as at least one of the following: coronary artery disease; myocardial infarction; coronary bypass grafting; stroke; carotid stenosis; lower extremities artery stenosis). The ML techniques were utilized to construct a model which could identify individuals with the highest risk of CVD. We exploited the multiple logistic regression classifier operating on the most discriminative patient's parameters selected by univariate feature ranking or extracted using principal component analysis (PCA). Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) were calculated for the investigated classifiers, and the optimal cut-point values were extracted from the ROC curves using the Youden index, the closest to (0, 1) criteria and the Index of Union methods. RESULTS In 191 patients with MAFLD (mean age: 58, SD: 12 years; 46% female), there were 47 (25%) patients who had the history of CVD. The most important clinical variables included hypercholesterolemia, the plaque scores, and duration of diabetes. The five, ten and fifteen most discriminative parameters extracted using univariate feature ranking and utilized to fit the ML models resulted in AUC of 0.84 (95% confidence interval [CI]: 0.77-0.90, p < 0.0001), 0.86 (95% CI 0.80-0.91, p < 0.0001) and 0.87 (95% CI 0.82-0.92, p < 0.0001), whereas the classifier fitted over 10 principal components extracted using PCA followed by the parallel analysis obtained AUC of 0.86 (95% CI 0.81-0.91, p < 0.0001). The best model operating on 5 most discriminative features correctly identified 114/144 (79.17%) low-risk and 40/47 (85.11%) high-risk patients. CONCLUSION A ML approach demonstrated high performance in identifying MAFLD patients with prevalent CVD based on the easy-to-obtain patient parameters.
Collapse
Affiliation(s)
- Karolina Drożdż
- grid.411728.90000 0001 2198 0923Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical, Sciences in Zabrze, Medical University of Silesia, 3 Maja 13-15, 41-800 Zabrze, Katowice, Poland
| | - Katarzyna Nabrdalik
- grid.411728.90000 0001 2198 0923Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical, Sciences in Zabrze, Medical University of Silesia, 3 Maja 13-15, 41-800 Zabrze, Katowice, Poland ,grid.10025.360000 0004 1936 8470Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Hanna Kwiendacz
- grid.411728.90000 0001 2198 0923Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical, Sciences in Zabrze, Medical University of Silesia, 3 Maja 13-15, 41-800 Zabrze, Katowice, Poland
| | - Mirela Hendel
- grid.411728.90000 0001 2198 0923Students’ Scientific Association By the Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Anna Olejarz
- grid.411728.90000 0001 2198 0923Students’ Scientific Association By the Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Andrzej Tomasik
- grid.411728.90000 0001 2198 0923Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Bartman
- grid.411728.90000 0001 2198 0923Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jakub Nalepa
- grid.6979.10000 0001 2335 3149Department of Algorithmics and Software, Silesian University of Technology, Gliwice, Poland
| | - Janusz Gumprecht
- grid.411728.90000 0001 2198 0923Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical, Sciences in Zabrze, Medical University of Silesia, 3 Maja 13-15, 41-800 Zabrze, Katowice, Poland
| | - Gregory Y. H. Lip
- grid.10025.360000 0004 1936 8470Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK ,grid.5117.20000 0001 0742 471XDepartment of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
161
|
Portincasa P, Bonfrate L, Wang DQH, Frühbeck G, Garruti G, Di Ciaula A. Novel insights into the pathogenic impact of diabetes on the gastrointestinal tract. Eur J Clin Invest 2022; 52:e13846. [PMID: 35904418 DOI: 10.1111/eci.13846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022]
Abstract
Type 2 and type 1 diabetes are common endocrine disorders with a progressively increasing incidence worldwide. These chronic, systemic diseases have multiorgan implications, and the whole gastrointestinal (GI) tract represents a frequent target in terms of symptom appearance and interdependent pathophysiological mechanisms. Metabolic alterations linked with diabetic complications, neuropathy and disrupted hormone homeostasis can lead to upper and/or lower GI symptoms in up to 75% of diabetic patients, with multifactorial involvement of the oesophagus, stomach, upper and lower intestine, and of the gallbladder. On the other hand, altered gastrointestinal motility and/or secretions are able to affect glucose and lipid homeostasis in the short and long term. Finally, diabetes has been linked with increased cancer risk at different levels of the GI tract. The presence of GI symptoms and a comprehensive assessment of GI function should be carefully considered in the management of diabetic patients to avoid further complications and to ameliorate the quality of life. Additionally, the presence of gastrointestinal dysfunction should be adequately managed to improve metabolic homeostasis, the efficacy of antidiabetic treatments and secondary prevention strategies.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gema Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
162
|
Ye J, Zhuang X, Li X, Gong X, Sun Y, Wang W, Feng S, Wu T, Zhong B. Novel metabolic classification for extrahepatic complication of metabolic associated fatty liver disease: A data-driven cluster analysis with international validation. Metabolism 2022; 136:155294. [PMID: 35995280 DOI: 10.1016/j.metabol.2022.155294] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traditional classification systems of metabolic-associated fatty liver disease (MAFLD) do not account for the high rate of extrahepatic complications. To create a new classification of MAFLD using metabolic parameters to identify risks of complications more accurately. METHODS The retrospective study included MAFLD patients from the First Affiliated Hospital of Sun Yat-sen University for model development, and the model was validated respectively using Chinese cohort and UK Biobank database. Cluster analysis with k-means cluster was built using age, body mass index (BMI), glycosylated hemoglobin (HbA1c), total cholesterol/high density lipoprotein cholesterol (HDL-C) ratio, triglyceride, and lipoprotein(a) [Lp(a)] levels. Cox regression models were used to compare the risk of type 2 diabetes (T2DM), chronic heart disease (CHD), stroke and mortality between the clusters. RESULTS 1038 MAFLD patients from cross-sectional population were recruited for the model derivation, with 10,451 cases (33.4 % of MAFLD) from Chinese cohort and 304,141 cases (34.9 % of MAFLD, 1010 cases with magnetic resonance imaging proton density fat fraction measurement [MRI-PDFF]) from the international cohort validated. Five replicable clusters of MAFLD patients were identified: Cluster 1(mild obesity and dyslipidemia-related), Cluster 2 (age related), Cluster 3 (severe insulin resistance-related), Cluster 4[high Lp(a)-related], and Cluster 5 (severe mixed hyperlipidemia-related). Patients in different clusters exhibited differences in the development of T2DM, CHD, stroke and all-causes mortality. Patients in Cluster 3 had significantly worst survival outcomes and higher risks of T2DM and CVD than those in other clusters. CONCLUSION The novel classification offers improved discrimination of new-onset MAFLD patients with different metabolic complications.
