151
|
Lindeboom RG, van Voorthuijsen L, Oost KC, Rodríguez-Colman MJ, Luna-Velez MV, Furlan C, Baraille F, Jansen PW, Ribeiro A, Burgering BM, Snippert HJ, Vermeulen M. Integrative multi-omics analysis of intestinal organoid differentiation. Mol Syst Biol 2018; 14:e8227. [PMID: 29945941 PMCID: PMC6018986 DOI: 10.15252/msb.20188227] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
Abstract
Intestinal organoids accurately recapitulate epithelial homeostasis in vivo, thereby representing a powerful in vitro system to investigate lineage specification and cellular differentiation. Here, we applied a multi-omics framework on stem cell-enriched and stem cell-depleted mouse intestinal organoids to obtain a holistic view of the molecular mechanisms that drive differential gene expression during adult intestinal stem cell differentiation. Our data revealed a global rewiring of the transcriptome and proteome between intestinal stem cells and enterocytes, with the majority of dynamic protein expression being transcription-driven. Integrating absolute mRNA and protein copy numbers revealed post-transcriptional regulation of gene expression. Probing the epigenetic landscape identified a large number of cell-type-specific regulatory elements, which revealed Hnf4g as a major driver of enterocyte differentiation. In summary, by applying an integrative systems biology approach, we uncovered multiple layers of gene expression regulation, which contribute to lineage specification and plasticity of the mouse small intestinal epithelium.
Collapse
Affiliation(s)
- Rik Gh Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Lisa van Voorthuijsen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Koen C Oost
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Maria J Rodríguez-Colman
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Maria V Luna-Velez
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Cristina Furlan
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Floriane Baraille
- Centre de Recherche des Cordeliers, INSERM, IHU ICAN, Sorbonne Université Université Paris Descartes, Paris, France
| | - Pascal Wtc Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Agnès Ribeiro
- Centre de Recherche des Cordeliers, INSERM, IHU ICAN, Sorbonne Université Université Paris Descartes, Paris, France
| | - Boudewijn Mt Burgering
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hugo J Snippert
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
152
|
Tissue Extracts for Quantitative Mass Spectrometry of Planarian Proteins Using SILAC. Methods Mol Biol 2018. [PMID: 29916177 DOI: 10.1007/978-1-4939-7802-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
SILAC (stable isotope labeling by amino acids in cell culture) proteomics enables the relative quantification of proteins in one or more biological samples by mass spectrometry. This technology is based on the metabolic incorporation of heavy isotope-labeled essential amino acids into nascent proteins in vivo. Here, we describe the preparation of SILAC protein samples from planarians, flatworms with high regenerative potential and tissue plasticity. Applications for SILAC proteomics of planarians include the analysis of protein abundances, protein-protein interactions and turnover rates during stem cell-based regeneration and tissue homeostasis.
Collapse
|
153
|
Zhang Y, Xin Q, Wu Z, Wang C, Wang Y, Wu Q, Niu R. Application of Isobaric Tags for Relative and Absolute Quantification (iTRAQ) Coupled with Two-Dimensional Liquid Chromatography/Tandem Mass Spectrometry in Quantitative Proteomic Analysis for Discovery of Serum Biomarkers for Idiopathic Pulmonary Fibrosis. Med Sci Monit 2018; 24:4146-4153. [PMID: 29909421 PMCID: PMC6036962 DOI: 10.12659/msm.908702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The present study was performed to explore the presence of informative protein biomarkers of human serum proteome in idiopathic pulmonary fibrosis (IPF). Material/Methods Serum samples were profiled using iTRAQ coupled with two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) technique, and ELISA was used to validate candidate biomarkers. Results A total of 394 proteins were identified and 97 proteins were associated with IPF. Four biomarker candidates generated from iTRAQ experiments – CRP, fibrinogen-α chain, haptoglobin, and kininogen-1 – were successfully verified using ELISA. Conclusions The present study demonstrates that levels of CRP and fibrinogen-α are higher and levels of haptoglobin and kininogen-1 are lower in patients with IPF compared to levels in healthy controls. We found they are useful candidate biomarkers for IPF.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Xin
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhen Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Chaochao Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Yongbin Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Rui Niu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
154
|
Yuan L, Zhai L, Qian L, Huang D, Ding Y, Xiang H, Liu X, Thompson JW, Liu J, He YH, Chen XQ, Hu J, Kong QP, Tan M, Wang XF. Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Res 2018; 28:625-643. [PMID: 29808012 DOI: 10.1038/s41422-018-0043-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is a fundamental cell fate playing a significant role throughout the natural aging process. However, the molecular determinants distinguishing senescence from other cell-cycle arrest states such as quiescence and post-mitotic state, and the specified mechanisms underlying cell-fate decisions towards senescence versus cell death in response to cellular stress stimuli remain less understood. Employing multi-omics approaches, we revealed that switching off the specific mitochondrial processing machinery involving the peptidase IMMP2L serves as the foundation of the senescence program, which was also observed during the mammalian aging process. Mechanistically, we demonstrate that IMMP2L processes and thus activates at least two substrates, mitochondrial metabolic enzyme glycerol-3-phosphate dehydrogenase (GPD2) and cell death regulator apoptosis-inducing factor (AIF). For cells destined to senesce, concerted shutdown of the IMMP2L-GPD2 and IMMP2L-AIF signaling axes collaboratively drives the senescent process by reprogramming mitochondria-associated redox status, phospholipid metabolism and signaling network, and simultaneously blocking cell death under oxidative stress conditions.
Collapse
Affiliation(s)
- Lifeng Yuan
- Graduate Program in Molecular Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Linhui Zhai
- Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lili Qian
- Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yi Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Handan Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yong-Han He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao-Qiong Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jing Hu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Minjia Tan
- Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Fan Wang
- Graduate Program in Molecular Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
155
|
Ludwig KR, Schroll MM, Hummon AB. Comparison of In-Solution, FASP, and S-Trap Based Digestion Methods for Bottom-Up Proteomic Studies. J Proteome Res 2018; 17:2480-2490. [DOI: 10.1021/acs.jproteome.8b00235] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Katelyn R. Ludwig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Monica M. Schroll
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
156
|
Systematic identification of light-regulated cold-responsive proteome in a model cyanobacterium. J Proteomics 2018; 179:100-109. [DOI: 10.1016/j.jprot.2018.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 11/19/2022]
|
157
|
Choi SB, Lombard-Banek C, Muñoz-LLancao P, Manzini MC, Nemes P. Enhanced Peptide Detection Toward Single-Neuron Proteomics by Reversed-Phase Fractionation Capillary Electrophoresis Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:913-922. [PMID: 29147852 DOI: 10.1007/s13361-017-1838-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An ~1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates ~274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to ~57%. From 1 ng of protein digest (<5 neurons), CE with RP fractionation identified 737 protein groups (1,753 peptides), or ~480 protein groups (~1,650 peptides) on average per analysis. The approach was scalable to 500 pg of protein digest (~a single neuron), identifying 225 protein groups (623 peptides) in technical triplicates, or 141 protein groups on average per analysis. Among identified proteins, 101 proteins were products of genes that are known to be transcriptionally active in single neurons during early development of the brain, including those involved in synaptic transmission and plasticity and cytoskeletal organization. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sam B Choi
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Camille Lombard-Banek
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Pablo Muñoz-LLancao
- Institute for Neuroscience, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA
| | - M Chiara Manzini
- Institute for Neuroscience, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA
| | - Peter Nemes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
158
|
Özkan Küçük NE, Şanal E, Tan E, Mitchison T, Özlü N. Labeling Carboxyl Groups of Surface-Exposed Proteins Provides an Orthogonal Approach for Cell Surface Isolation. J Proteome Res 2018; 17:1784-1793. [PMID: 29651847 DOI: 10.1021/acs.jproteome.7b00825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantitative profiling of cell surface proteins is critically important for the understanding of cell-cell communication, signaling, tissue development, and homeostasis. Traditional proteomics methods are challenging for cell surface proteins due to their hydrophobic nature and low abundance, necessitating alternative methods to efficiently identify and quantify this protein group. Here we established carboxyl-reactive biotinylation for selective and efficient biotinylation and isolation of surface-exposed proteins of living cells. We assessed the efficiency of carboxyl-reactive biotinylation for plasma membrane proteins by comparing it with a well-established protocol, amine-reactive biotinylation, using SILAC (stable isotope labeling in cell culture). Our results show that carboxyl-reactive biotinylation of cell surface proteins is both more selective and more efficient than amine-reactive biotinylation. We conclude that it is a useful approach, which is partially orthogonal to amine-reactive biotinylation, allowing us to cast a wider net for a comprehensive profiling of cell surface proteins.
