151
|
Macêdo CDS, DaRocha WD, Mortara RA, Prado MAM, Teixeira SMR. Characterization of a Trypanosoma cruzi antigen with homology to intracellular mammalian lectins. Int J Parasitol 2006; 36:1473-84. [PMID: 17027760 DOI: 10.1016/j.ijpara.2006.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/10/2006] [Accepted: 08/15/2006] [Indexed: 01/23/2023]
Abstract
Two cDNAs, isolated from a Trypanosoma cruzi amastigote library immunoscreened with sera from patients with Chagas disease, encode proteins with sequence homology to eukaryotic components of the cellular sorting and recycling machinery. These proteins, denominated TcAGL, present an N-terminal lectin domain and a C-terminal region containing repetitive amino acids and a poly-glutamine tract. They are products of polymorphic alleles of a single copy gene constitutively expressed during the parasite life cycle. Polyclonal antibodies obtained from mice immunized with the recombinant antigen recognize proteins with apparent molecular weight ranging from 95 to 120 kDa in cell lysates from all three life stages and in various strains of the parasite. Sera from Chagas disease patients recognize the recombinant antigen in ELISA and immunoprecipitation assays but not in Western blot assays under denaturing conditions. Consistent with its proposed role in the glycoprotein secreting pathway, immunofluorescence analyses and expression of a green fluorescent protein-tagged TcAGL protein indicate a sub-cellular localization in the vicinity of the flagellar pocket membrane and the Golgi complex of the parasite.
Collapse
Affiliation(s)
- C D S Macêdo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-010, Brazil
| | | | | | | | | |
Collapse
|
152
|
Bue CA, Bentivoglio CM, Barlowe C. Erv26p directs pro-alkaline phosphatase into endoplasmic reticulum-derived coat protein complex II transport vesicles. Mol Biol Cell 2006; 17:4780-9. [PMID: 16957051 PMCID: PMC1635384 DOI: 10.1091/mbc.e06-05-0455] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Delta mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.
Collapse
Affiliation(s)
- Catherine A. Bue
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| | | | - Charles Barlowe
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| |
Collapse
|
153
|
Nyfeler B, Zhang B, Ginsburg D, Kaufman RJ, Hauri HP. Cargo Selectivity of the ERGIC-53/MCFD2 Transport Receptor Complex. Traffic 2006; 7:1473-81. [PMID: 17010120 DOI: 10.1111/j.1600-0854.2006.00483.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exit of soluble secretory proteins from the endoplasmic reticulum (ER) can occur by receptor-mediated export as exemplified by blood coagulation factors V and VIII. Their efficient secretion requires the membrane lectin ER Golgi intermediate compartment protein-53 (ERGIC-53) and its soluble luminal interaction partner multiple coagulation factor deficiency protein 2 (MCFD2), which form a cargo receptor complex in the early secretory pathway. ERGIC-53 also interacts with the two lysosomal glycoproteins cathepsin Z and cathepsin C. Here, we tested the subunit interdependence and cargo selectivity of ERGIC-53 and MCFD2 by short interference RNA-based knockdown. In the absence of ERGIC-53, MCFD2 was secreted, whereas knocking down MCFD2 had no effect on the localization of ERGIC-53. Cargo binding properties of the ERGIC-53/MCFD2 complex were analyzed in vivo using yellow fluorescent protein fragment complementation. We found that MCFD2 is dispensable for the binding of cathepsin Z and cathepsin C to ERGIC-53. The results indicate that ERGIC-53 can bind cargo glycoproteins in an MCFD2-independent fashion and suggest that MCFD2 is a recruitment factor for blood coagulation factors V and VIII.
Collapse
Affiliation(s)
- Beat Nyfeler
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
154
|
Mattioli L, Anelli T, Fagioli C, Tacchetti C, Sitia R, Valetti C. ER storage diseases: a role for ERGIC-53 in controlling the formation and shape of Russell bodies. J Cell Sci 2006; 119:2532-41. [PMID: 16735443 DOI: 10.1242/jcs.02977] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Owing to the impossibility of reaching the Golgi for secretion or the cytosol for degradation, mutant Ig-mu chains that lack the first constant domain (muDeltaCH1) accumulate as detergent-insoluble aggregates in dilated endoplasmic reticulum cisternae, called Russell bodies. The presence of similar structures hallmarks many ER storage diseases, but their pathogenic role(s) remain obscure. Exploiting inducible cellular systems, we show here that Russell bodies form when the synthesis of muDeltaCH1 exceeds the degradation capacity. Condensation occurs in different sub-cellular locations, depending on the interacting molecules present in the host cell: if Ig light chains are co-expressed, detergent-insoluble muDeltaCH1-light chain oligomers accumulate in large ribosome-coated structures (rough Russell bodies). In absence of light chains, instead, aggregation occurs in smooth tubular vesicles and is controlled by N-glycan-dependent interactions with ER-Golgi intermediate compartment 53 (ERGIC-53). In cells containing smooth Russell bodies, ERGIC-53 co-localizes with muDeltaCH1 aggregates in a Ca2+ -dependent fashion. Our findings identify a novel ERGIC-53 substrate, and indicate that interactions with light chains or ERGIC-53 seed muDeltaCH1 condensation in different stations of the early secretory pathway.
Collapse
Affiliation(s)
- Laura Mattioli
- MicroSCoBiO Research Center and IFOM Center of Cell Oncology and Ultrastructure, Department of Experimental Medicine, University of Genova, Italy
| | | | | | | | | | | |
Collapse
|
155
|
Patra M, Majumder S, Mandal C. Structural studies on mannose-selective glycoprotein receptors using molecular modeling techniques. Glycoconj J 2006; 23:241-9. [PMID: 16691507 DOI: 10.1007/s10719-006-7929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glycoproteins play important roles in various cellular events and their presence in appropriate locations in proper active conformations is essential for many biochemical functions. Recent evidences suggest that some glycoproteins may require sorting receptors for efficient exit from the endoplasmic reticulum. These receptors need the presence of calcium or other metal ions for their native activity. The three-dimensional structure of such a receptor, p58/ERGIC-53, has been recently solved by x-ray crystallography, which is a mannose-selective lectin and contains two Ca(2+) ions. Homology search in the sequence databases indicates a large number of proteins which bear varying degrees of homology in a wide spectrum of species with this receptor. In this study we have systematically searched for such genes which are potential candidates for acting as mannose-mediated glycoprotein receptors in various species as initially inferred from their amino acid sequence homology. Structures of a number of proteins have been predicted using knowledge-based homology modeling, and their ability to act as the glycoprotein receptor has been explored by examining the nature of sugar-binding site. Tetramer of mannose was docked in the binding pockets of the modeled structures followed by energy minimization and molecular dynamics to obtain most probable structures of the complexes. Properties of these modeled complexes were studied to examine the nature of physicochemical forces involved in the complex formation and compared with p58/ERGIC-53-mannose complex.