Collapse
Affiliation(s)
- Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, China
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou 510080, China
| | - Xin Li
- Department of Gastroenterology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 516000, China
| | - Xiaorong Gong
- Department of Gastroenterology, First Affiliated Hospital, Guangzhou Medical College, Guangzhou, Guangdong 510000, China
| | - Yanhong Sun
- Department of Clinical Laboratories, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Wang
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Shiting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Tingfeng Wu
- Department of Gastroenterology, Guangzhou University of Chinese Medicine Affiliated Foshan Hospital of Traditional Chinese Medicine, No. 6 Qinren Road, Chancheng Distric, Foshan 528000, China.
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
163
|
Zhu X, Xia M, Gao X. Update on genetics and epigenetics in metabolic associated fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221132138. [PMID: 36325500 PMCID: PMC9619279 DOI: 10.1177/20420188221132138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most frequent chronic liver disease worldwide. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested to replace the nomenclature of NAFLD. For individuals with metabolic dysfunction, multiple NAFLD-related factors also contribute to the development and progression of MAFLD including genetics and epigenetics. The application of genome-wide association study (GWAS) and exome-wide association study (EWAS) uncovers single-nucleotide polymorphisms (SNPs) in MAFLD. In addition to the classic SNPs in PNPLA3, TM6SF2, and GCKR, some new SNPs have been found recently to contribute to the pathogenesis of liver steatosis. Epigenetic factors involving DNA methylation, histone modifications, non-coding RNAs regulations, and RNA methylation also play a critical role in MAFLD. DNA methylation is the most reported epigenetic modification. Developing a non-invasion biomarker to distinguish metabolic steatohepatitis (MASH) or liver fibrosis is ongoing. In this review, we summarized and discussed the latest progress in genetic and epigenetic factors of NAFLD/MAFLD, in order to provide potential clues for MAFLD treatment.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
164
|
Lanthier N, Lebrun V, Molendi-Coste O, van Rooijen N, Leclercq IA. Liver Fetuin-A at Initiation of Insulin Resistance. Metabolites 2022; 12:1023. [PMID: 36355106 PMCID: PMC9693222 DOI: 10.3390/metabo12111023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2023] Open
Abstract
Hepatokines (liver secreted proteins with possible distant action) are emerging potential players in insulin resistance in type 2 diabetic patients. Here, we explored the effect of a high-fat diet on the expression of fetuin-A, one of those candidate liver proteins, and its relationship with liver macrophage activation. Mice were fed a normal diet or a high-fat diet for 3 days, known to initiate steatosis and liver insulin resistance. A preventive liver macrophage depletion was obtained by intravenous injection of clodronate-loaded liposomes. The mRNA and protein expression of fetuin-A was evaluated by qPCR, Western blot and immunofluorescence on different insulin-sensitive tissues (liver, adipose tissue, and muscle). Short-term high-fat diet-induced steatosis, liver macrophage activation, and hepatic insulin resistance together with a significantly increased expression of liver AHSG (α2-HS glycoprotein/fetuin-A) mRNA and serum fetuin-A concentration. On immunofluorescence, fetuin-A was mostly expressed in centrilobular hepatocytes. This increase in fetuin-A under high-fat diet was not evidenced in other peripheral insulin-sensitive tissues (skeletal muscle and adipose tissue). The mRNA expression of α2-HS glycoprotein was 800 times higher within the liver compared with the adipose tissue or the muscle. Liver macrophage depletion that significantly ameliorated insulin sensitivity was associated with a significant decrease in α2-HS glycoprotein mRNA expression. In conclusion, this study demonstrated liver fetuin-A overexpression at the initiation of high-fat diet feeding, concurrent with hepatic steatosis and insulin resistance. Targeting liver macrophages in this setting reduced liver α2-HS glycoprotein expression suggesting that fetuin-A acts as an hepatokine with proinsulin resistance effects.
Collapse
Affiliation(s)
- Nicolas Lanthier
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
| | - Valérie Lebrun
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
| | - Olivier Molendi-Coste
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, 1081 Amsterdam, The Netherlands
| | - Isabelle A. Leclercq
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
165
|
Sarin SK, Eslam M, Fan JG, Lin HC, George J, Omata M. MAFLD, patient-centred care, and APASL. Hepatol Int 2022; 16:1032-1034. [PMID: 36070122 DOI: 10.1007/s12072-022-10408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
Abstract
Asian-Pacific nations are home to more than half the world's population and similar to other global super regions, metabolic dysfunction associated fatty liver disease (MAFLD) is the principal cause for chronic liver disease. To address the challenges ahead for tackling the disease at-scale, the Asian Pacific Association for the Study of the Liver (APASL) was the first pan-national society to endorse and lead the process for redefining the disease and adopting the more appropriate term "MAFLD" with its accompanying set of positive diagnostic criteria. As with this initiative, APASL and Hepatology International will continue to strive to lead the field and work with sister societies towards full adoption of MAFLD. This will advance the science and practice of Hepatology and help incorporate MAFLD within multidisciplinary care teams. Ultimately, it will lead to more cogent clinical trials built on innovative design platforms that include patients with any disease related to metabolic dysfunction. For our patients, an outcome of these endeavours will be the provision of holistic person-centred care for this disease that is so common in our region.