Collapse
Affiliation(s)
- Nazlı E Özkan Küçük
- Department of Molecular Biology and Genetics , Koç University , Istanbul 34450 , Turkey
| | - Erdem Şanal
- Department of Molecular Biology and Genetics , Koç University , Istanbul 34450 , Turkey
| | - Edwin Tan
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Timothy Mitchison
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics , Koç University , Istanbul 34450 , Turkey
| |
Collapse
|
159
|
Shen X, Sun L. Systematic Evaluation of Immobilized Trypsin-Based Fast Protein Digestion for Deep and High-Throughput Bottom-Up Proteomics. Proteomics 2018; 18:e1700432. [PMID: 29577644 DOI: 10.1002/pmic.201700432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Indexed: 11/08/2022]
Abstract
Immobilized trypsin (IM) has been recognized as an alternative to free trypsin (FT) for accelerating protein digestion 30 years ago. However, some questions of IM still need to be answered. How does the solid matrix of IM influence its preference for protein cleavage and how well can IM perform for deep bottom-up proteomics compared to FT? By analyzing Escherichia coli proteome samples digested with amine or carboxyl functionalized magnetic bead-based IM (IM-N or IM-C) or FT, it is observed that IM-N with the nearly neutral solid matrix, IM-C with the negatively charged solid matrix, and FT have similar cleavage preference considering the microenvironment surrounding the cleavage sites. IM-N (15 min) and FT (12 h) both approach 9000 protein identifications (IDs) from a mouse brain proteome. Compared to FT, IM-N has no bias in the digestion of proteins that are involved in various biological processes, are located in different components of cells, have diverse functions, and are expressed in varying abundance. A high-throughput bottom-up proteomics workflow comprising IM-N-based rapid protein cleavage and fast CZE-MS/MS enables the completion of protein sample preparation, CZE-MS/MS analysis, and data analysis in only 3 h, resulting in 1000 protein IDs from the mouse brain proteome.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
160
|
Wu L, Wang S, Tian L, Wu L, Li M, Zhang J, Li P, Zhang W, Chen Y. Comparative proteomic analysis of the maize responses to early leaf senescence induced by preventing pollination. J Proteomics 2018; 177:75-87. [DOI: 10.1016/j.jprot.2018.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/03/2018] [Accepted: 02/12/2018] [Indexed: 01/11/2023]
|
161
|
Ge H, Fang L, Huang X, Wang J, Chen W, Liu Y, Zhang Y, Wang X, Xu W, He Q, Wang Y. Translating Divergent Environmental Stresses into a Common Proteome Response through the Histidine Kinase 33 (Hik33) in a Model Cyanobacterium. Mol Cell Proteomics 2018; 16:1258-1274. [PMID: 28668777 DOI: 10.1074/mcp.m116.068080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/07/2017] [Indexed: 01/18/2023] Open
Abstract
The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (Δhik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly like that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found most proteins of plasmid origin were significantly upregulated in Δhik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.
Collapse
Affiliation(s)
- Haitao Ge
- From the ‡State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China
| | - Longfa Fang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiahe Huang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Jinlong Wang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyang Chen
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Liu
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanya Zhang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Xiaorong Wang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Xu
- ‖Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
| | - Qingfang He
- From the ‡State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China; .,**Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas
| | - Yingchun Wang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China; .,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
162
|
Rabiee A, Krüger M, Ardenkjær-Larsen J, Kahn CR, Emanuelli B. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action. Cell Signal 2018; 47:1-15. [PMID: 29550500 DOI: 10.1016/j.cellsig.2018.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1-/- and IRS-2-/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins.
Collapse
Affiliation(s)
- Atefeh Rabiee
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jacob Ardenkjær-Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
163
|
Capri J, Whitelegge JP. Full Membrane Protein Coverage Digestion and Quantitative Bottom-Up Mass Spectrometry Proteomics. Methods Mol Biol 2018; 1550:61-67. [PMID: 28188523 DOI: 10.1007/978-1-4939-6747-6_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
A true and accurate bottom-up global proteomic measurement will only be achieved when all proteins in a sample can be digested efficiently and at least some peptides recovered on which to base an estimate of abundance. Integral membrane proteins make up around one-third of the proteome and require specialized protocols if they are to be successfully solubilized for efficient digestion by the enzymes used in bottom-up proteomics. The protocol described relies upon solubilization using the detergents sodium deoxycholate and lauryl sarcosine with heating to 95 °C. A subset of peptides is purified by reverse-phase solid-phase extraction and fractionated by strong-cation exchange prior to nano-liquid chromatography with data-dependent tandem mass spectrometry. For quantitative proteomics experiments a protocol is described for stable-isotope coding of peptides using dimethylation of primary amines allowing for three-way sample multiplexing.
Collapse
Affiliation(s)
- Joseph Capri
- Department of Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Box 42, 760 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
164
|
Abstract
Profiling of protease specificity is crucial for characterization of these important enzymes that play numerous roles in health and disease. In the past, several proteomic methods have been developed that enable profiling of protease specificities. Although able to identify thousands of protease cleavage events, these degradomics approaches are often time consuming and methodologically challenging, which limits their application to specialized proteomic groups or the laboratories that initially introduced them. The FPPS approach described here (i.e., fast proteomic profiling of protease specificity) is simple and straightforward and produces reliable results comparable to other more elaborate procedures. It employs labeling the novel N-termini generated by the protease under investigation and subsequent peptide fractionation on SAX-C18 Stage Tips. The procedure can be performed in 2 days, does not require peptide enrichment steps, and can thus be implemented in any proteomic laboratory.
Collapse
|
165
|
Chen Z, Yang L, Cui Y, Zhou Y, Yin X, Guo J, Zhang G, Wang T, He QY. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages. Oncotarget 2018; 7:67387-67402. [PMID: 27602764 PMCID: PMC5341883 DOI: 10.18632/oncotarget.11794] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit.
Collapse
Affiliation(s)
- Zhipeng Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lijuan Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanlong Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xingfeng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiahui Guo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
166
|
MiR-34b-3 and miR-449a inhibit malignant progression of nasopharyngeal carcinoma by targeting lactate dehydrogenase A. Oncotarget 2018; 7:54838-54851. [PMID: 27458165 PMCID: PMC5342385 DOI: 10.18632/oncotarget.10761] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/06/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNA expression profiling assays have shown that miR-34b/c and miR-449a are down-regulated in nasopharyngeal carcinoma (NPC); however, the targets and functions of miR-34b/c and miR-449a in the pathologenesis of NPC remain elusive. In this study, we verified miR-34b/c and miR-449a were significantly reduced with the advance of NPC. Overexpression of miR-34b-3 and miR-449a suppressed the growth of NPC cells in culture and mouse tumor xenografts. Using tandem mass tags for quantitative labeling and LC-MS/MS analysis to investigate protein changes after restoring expression of miR-34b-3, 251 proteins were found to be down-regulated after miR-34b-3 transfection. Through 3 replicate experiments, we found that miR-34b-3 regulated the expression of 15 potential targeted genes mainly clustered in the key enzymes of glycolysis metabolism, including lactate dehydrogenase A (LDHA). Further investigation revealed that miR-34b-3 and miR-449a negatively regulated LDHA by binding to the 3′ untranslated regions of LDHA. Furthermore, LDHA overexpression rescued the miR-34b-3 and miR-449a induced tumor inhibition effect in CNE2 cells. In addition, miR-34b-3 and miR-449a suppressed LDH activity and reduced LD content, which were directly induced by downregulation of the LDHA. Our findings suggest that miR-34b-3 and miR-449a suppress the development of NPC through regulation of glycolysis via targeting LDHA and may be potential therapeutic targets for the treatment of NPC.
Collapse
|
167
|
Kuhlmann L, Cummins E, Samudio I, Kislinger T. Cell-surface proteomics for the identification of novel therapeutic targets in cancer. Expert Rev Proteomics 2018; 15:259-275. [DOI: 10.1080/14789450.2018.1429924] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Laura Kuhlmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Emma Cummins
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Ismael Samudio
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
168
|
Perego M, Maurer M, Wang JX, Shaffer S, Müller AC, Parapatics K, Li L, Hristova D, Shin S, Keeney F, Liu S, Xu X, Raj A, Jensen JK, Bennett KL, Wagner SN, Somasundaram R, Herlyn M. A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene 2018; 37:302-312. [PMID: 28925403 PMCID: PMC5799768 DOI: 10.1038/onc.2017.341] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/16/2022]
Abstract
Melanoma is a heterogeneous tumor with different subpopulations showing different proliferation rates. Slow-cycling cells were previously identified in melanoma, but not fully biologically characterized. Using the label-retention method, we identified a subpopulation of slow-cycling cells, defined as label-retaining cells (LRC), with strong invasive properties. We demonstrate through live imaging that LRC are leaving the primary tumor mass at a very early stage and disseminate to peripheral organs. Through global proteome analyses, we identified the secreted protein SerpinE2/protease nexin-1 as causative for the highly invasive potential of LRC in melanomas.
Collapse
Affiliation(s)
- M Perego
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - M Maurer
- Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - J X Wang
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - S Shaffer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - A C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - K Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - L Li
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - D Hristova
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - S Shin
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - F Keeney
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - S Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - X Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - A Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - J K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - K L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - S N Wagner
- Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - R Somasundaram
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - M Herlyn
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
169
|
Arike L, Holmén-Larsson J, Hansson GC. Intestinal Muc2 mucin O-glycosylation is affected by microbiota and regulated by differential expression of glycosyltranferases. Glycobiology 2018; 27:318-328. [PMID: 28122822 DOI: 10.1093/glycob/cww134] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/29/2016] [Indexed: 02/06/2023] Open
Abstract
Intestinal cells are covered by mucus. In the small intestine, a single unattached mucus is present whereas the colon has both an inner attached mucus layer and an outer loose mucus. The attached mucus of the colon is impenetrable to bacteria while the loose mucus acts as a habitat for commensal bacteria. In germ-free (GF) mice, small intestinal mucus is attached to the epithelium and the inner colon mucus is penetrable. O-glycosylation plays an important role in the host-microbiota interactions as the commensal bacteria use glycans as nutrient sources and attachment sites. While mucus protein composition is relatively homogenous along the intestine, its main component the Muc2 mucin shows regiospecific O-glycan patterns. We have now analyzed the glycosyltransferase relative concentrations in the epithelial cells along the intestine in GF and conventionally raised mice and compared this with the O-glycans formed. As Muc2 is the main O-glycosylated product in mucus, we made the simplified assumption that most of the glycosyltransferases found in the epithelial cells are involved in Muc2 O-glycan biosynthesis. The O-glycosyltransferase abundances along the intestine correlated well with the Muc2 O-glycan patterns. Some of the glycosyltransferases involved in the O-glycan elongation were decreased in GF mice, something that is in concordance with the observed shorter Muc2 O-glycans.