Collapse
Affiliation(s)
- Madhumita Patra
- Drug Design, Development and Molecular Modelling Division Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India
| | | | | |
Collapse
|
156
|
Lanctôt PM, Leclerc PC, Escher E, Guillemette G, Leduc R. Role of N-glycan-dependent quality control in the cell-surface expression of the AT1 receptor. Biochem Biophys Res Commun 2006; 340:395-402. [PMID: 16364240 DOI: 10.1016/j.bbrc.2005.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/02/2005] [Indexed: 11/22/2022]
Abstract
Most G protein-coupled receptors (GPCRs) are N-glycosylated proteins but the role of this post-translational modification in GPCR biosynthesis has not been extensively studied. We previously showed that the non-glycosylated AT(1) receptor is inefficiently expressed at the cell surface. In this study, we addressed whether AT(1) interacts with elements of the ER-based quality control processes. Interestingly, non-glycosylated AT(1) receptors associated with the molecular chaperones calnexin and HSP70, suggesting the importance of protein-based interactions between these partners. We also demonstrate that ER mannosidase I participates in the acquisition of mature glycoforms and in the targeting of the AT(1) receptor to the membrane. Taken together, these results indicate that decreased cell-surface expression of the non-glycosylated receptor cannot be attributed to diminished interactions with molecular chaperones and that mannose trimming of the wild-type AT(1) receptor by ER mannosidase I plays a critical role in its cell-surface expression.
Collapse
Affiliation(s)
- Pascal M Lanctôt
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | |
Collapse
|
157
|
Satoh T, Sato K, Kanoh A, Yamashita K, Yamada Y, Igarashi N, Kato R, Nakano A, Wakatsuki S. Structures of the carbohydrate recognition domain of Ca2+-independent cargo receptors Emp46p and Emp47p. J Biol Chem 2006; 281:10410-9. [PMID: 16439369 DOI: 10.1074/jbc.m512258200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emp46p and Emp47p are type I membrane proteins, which cycle between the endoplasmic reticulum (ER) and the Golgi apparatus by vesicles coated with coat protein complexes I and II (COPI and COPII). They are considered to function as cargo receptors for exporting N-linked glycoproteins from the ER. We have determined crystal structures of the carbohydrate recognition domains (CRDs) of Emp46p and Emp47p of Saccharomyces cerevisiae, in the absence and presence of metal ions. Both proteins fold as a beta-sandwich, and resemble that of the mammalian ortholog, p58/ERGIC-53. However, the nature of metal binding is distinct from that of Ca(2+)-dependent p58/ERGIC-53. Interestingly, the CRD of Emp46p does not bind Ca(2+) ion but instead binds K(+) ion at the edge of a concave beta-sheet whose position is distinct from the corresponding site of the Ca(2+) ion in p58/ERGIC-53. Binding of K(+) ion to Emp46p appears essential for transport of a subset of glycoproteins because the Y131F mutant of Emp46p, which cannot bind K(+) ion fails to rescue the transport in disruptants of EMP46 and EMP47 genes. In contrast the CRD of Emp47p binds no metal ions at all. Furthermore, the CRD of Emp46p binds to glycoproteins carrying high mannosetype glycans and the is promoted by binding not the addition of Ca(2+) or K(+) ion in These results suggest that Emp46p can be regarded as a Ca(2+)-independent intracellular lectin at the ER exit sites.
Collapse
Affiliation(s)
- Tadashi Satoh
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Aniento F, Matsuoka K, Robinson DG. ER-to-Golgi Transport: The COPII-Pathway. PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
159
|
Renna M, Faraonio R, Bonatti S, De Stefano D, Carnuccio R, Tajana G, Remondelli P. Nitric oxide-induced endoplasmic reticulum stress activates the expression of cargo receptor proteins and alters the glycoprotein transport to the Golgi complex. Int J Biochem Cell Biol 2006; 38:2040-8. [PMID: 16899390 DOI: 10.1016/j.biocel.2006.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/15/2006] [Accepted: 05/27/2006] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum Golgi intermediate compartment 53 protein recycles continuously between the endoplasmic reticulum and the Golgi complex and ensures the anterograde transport of specific glycoproteins with the assistance of the Multiple Clotting Factor Deficiency adaptor protein. Therefore, to analyze the effect of the endoplasmic reticulum stress on the secretory pathway beyond the endoplasmic reticulum, we analyzed the expression of both proteins in J774 macrophages incubated with the nitric oxide donor DETA NONOate or with thapsigargin. Both proteins accumulated progressively, by a transcriptional mechanism, in response to these inducers. Nitric oxide also induced a higher level of calreticulin and glucose regulated 78 protein, two endoplasmic reticulum proteins controlled by the unfolded protein response. Interestingly, nitric oxide induced the processing of the activating transcription factor 6alpha of the unfolded protein response, while thapsigargin also induced the activation of the transcription factor X-box Binding Protein 1. In addition, we showed that the accumulation of both transporters occurred simultaneously with the activation of endoplasmic reticulum-stress-dependent apoptosis, suggesting that these proteins may participate in the events that will eventually decide the fate of the cell. Induction of endoplasmic reticulum stress affected the rate of anterograde transport of a reporter glycoprotein, indicating that the endoplasmic reticulum to Golgi transport is remarkably impaired. Our results indicate that increased levels of cargo receptor proteins might have a function either in the quality control of protein folding in the endoplasmic reticulum or in the homeostasis of the intermediate compartment and Golgi complex during cell stress.