Collapse
Affiliation(s)
- Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
- The University of Tokyo, Tokyo, Japan
| |
Collapse
|
166
|
Yadav P, Khurana A, Bhatti JS, Weiskirchen R, Navik U. Glucagon-like peptide 1 and fibroblast growth factor-21 in non-alcoholic steatohepatitis: An experimental to clinical perspective. Pharmacol Res 2022; 184:106426. [PMID: 36075510 DOI: 10.1016/j.phrs.2022.106426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of Non-alcoholic fatty liver disease (NAFLD), which slowly progresses toward cirrhosis and finally leads to the development of hepatocellular carcinoma. Obesity, insulin resistance, type 2 diabetes mellitus and the metabolic syndrome are major risk factors contributing to NAFLD. Targeting these risk factors is a rational option for inhibiting NASH progression. In addition, NASH could be treated with therapies that target the metabolic abnormalities causing disease pathogenesis (such as de novo lipogenesis and insulin resistance) as well with medications targeting downstream processes such as cellular damage, apoptosis, inflammation, and fibrosis. Glucagon-like peptide (GLP-1), is an incretin hormone dysregulated in both experimental and clinical NASH, which triggers many signaling pathways including fibroblast growth factor (FGF) that augments NASH pathogenesis. Growing evidence indicates that GLP-1 in concert with FGF-21 plays crucial roles in the conservation of glucose and lipid homeostasis in metabolic disorders. In line, GLP-1 stimulation improves hepatic ballooning, steatosis, and fibrosis in NASH. A recent clinical trial on NASH patients showed that the upregulation of FGF-21 decreases liver fibrosis and hepatic steatosis, thus improving the pathogenesis of NASH. Hence, therapeutic targeting of the GLP-1/FGF axis could be therapeutically beneficial for the remission of NASH. This review outlines the significance of the GLP-1/FGF-21 axis in experimental and clinical NASH and highlights the activity of modulators targeting this axis as potential salutary agents for the treatment of NASH.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
167
|
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, George J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol 2022; 19:638-651. [PMID: 35710982 DOI: 10.1038/s41575-022-00635-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects up to a third of the global population; its burden has grown in parallel with rising rates of type 2 diabetes mellitus and obesity. MAFLD increases the risk of end-stage liver disease, hepatocellular carcinoma, death and liver transplantation and has extrahepatic consequences, including cardiometabolic disease and cancers. Although typically associated with obesity, there is accumulating evidence that not all people with overweight or obesity develop fatty liver disease. On the other hand, a considerable proportion of patients with MAFLD are of normal weight, indicating the importance of metabolic health in the pathogenesis of the disease regardless of body mass index. The clinical profile, natural history and pathophysiology of patients with so-called lean MAFLD are not well characterized. In this Review, we provide epidemiological data on this group of patients and consider overall metabolic health and metabolic adaptation as a framework to best explain the pathogenesis of MAFLD and its heterogeneity in individuals of normal weight and in those who are above normal weight. This framework provides a conceptual schema for interrogating the MAFLD phenotype in individuals of normal weight that can translate to novel approaches for diagnosis and patient care.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
168
|
VoPham T, Kim NJ, Berry K, Mendoza JA, Kaufman JD, Ioannou GN. PM 2.5 air pollution exposure and nonalcoholic fatty liver disease in the Nationwide Inpatient Sample. ENVIRONMENTAL RESEARCH 2022; 213:113611. [PMID: 35688225 PMCID: PMC9378584 DOI: 10.1016/j.envres.2022.113611] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. Particulate matter air pollution <2.5 μm in diameter (PM2.5) is a ubiquitous exposure primarily produced from fossil fuel combustion. Previous epidemiologic studies have been mixed. The objective of this study was to examine the association between ambient PM2.5 exposure and NAFLD among hospitalized patients in the Nationwide Inpatient Sample (NIS). METHODS We conducted a cross-sectional analysis of hospitalizations from 2001 to 2011 using the NIS, the largest nationally representative all-payer inpatient care administrative database in the United States. Average annual PM2.5 exposure was estimated by linking census tracts (based on NIS-provided hospital ZIP Codes) with a spatiotemporal exposure model. Clinical conditions were identified using hospital discharge diagnosis codes. Multivariable logistic regression incorporating discharge weights was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between PM2.5 exposure and odds of NAFLD among hospitalized patients adjusting for age, sex, race/ethnicity, year, individual- and area-level socioeconomic status, urbanicity, region, obesity, diabetes, metabolic syndrome, impaired fasting glucose, dyslipidemia, hypertension, obstructive sleep apnea, and smoking. RESULTS There were 269,705 hospitalized patients with NAFLD from 2001 to 2011 (total unweighted n = 45,433,392 hospitalizations). Higher ambient PM2.5 exposure was associated with increased odds of NAFLD among hospitalized patients (adjusted OR: 1.24 per 10 μg/m3 increase, 95% CI 1.15-1.33, p < 0.01). There were statistically significant interactions between PM2.5 exposure and age, race/ethnicity, diabetes, smoking, and region, with stronger positive associations among patients who were aged ≥45 years, non-Hispanic White or Asian/Pacific Islander, non-diabetics, non-smokers, or in the Midwest and West regions, respectively. CONCLUSIONS In this nationwide cross-sectional analysis of the NIS database, there was a positive association between ambient PM2.5 exposure and odds of NAFLD among hospitalized patients. Future research should examine the effects of long-term historical PM2.5 exposure and incident NAFLD cases.