Collapse
Affiliation(s)
- Liisa Arike
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jessica Holmén-Larsson
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
170
|
Abstract
Secreted proteins such as cytokines, interleukins, growth factors, and hormones have pleiotropic functions and facilitate intercellular communication in organisms. Quantification of these proteins conventionally relies on antibody-based methods, i.e., enzyme-linked immunosorbent assays (ELISA), whose large-scale use is limited by availability, specificity, and affordability.Here, we describe an experimental and bioinformatics workflow to comprehensively quantify cellular protein secretion by mass spectrometry. Secreted proteins are collected in vitro or ex vivo, digested with proteases and the resulting peptide mixtures are analyzed in single liquid chromatography-mass spectrometry (LC-MS/MS) runs. Label-free quantification and bioinformatics analysis is conducted in the MaxQuant and Perseus computational environment. Our workflow allows the quantification of thousands of secreted proteins spanning a concentration range of four orders of magnitude and permits the systems-level characterization of secretory programs as well as the discovery of proteins with unexpected extracellular functions.
Collapse
|
171
|
Taoka M, Fujii M, Tsuchiya M, Uekita T, Ichimura T. A Sensitive Microbead-Based Organic Media-Assisted Method for Proteomics Sample Preparation from Dilute and Denaturing Solutions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42661-42667. [PMID: 29161009 DOI: 10.1021/acsami.7b16095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We developed a robust and sensitive sample preparation method for proteomics termed microbead-based and organic-media-assisted proteolysis strategy (BOPs). BOPs combines two advantages of current techniques, (1) unbiased binding of reversed-phase polymeric microbeads to any type of protein and (2) enhanced trypsin digestion efficiency in CH3CN-aqueous solvent systems, into a single-tube workflow. Compared with conventional techniques, this method effectively concentrates proteins and improves proteolytic digestion, and can be used with submicromolar protein samples in dilute or denaturing solutions, such as 70% formic acid, 8 M urea, or 7 M guanidine hydrochloride without any sample pretreatment. Proteome analysis of single Caenorhabditis elegans organisms demonstrates that BOPs has the sensitivity, reproducibility, and unbiasedness required to characterize worm proteins at a single organism level. We also show that, by simply incorporating an acetone washing step for detergent removal, BOPs is applicable to low concentration samples contaminated with a variety of detergents, including sodium dodecyl sulfate, with negligible protein loss. Moreover, the utility of this modification has also been demonstrated through proteomic characterization of 2000 human (HEK293T) cells lysed using 1% Triton X-100. The simplicity and availability of the present BOPs make it especially attractive for next-stage proteomics of rare and sample-limited systems.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University , Tokyo 192-0397, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University , Yokohama 236-0027, Japan
| | - Masahiro Tsuchiya
- Department of Applied Chemistry, National Defense Academy , Yokosuka 239-8686, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy , Yokosuka 239-8686, Japan
| | - Tohru Ichimura
- Department of Applied Chemistry, National Defense Academy , Yokosuka 239-8686, Japan
| |
Collapse
|
172
|
Alli-Shaik A, Wee S, Lim LHK, Gunaratne J. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells. Breast Cancer Res 2017; 19:132. [PMID: 29233185 PMCID: PMC5727667 DOI: 10.1186/s13058-017-0924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022] Open
Abstract
Background Annexin-1 (ANXA1) plays pivotal roles in regulating various physiological processes including inflammation, proliferation and apoptosis, and deregulation of ANXA1 functions has been associated with tumorigenesis and metastasis events in several types of cancer. Though ANXA1 levels correlate with breast cancer disease status and outcome, its distinct functional involvement in breast cancer initiation and progression remains unclear. We hypothesized that ANXA1-responsive kinase signaling alteration and associated phosphorylation signaling underlie early events in breast cancer initiation events and hence profiled ANXA1-dependent phosphorylation changes in mammary gland epithelial cells. Methods Quantitative phosphoproteomics analysis of mammary gland epithelial cells derived from ANXA1-heterozygous and ANXA1-deficient mice was carried out using stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry. Kinase and signaling changes underlying ANXA1 perturbations were derived by upstream kinase prediction and integrated network analysis of altered proteins and phosphoproteins. Results We identified a total of 8110 unique phosphorylation sites, of which 582 phosphorylation sites on 372 proteins had ANXA1-responsive changes. A majority of these phosphorylation changes occurred on proteins associated with cytoskeletal reorganization spanning the focal adhesion, stress fibers, and also the microtubule network proposing new roles for ANXA1 in regulating microtubule dynamics. Comparative analysis of regulated global proteome and phosphoproteome highlighted key differences in translational and post-translational effects of ANXA1, and suggested closely coordinated rewiring of the cell adhesion network. Kinase prediction analysis suggested activity modulation of calmodulin-dependent protein kinase II (CAMK2), P21-activated kinase (PAK), extracellular signal-regulated kinase (ERK), and IκB kinase (IKK) upon loss of ANXA1. Integrative analysis revealed regulation of the WNT and Hippo signaling pathways in ANXA1-deficient mammary epithelial cells, wherein there is downregulation of transcriptional effects of TEA domain family (TEAD) suggestive of ANXA1-responsive transcriptional rewiring. Conclusions The phosphoproteome landscape uncovered several novel perspectives for ANXA1 in mammary gland biology and highlighted its involvement in key signaling pathways modulating cell adhesion and migration that could contribute to breast cancer initiation. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0924-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asfa Alli-Shaik
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sheena Wee
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Lina H K Lim
- Department of Physiology, Immunology Programme, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
173
|
Stachowicz A, Siudut J, Suski M, Olszanecki R, Korbut R, Undas A, Wiśniewski JR. Optimization of quantitative proteomic analysis of clots generated from plasma of patients with venous thromboembolism. Clin Proteomics 2017; 14:38. [PMID: 29209155 PMCID: PMC5706328 DOI: 10.1186/s12014-017-9173-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/18/2017] [Indexed: 12/17/2022] Open
Abstract
Background It is well known that fibrin network binds a large variety of proteins, including inhibitors and activators of fibrinolysis, which may affect clot properties, such as stability and susceptibility to fibrinolysis. Specific plasma clot composition differs between individuals and may change in disease states. However, the plasma clot proteome has not yet been in-depth analyzed, mainly due to technical difficulty related to the presence of a highly abundant protein—fibrinogen and fibrin that forms a plasma clot. Methods The aim of our study was to optimize quantitative proteomic analysis of fibrin clots prepared ex vivo from citrated plasma of the peripheral blood drawn from patients with prior venous thromboembolism (VTE). We used a multiple enzyme digestion filter aided sample preparation, a multienzyme digestion (MED) FASP method combined with LC–MS/MS analysis performed on a Proxeon Easy-nLC System coupled to the Q Exactive HF mass spectrometer. We also evaluated the impact of peptide fractionation with pipet-tip strong anion exchange (SAX) method on the obtained results. Results Our proteomic approach revealed 476 proteins repeatedly identified in the plasma fibrin clots from patients with VTE including extracellular vesicle-derived proteins, lipoproteins, fibrinolysis inhibitors, and proteins involved in immune responses. The MED FASP method using three different enzymes: LysC, trypsin and chymotrypsin increased the number of identified peptides and proteins and their sequence coverage as compared to a single step digestion. Peptide fractionation with a pipet-tip strong anion exchange (SAX) protocol increased the depth of proteomic analyses, but also extended the time needed for sample analysis with LC–MS/MS. Conclusions The MED FASP method combined with a label-free quantification is an excellent proteomic approach for the analysis of fibrin clots prepared ex vivo from citrated plasma of patients with prior VTE. Electronic supplementary material The online version of this article (10.1186/s12014-017-9173-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Planegg, Germany
| | - Jakub Siudut
- Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Ryszard Korbut
- Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Planegg, Germany
| |
Collapse
|
174
|
Dehghani A, Gödderz M, Winter D. Tip-Based Fractionation of Batch-Enriched Phosphopeptides Facilitates Easy and Robust Phosphoproteome Analysis. J Proteome Res 2017; 17:46-54. [DOI: 10.1021/acs.jproteome.7b00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alireza Dehghani
- Institute for Biochemistry
and Molecular Biology, University of Bonn, Bonn D-53115, Germany
| | - Markus Gödderz
- Institute for Biochemistry
and Molecular Biology, University of Bonn, Bonn D-53115, Germany
| | - Dominic Winter
- Institute for Biochemistry
and Molecular Biology, University of Bonn, Bonn D-53115, Germany
| |
Collapse
|
175
|
Tang Y, Cawthraw S, Bagnall MC, Gielbert AJ, Woodward MJ, Petrovska L. Identification of temperature regulated factors of Campylobacter jejuni and their potential roles in virulence. AIMS Microbiol 2017; 3:885-898. [PMID: 31294195 PMCID: PMC6604965 DOI: 10.3934/microbiol.2017.4.885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni is the major cause of bacterial gastroenteritis in man, while it is generally regarded as a commensal of the avian gut. Consumption and handling of contaminated poultry meat products are major risk factors for human infection. The body temperature in man (37 °C) and chickens (42 °C) differ markedly, and differential gene regulation and protein expression at different temperatures may in part explain the behaviour in the two hosts. We performed proteomics analyses with C. jejuni cells grown at 37 °C and 42 °C. Time-of-flight mass spectrometry (Q-Tof) analysis was carried out after samples were digested with the Filter-Aided Sample Preparation (FASP) method and peptides were fractionated by strong anion exchanges. Differentially regulated proteins were identified by Mascot and Scaffold analyses. Triple quadrupole (QQQ) mass spectrometer analysis confirmed that a total of 33 proteins were differentially regulated between 37 °C and 42 °C. Several upregulated proteins were selected for their corresponding gene knock-out mutants to be tested for their virulence in the Galleria mellonella model. To correlate with other tissue/animal models, the GADH mutant was selected for its reduced ability to colonize chickens. At 37 °C, the mutants of outer membrane protein Omp50 and Chaperone GroEL significantly increased virulence; while at 42 °C, the mutants of YceI, Omp50, and GADH reduced virulence against Galleria mellonella compared with the wild type strains. The results of current and previous studies indicate that GADH is a virulent factor in G. mellonella and a colonization factor in chickens. The workflow of this study may prove a new way to identify stress related virulent factors. The implications of these findings are discussed for pathogenesis in the model and other hosts.