Collapse
Affiliation(s)
- Maurizio Renna
- Dipartimento di Biochimica e Biotecnologie Mediche, University of Naples Federico II, via S. Pansini 5, 1-80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
160
|
van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228. [PMID: 16126486 DOI: 10.1080/10409230591008161] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.
Collapse
Affiliation(s)
- Eelco van Anken
- Department of Cellular Protein Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | |
Collapse
|
161
|
Kamiya Y, Yamaguchi Y, Takahashi N, Arata Y, Kasai KI, Ihara Y, Matsuo I, Ito Y, Yamamoto K, Kato K. Sugar-binding Properties of VIP36, an Intracellular Animal Lectin Operating as a Cargo Receptor. J Biol Chem 2005; 280:37178-82. [PMID: 16129679 DOI: 10.1074/jbc.m505757200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vesicular integral protein of 36 kDa (VIP36) is an intracellular animal lectin that acts as a putative cargo receptor, which recycles between the Golgi and the endoplasmic reticulum. Although it is known that VIP36 interacts with glycoproteins carrying high mannose-type oligosaccharides, detailed analyses of the sugar-binding specificity that discriminates isomeric oligosaccharide structures have not yet been performed. In the present study, we have analyzed, using the frontal affinity chromatography (FAC) method, the sugar-binding properties of a recombinant carbohydrate recognition domain of VIP36 (VIP36-CRD). For this purpose, a pyridylaminated sugar library, consisting of 21 kinds of oligosaccharides, including isomeric structures, was prepared and subjected to FAC analyses. The FAC data have shown that glucosylation and trimming of the D1 mannosyl branch interfere with the binding of VIP36-CRD. VIP36-CRD exhibits a bell-shaped pH dependence of sugar binding with an optimal pH value of approximately 6.5. By inspection of the specificity and optimal pH value of the sugar binding of VIP36 and its subcellular localization, together with the organellar pH, we suggest that VIP36 binds glycoproteins that retain the intact D1 mannosyl branch in the cis-Golgi network and recycles to the endoplasmic reticulum where, due to higher pH, it releases its cargos, thereby contributing to the quality control of glycoproteins.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Mardones GA, Snyder CM, Howell KE. Cis-Golgi matrix proteins move directly to endoplasmic reticulum exit sites by association with tubules. Mol Biol Cell 2005; 17:525-38. [PMID: 16251359 PMCID: PMC1345687 DOI: 10.1091/mbc.e05-05-0447] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The role of cis-medial Golgi matrix proteins in retrograde traffic is poorly understood. We have used imaging techniques to understand the relationship between the cis-medial Golgi matrix and transmembrane proteins during retrograde traffic in control and brefeldin A (BFA)-treated cells. All five of the cis-medial matrix proteins tested were associated with retrograde tubules within 2-3 min of initiation of tubule formation. Then, at later time points (3-10 min), transmembrane proteins are apparent in the same tubules. Strikingly, both the matrix proteins and the transmembrane proteins moved directly to endoplasmic reticulum (ER) exit sites labeled with p58 and Sec13, and there seemed to be a specific interaction between the ER exit sites and the tips or branch points of the tubules enriched for the matrix proteins. After the initial interaction, Golgi matrix proteins accumulated rapidly (5-10 min) at ER exit sites, and Golgi transmembrane proteins accumulated at the same sites approximately 2 h later. Our data suggest that Golgi cis-medial matrix proteins participate in Golgi-to-ER traffic and play a novel role in tubule formation and targeting.
Collapse
Affiliation(s)
- Gonzalo A Mardones
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
163
|
Neve EPA, Lahtinen U, Pettersson RF. Oligomerization and interacellular localization of the glycoprotein receptor ERGIC-53 is independent of disulfide bonds. J Mol Biol 2005; 354:556-68. [PMID: 16257008 DOI: 10.1016/j.jmb.2005.09.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/21/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
ERGIC-53 is a type I transmembrane lectin facilitating the efficient export of a subset of secretory glycoproteins from the endoplasmic reticulum. Previous results have shown that ERGIC-53 is present as reduction-sensitive homo-oligomers, i.e. as a balanced mixture of disulfide-linked hexamers and dimers, with the two cysteine residues located close to the transmembrane domain playing a crucial role in oligomerization. Here, we demonstrate, using sucrose gradient sedimentation, cross-linking analyses, and non-denaturing gel electrophoresis, that ERGIC-53 is present exclusively as a hexameric complex in cells. However, the hexamers exist in two forms, one as a disulfide-linked, Triton X-100, perfluoro-octanic acid, and SDS-resistant complex, and the other as a non-covalent, Triton X-100, perfluoro-octanoic acid-resistant, but SDS-sensitive, complex made up of three disulfide-linked dimers that are likely to interact through the coiled-coil domains present in the luminal part of the protein. In contrast to what was previously believed, neither of the membrane-proximal cysteine residues plays an essential role in the formation, or maintenance, of the latter form of hexamers. Subcellular fractionation revealed that the double-cysteine mutant was present in the endoplasmic reticulum-Golgi-intermediate compartment, indicating that the two cysteine residues are not essential for the intracellular distribution of ERGIC-53. Based on these results, we present a model for the formation of the two hexameric forms.