Collapse
Affiliation(s)
- Trang VoPham
- Epidemiology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA.
| | - Nicole J Kim
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Healthcare System and University of Washington, Seattle, WA, USA
| | - Kristin Berry
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA, USA
| | - Jason A Mendoza
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics and Nutritional Sciences Program, University of Washington, Seattle, WA, USA; Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| | - George N Ioannou
- Epidemiology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Healthcare System and University of Washington, Seattle, WA, USA; Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA, USA
| |
Collapse
|
169
|
Torularhodin Alleviates Hepatic Dyslipidemia and Inflammations in High-Fat Diet-Induced Obese Mice via PPARα Signaling Pathway. Molecules 2022; 27:molecules27196398. [PMID: 36234935 PMCID: PMC9572851 DOI: 10.3390/molecules27196398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Torularhodin is a β-carotene-like compound from Sporidiobolus pararoseus, and its protective effect against high-fat diet (HFD)-induced hepatic dyslipidemia and inflammation was investigated. Compared to mice of C57BL/6J fed on HFD, the addition of Torularhodin into the HFD (HFD-T) significantly reduced body weight, serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), and the inflammatory mediators of TNF-α, IL-6, IL-1β, and lipopolysaccharide (LPS). A significant increase of high-density lipoprotein cholesterol (HDL-c), which is beneficial to cholesterol clearance, was also observed in HFD-T group. Proteomic analysis showed HDL-C-c is highly correlated with proteins (e.g., CPT1A and CYP7A1) involved in lipid β-oxidation and bile acid synthesis, whereas the other phenotypic parameters (TC, TG, LDL, and inflammatory cytokines) are highly associated with proteins (e.g., SLC27A4) involved in lipid-uptake. The up-regulated anti-inflammation proteins FAS, BAX, ICAM1, OCLN, GSTP1, FAF1, LRP1, APEX1, ROCK1, MANF, STAT3, and INSR and down-regulated pro-inflammatory proteins OPTN, PTK2B, FADD, MIF, CASP3, YAP1, DNM1L, and NAMPT not only demonstrate the occurrence of HFD-induced hepatic inflammation, but also prove the anti-inflammatory property of Torularhodin. KEGG signaling pathway analysis revealed that the PPARα signaling pathway is likely fundamental to the health function of Torularhodin through up-regulating genes related to fatty acid β-oxidation, cholesterol excretion, HDL-Cc formation, and anti-inflammation. Torularhodin, as a new food resource, may act as a therapeutic agent to prevent hepatic dyslipidemia and related inflammation for improved health.
Collapse
|
170
|
Lanthier N, Delzenne N. Targeting the Gut Microbiome to Treat Metabolic Dysfunction-Associated Fatty Liver Disease: Ready for Prime Time? Cells 2022; 11:2718. [PMID: 36078124 PMCID: PMC9454620 DOI: 10.3390/cells11172718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous studies show a modification of the gut microbiota in patients with obesity or diabetes. Animal studies have also shown a causal role of gut microbiota in liver metabolic disorders including steatosis whereas the human situation is less clear. Patients with metabolic dysfunction associated fatty liver disease (MAFLD) also have a modification in their gut microbiota composition but the changes are not fully characterized. The absence of consensus on a precise signature is probably due to disease heterogeneity, possible concomitant medications and different selection or evaluation criteria. The most consistent changes were increased relative abundance of Proteobacteria, Enterobacteriaceae and Escherichia species and decreased abundance of Coprococcus and Eubacterium. Possible mechanisms linking the microbiota and MAFLD are increased intestinal permeability with translocation of microbial products into the portal circulation, but also changes in the bile acids and production of microbial metabolites such as ethanol, short chain fatty acids and amino acid derivatives able to modulate liver metabolism and inflammation. Several interventional studies exist that attempt to modulate liver disease by administering antibiotics, probiotics, prebiotics, synbiotics, postbiotics or fecal transplantation. In conclusion, there are both gaps and hopes concerning the interest of gut microbiome evaluation for diagnosis purposes of MAFLD and for new therapeutic developments that are often tested on small size cohorts.
Collapse
Affiliation(s)
- Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
171
|
A Novel and Cross-Species Active Mammalian INDY (NaCT) Inhibitor Ameliorates Hepatic Steatosis in Mice with Diet-Induced Obesity. Metabolites 2022; 12:metabo12080732. [PMID: 36005604 PMCID: PMC9413491 DOI: 10.3390/metabo12080732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian INDY (mINDY, NaCT, gene symbol SLC13A5) is a potential target for the treatment of metabolically associated fatty liver disease (MAFLD). This study evaluated the effects of a selective, cross-species active, non-competitive, non-substrate-like inhibitor of NaCT. First, the small molecule inhibitor ETG-5773 was evaluated for citrate and succinate uptake and fatty acid synthesis in cell lines expressing both human NaCT and mouse Nact. Once its suitability was established, the inhibitor was evaluated in a diet-induced obesity (DIO) mouse model. DIO mice treated with 15 mg/kg compound ETG-5773 twice daily for 28 days had reduced body weight, fasting blood glucose, and insulin, and improved glucose tolerance. Liver triglycerides were significantly reduced, and body composition was improved by reducing fat mass, supported by a significant reduction in the expression of genes for lipogenesis such as SREBF1 and SCD1. Most of these effects were also evident after a seven-day treatment with the same dose. Further mechanistic investigation in the seven-day study showed increased plasma β-hydroxybutyrate and activated hepatic adenosine monophosphate-activated protein kinase (AMPK), reflecting findings from Indy (−/−) knockout mice. These results suggest that the inhibitor ETG-5773 blocked citrate uptake mediated by mouse and human NaCT to reduce liver steatosis and body fat and improve glucose regulation, proving the concept of NaCT inhibition as a future liver treatment for MAFLD.