Collapse
Affiliation(s)
- Yue Tang
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Shaun Cawthraw
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Mary C Bagnall
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Adriana J Gielbert
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Martin J Woodward
- Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Liljana Petrovska
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
176
|
Hu HF, Xu WW, Wang Y, Zheng CC, Zhang WX, Li B, He QY. Comparative Proteomics Analysis Identifies Cdc42-Cdc42BPA Signaling as Prognostic Biomarker and Therapeutic Target for Colon Cancer Invasion. J Proteome Res 2017; 17:265-275. [PMID: 29072916 DOI: 10.1021/acs.jproteome.7b00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis is one of the major causes of treatment failure in the patients with colon cancer. The aim of our study is to find key proteins and pathways that drive invasion and metastasis in colon cancer. Eight rounds of selection of cancer cells invading through matrigel-coated chamber were performed to obtain highly invasive colon cancer sublines HCT116-I8 and RKO-I8. Stable Isotope Labeling by Amino Acids in Cell Culture technology was used to identify the differently expressed proteins, and the proteomics data were analyzed by ingenuity pathway analysis. PAK1-PBD immunoprecipitation combined with Western blot were carried out to determine Cdc42 activity, and qRT-PCR and Western blot were used to determine gene expression. The functional role of Cdc42BPA and Cdc42 pathway in colon cancer invasion was studied by loss-of-function experiments including pharmacological blockade, siRNA knockdown, chamber invasion, and WST-1 assays. Human colon cancer tissue microarray was analyzed by immunohistochemistry for overexpression of Cdc42BPA and its correlation with clinicopathological parameters and patient survival outcomes. HCT116-I8 and RKO-I8 cells showed significantly stronger invasive potential as well as decreased E-cadherin and increased vimentin expressions compared with parental cells. The differently expressed proteins in I8 cells compared with parental cells were identified. Bioinformatics analysis of proteomics data suggested that Cdc42BPA protein and Cdc42 signaling pathway are important for colon cancer invasion, which was confirmed by experimental data showing upregulation of Cdc42BPA and higher expression of active GTP-bound form of Cdc42 in HCT116-I8 and RKO-I8 cells. Functionally, pharmacological and genetic blockade of Cdc42BPA and Cdc42 signaling markedly suppressed colon cancer cell invasion and reversed epithelial mesenchymal transition process. Furthermore, compared with adjacent normal tissues, Cdc42BPA expression was significantly higher in colon cancer tissues and further upregulated in metastatic tumors in lymph nodes. More importantly, Cdc42BPA expression was correlated with metastasis and poor survival of the patients with colon cancer. This study provides the first evidence that Cdc42BPA and Cdc42 signaling are important for colon cancer invasion, and Cdc42BPA has potential implications for colon cancer prognosis and treatment.
Collapse
Affiliation(s)
- Hui-Fang Hu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou 510632, China
| | - Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wei-Xia Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| |
Collapse
|
177
|
Barrett AS, Wither MJ, Hill RC, Dzieciatkowska M, D’Alessandro A, Reisz JA, Hansen KC. Hydroxylamine Chemical Digestion for Insoluble Extracellular Matrix Characterization. J Proteome Res 2017; 16:4177-4184. [PMID: 28971683 PMCID: PMC5802359 DOI: 10.1021/acs.jproteome.7b00527] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The extracellular matrix (ECM) is readily enriched by decellularizing tissues with nondenaturing detergents to solubilize and deplete the vast majority of cellular components. This approach has been used extensively to generate ECM scaffolds for regenerative medicine technologies and in 3D cell culture to model how the ECM contributes to disease progression. A highly enriched ECM fraction can then be generated using a strong chaotrope buffer that is compatible with downstream bottom-up proteomic analysis or 3D cell culture experiments after extensive dialysis. With most tissues, an insoluble pellet remains after chaotrope extraction that is rich in structural ECM components. Previously, we showed that this understudied fraction represented approximately 80% of total fibrillar collagen from the lung and other ECM fiber components that are known to be covalently cross-linked. Here, we present a hydroxylamine digestion approach for chaotrope-insoluble ECM analysis with comparison to an established CNBr method for matrisome characterization. Because ECM characteristics vary widely among tissues, we chose five tissues that represent unique and diverse ECM abundances, composition, and biomechanical properties. Hydroxylamine digestion is compatible with downstream proteomic workflows, yields high levels of ECM peptides from the insoluble ECM fraction, and reduces analytical variability when compared to CNBr digestion. Data are available via ProteomeXchange with identifier PXD006428.
Collapse
Affiliation(s)
- Alexander S. Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Matthew J. Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
- Biological Mass Spectrometry Facility, University of Colorado Denver, Aurora, Colorado, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
- Biological Mass Spectrometry Facility, University of Colorado Denver, Aurora, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
- Biological Mass Spectrometry Facility, University of Colorado Denver, Aurora, Colorado, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
- Biological Mass Spectrometry Facility, University of Colorado Denver, Aurora, Colorado, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
- Biological Mass Spectrometry Facility, University of Colorado Denver, Aurora, Colorado, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
- Biological Mass Spectrometry Facility, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
178
|
McCord JP, Muddiman DC, Khaledi MG. Perfluorinated alcohol induced coacervates as extraction media for proteomic analysis. J Chromatogr A 2017; 1523:293-299. [DOI: 10.1016/j.chroma.2017.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/06/2017] [Accepted: 06/11/2017] [Indexed: 01/12/2023]
|
179
|
Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells. Nat Commun 2017; 8:1212. [PMID: 29089484 PMCID: PMC5663699 DOI: 10.1038/s41467-017-01422-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/15/2017] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is mostly caused by a trisomy of the entire Chromosome 21 (Trisomy 21, T21). Here, we use SWATH mass spectrometry to quantify protein abundance and protein turnover in fibroblasts from a monozygotic twin pair discordant for T21, and to profile protein expression in 11 unrelated DS individuals and matched controls. The integration of the steady-state and turnover proteomic data indicates that protein-specific degradation of members of stoichiometric complexes is a major determinant of T21 gene dosage outcome, both within and between individuals. This effect is not apparent from genomic and transcriptomic data. The data also reveal that T21 results in extensive proteome remodeling, affecting proteins encoded by all chromosomes. Finally, we find broad, organelle-specific post-transcriptional effects such as significant downregulation of the mitochondrial proteome contributing to T21 hallmarks. Overall, we provide a valuable proteomic resource to understand the origin of DS phenotypic manifestations. Trisomy 21 (T21) is a major cause of Down syndrome but little is known about its impact on the cellular proteome. Here, the authors define the proteome of T21 fibroblasts and its turnover and also map proteomic differences in monozygotic T21-discordant twins, revealing extensive, organelle-specific changes caused by T21.
Collapse
|
180
|
Lohr K, Pachl F, Moghaddas Gholami A, Geillinger KE, Daniel H, Kuster B, Klingenspor M. Reduced mitochondrial mass and function add to age-related susceptibility toward diet-induced fatty liver in C57BL/6J mice. Physiol Rep 2017; 4:4/19/e12988. [PMID: 27694529 PMCID: PMC5064140 DOI: 10.14814/phy2.12988] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/09/2016] [Indexed: 01/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health burden in the aging society with an urging medical need for a better understanding of the underlying mechanisms. Mitochondrial fatty acid oxidation and mitochondrial‐derived reactive oxygen species (ROS) are considered critical in the development of hepatic steatosis, the hallmark of NAFLD. Our study addressed in C57BL/6J mice the effect of high fat diet feeding and age on liver mitochondria at an early stage of NAFLD development. We therefore analyzed functional characteristics of hepatic mitochondria and associated alterations in the mitochondrial proteome in response to high fat feeding in adolescent, young adult, and middle‐aged mice. Susceptibility to diet‐induced obesity increased with age. Young adult and middle‐aged mice developed fatty liver, but not adolescent mice. Fat accumulation was negatively correlated with an age‐related reduction in mitochondrial mass and aggravated by a reduced capacity of fatty acid oxidation in high fat‐fed mice. Irrespective of age, high fat diet increased ROS production in hepatic mitochondria associated with a balanced nuclear factor erythroid‐derived 2 like 2 (NFE2L2) dependent antioxidative response, most likely triggered by reduced tethering of NFE2L2 to mitochondrial phosphoglycerate mutase 5. Age indirectly influenced mitochondrial function by reducing mitochondrial mass, thus exacerbating diet‐induced fat accumulation. Therefore, consideration of age in metabolic studies must be emphasized.