Collapse
Affiliation(s)
- Etienne P A Neve
- Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Institutet, Box 240, S-17177 Stockholm, Sweden
| | | | | |
Collapse
|
164
|
Tang BL, Wang Y, Ong YS, Hong W. COPII and exit from the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:293-303. [PMID: 15979503 DOI: 10.1016/j.bbamcr.2005.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/16/2005] [Accepted: 02/23/2005] [Indexed: 01/06/2023]
Abstract
First discovered by genetic analysis of yeast secretion mutants, the evolutionarily conserved vesicular coat protein II (COPII) complex is responsible for membrane transport from the endoplasmic reticulum (ER) to the Golgi apparatus. In recent years, extensive efforts in structural, morphological, genetic and molecular analysis have greatly enhanced our understanding of the structural and molecular basis of COPII subunit assembly and selective cargo packaging during ER export. Very recent data have also indicated that a more "classical" picture of vesicle formation from ER exit sites (ERES) followed by their transport to the Golgi is far from accurate. Proteins modulating the function of COPII have also emerged in recent analysis. They either affect COPII-based cargo selection, the formation of vesicle/transport carrier, or subsequent targeting of the transport carrier. Together, elucidation of COPII-mediated ER export has painted a fascinating picture of molecular complexity for an essential process in all eukaryotic cells.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| | | | | | | |
Collapse
|
165
|
Hebert DN, Garman SC, Molinari M. The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol 2005; 15:364-70. [PMID: 15939591 DOI: 10.1016/j.tcb.2005.05.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 05/13/2005] [Accepted: 05/20/2005] [Indexed: 11/30/2022]
Abstract
The majority of proteins that traverse the secretory pathway receive asparagine (Asn)-linked glycosylations. Glycans are bulky hydrophilic modifications that serve a variety of structural and functional roles within the cell. Here, we review the recent growing knowledge on the role of Asn-linked glycans as maturation and quality-control protein tags in the early secretory pathway. The carbohydrate composition encodes crucial information about the structure, localization and age of glycoproteins. The "glycan code" is encoded by a series of glycosidases and carbohydrate transferases that line the secretory pathway. This code is deciphered by carbohydrate-binding proteins that possess distinct carbohydrate binding properties and act as molecular chaperones or sorting receptors. These glycosidases and transferases work in concert with resident secretory pathway carbohydrate-binding proteins to form a network that assists in the maturation and trafficking of both native and aberrant glycoproteins within the cell.
Collapse
Affiliation(s)
- Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
166
|
Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, Kam J, Staropoli I, Crescenzo-Chaigne B, Escriou N, van der Werf S, Yuen KY, Altmeyer R. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol 2005; 86:1423-1434. [PMID: 15831954 DOI: 10.1099/vir.0.80671-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Post-translational modifications and correct subcellular localization of viral structural proteins are prerequisites for assembly and budding of enveloped viruses. Coronaviruses, like the severe acute respiratory syndrome-associated virus (SARS-CoV), bud from the endoplasmic reticulum-Golgi intermediate compartment. In this study, the subcellular distribution and maturation of SARS-CoV surface proteins S, M and E were analysed by using C-terminally tagged proteins. As early as 30 min post-entry into the endoplasmic reticulum, high-mannosylated S assembles into trimers prior to acquisition of complex N-glycans in the Golgi. Like S, M acquires high-mannose N-glycans that are subsequently modified into complex N-glycans in the Golgi. The N-glycosylation profile and the absence of O-glycosylation on M protein relate SARS-CoV to the previously described group 1 and 3 coronaviruses. Immunofluorescence analysis shows that S is detected in several compartments along the secretory pathway from the endoplasmic reticulum to the plasma membrane while M predominantly localizes in the Golgi, where it accumulates, and in trafficking vesicles. The E protein is not glycosylated. Pulse-chase labelling and confocal microscopy in the presence of protein translation inhibitor cycloheximide revealed that the E protein has a short half-life of 30 min. E protein is found in bright perinuclear patches colocalizing with endoplasmic reticulum markers. In conclusion, SARS-CoV surface proteins S, M and E show differential subcellular localizations when expressed alone suggesting that additional cellular or viral factors might be required for coordinated trafficking to the virus assembly site in the endoplasmic reticulum-Golgi intermediate compartment.
Collapse
Affiliation(s)
- Béatrice Nal
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong, China
| | - Cheman Chan
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong, China
| | - Francois Kien
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong, China
| | - Lewis Siu
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong, China
| | - Jane Tse
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong, China
| | - Kid Chu
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong, China
| | - Jason Kam
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong, China
| | - Isabelle Staropoli
- Unité d'Immunologie Virale, Institut Pasteur, 25 rue du Dr Roux, Paris, France
| | | | - Nicolas Escriou
- Unité de Génétique Moléculaire des Virus Respiratoires, Institut Pasteur, 25 rue du Dr Roux, Paris, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus Respiratoires, Institut Pasteur, 25 rue du Dr Roux, Paris, France
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ralf Altmeyer
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong, China
| |
Collapse
|
167
|
Zhang B, Kaufman RJ, Ginsburg D. LMAN1 and MCFD2 form a cargo receptor complex and interact with coagulation factor VIII in the early secretory pathway. J Biol Chem 2005; 280:25881-6. [PMID: 15886209 DOI: 10.1074/jbc.m502160200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in LMAN1 (ERGIC-53) and MCFD2 are the causes of a human genetic disorder, combined deficiency of coagulation factor V and factor VIII. LMAN1 is a type 1 transmembrane protein with homology to mannose-binding lectins. MCFD2 is a soluble EF-hand-containing protein that is retained in the endoplasmic reticulum through its interaction with LMAN1. We showed that endogenous LMAN1 and MCFD2 are present primarily in complex with each other with a 1:1 stoichiometry, although MCFD2 is not required for oligomerization of LMAN1. Using a cross-linking-immunoprecipitation assay, we detected a specific interaction of both LMAN1 and MCFD2 with factor VIII, with the B domain as the most likely site of interaction. We also present evidence that this interaction is independent of the glycosylation state of factor VIII but requires native calcium concentration in the endoplasmic reticulum. The interaction of MCFD2 with factor VIII appeared to be independent of LMAN1-MCFD2 complex formation. These results suggest that LMAN1 and MCFD2 form a cargo receptor complex and that the primary sorting signals residing in the B domain direct the binding of factor VIII to LMAN1-MCFD2 through calcium-dependent protein-protein interactions. MCFD2 may function to specifically recruit factor V and factor VIII to sites of transport vesicle budding within the endoplasmic reticulum lumen.