Collapse
|
172
|
Carpi RZ, Barbalho SM, Sloan KP, Laurindo LF, Gonzaga HF, Grippa PC, Zutin TLM, Girio RJS, Repetti CSF, Detregiachi CRP, Bueno PCS, Mazuqueli Pereira EDSB, Goulart RDA, Haber JFDS. The Effects of Probiotics, Prebiotics and Synbiotics in Non-Alcoholic Fat Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH): A Systematic Review. Int J Mol Sci 2022; 23:8805. [PMID: 35955942 PMCID: PMC9369010 DOI: 10.3390/ijms23158805] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/11/2022] Open
Abstract
Modifications in the microbiota caused by environmental and genetic reasons can unbalance the intestinal homeostasis, deregulating the host's metabolism and immune system, intensifying the risk factors for the development and aggravation of non-alcoholic fat liver disease (NAFLD). The use of probiotics, prebiotics and synbiotics have been considered a potential and promising strategy to regulate the gut microbiota and produce beneficial effects in patients with liver conditions. For this reason, this review aimed to evaluate the effectiveness of probiotics, prebiotics, and symbiotics in patients with NAFLD and NASH. Pubmed, Embase, and Cochrane databases were consulted, and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines were followed. The clinical trials used in this study demonstrated that gut microbiota interventions could improve a wide range of markers of inflammation, glycemia, insulin resistance, dyslipidemia, obesity, liver injury (decrease of hepatic enzymes and steatosis and fibrosis). Although microbiota modulators do not play a healing role, they can work as an important adjunct therapy in pathological processes involving NAFLD and its spectrums, either by improving the intestinal barrier or by preventing the formation of toxic metabolites for the liver or by acting on the immune system.
Collapse
Affiliation(s)
- Rodrigo Zamignan Carpi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Sandra M. Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- School of Food and Technology of Marilia (FATEC), Marilia 17506-000, SP, Brazil
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Heron Fernando Gonzaga
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Tereza L. Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Raul J. S. Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Cláudia Sampaio Fonseca Repetti
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Patrícia C. Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- Department of Biochemistry, School of Dentistry, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Jesselina Francisco dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| |
Collapse
|
173
|
Khalil M, Shanmugam H, Abdallah H, John Britto JS, Galerati I, Gómez-Ambrosi J, Frühbeck G, Portincasa P. The Potential of the Mediterranean Diet to Improve Mitochondrial Function in Experimental Models of Obesity and Metabolic Syndrome. Nutrients 2022; 14:3112. [PMID: 35956289 PMCID: PMC9370259 DOI: 10.3390/nu14153112] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The abnormal expansion of body fat paves the way for several metabolic abnormalities including overweight, obesity, and diabetes, which ultimately cluster under the umbrella of metabolic syndrome (MetS). Patients with MetS are at an increased risk of cardiovascular disease, morbidity, and mortality. The coexistence of distinct metabolic abnormalities is associated with the release of pro-inflammatory adipocytokines, as components of low-to-medium grade systemic inflammation and increased oxidative stress. Adopting healthy lifestyles, by using appropriate dietary regimens, contributes to the prevention and treatment of MetS. Metabolic abnormalities can influence the function and energetic capacity of mitochondria, as observed in many obesity-related cardio-metabolic disorders. There are preclinical studies both in cellular and animal models, as well as clinical studies, dealing with distinct nutrients of the Mediterranean diet (MD) and dysfunctional mitochondria in obesity and MetS. The term "Mitochondria nutrients" has been adopted in recent years, and it depicts the adequate nutrients to keep proper mitochondrial function. Different experimental models show that components of the MD, including polyphenols, plant-derived compounds, and polyunsaturated fatty acids, can improve mitochondrial metabolism, biogenesis, and antioxidant capacity. Such effects are valuable to counteract the mitochondrial dysfunction associated with obesity-related abnormalities and can represent the beneficial feature of polyphenols-enriched olive oil, vegetables, nuts, fish, and plant-based foods, as the main components of the MD. Thus, developing mitochondria-targeting nutrients and natural agents for MetS treatment and/or prevention is a logical strategy to decrease the burden of disease and medications at a later stage. In this comprehensive review, we discuss the effects of the MD and its bioactive components on improving mitochondrial structure and activity.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Jerlin Stephy John Britto
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Ilaria Galerati
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| |
Collapse
|
174
|
Chen H, Chen Q. COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. Int J Biol Sci 2022; 18:4756-4767. [PMID: 35874945 PMCID: PMC9305262 DOI: 10.7150/ijbs.72461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become an ongoing global health pandemic. Since 2019, the pandemic continues to cast a long shadow on all aspects of our lives, bringing huge health and economic burdens to all societies. With our in-depth understanding of COVID-19, from the initial respiratory tract to the later gastrointestinal tract and cardiovascular systems, the multiorgan involvement of this infectious disease has been discovered. Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly named nonalcoholic fatty liver disease (NAFLD), is a major health issue closely related to metabolic dysfunctions, affecting a quarter of the world's adult population. The association of COVID-19 with MAFLD has received increasing attention, as MAFLD is a potential risk factor for SARS-CoV-2 infection and severe COVID-19 symptoms. In this review, we provide an update on the interactions between COVID-19 and MAFLD and its underlying mechanisms.