Collapse
Affiliation(s)
- Kerstin Lohr
- Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner Fresenius Center for Nutritional Medicine, Freising-Weihenstephan, Germany Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Fiona Pachl
- Chair of Proteomics and Bioanalytics, Technische Universität München Bavarian Biomolecular Mass Spectrometry Center, Freising-Weihenstephan, Germany
| | - Amin Moghaddas Gholami
- Chair of Proteomics and Bioanalytics, Technische Universität München Bavarian Biomolecular Mass Spectrometry Center, Freising-Weihenstephan, Germany
| | - Kerstin E Geillinger
- Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany Nutritional Physiology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Hannelore Daniel
- Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany Nutritional Physiology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München Bavarian Biomolecular Mass Spectrometry Center, Freising-Weihenstephan, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner Fresenius Center for Nutritional Medicine, Freising-Weihenstephan, Germany Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
181
|
Zhu XJ, Zhang KK, He WW, Du Y, Hooi M, Lu Y. Racemization at the Asp 58 residue in αA-crystallin from the lens of high myopic cataract patients. J Cell Mol Med 2017; 22:1118-1126. [PMID: 28994184 PMCID: PMC5783843 DOI: 10.1111/jcmm.13363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/19/2017] [Indexed: 01/25/2023] Open
Abstract
Post-translational modifications in lens proteins are key causal factors in cataract. As the most abundant post-translational modification in the lens, racemization may be closely related to the pathogenesis of cataract. Racemization of αA-crystallin, a crucial structural and heat shock protein in the human lens, could significantly influence its structure and function. In previous studies, elevated racemization from l-Asp 58 to d-isoAsp58 in αA-crystallin has been found in age-related cataract (ARC) lenses compared to normal aged human lenses. However, the role of racemization in high myopic cataract (HMC), which is characterized by an early onset of nuclear cataract, remains unknown. In the current study, apparently different from ARC, significantly increased racemization from l-Asp 58 to d-Asp 58 in αA-crystallin was identified in HMC lenses. The average racemization rates for each Asp isoform were calculated in ARC and HMC group. In ARC patients, the conversion of l-Asp 58 to d-isoAsp 58, up to 31.89%, accounted for the main proportion in racemization, which was in accordance with the previous studies. However, in HMC lenses, the conversion of l-Asp 58 to d-Asp 58, as high as 35.44%, accounted for the largest proportion of racemization in αA-crystallin. The different trend in the conversion of αA-crystallin by racemization, especially the elevated level of d-Asp 58 in HMC lenses, might prompt early cataractogenesis and a possible explanation of distinct phenotypes of cataract in HMC.
Collapse
Affiliation(s)
- Xiang-Jia Zhu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Ke Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Wen He
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Du
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Yi Lu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
182
|
Rong-Mullins X, Winans MJ, Lee JB, Lonergan ZR, Pilolli VA, Weatherly LM, Carmenzind TW, Jiang L, Cumming JR, Oporto GS, Gallagher JEG. Proteomic and genetic analysis of the response of S. cerevisiae to soluble copper leads to improvement of the antimicrobial function of cellulosic copper nanoparticles. Metallomics 2017; 9:1304-1315. [PMID: 28869270 PMCID: PMC5741080 DOI: 10.1039/c7mt00147a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Copper (Cu) was used in antiquity to prevent waterborne and food diseases because, as a broad-spectrum antimicrobial agent, it generates reactive oxygen species, ROS. New technologies incorporating Cu into low-cost biodegradable nanomaterials built on cellulose, known as cellulosic cupric nanoparticles or c-CuNPs, present novel approaches to deliver Cu in a controlled manner to control microbial growth. We challenged strains of Saccharomyces cerevisiae with soluble Cu and c-CuNPs to evaluate the potential of c-CuNPs as antifungal agents. Cells exposed to c-CuNPs demonstrated greater sensitivity to Cu than cells exposed to soluble Cu, although Cu-resistant strains were more tolerant than Cu-sensitive strains of c-CuNP exposure. At the same level of growth inhibition, 157 μM c-CuNPs led to the same internal Cu levels as did 400 μM CuSO4, offering evidence for alternative mechanisms of toxicity, perhaps through β-arrestin dependent endocytosis, which was supported by flow cytometry and fluorescence microscopy of c-CuNPs distributed both on the cell surface and within the cytoplasm. Genes responsible for genetic variation in response to copper were mapped to the ZRT2 and the CUP1 loci. Through proteomic analyses, we found that the expression of other zinc (Zn) transporters increased in Cu-tolerant yeast compared to Cu-sensitive strains. Further, the addition of Zn at low levels increased the potency of c-CuNPs to inhibit even the most Cu-tolerant yeast. Through unbiased systems biological approaches, we identified Zn as a critical component of the yeast response to Cu and the addition of Zn increased the potency of the c-CuNPs.
Collapse
Affiliation(s)
| | - Matthew J Winans
- Department of Biology, West Virginia University, Morgantown, WV, USA.
| | - Justin B Lee
- Department of Biology, West Virginia University, Morgantown, WV, USA.
| | | | - Vincent A Pilolli
- Department of Biology, West Virginia University, Morgantown, WV, USA.
| | | | | | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford University, Stanford, CA, USA
| | | | - Gloria S Oporto
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
183
|
Pawellek A, Ryder U, Tammsalu T, King LJ, Kreinin H, Ly T, Hay RT, Hartley RC, Lamond AI. Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. eLife 2017; 6:27402. [PMID: 28884683 PMCID: PMC5619949 DOI: 10.7554/elife.27402] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
We have identified the plant biflavonoid hinokiflavone as an inhibitor of splicing in vitro and modulator of alternative splicing in cells. Chemical synthesis confirms hinokiflavone is the active molecule. Hinokiflavone inhibits splicing in vitro by blocking spliceosome assembly, preventing formation of the B complex. Cells treated with hinokiflavone show altered subnuclear organization specifically of splicing factors required for A complex formation, which relocalize together with SUMO1 and SUMO2 into enlarged nuclear speckles containing polyadenylated RNA. Hinokiflavone increases protein SUMOylation levels, both in in vitro splicing reactions and in cells. Hinokiflavone also inhibited a purified, E. coli expressed SUMO protease, SENP1, in vitro, indicating the increase in SUMOylated proteins results primarily from inhibition of de-SUMOylation. Using a quantitative proteomics assay we identified many SUMO2 sites whose levels increased in cells following hinokiflavone treatment, with the major targets including six proteins that are components of the U2 snRNP and required for A complex formation.
Collapse
Affiliation(s)
- Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ursula Ryder
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Triin Tammsalu
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lewis J King
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Helmi Kreinin
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Tony Ly
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Richard C Hartley
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
184
|
N 6-methyladenosine (m 6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol 2017; 24:870-878. [PMID: 28869609 DOI: 10.1038/nsmb.3462] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022]
Abstract
RNA modifications are integral to the regulation of RNA metabolism. One abundant mRNA modification is N6-methyladenosine (m6A), which affects various aspects of RNA metabolism, including splicing, translation and degradation. Current knowledge about the proteins recruited to m6A to carry out these molecular processes is still limited. Here we describe comprehensive and systematic mass-spectrometry-based screening of m6A interactors in various cell types and sequence contexts. Among the main findings, we identified G3BP1 as a protein that is repelled by m6A and positively regulates mRNA stability in an m6A-regulated manner. Furthermore, we identified FMR1 as a sequence-context-dependent m6A reader, thus revealing a connection between an mRNA modification and an autism spectrum disorder. Collectively, our data represent a rich resource and shed further light on the complex interplay among m6A, m6A interactors and mRNA homeostasis.
Collapse
|
185
|
Reid SE, Kay EJ, Neilson LJ, Henze AT, Serneels J, McGhee EJ, Dhayade S, Nixon C, Mackey JB, Santi A, Swaminathan K, Athineos D, Papalazarou V, Patella F, Román-Fernández Á, ElMaghloob Y, Hernandez-Fernaud JR, Adams RH, Ismail S, Bryant DM, Salmeron-Sanchez M, Machesky LM, Carlin LM, Blyth K, Mazzone M, Zanivan S. Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J 2017; 36:2373-2389. [PMID: 28694244 PMCID: PMC5556271 DOI: 10.15252/embj.201694912] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates β-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.