Collapse
Affiliation(s)
- Bin Zhang
- Life Sciences Institute, the Departments of Biological Chemistry, Internal Medicine, Human Genetics Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
168
|
Stephens DJ, Pepperkok R. Differential effects of a GTP-restricted mutant of Sar1p on segregation of cargo during export from the endoplasmic reticulum. J Cell Sci 2005; 117:3635-44. [PMID: 15252131 DOI: 10.1242/jcs.01269] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Export of cargo from the endoplasmic reticulum (ER) is the first membrane trafficking step in the secretory pathway. To date, all cargo proteins appear to use a common set of machinery for the initial stages of export, namely the COPII coat complex. Recent data from both yeast and mammalian systems have emerged suggesting that specific cargoes could be sorted from one another at the point of exit from the endoplasmic reticulum or immediately afterwards. Here, we have examined the mechanisms used for export of different types of cargo molecule from the endoplasmic reticulum. All cargoes examined utilise the COPII machinery, but specific differences are seen in the accumulation of cargo into ER-derived pre-budding complexes following expression of a GTP-restricted mutant of the Sar1p GTPase. Glycosylphosphatidylinositol (GPI)-anchored GFP is seen to be restricted to the ER under these conditions whereas other cargoes, including ts045-G and lumFP accumulate in pre-budding complexes. Following exit, GPI-FP, lumFP and ts045-G-FP all travel to the Golgi in the same vesicular tubular clusters (VTCs). These data show a differential requirement for efficient GTP hydrolysis by the Sar1p GTPase in export of cargo from the ER.
Collapse
Affiliation(s)
- David J Stephens
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
169
|
Nyfeler B, Michnick SW, Hauri HP. Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci U S A 2005; 102:6350-5. [PMID: 15849265 PMCID: PMC1084318 DOI: 10.1073/pnas.0501976102] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The secretory pathway is composed of membrane compartments specialized in protein folding, modification, transport, and sorting. Numerous transient protein-protein interactions guide the transport-competent proteins through the secretory pathway. Here we have adapted the yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) to detect protein-protein interactions in the secretory pathway of living cells. Fragments of YFP were fused to the homooligomeric cargo-receptor lectin endoplasmic reticulum Golgi intermediate compartment (ERGIC)-53, to the ERGIC-53-interacting multi-coagulation factor deficiency protein MCFD2, and to ERGIC-53's cargo glycoprotein cathepsin Z. YFP PCA analysis revealed the oligomerization of ERGIC-53 and its interaction with MCFD2, as well as its lectin-mediated interaction with cathepsin Z. Mutation of the lectin domain of ERGIC-53 selectively decreased YFP complementation with cathepsin Z. Using YFP PCA, we discovered a carbohydrate-mediated interaction between ERGIC-53 and cathepsin C. We conclude that YFP PCA can detect weak and transient protein interactions in the secretory pathway and hence is a powerful approach to study luminal processes involved in protein secretion. The study extends the application of PCA to carbohydrate-mediated protein-protein interactions of low affinity.
Collapse
Affiliation(s)
- Beat Nyfeler
- Department of Pharmacology and Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
170
|
Watson P, Stephens DJ. ER-to-Golgi transport: form and formation of vesicular and tubular carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:304-15. [PMID: 15979504 DOI: 10.1016/j.bbamcr.2005.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/22/2005] [Accepted: 03/07/2005] [Indexed: 11/24/2022]
Abstract
The transport of proteins and lipids between the endoplasmic reticulum and Golgi apparatus is initiated by the collection of secretory cargo from within the lumen of the endoplasmic reticulum. Subsequently, transport carriers are formed that bud from this membrane and are transported to, and subsequently merge with, the Golgi. The principle driving force behind the budding process is the multi-subunit coat protein complex, COPII. A considerable amount of information is now available regarding the molecular mechanisms by which COPII components operate together to drive cargo selection and transport carrier formation. In contrast, the precise nature of the transport carriers formed is still a matter of considerable debate. Vesicular and tubular carriers have been characterized that are, or in other cases are not, coated with the COPII complex. Here, we seek to integrate much of the data surrounding this topic and try to understand the mechanisms by which vesicular and/or tubular carriers might be generated.
Collapse
Affiliation(s)
- Peter Watson
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
171
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1314] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
172
|
Lee MCS, Miller EA, Goldberg J, Orci L, Schekman R. Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 2005; 20:87-123. [PMID: 15473836 DOI: 10.1146/annurev.cellbio.20.010403.105307] [Citation(s) in RCA: 686] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endoplasmic reticulum (ER) and the Golgi comprise the first two steps in protein secretion. Vesicular carriers mediate a continuous flux of proteins and lipids between these compartments, reflecting the transport of newly synthesized proteins out of the ER and the retrieval of escaped ER residents and vesicle machinery. Anterograde and retrograde transport is mediated by distinct sets of cytosolic coat proteins, the COPII and COPI coats, respectively, which act on the membrane to capture cargo proteins into nascent vesicles. We review the mechanisms that govern coat recruitment to the membrane, cargo capture into a transport vesicle, and accurate delivery to the target organelle.
Collapse
Affiliation(s)
- Marcus C S Lee
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | | | | | | | | |
Collapse
|
173
|
Appenzeller-Herzog C, Nyfeler B, Burkhard P, Santamaria I, Lopez-Otin C, Hauri HP. Carbohydrate- and conformation-dependent cargo capture for ER-exit. Mol Biol Cell 2005; 16:1258-67. [PMID: 15635097 PMCID: PMC551490 DOI: 10.1091/mbc.e04-08-0708] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Some secretory proteins leave the endoplasmic reticulum (ER) by a receptor-mediated cargo capture mechanism, but the signals required for the cargo-receptor interaction are largely unknown. Here, we describe a novel targeting motif that is composed of a high-mannose type oligosaccharide intimately associated with a surface-exposed peptide beta-hairpin loop. The motif accounts for lectin ERGIC-53-assisted ER-export of the lyososomal enzyme procathepsin Z. The second oligosaccharide chain of procathepsin Z exhibits no binding activity for ERGIC-53, illustrating the selective lectin properties of ERGIC-53. Our data suggest that the conformation-based motif is only present in fully folded procathepsin Z and that its recognition by ERGIC-53 reflects a quality control mechanism that acts complementary to the primary folding machinery in the ER. A similar oligosaccharide/beta-hairpin loop structure is present in cathepsin C, another cargo of ERGIC-53, suggesting the general nature of this ER-exit signal. To our knowledge this is the first documentation of an ER-exit signal in soluble cargo in conjunction with its decoding by a transport receptor.