Collapse
Affiliation(s)
- Hanfei Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
175
|
Tang A, Ng CH, Phang PH, Chan KE, Chin YH, Fu CE, Zeng RW, Xiao J, Tan DJH, Quek J, Lim WH, Mak LY, Wang JW, Chew NWS, Syn N, Huang DQ, Siddiqui MS, Sanyal A, Muthiah M, Noureddin M. Comparative Burden of Metabolic Dysfunction in Lean NAFLD vs Non-lean NAFLD - A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2022:S1542-3565(22)00669-3. [PMID: 35863685 DOI: 10.1016/j.cgh.2022.06.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is traditionally associated with obesity. However, there is a subtype of NAFLD, namely NAFLD in lean, that occurs without obesity. However, a recent call to redefine NAFLD to metabolic-associated fatty liver disease focuses on obesity and metabolic dysfunction. Criticism has arisen from the perceived over emphasis on systemic comorbidities, which may disadvantage the lean. The current analysis seeks to quantify the degree of metabolic dysfunction in NAFLD in lean and compare with NAFLD in overweight and obese and non-NAFLD. METHODS Medline and Embase databases were searched from inception to March 3, 2022. The inclusion criteria were articles with NAFLD in lean patients presenting with baseline metabolic parameters. Comparisons were conducted with subgroup analysis. RESULTS Eighty-five articles were included in the meta-analysis. NAFLD in lean accounted for 13.11% (95% confidence interval [CI], 10.26%-16.62%) of the global population and 14.55% (95% CI, 11.32%-18.51%) in Asia. The degree of metabolic dysfunction was weight dependent with significantly less metabolic dysfunction in NAFLD in lean subjects as compared with NAFLD in overweight counterparts. For NAFLD in lean, only 19.56% (95% CI, 15.28%-24.69%) of the subjects were diabetic, whereas 45.70% (95% CI, 35.01%-56.80%) of obese subjects with NAFLD had diabetes (P < .01). Fasting blood glucose and systolic and diastolic blood pressure values were significantly lower in subjects with NAFLD in lean than in overweight and obese. CONCLUSION The current analysis highlights the weight-dependent nature of metabolic dysfunction in NAFLD. Lean subjects with NAFLD were significantly less metabolically unhealthy than were obese and overweight persons with NAFLD. An overreliance on metabolic dysfunction in defining fatty liver will be a flaw in potentially excluding previously characterized NAFLD.
Collapse
Affiliation(s)
- Ansel Tang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Poh Hui Phang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Clarissa Elysia Fu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Jieling Xiao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingxuan Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lung Yi Mak
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Jiong-Wei Wang
- Department of Surgery, Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas W S Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel Q Huang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Arun Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Centre, Los Angeles, California.
| |
Collapse
|
176
|
Zhang XL, Fan JG, Wei L, Shi JP, Zheng MH. Promoting the term MAFLD: China in action. Lancet Gastroenterol Hepatol 2022; 7:598. [PMID: 35709820 DOI: 10.1016/s2468-1253(22)00127-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Xin-Lei Zhang
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jun-Ping Shi
- Department of Liver Diseases, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
177
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|
178
|
Matsubayashi Y, Fujihara K, Yamada-Harada M, Mitsuma Y, Sato T, Yaguchi Y, Osawa T, Yamamoto M, Kitazawa M, Yamada T, Kodama S, Sone H. Impact of metabolic syndrome and metabolic dysfunction-associated fatty liver disease on cardiovascular risk by the presence or absence of type 2 diabetes and according to sex. Cardiovasc Diabetol 2022; 21:90. [PMID: 35655263 PMCID: PMC9161475 DOI: 10.1186/s12933-022-01518-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
Background To determine the impact of metabolic syndrome (MetS) and/or metabolic dysfunction-associated fatty liver disease (MAFLD), which are pathophysiologically similar and include insulin resistance, on the development of new-onset cardiovascular disease with and without type 2 diabetes and according to sex. Methods This study included 570,426 individuals without a history of cardiovascular disease who were enrolled in a nationwide claims database from 2008 to 2016 and were classified by the presence or absence of MetS and/or MAFLD stratified by the presence or absence of type 2 diabetes and sex. The fatty liver index was used to determine the presence or absence of fatty liver that required a diagnosis of MAFLD. Risks of developing coronary artery disease (CAD) and cerebrovascular disease (CVD) in each category were analyzed using a multivariate Cox proportional hazard model. Results During a median follow-up of 5.2 years, 2252 CAD and 3128 CVD events occurred. Without type 2 diabetes the hazard ratio (HR) (95% CI) for CAD/CVD compared with neither MAFLD nor MetS was 1.32 (1.17–1.50)/1.41(1.28–1.57) for MAFLD only (without MetS), 1.78 (1.22–2.58)/1.66 (1.34–2.06) for MetS only (without MAFLD), and 2.10 (1.84–2.39)/1.73 (1.54–1.95) for MAFLD + MetS. For those with type 2 diabetes, the HR for CAD for MAFLD only (compared with neither MAFLD nor MetS) was 1.29 (1.06–1.58), for MetS only 1.34 (0.84–2.13), and for MAFLD + MetS 1.22 (1.02–1.47). For CVD, there was a significant increase in HR only in MAFLD + MetS [1.44 (1.18–1.76)]. The results of the analysis stratified by sex showed that MAFLD had a greater impact in men, and MetS had a greater impact in women regarding the development of CAD. Conclusions Distinguishing between MetS and/or MAFLD in the presence or absence of type 2 diabetes and according to sex may aid in accurately identifying patients at high risk of cardiovascular disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01518-4.