Collapse
Affiliation(s)
| | - Emily J Kay
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Anne-Theres Henze
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Jens Serneels
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | | | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - John Bg Mackey
- Cancer Research UK Beatson Institute, Glasgow, UK
- Inflammation, Repair and Development, Imperial College London, London, UK
| | - Alice Santi
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | - Vasileios Papalazarou
- Cancer Research UK Beatson Institute, Glasgow, UK
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | | | | | | | | | - Ralf H Adams
- Department of Tissue Morphogenesis, Faculty of Medicine, Max-Planck-Institute for Molecular Biomedicine, University of Münster, Münster, Germany
| | | | - David M Bryant
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Manuel Salmeron-Sanchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | | | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Massimiliano Mazzone
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
186
|
Dresler J, Krutova M, Fucikova A, Klimentova J, Hruzova V, Duracova M, Houdkova K, Salovska B, Matejkova J, Hubalek M, Pajer P, Pisa L, Nyc O. Analysis of proteomes released from in vitro cultured eight Clostridium difficile PCR ribotypes revealed specific expression in PCR ribotypes 027 and 176 confirming their genetic relatedness and clinical importance at the proteomic level. Gut Pathog 2017; 9:45. [PMID: 28814976 PMCID: PMC5556371 DOI: 10.1186/s13099-017-0194-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 01/22/2023] Open
Abstract
Background Clostridium difficile is the causative agent of C. difficile infection (CDI) that could be manifested by diarrhea, pseudomembranous colitis or life-threatening toxic megacolon. The spread of certain strains represents a significant economic burden for health-care. The epidemic successful strains are also associated with severe clinical features of CDI. Therefore, a proteomic study has been conducted that comprises proteomes released from in vitro cultured panel of eight different PCR ribotypes (RTs) and employs the combination of shotgun proteomics and label-free quantification (LFQ) approach. Results The comparative semi-quantitative analyses enabled investigation of a total of 662 proteins. Both hierarchical clustering and principal component analysis (PCA) created eight distinctive groups. From these quantifiable proteins, 27 were significantly increased in functional annotations. Among them, several known factors connected with virulence were identified, such as toxin A, B, binary toxin, flagellar proteins, and proteins associated with Pro–Pro endopeptidase (PPEP-1) functional complex. Comparative analysis of protein expression showed a higher expression or unique expression of proteins linked to pathogenicity or iron metabolism in RTs 027 and 176 supporting their genetic relatedness and clinical importance at the proteomic level. Moreover, the absence of putative nitroreductase and the abundance of the Abc-type fe3+ transport system protein were observed as biomarkers for the RTs possessing binary toxin genes (027, 176 and 078). Higher expression of selected flagellar proteins clearly distinguished RTs 027, 176, 005 and 012, confirming the pathogenic role of the assembly in CDI. Finally, the histidine synthesis pathway regulating protein complex HisG/HisZ was observed only in isolates possessing the genes for toxin A and B. Conclusions This study showed the applicability of the LFQ approach and provided the first semi-quantitative insight into the proteomes released from in vitro cultured panel of eight RTs. The observed differences pointed to a new direction for studies focused on the elucidation of the mechanisms underlining the CDI nature. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0194-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Alena Fucikova
- Faculty of Military Health Sciences, UoD, Hradec Kralove, Czech Republic
| | - Jana Klimentova
- Faculty of Military Health Sciences, UoD, Hradec Kralove, Czech Republic
| | - Veronika Hruzova
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Miloslava Duracova
- Faculty of Military Health Sciences, UoD, Hradec Kralove, Czech Republic
| | - Katerina Houdkova
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Barbora Salovska
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Jana Matejkova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry, Academy of Science, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Libor Pisa
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Otakar Nyc
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
187
|
Chen M, Zhang M, Zhai L, Hu H, Liu P, Tan M. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study. J Proteome Res 2017; 16:3460-3469. [PMID: 28730820 DOI: 10.1021/acs.jproteome.7b00373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysine methylation plays important roles in structural and functional regulation of chromatin. Although trypsin is the most widely used protease in mass spectrometry-based proteomic analysis for lysine methylation substrates, the proteolytic activity of trypsin on dimethylated lysine residues remains an arguable issue. In this study, we tested the ability of trypsin to cleave dimethylated lysine residues in synthetic peptides, purified albumin, and whole cell lysate, and found that the C-terminal of dimethylated lysine residue could be cleaved in a protein sequence-dependent manner. Kinetic studies revealed that the optimal digestion time and enzyme-to-substrate ratio for the cleavage of dimethylated lysine by trypsin was around 16 h and 1:50, respectively. We further showed the tryptic C-terminal lysine-dimethylated (C-Kme2) peptides could contribute to a significant portion of substrate identification in the proteomic study, which utilizes the chemical dimethylation labeling approach. More than 120 tryptic C-Kme2 peptides (7% of total peptides identified) were identified in chemically lysine-dimethyl-labeled HeLa whole cell lysate by a single-shot nanoflow high performance liquid chromatography with tandem mass spectrometry (nano-HPLC-MS/MS) analysis. Moreover, in an assay for substrate identification of protease Glu-C using stable isotope dimethyl labeling approach, our data showed the tryptic C-Kme2 peptides accounted for more than 13% of total tryptic peptides. Additionally, our in vivo methylome profiling data revealed some C-Kme2 peptides, which is of importance to identification and quantification of biologically relevant protein and lysine-methylated site. Therefore, we reason that the tryptic peptides bearing C-terminal dimethylated lysine need to be considered in the mass spectrometric analysis of lysine dimethylation.
Collapse
Affiliation(s)
- Ming Chen
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Min Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Linhui Zhai
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China
| | - Hao Hu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China
| | - Ping Liu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| |
Collapse
|
188
|
Kar UK, Simonian M, Whitelegge JP. Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Rev Proteomics 2017; 14:715-723. [PMID: 28737967 DOI: 10.1080/14789450.2017.1359545] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Integral membrane proteins and lipids constitute the bilayer membranes that surround cells and sub-cellular compartments, and modulate movements of molecules and information between them. Since membrane protein drug targets represent a disproportionately large segment of the proteome, technical developments need timely review. Areas covered: Publically available resources such as Pubmed were surveyed. Bottom-up proteomics analyses now allow efficient extraction and digestion such that membrane protein coverage is essentially complete, making up around one third of the proteome. However, this coverage relies upon hydrophilic loop regions while transmembrane domains are generally poorly covered in peptide-based strategies. Top-down mass spectrometry where the intact membrane protein is fragmented in the gas phase gives good coverage in transmembrane regions, and membrane fractions are yielding to high-throughput top-down proteomics. Exciting progress in native mass spectrometry of membrane protein complexes is providing insights into subunit stoichiometry and lipid binding, and cross-linking strategies are contributing critical in-vivo information. Expert commentary: It is clear from the literature that integral membrane proteins have yielded to advanced techniques in protein chemistry and mass spectrometry, with applications limited only by the imagination of investigators. Key advances toward translation to the clinic are emphasized.
Collapse
Affiliation(s)
- Upendra K Kar
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Margaret Simonian
- b NPI-Semel Institute , University of California Los Angeles , Los Angeles , CA , USA
| | - Julian P Whitelegge
- b NPI-Semel Institute , University of California Los Angeles , Los Angeles , CA , USA
| |
Collapse
|
189
|
Pajer P, Dresler J, Kabíckova H, Písa L, Aganov P, Fucik K, Elleder D, Hron T, Kuzelka V, Velemínsky P, Klimentova J, Fucikova A, Pejchal J, Hrabakova R, Benes V, Rausch T, Dundr P, Pilin A, Cabala R, Hubalek M, Stríbrny J, Antwerpen MH, Meyer H. Characterization of Two Historic Smallpox Specimens from a Czech Museum. Viruses 2017; 9:E200. [PMID: 28749451 PMCID: PMC5580457 DOI: 10.3390/v9080200] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Although smallpox has been known for centuries, the oldest available variola virus strains were isolated in the early 1940s. At that time, large regions of the world were already smallpox-free. Therefore, genetic information of these strains can represent only the very last fraction of a long evolutionary process. Based on the genomes of 48 strains, two clades are differentiated: Clade 1 includes variants of variola major, and clade 2 includes West African and variola minor (Alastrim) strains. Recently, the genome of an almost 400-year-old Lithuanian mummy was determined, which fell basal to all currently sequenced strains of variola virus on phylogenetic trees. Here, we determined two complete variola virus genomes from human tissues kept in a museum in Prague dating back 60 and 160 years, respectively. Moreover, mass spectrometry-based proteomic, chemical, and microscopic examinations were performed. The 60-year-old specimen was most likely an importation from India, a country with endemic smallpox at that time. The genome of the 160-year-old specimen is related to clade 2 West African and variola minor strains. This sequence likely represents a new endemic European variant of variola virus circulating in the midst of the 19th century in Europe.
Collapse
Affiliation(s)
- Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Hana Kabíckova
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Libor Písa
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Pavel Aganov
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Karel Fucik
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Daniel Elleder
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Tomas Hron
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Vitezslav Kuzelka
- National Museum, Department of Anthropology, Václavské náměstí 68, 115 79 Praha 1, Czech Republic.
| | - Petr Velemínsky
- National Museum, Department of Anthropology, Václavské náměstí 68, 115 79 Praha 1, Czech Republic.
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 01 Hradec Králové, Czech Republic.
| | - Alena Fucikova
- Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 01 Hradec Králové, Czech Republic.
| | - Jaroslav Pejchal
- Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 01 Hradec Králové, Czech Republic.
| | - Rita Hrabakova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 277 21 Liběchov, Czech Republic.
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Tobias Rausch
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Pavel Dundr
- Institute of Pathology of the First Faculty of Medicine and General Teaching Hospital, Studničkova 2, 128 00 Prague, Czech Republic.
| | - Alexander Pilin
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 4, 128 21, Praha 2, Czech Republic.
| | - Radomir Cabala
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 4, 128 21, Praha 2, Czech Republic.
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic.
| | - Jan Stríbrny
- Military Institute of Forensic Medicine, Military University Hospital Prague, U Vojenské nemocnice 1200, 169 02 Praha 6.
| | - Markus H Antwerpen
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - Hermann Meyer
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.
| |
Collapse
|
190
|
Lonkvist CK, Vinther A, Zerahn B, Rosenbom E, Deshmukh AS, Hojman P, Gehl J. Progressive resistance training in head and neck cancer patients undergoing concomitant chemoradiotherapy. Laryngoscope Investig Otolaryngol 2017; 2:295-306. [PMID: 29094074 PMCID: PMC5654939 DOI: 10.1002/lio2.88] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/23/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives Patients with head and neck squamous cell carcinoma undergoing concomitant chemoradiotherapy (CCRT) frequently experience weight loss, especially loss of lean body mass (LBM), and reduced functional performance. This study investigated whether a 12‐week hospital‐based progressive resistance training (PRT) program during CCRT is feasible in the clinical setting before planning initiation of a larger randomized study which is the long‐term goal. Study design Prospective pilot study. Methods Twelve patients receiving CCRT were planned to attend a 12‐week PRT program. Primary endpoint was feasibility measured as attendance to training sessions. Secondary endpoints included changes in functional performance, muscle strength, and body composition measured by Dual‐energy X‐ray Absorptiometry (DXA) scans. Furthermore, sarcomeric protein content, pentose phosphate pathway (PPP) activity, and glycolysis were determined in muscle biopsies. Results Twelve patients with p16 positive oropharyngeal cancer were enrolled. The primary endpoint was met with 9 of the 12 patients completing at least 25 of 36 planned training sessions. The mean attendance rate was 77%. Functional performance was maintained during the treatment period and increased during follow‐up (p < 0.01). Strength was regained after an initial dip during treatment, paralleling responses in LBM and sarcomeric protein content. LBM began to increase immediately after treatment. The PPP was upregulated after the treatment period, whilst glycolysis remained unchanged. No adverse events were related to PRT and in questionnaires, patients emphasized the social and psychological benefits of attendance. Conclusion Progressive resistance training is feasible and safe during CCRT for head and neck cancer, and is associated with high patient satisfaction. Level of Evidence 2C.