Collapse
|
174
|
Otte S, Barlowe C. Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles. Nat Cell Biol 2004; 6:1189-94. [PMID: 15516922 DOI: 10.1038/ncb1195] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 10/13/2004] [Indexed: 11/09/2022]
Abstract
Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde transport. Mechanisms of bulk-flow, ER-retention and receptor-mediated export have been suggested to operate during this transport step, although these mechanisms are poorly understood. In yeast, there is evidence to suggest that Erv29p functions as a transmembrane receptor for the export of certain soluble cargo proteins including glycopro-alpha-factor (gpalphaf), the precursor of alpha-factor mating pheromone. Here we identify a hydrophobic signal within the pro-region of gpalphaf that is necessary for efficient packaging into COPII vesicles and for binding to Erv29p. When fused to Kar2p, an ER-resident protein, the pro-region sorting signal was sufficient to direct Erv29p-dependent export of the fusion protein into COPII vesicles. These findings indicate that specific motifs within soluble secretory proteins function in receptor-mediated export from the ER. Moreover, positive sorting signals seem to predominate over potential ER-retention mechanisms that may operate in localizing ER-resident proteins such as Kar2p.
Collapse
Affiliation(s)
- Stefan Otte
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
175
|
Abstract
From a process involved in cell wall synthesis in archaea and some bacteria, N-linked glycosylation has evolved into the most common covalent protein modification in eukaryotic cells. The sugars are added to nascent proteins as a core oligosaccharide unit, which is then extensively modified by removal and addition of sugar residues in the endoplasmic reticulum (ER) and the Golgi complex. It has become evident that the modifications that take place in the ER reflect a spectrum of functions related to glycoprotein folding, quality control, sorting, degradation, and secretion. The glycans not only promote folding directly by stabilizing polypeptide structures but also indirectly by serving as recognition "tags" that allow glycoproteins to interact with a variety of lectins, glycosidases, and glycosyltranferases. Some of these (such as glucosidases I and II, calnexin, and calreticulin) have a central role in folding and retention, while others (such as alpha-mannosidases and EDEM) target unsalvageable glycoproteins for ER-associated degradation. Each residue in the core oligosaccharide and each step in the modification program have significance for the fate of newly synthesized glycoproteins.
Collapse
Affiliation(s)
- Ari Helenius
- Institute of Biochemistry1 Swiss Federal Institute of Technology Zurich, Zurich 8093, Switzerland.
| | | |
Collapse
|
176
|
Spatuzza C, Renna M, Faraonio R, Cardinali G, Martire G, Bonatti S, Remondelli P. Heat Shock Induces Preferential Translation of ERGIC-53 and Affects Its Recycling Pathway. J Biol Chem 2004; 279:42535-44. [PMID: 15292203 DOI: 10.1074/jbc.m401860200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERGIC-53 is a lectin-like transport receptor protein, which recirculates between the ER and the Golgi complex and is required for the intracellular transport of a restricted number of glycoproteins. We show in this article that ERGIC-53 accumulates during the heat shock response. However, at variance with the unfolded protein response, which results in enhanced transcription of ERGIC-53 mRNA, heat shock leads only to enhanced translation of ERGIC-53 mRNA. In addition, the half-life of the protein does not change during heat shock. Therefore, distinct signal pathways of the cell stress response modulate the ERGIC-53 protein level. Heat shock also affects the recycling pathway of ERGIC-53. The protein rapidly redistributes in a more peripheral area of the cell, in a vesicular compartment that has a lighter sedimentation density on sucrose gradient in comparison to the compartment that contains the majority of ERGIC-53 at 37 degrees C. This effect is specific, as no apparent reorganization of the endoplasmic reticulum, intermediate compartment and Golgi complex is morphologically detectable in the cells exposed to heat shock. Moreover, the anterograde transport of two unrelated reporter proteins is not affected. Interestingly, MCFD2, which interacts with ERGIC-53 to form a complex required for the ER-to-Golgi transport of specific proteins, is regulated similarly to ERGIC-53 in response to cell stress. These results support the view that ERGIC-53 alone, or in association with MCFD2, plays important functions during cellular response to stress conditions.
Collapse
MESH Headings
- 5' Untranslated Regions
- Base Sequence
- Biological Transport
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/metabolism
- Cell Line
- Centrifugation, Density Gradient
- Electrophoresis, Polyacrylamide Gel
- Endoplasmic Reticulum/metabolism
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation
- Genes, Reporter
- Genistein/pharmacology
- Glycoproteins/metabolism
- Golgi Apparatus/metabolism
- Hot Temperature
- Humans
- Immunoblotting
- Immunoprecipitation
- Lectins/metabolism
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/physiology
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Microscopy, Electron
- Microscopy, Fluorescence
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- Quercetin/pharmacology
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Sucrose/pharmacology
- Temperature
- Time Factors
- Transcriptional Activation
- Transfection
- Vesicular Transport Proteins
Collapse
Affiliation(s)
- Carmen Spatuzza
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, I-80131, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
177
|
Malkus P, Graham LA, Stevens TH, Schekman R. Role of Vma21p in assembly and transport of the yeast vacuolar ATPase. Mol Biol Cell 2004; 15:5075-91. [PMID: 15356264 PMCID: PMC524777 DOI: 10.1091/mbc.e04-06-0514] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae vacuolar H+-ATPase (V-ATPase) is a multisubunit complex composed of a peripheral membrane sector (V1) responsible for ATP hydrolysis and an integral membrane sector (V0) required for proton translocation. Biogenesis of V0 requires an endoplasmic reticulum (ER)-localized accessory factor, Vma21p. We found that in vma21Delta cells, the major proteolipid subunit of V0 failed to interact with the 100-kDa V0 subunit, Vph1p, indicating that Vma21p is necessary for V0 assembly. Immunoprecipitation of Vma21p from wild-type membranes resulted in coimmunoprecipitation of all five V0 subunits. Analysis of vmaDelta strains showed that binding of V0 subunits to Vma21p was mediated by the proteolipid subunit Vma11p. Although Vma21p/proteolipid interactions were independent of Vph1p, Vma21p/Vph1p association was dependent on all other V0 subunits, indicating that assembly of V0 occurs in a defined sequence, with Vph1p recruitment into a Vma21p/proteolipid/Vma6p complex representing the final step. An in vitro assay for ER export was used to demonstrate preferential packaging of the fully assembled Vma21p/proteolipid/Vma6p/Vph1p complex into COPII-coated transport vesicles. Pulse-chase experiments showed that the interaction between Vma21p and V0 was transient and that Vma21p/V0 dissociation was concomitant with V0/V1 assembly. Blocking ER export in vivo stabilized the interaction between Vma21p and V0 and abrogated assembly of V0/V1. Although a Vma21p mutant lacking an ER-retrieval signal remained associated with V0 in the vacuole, this interaction did not affect the assembly of vacuolar V0/V1 complexes. We conclude that Vma21p is not involved in regulating the interaction between V0 and V1 sectors, but that it has a crucial role in coordinating the assembly of V0 subunits and in escorting the assembled V0 complex into ER-derived transport vesicles.