Collapse
|
179
|
Baj J, Forma A, Dudek I, Chilimoniuk Z, Dobosz M, Dobrzyński M, Teresiński G, Buszewicz G, Flieger J, Portincasa P. The Involvement of Human Papilloma Virus in Gastrointestinal Cancers. Cancers (Basel) 2022; 14:2607. [PMID: 35681587 PMCID: PMC9179480 DOI: 10.3390/cancers14112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Human Papilloma Virus (HPV) is one of the most common sexually transmitted infections worldwide. HPV infection has a strong relationship with the onset of cervix uteri, vagina, penis, anus, and oropharynx, but also tonsils and tongue cancers. Some epidemiological data indicate that except for gynecologic cancers, HPV infection can be one of the risk factors associated with a greater risk of induction and progression of gastrointestinal cancers. Data, however, remain contradictory and definite conclusions cannot be drawn, so far. The following review aims to organize recent evidence and summarize the current state of knowledge regarding the association between HPV infection and gastrointestinal tumors primarily focusing on esophageal, liver, gastric, colorectal, and anal cancers.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Zuzanna Chilimoniuk
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Maciej Dobosz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Michał Dobrzyński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
180
|
Baldini F, Khalil M, Bartolozzi A, Vassalli M, Di Ciaula A, Portincasa P, Vergani L. Relationship between Liver Stiffness and Steatosis in Obesity Conditions: In Vivo and In Vitro Studies. Biomolecules 2022; 12:733. [PMID: 35625660 PMCID: PMC9139073 DOI: 10.3390/biom12050733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 02/08/2023] Open
Abstract
Obesity is a major risk factor for metabolic dysfunction such as non-alcoholic fatty liver disease (NAFLD). The NAFLD spectrum ranges from simple steatosis, to steatohepatitis, fibrosis, and cirrhosis. The aim of this study is to characterize the grade of steatosis being associated with overnutrition and obesity, both at the level of single hepatocyte and whole liver, and to correlate it with the hepatocyte/liver stiffness and dysfunction. For the in vivo study, 60 subjects were enrolled and grouped based on the stage of liver steatosis/fibrosis according to biochemical analyses, liver ultrasonography (USG) and acoustic radiation force impulse shear wave elastography (ARFI-SWE). For single hepatocyte analyses we employed in vitro models of moderate and severe steatosis on which to assess the single cell biomechanics by Single Cell Force Spectroscopy (SCFS) and Quantitative Phase Microscopy (QPM). Results show that in vivo liver stiffness depends mainly on the extent of fat accumulation and not on fibrosis. These results parallel the in vitro observations showing that hepatocyte stiffness and dysfunction increase with increasing fat accumulation and lipid droplet enlargement. Our findings indicate that the extent of steatosis markedly affects the biomechanical properties of both liver and single hepatocytes thus proving insights about the role of modulation of liver/hepatocyte elasticity as a physical mechanism transducing the obesity-dependent excess of plasmatic lipids towards liver steatosis and dysfunction.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy;
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (A.D.C.); (P.P.)
| | - Alice Bartolozzi
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Firenze, Via di S. Marta 3, 50139 Firenze, Italy;
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (A.D.C.); (P.P.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (A.D.C.); (P.P.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy;
| |
Collapse
|
181
|
Kaya E, Yilmaz Y. Epidemiology, natural history, and diagnosis of metabolic dysfunction-associated fatty liver disease: a comparative review with nonalcoholic fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221139650. [PMID: 36533185 PMCID: PMC9747887 DOI: 10.1177/20420188221139650] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide - with an estimated global prevalence of 37%. Different from nonalcoholic fatty liver disease (NAFLD), which is an exclusion diagnosis, MAFLD is defined by a set of positive criteria. This recent change in terminology is challenging because MAFLD and NAFLD denote two similar, albeit not identical, clinical populations. When the diagnostic criteria for MAFLD are applied, liver histology appears more severe and clinical outcomes are less favorable. However, the clinical management of MAFLD and NAFLD remains similar. While liver biopsy is still the reference standard for achieving a final diagnosis, noninvasive imaging- or biomarker-based diagnostic modalities are currently gaining momentum. However, liver biopsy should be recommended when diagnostic challenges exist. In this review, we compared the epidemiology, natural history, and diagnosis of MAFLD with respect to the traditional NAFLD definition.
Collapse
Affiliation(s)
- Eda Kaya
- Section of Gastroenterology and Hepatology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
182
|
Muzurović EM, Volčanšek Š, Tomšić KZ, Janež A, Mikhailidis DP, Rizzo M, Mantzoros CS. Glucagon-Like Peptide-1 Receptor Agonists and Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Obesity/Metabolic Syndrome, Prediabetes/Diabetes and Non-Alcoholic Fatty Liver Disease-Current Evidence. J Cardiovasc Pharmacol Ther 2022; 27:10742484221146371. [PMID: 36546652 DOI: 10.1177/10742484221146371] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The obesity pandemic is accompanied by increased risk of developing metabolic syndrome (MetS) and related conditions: non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), type 2 diabetes mellitus (T2DM) and cardiovascular (CV) disease (CVD). Lifestyle, as well as an imbalance of energy intake/expenditure, genetic predisposition, and epigenetics could lead to a dysmetabolic milieu, which is the cornerstone for the development of cardiometabolic complications. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) and dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RAs promote positive effects on most components of the "cardiometabolic continuum" and consequently help reduce the need for polypharmacy. In this review, we highlight the main pathophysiological mechanisms and risk factors (RFs), that could be controlled by GLP-1 and dual GIP/GLP-1 RAs independently or through synergism or differences in their mode of action. We also address the evidence on the use of GLP-1 and dual GIP/GLP-1 RAs in the treatment of obesity, MetS and its related conditions (prediabetes, T2DM and NAFLD/NASH). In conclusion, GLP-1 RAs have already been established for the treatment of T2DM, obesity and cardioprotection in T2DM patients, while dual GIP/GLP-1 RAs appear to have the potential to possibly surpass them for the same indications. However, their use in the prevention of T2DM and the treatment of complex cardiometabolic metabolic diseases, such as NAFLD/NASH or other metabolic disorders, would benefit from more evidence and a thorough clinical patient-centered approach. There is a need to identify those patients in whom the metabolic component predominates, and whether the benefits outweigh any potential harm.