Collapse
Affiliation(s)
| | - Anders Vinther
- Department of Rehabilitation, University of Copenhagen Herlev Denmark
| | - Bo Zerahn
- Department of Clinical Physiology and Nuclear Medicine, University of Copenhagen Herlev Denmark
| | - Eva Rosenbom
- Nutritional Research Unit, Herlev and Gentofte Hospital, University of Copenhagen Herlev Denmark
| | - Atul S Deshmukh
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen Denmark
| | - Pernille Hojman
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research , Rigshospitalet, University of Copenhagen Copenhagen Denmark
| | - Julie Gehl
- Department of Oncology, University of Copenhagen Herlev Denmark
| |
Collapse
|
191
|
Zhang J, Lu S, Zhou Y, Meng K, Chen Z, Cui Y, Shi Y, Wang T, He QY. Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes. Proteomics 2017; 17. [PMID: 28590090 DOI: 10.1002/pmic.201700103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/14/2017] [Accepted: 05/29/2017] [Indexed: 01/29/2023]
Abstract
Exosomes are deliverers of critically functional proteins, capable of transforming target cells in numerous cancers, including hepatocellular carcinoma (HCC). We hypothesize that the motility of HCC cells can be featured by comparative proteome of exosomes. Hence, we performed the super-SILAC-based MS analysis on the exosomes secreted by three human HCC cell lines, including the non-motile Hep3B cell, and the motile 97H and LM3 cells. More than 1400 exosomal proteins were confidently quantified in each MS analysis with highly biological reproducibility. We justified that 469 and 443 exosomal proteins represented differentially expressed proteins (DEPs) in the 97H/Hep3B and LM3/Hep3B comparisons, respectively. These DEPs focused on sugar metabolism-centric canonical pathways per ingenuity pathway analysis, which was consistent with the gene ontology analysis on biological process enrichment. These pathways included glycolysis I, gluconeogenesis I and pentose phosphate pathways; and the DEPs enriched in these pathways could form a tightly connected network. By analyzing the relative abundance of proteins and translating mRNAs, we found significantly positive correlation between exosomes and cells. The involved exosomal proteins were again focusing on sugar metabolism. In conclusion, motile HCC cells tend to preferentially export more sugar metabolism-associated proteins via exosomes that differentiate them from non-motile HCC cells.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| | - Shaohua Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| | - Ye Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| | - Kun Meng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| | - Zhipeng Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| | - Yunfeng Shi
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
192
|
Wang Y, Zhang J, Huang ZH, Huang XH, Zheng WB, Yin XF, Li YL, Li B, He QY. Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop. Cell Death Dis 2017; 8:e2876. [PMID: 28617433 PMCID: PMC5584574 DOI: 10.1038/cddis.2017.265] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/17/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
Isodeoxyelephantopin (ESI), isolated from Elephantopus scaber L. has been reported to exert anticancer effects. In this study, we aimed to investigate whether and how cancer cells exert protective responses against ESI treatment. Confocal fluorescence microscopy showed that ESI significantly induced autophagy flux in the lung cancer cells expressing mCherry-EGFP-LC3 reporter. Treatment of the cells with ESI increased the expression levels of the autophagy markers including LC3-II, ATG3 and Beclin1 in a dose-dependent manner. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) not only attenuated the effects of ESI on autophagy, but also enhanced the effects of ESI on cell viability and apoptosis. Mechanistically, the SILAC quantitative proteomics coupled with bioinformatics analysis revealed that the ESI-regulated proteins were mainly involved in Nrf2-mediated oxidative stress response. We found that ESI induced the nuclear translocation of Nrf2 for activating the downstream target genes including HO-1 and p62 (SQSTM1). More importantly, ESI-induced p62 could competitively bind with Keap1, and releases Nrf2 to activate downstream target gene p62 as a positive feedback loop, therefore promoting autophagy. Furthermore, knockdown of Nrf2 or p62 could abrogate the ESI-induced autophagy and significantly enhanced the anticancer effect of ESI. Taken together, we demonstrated that ESI can sustain cell survival by activating protective autophagy through Nrf2-p62-keap1 feedback loop, whereas targeting this regulatory axis combined with ESI treatment may be a promising strategy for anticancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi-Hao Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Hui Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wei-Bin Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xing-Feng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
193
|
Santos JM, Josling G, Ross P, Joshi P, Orchard L, Campbell T, Schieler A, Cristea IM, Llinás M. Red Blood Cell Invasion by the Malaria Parasite Is Coordinated by the PfAP2-I Transcription Factor. Cell Host Microbe 2017; 21:731-741.e10. [PMID: 28618269 PMCID: PMC5855115 DOI: 10.1016/j.chom.2017.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 02/16/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Obligate intracellular parasites must efficiently invade host cells in order to mature and be transmitted. For the malaria parasite Plasmodium falciparum, invasion of host red blood cells (RBCs) is essential. Here we describe a parasite-specific transcription factor PfAP2-I, belonging to the Apicomplexan AP2 (ApiAP2) family, that is responsible for regulating the expression of genes involved in RBC invasion. Our genome-wide analysis by ChIP-seq shows that PfAP2-I interacts with a specific DNA motif in the promoters of target genes. Although PfAP2-I contains three AP2 DNA-binding domains, only one is required for binding of the target genes during blood stage development. Furthermore, we find that PfAP2-I associates with several chromatin-associated proteins, including the Plasmodium bromodomain protein PfBDP1 and that complex formation is associated with transcriptional regulation. As a key regulator of red blood cell invasion, PfAP2-I represents a potential new antimalarial therapeutic target.
Collapse
Affiliation(s)
- Joana Mendonca Santos
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Gabrielle Josling
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA
| | - Philipp Ross
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA
| | - Preeti Joshi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lindsey Orchard
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA
| | - Tracey Campbell
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ariel Schieler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry and Huck Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16802, USA.
| |
Collapse
|
194
|
Müller T, Winter D. Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents. Mol Cell Proteomics 2017; 16:1173-1187. [PMID: 28539326 DOI: 10.1074/mcp.m116.064048] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Reduction and alkylation of cysteine residues is part of virtually any proteomics workflow. Despite its frequent use, up to date no systematic investigation of the impact of different conditions on the outcome of proteomics studies has been performed. In this study, we compared common reduction reagents (dithiothreitol, tris-(2-carboxyethyl)-phosphine, and β-mercaptoethanol) and alkylation reagents (iodoacetamide, iodoacetic acid, acrylamide, and chloroacetamide). Using in-gel digests as well as SAX fractionated in-solution digests of cytosolic fractions of HeLa cells, we evaluated 13 different reduction and alkylation conditions resulting in considerably varying identification rates. We observed strong differences in offsite alkylation reactions at 7 amino acids as well as at the peptide N terminus, identifying single and double adducts of all reagents. Using dimethyl labeling, mass tolerant searches, and synthetic peptide experiments, we identified alkylation of methionine residues by iodine-containing alkylation reagents as one of the major factors for the differences. We observed differences of more than 9-fold in numbers of identified methionine-containing peptide spectral matches for in-gel digested samples between iodine- and noniodine-containing alkylation reagents. This was because of formation of carbamidomethylated and carboxymethylated methionine side chains and a resulting prominent neutral loss during ESI ionization or in MS/MS fragmentation, strongly decreasing identification rates of methionine-containing peptides. We achieved best results with acrylamide as alkylation reagent, whereas the highest numbers of peptide spectral matches were obtained when reducing with dithiothreitol and β-mercaptoethanol for the in-solution and the in-gel digested samples, respectively.