Collapse
Affiliation(s)
- Per Malkus
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
178
|
Zhang B, Ginsburg D. Familial multiple coagulation factor deficiencies: new biologic insight from rare genetic bleeding disorders. J Thromb Haemost 2004; 2:1564-72. [PMID: 15333032 DOI: 10.1111/j.1538-7836.2004.00857.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combined deficiency of factor (F)V and FVIII (F5F8D) and combined deficiency of vitamin K-dependent clotting factors (VKCFD) comprise the vast majority of reported cases of familial multiple coagulation factor deficiencies. Recently, significant progress has been made in understanding the molecular mechanisms underlying these disorders. F5F8D is caused by mutations in two different genes (LMAN1 and MCFD2) that encode components of a stable protein complex. This complex is localized to the secretory pathway of the cell and likely functions in transporting newly synthesized FV and FVIII, and perhaps other proteins, from the ER to the Golgi. VKCFD is either caused by mutations in the gamma-carboxylase gene or in a recently identified gene encoding the vitamin K epoxide reductase. These two proteins are essential components of the vitamin K dependent carboxylation reaction. Deficiency in either protein leads to under-carboxylation and reduced activities of all the vitamin K-dependent coagulation factors, as well as several other proteins. The multiple coagulation factor deficiencies provide a notable example of important basic biological insight gained through the study of rare human diseases.
Collapse
Affiliation(s)
- B Zhang
- Department of Internal Medicine and Human Genetics, University of Michigan, Ann Arbor, MI 48109-0650, USA
| | | |
Collapse
|
179
|
Breuza L, Halbeisen R, Jenö P, Otte S, Barlowe C, Hong W, Hauri HP. Proteomics of endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membranes from brefeldin A-treated HepG2 cells identifies ERGIC-32, a new cycling protein that interacts with human Erv46. J Biol Chem 2004; 279:47242-53. [PMID: 15308636 DOI: 10.1074/jbc.m406644200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cycling proteins play important roles in the organization and function of the early secretory pathway by participating in membrane traffic and selective transport of cargo between the endoplasmic reticulum (ER), the intermediate compartment (ERGIC), and the Golgi. To identify new cycling proteins, we have developed a novel procedure for the purification of ERGIC membranes from HepG2 cells treated with brefeldin A, a drug known to accumulate cycling proteins in the ERGIC. Membranes enriched 110-fold over the homogenate for ERGIC-53 were obtained and analyzed by mass spectrometry. Major proteins corresponded to established and putative cargo receptors and components mediating protein maturation and membrane traffic. Among the uncharacterized proteins, a 32-kDa protein termed ERGIC-32 is a novel cycling membrane protein with sequence homology to Erv41p and Erv46p, two proteins enriched in COPII vesicles of yeast. ERGIC-32 localizes to the ERGIC and partially colocalizes with the human homologs of Erv41p and Erv46p, which mainly localize to the cis-Golgi. ERGIC-32 interacts with human Erv46 (hErv46) as revealed by covalent cross-linking and mistargeting experiments, and silencing of ERGIC-32 by small interfering RNAs increases the turnover of hErv46. We propose that ERGIC-32 functions as a modulator of the hErv41-hErv46 complex by stabilizing hErv46. Our novel approach for the isolation of the ERGIC from BFA-treated cells may ultimately lead to the identification of all proteins rapidly cycling early in the secretory pathway.
Collapse
Affiliation(s)
- Lionel Breuza
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
180
|
Schülein R. The early stages of the intracellular transport of membrane proteins: clinical and pharmacological implications. Rev Physiol Biochem Pharmacol 2004; 151:45-91. [PMID: 15103508 DOI: 10.1007/s10254-004-0022-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intracellular transport mechanisms ensure that integral membrane proteins are delivered to their correct subcellular compartments. Efficient intracellular transport is a prerequisite for the establishment of both cell architecture and function. In the past decade, transport processes of proteins have also drawn the attention of clinicians and pharmacologists since many diseases have been shown to be caused by transport-deficient proteins. Membrane proteins residing within the plasma membrane are transported via the secretory (exocytotic) pathway. The general transport routes of the secretory pathway are well established. The transport of membrane proteins starts with their integration into the ER membrane. The ribosomes synthesizing membrane proteins are targeted to the ER membrane, and the nascent chains are co-translationally integrated into the bilayer, i.e., they are inserted while their synthesis is in progress. During ER insertion, the orientation (topology) of the proteins in the membrane is determined. Proteins are folded, and their folding state is checked by a quality control system that allows only correctly folded forms to leave the ER. Misfolded or incompletely folded forms are retained, transported back to the cytosol and finally subjected to proteolysis. Correctly folded proteins are transported in the membranes of vesicles through the ER/Golgi intermediate compartment (ERGIC) and the individual compartments of the Golgi apparatus ( cis, medial, trans) to the plasma membrane. In this review, the current knowledge of the first stages of the intracellular trafficking of membrane proteins will be summarized. This "early secretory pathway" includes the processes of ER insertion, topology determination, folding, quality control and the transport to the Golgi apparatus. Mutations in the genes of membrane proteins frequently lead to misfolded forms that are recognized and retained by the quality control system. Such mutations may cause inherited diseases like cystic fibrosis or retinitis pigmentosa. In the second part of this review, the clinical implications of the early secretory pathway will be discussed. Finally, new pharmacological strategies to rescue misfolded and transport-defective membrane proteins will be outlined.