Collapse
Affiliation(s)
- Emir M Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.,Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Karin Zibar Tomšić
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom.,Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
183
|
Grabherr F, Grander C, Effenberger M, Schwärzler J, Tilg H. MAFLD: what 2 years of the redefinition of fatty liver disease has taught us. Ther Adv Endocrinol Metab 2022; 13:20420188221139101. [PMID: 36439029 PMCID: PMC9685107 DOI: 10.1177/20420188221139101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has appeared as the leading liver disease worldwide. Whereas the terminology nonalcoholic fatty liver disease (NAFLD) mainly reflected a negative selection and exclusion of alcohol-related liver disease (ALD), the new definition made its focus on the association of MAFLD with overweight/obesity, type 2 diabetes and metabolic risk factors especially also in normal weight/lean subjects. Several studies from the past 2 years have now used the new definition and have provided substantial information that this new definition might be accurate. Studies from the past 2 years have provided evidence that the new definition might be especially advantageous in the characterization and identification of patients with significant fibrosis. This has also been demonstrated in the well-known Rotterdam study in which the MAFLD-only group showed a higher rate of fibrosis and liver stiffness. MAFLD might also be able to predict all-cause mortality as demonstrated in the Third National Health and Nutrition Examination Survey. Furthermore, MAFLD might improve characterization of the cardiovascular risk of this patient population. As the term MAFLD has not yet been accepted universally, it remains important to coordinate efforts globally to adapt to this new definition and especially involve all specialities dealing with metabolic disorders such as diabetologists to further improve its definition and to prepare the medical community for its future use. The aim of this review is to summarize and critically address evidence emerging over the past 2 years that usage of the term MAFLD could be helpful in daily clinical practice.
Collapse
Affiliation(s)
- Felix Grabherr
- Department of Internal Medicine I,
Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical
University Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I,
Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical
University Innsbruck, Innsbruck, Austria
| | - Maria Effenberger
- Department of Internal Medicine I,
Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical
University Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I,
Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical
University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
184
|
Delgado TC, de las Heras J, Martínez-Chantar ML. Understanding gut-liver axis nitrogen metabolism in Fatty Liver Disease. Front Endocrinol (Lausanne) 2022; 13:1058101. [PMID: 36589817 PMCID: PMC9797658 DOI: 10.3389/fendo.2022.1058101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
The homeostasis of the most important nitrogen-containing intermediates, ammonia and glutamine, is a tightly regulated process in which the gut-liver axis plays a central role. Several studies revealed that nitrogen metabolism is altered in Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), a consensus-driven novel nomenclature for Non-Alcoholic Fatty Liver Disease (NAFLD), the most common chronic liver disease worldwide. Both increased ammonia production by gut microbiota and decreased ammonia hepatic removal due to impaired hepatic urea cycle activity or disrupted glutamine synthetase activity may contribute to hepatic ammonia accumulation underlying steatosis, which can eventually progress to hyperammonemia in more advanced stages of steatohepatitis and overt liver fibrosis. Furthermore, our group recently showed that augmented hepatic ammoniagenesis via increased glutaminase activity and overexpression of the high activity glutaminase 1 isoenzyme occurs in Fatty Liver Disease. Overall, the improved knowledge of disrupted nitrogen metabolism and metabolic miscommunication between the gut and the liver suggests that the reestablishment of altered gut-liver axis nitrogenous balance is an appealing and attractive therapeutic approach to tackle Fatty Liver Disease, a growing and unmet health problem.
Collapse
Affiliation(s)
- Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- *Correspondence: Teresa C. Delgado,
| | - Javier de las Heras
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Division of Pediatric Metabolism, Department of Pediatrics, CIBERer, Cruces University Hospital, Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María L. Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
185
|
Albhaisi S, McClish D, Kang L, Gal T, Sanyal AJ. Nonalcoholic fatty liver disease is specifically related to the risk of hepatocellular cancer but not extrahepatic malignancies. Front Endocrinol (Lausanne) 2022; 13:1037211. [PMID: 36506048 PMCID: PMC9732089 DOI: 10.3389/fendo.2022.1037211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE We performed a matched cohort study among individuals with and without nonalcoholic fatty liver disease (NAFLD) to determine: 1) the incidence of cancers (extrahepatic and liver) and their spectrum and 2) if NAFLD increases the risk of extrahepatic cancers. METHODS The NAFLD and non-NAFLD (control) cohorts were identified from electronic medical records via International Classification of Diseases (ICD) codes from a single center and followed from 2010 to 2019. Cohorts were matched 1:2 for age, sex, race, body mass index (BMI), and type 2 diabetes. RESULTS A total of 1,412 subjects were included in the analyses. There were 477 individuals with NAFLD and 935 controls (median age, 52 years; women, 54%; white vs. black: 59% vs. 38%; median BMI, 30.4 kg/m2; type 2 diabetes, 34%). The cancer incidence (per 100,000 person-years) was 535 vs. 1,513 (NAFLD vs. control). Liver cancer incidence (per 100,000 person-years) was 89 in the NAFLD group vs. 0 in the control group, whereas the incidence of malignancy was higher across other types of cancer in the control group vs. in the NAFLD group. CONCLUSIONS The overall extrahepatic cancer risk in NAFLD is not increased above and beyond the risk from background risk factors such as age, race, sex, BMI, and type 2 diabetes.
Collapse
Affiliation(s)
- Somaya Albhaisi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Somaya Albhaisi,
| | - Donna McClish
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States
| | - Le Kang
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States
| | - Tamas Gal
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun J. Sanyal
- Divsion of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|