Collapse
Affiliation(s)
- Torsten Müller
- From the ‡Institute for Biochemistry and Molecular Biology, University of Bonn, Germany
| | - Dominic Winter
- From the ‡Institute for Biochemistry and Molecular Biology, University of Bonn, Germany
| |
Collapse
|
195
|
Sandow JJ, Infusini G, Holik AZ, Brumatti G, Averink TV, Ekert PG, Webb AI. Quantitative proteomic analysis of EZH2 inhibition in acute myeloid leukemia reveals the targets and pathways that precede the induction of cell death. Proteomics Clin Appl 2017; 11. [DOI: 10.1002/prca.201700013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Jarrod J. Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| | - Giuseppe Infusini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| | - Aliaksei Z. Holik
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| | - Gabriela Brumatti
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| | - Tessa V. Averink
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
- Murdoch Children's Research Institute; Royal Children's Hospital; Parkville Australia
- Vrije Universiteit; Amsterdam
| | - Paul G. Ekert
- Murdoch Children's Research Institute; Royal Children's Hospital; Parkville Australia
| | - Andrew I. Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| |
Collapse
|
196
|
Massafra V, Milona A, Vos HR, Ramos RJJ, Gerrits J, Willemsen ECL, Ramos Pittol JM, Ijssennagger N, Houweling M, Prinsen HCMT, Verhoeven-Duif NM, Burgering BMT, van Mil SWC. Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice. Gastroenterology 2017; 152:1462-1476.e10. [PMID: 28130067 DOI: 10.1053/j.gastro.2017.01.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice to evaluate these functions and investigate whether FXR regulates amino acid metabolism. METHODS To study the role of FXR in mouse liver, we used mice with a disruption of Nr1h4 (FXR-knockout mice) and compared them with floxed control mice. Mice were gavaged with the FXR agonist obeticholic acid or vehicle for 11 days. Proteome analyses, as well as targeted metabolomics and chromatin immunoprecipitation, were performed on the livers of these mice. Primary rat hepatocytes were used to validate the role of FXR in amino acid catabolism by gene expression and metabolomics studies. Finally, control mice and mice with liver-specific disruption of Nr1h4 (liver FXR-knockout mice) were re-fed with a high-protein diet after 6 hours fasting and gavaged a 15NH4Cl tracer. Gene expression and the metabolome were studied in the livers and plasma from these mice. RESULTS In livers of control mice and primary rat hepatocytes, activation of FXR with obeticholic acid increased expression of proteins that regulate amino acid degradation, ureagenesis, and glutamine synthesis. We found FXR to bind to regulatory sites of genes encoding these proteins in control livers. Liver tissues from FXR-knockout mice had reduced expression of urea cycle proteins, and accumulated precursors of ureagenesis, compared with control mice. In liver FXR-knockout mice on a high-protein diet, the plasma concentration of newly formed urea was significantly decreased compared with controls. In addition, liver FXR-knockout mice had reduced hepatic expression of enzymes that regulate ammonium detoxification compared with controls. In contrast, obeticholic acid increased expression of genes encoding enzymes involved in ureagenesis compared with vehicle in C57Bl/6 mice. CONCLUSIONS In livers of mice, FXR regulates amino acid catabolism and detoxification of ammonium via ureagenesis and glutamine synthesis. Failure of the urea cycle and hyperammonemia are common in patients with acute and chronic liver diseases; compounds that activate FXR might promote ammonium clearance in these patients.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Rúben J J Ramos
- Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Johan Gerrits
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands; Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ellen C L Willemsen
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - José M Ramos Pittol
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Noortje Ijssennagger
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Martin Houweling
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Nanda M Verhoeven-Duif
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands; Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
197
|
Schaible B, Rodriguez J, Garcia A, von Kriegsheim A, McClean S, Hickey C, Keogh CE, Brown E, Schaffer K, Broquet A, Taylor CT. Hypoxia Reduces the Pathogenicity of Pseudomonas aeruginosa by Decreasing the Expression of Multiple Virulence Factors. J Infect Dis 2017; 215:1459-1467. [PMID: 28368464 DOI: 10.1093/infdis/jix139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2023] Open
Abstract
Our understanding of how the course of opportunistic bacterial infection is influenced by the microenvironment is limited. We demonstrate that the pathogenicity of Pseudomonas aeruginosa strains derived from acute clinical infections is higher than that of strains derived from chronic infections, where tissues are hypoxic. Exposure to hypoxia attenuated the pathogenicity of strains from acute (but not chronic) infections, implicating a role for hypoxia in regulating bacterial virulence. Mass spectrometric analysis of the secretome of P. aeruginosa derived from an acute infection revealed hypoxia-induced repression of multiple virulence factors independent of altered bacterial growth. Pseudomonas aeruginosa lacking the Pseudomonas prolyl-hydroxylase domain-containing protein, which has been implicated in bacterial oxygen sensing, displays reduced virulence factor expression. Furthermore, pharmacological hydroxylase inhibition reduces virulence factor expression and pathogenicity in a murine model of pneumonia. We hypothesize that hypoxia reduces P. aeruginosa virulence at least in part through the regulation of bacterial hydroxylases.
Collapse
Affiliation(s)
| | | | - Amaya Garcia
- Systems Biology Ireland, University College Dublin
| | | | - Siobhán McClean
- Centre for Microbial Host Interactions, Department of Science, Institute of Technology Tallaght-Dublin, and
| | | | | | | | - Kirsten Schaffer
- Department of Clinical Microbiology, St Vincent's University Hospital, Dublin, Ireland; and
| | | | - Cormac T Taylor
- Conway Institute and
- Systems Biology Ireland, University College Dublin
| |
Collapse
|
198
|
Cristobal A, Marino F, Post H, van den Toorn HWP, Mohammed S, Heck AJR. Toward an Optimized Workflow for Middle-Down Proteomics. Anal Chem 2017; 89:3318-3325. [PMID: 28233997 PMCID: PMC5362747 DOI: 10.1021/acs.analchem.6b03756] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Mass
spectrometry (MS)-based proteomics workflows can crudely be
classified into two distinct regimes, targeting either relatively
small peptides (i.e., 0.7 kDa < Mw <
3.0 kDa) or small to medium sized intact proteins (i.e., 10 kDa < Mw < 30 kDa), respectively, termed bottom-up
and top-down proteomics. Recently, a niche has started to be explored
covering the analysis of middle-range peptides (i.e., 3.0 kDa < Mw < 10 kDa), aptly termed middle-down proteomics.
Although middle-down proteomics can follow, in principle, a modular
workflow similar to that of bottom-up proteomics, we hypothesized
that each of these modules would benefit from targeted optimization
to improve its overall performance in the analysis of middle-range
sized peptides. Hence, to generate middle-range sized peptides from
cellular lysates, we explored the use of the proteases Asp-N and Glu-C
and a nonenzymatic acid induced cleavage. To increase the depth of
the proteome, a strong cation exchange (SCX) separation, carefully
tuned to improve the separation of longer peptides, combined with
reversed phase-liquid chromatography (RP-LC) using columns packed
with material possessing a larger pore size, was used. Finally, after
evaluating the combination of potentially beneficial MS settings,
we also assessed the peptide fragmentation techniques, including higher-energy
collision dissociation (HCD), electron-transfer dissociation (ETD),
and electron-transfer combined with higher-energy collision dissociation
(EThcD), for characterization of middle-range sized peptides. These
combined
improvements clearly improve the detection and sequence coverage of
middle-range peptides and should guide researchers to explore further
how middle-down proteomics may lead to an improved proteome coverage,
beneficial for, among other things, the enhanced analysis of (co-occurring)
post-translational modifications.
Collapse
Affiliation(s)
- Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Henk W P van den Toorn
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Departments of Chemistry and Biochemistry, University of Oxford , New Biochemistry Building, South Parks Road, Oxford, OX1 3QU Oxfordshire, United Kingdom
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
199
|
Characterization of histone-related chemical modifications in formalin-fixed paraffin-embedded and fresh-frozen human pancreatic cancer xenografts using LC-MS/MS. J Transl Med 2017; 97:279-288. [PMID: 27941757 DOI: 10.1038/labinvest.2016.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/22/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Abstract
Post-translational modifications (PTMs) of histones including acetylation, methylation, and ubiquitination are known to be involved in the epigenetic regulation of gene expression and thus can have an important role in tumorigenesis. A number of PTMs have been linked to pancreatic cancer and are frequently studied as potential targets for cancer therapy or diagnosis. The availability of biobank-stored, formalin-fixed, paraffin-embedded (FFPE) materials and advanced proteomic analytical tools make it possible to detect histone-related PTMs using predicted mass shifts caused by specific modification. It is, however, important to take into account the fact that formaldehyde (FA) present in the FFPE material is chemically reactive and may undergo condensation reactions, for example, with terminal amino groups and active CH functionalities of the studied proteins. As supported by the results of this study, the possibility to misinterpret such protein condensation product as endogenous PTMs should be taken into consideration in all proteomic analytical work involving FFPE materials. In this study, we used liquid chromatography-tandem mass spectrometry to assess preassumed modification of the lysine residues of histone proteins in FFPE or fresh-frozen (FF) tumor xenografts, derived from the human pancreatic cancer cell line, Capan-1. Here we report modifications with a defined mass shift of +14.016, +28.031, +42.011, or +114.043 Da, corresponding to apparent methylation, dimethylation, acetylation, or ubiquitination that were differentially distributed between the groups. The identified modifications were significantly more frequent in FFPE samples as compared with FF samples. Our results indicate that FFPE tissue processing may result in persistent chemical modifications of histones, which correspond in mass shift of important PTMs. Herein, we highlight the importance to investigate and report FA-formed modifications in FFPE-treated tissues, as well as the necessity of careful manual examination of observed modifications to eliminate false-positive PTMs.
Collapse
|
200
|
Davis S, Charles PD, He L, Mowlds P, Kessler BM, Fischer R. Expanding Proteome Coverage with CHarge Ordered Parallel Ion aNalysis (CHOPIN) Combined with Broad Specificity Proteolysis. J Proteome Res 2017; 16:1288-1299. [PMID: 28164708 PMCID: PMC5363888 DOI: 10.1021/acs.jproteome.6b00915] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The "deep" proteome has been accessible by mass spectrometry for some time. However, the number of proteins identified in cells of the same type has plateaued at ∼8000-10 000 without ID transfer from reference proteomes/data. Moreover, limited sequence coverage hampers the discrimination of protein isoforms when using trypsin as standard protease. Multienzyme approaches appear to improve sequence coverage and subsequent isoform discrimination. Here we expanded proteome and protein sequence coverage in MCF-7 breast cancer cells to an as yet unmatched depth by employing a workflow that addresses current limitations in deep proteome analysis in multiple stages: We used (i) gel-aided sample preparation (GASP) and combined trypsin/elastase digests to increase peptide orthogonality, (ii) concatenated high-pH prefractionation, and (iii) CHarge Ordered Parallel Ion aNalysis (CHOPIN), available on an Orbitrap Fusion (Lumos) mass spectrometer, to achieve 57% median protein sequence coverage in 13 728 protein groups (8949 Unigene IDs) in a single cell line. CHOPIN allows the use of both detectors in the Orbitrap on predefined precursor types that optimizes parallel ion processing, leading to the identification of a total of 179 549 unique peptides covering the deep proteome in unprecedented detail.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Lin He
- Bioinformatics Solutions, Inc. , 470 Weber Street North Suite 204, Waterloo, Ontario N2L 6J2, Canada
| | - Peter Mowlds
- Thermo Fisher, Inc. , Stafford House, 1 Boundary Park, Hemel Hampstead HP2 7GE, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| |
Collapse
|