Collapse
Affiliation(s)
- R Schülein
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
181
|
Abstract
Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles. This transport occurs by means of vesicular intermediates that bud from a donor compartment and fuse with an acceptor compartment. Vesicle budding and cargo selection are mediated by protein coats, while vesicle targeting and fusion depend on a machinery that includes the SNARE proteins. Precise regulation of these two aspects of vesicular transport ensures efficient cargo transfer while preserving organelle identity.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
182
|
Appenzeller-Herzog C, Roche AC, Nufer O, Hauri HP. pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J Biol Chem 2004; 279:12943-50. [PMID: 14718532 DOI: 10.1074/jbc.m313245200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recycling mannose lectin ERGIC-53 operates as a transport receptor by mediating efficient endoplasmic reticulum (ER) export of some secretory glycoproteins. Binding of cargo to ERGIC-53 in the ER requires Ca2+. Cargo release occurs in the ERGIC, but the molecular mechanism is unknown. Here we report efficient binding of purified ERGIC-53 to immobilized mannose at pH 7.4, the pH of the ER, but not at slightly lower pH. pH sensitivity of the lectin was more prominent when Ca2+ concentrations were low. A conserved histidine in the center of the carbohydrate recognition domain was required for lectin activity suggesting it may serve as a molecular pH/Ca2+ sensor. Acidification of cells inhibited the association of ERGIC-53 with the known cargo cathepsin Z-related protein and dissociation of this glycoprotein in the ERGIC was impaired by organelle neutralization that did not impair the transport of a control protein. The results elucidate the molecular mechanism underlying reversible lectin/cargo interaction and establish the ERGIC as the earliest low pH site of the secretory pathway.
Collapse
|
183
|
Küry P, Abankwa D, Kruse F, Greiner-Petter R, Müller HW. Gene expression profiling reveals multiple novel intrinsic and extrinsic factors associated with axonal regeneration failure. Eur J Neurosci 2004; 19:32-42. [PMID: 14750961 DOI: 10.1111/j.1460-9568.2004.03112.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In contrast to the regeneration-competent peripheral nervous system (PNS), lesions of nerve tracts within the central nervous system (CNS) lead to chronically impaired neuronal connections. We have analysed changes in gene expression patterns occurring as a consequence of postcommissural fornix transection at a time when spontaneous axonal growth has ceased at the lesion site. This was done in order to describe both extrinsic and intrinsic determinants of regeneration failure. Using a genomic approach we have identified a number of so far undetected factors such as bamacan and semaphorin 6B, which relate to chronic axonal growth arrest and therefore are promising candidates for lesion-induced axonal growth inhibitors. In addition, we observed that within the subiculum, where the fornix axons originate, neuronal Oct-6 was induced and NG2 was down-regulated, indicating that axotomized neurons as well as glial cells react at the level of gene expression to remote axotomy.
Collapse
Affiliation(s)
- Patrick Küry
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
184
|
Velloso LM, Svensson K, Pettersson RF, Lindqvist Y. The Crystal Structure of the Carbohydrate-recognition Domain of the Glycoprotein Sorting Receptor p58/ERGIC-53 Reveals an Unpredicted Metal-binding Site and Conformational Changes Associated with Calcium Ion Binding. J Mol Biol 2003; 334:845-51. [PMID: 14643651 DOI: 10.1016/j.jmb.2003.10.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
p58/ERGIC-53 is a calcium-dependent animal lectin that acts as a cargo receptor, binding to a set of glycoproteins in the endoplasmic reticulum (ER) and transporting them to the Golgi complex. It is similar in structure to calcium-dependent leguminous lectins. We have determined the structure of the carbohydrate-recognition domain of p58/ERGIC-53 in its calcium-bound form. The structure reveals localized but large conformational changes in relation to the previously determined metal ion-free structure, mapping mostly to the ligand-binding site. It reveals the presence of two calcium ion-binding sites located 6A apart, one of which has no equivalent in the plant lectins. The second metal ion-binding site present in that class of lectins, binding Mn(2+), is absent from p58/ERGIC-53. The absence of a short loop in the ligand-binding site in this protein suggests that it has adapted to optimally bind the high-mannose Man(8)(GlcNAc)(2) glycan common to glycoproteins at the ER exit stage.
Collapse
Affiliation(s)
- Lucas M Velloso
- Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
185
|
Ben-Zeev O, Doolittle MH. Maturation of hepatic lipase. Formation of functional enzyme in the endoplasmic reticulum is the rate-limiting step in its secretion. J Biol Chem 2003; 279:6171-81. [PMID: 14630921 DOI: 10.1074/jbc.m310051200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among three lipases in the lipase gene family, hepatic lipase (HL), lipoprotein lipase, and pancreatic lipase, HL exhibits the lowest intracellular specific activity (i.e. minimal amounts of catalytic activity accompanied by massive amounts of inactive lipase mass in the endoplasmic reticulum (ER)). In addition, HL has a distinctive sedimentation profile, where the inactive mass overlaps the region containing active dimeric HL and trails into progressively larger molecular forms. Eventually, at least half of the HL inactive mass in the ER reaches an active, dimeric conformation (t(1/2) = 2 h) and is rapidly secreted. The remaining inactive mass is degraded. HL maturation occurs in the ER and is strongly dependent on binding to calnexin in the early co-/post-translational stages. Later stages of HL maturation occur without calnexin assistance, although inactive HL at all stages appears to be associated in distinct complexes with other ER proteins. Thus, unlike other lipases in the gene family, HL maturation is the rate-limiting step in its secretion as a functional enzyme.
Collapse
Affiliation(s)
- Osnat Ben-Zeev
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | |
Collapse
|
186
|
Cunningham MA, Pipe SW, Zhang B, Hauri HP, Ginsburg D, Kaufman RJ. LMAN1 is a molecular chaperone for the secretion of coagulation factor VIII. J Thromb Haemost 2003; 1:2360-7. [PMID: 14629470 DOI: 10.1046/j.1538-7836.2003.00415.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Combined deficiency of both coagulation factors (F)V and VIII is a rare autosomal recessive bleeding disorder caused by null expression of LMAN1 (previously termed ERGIC-53) in a majority of affected individuals. Previously, a requirement for a functional LMAN1 cycling pathway between the ER and Golgi was demonstrated for efficient secretion of FV and FVIII (Moussalli et al. J Biol Chem 1999; 274: 32569), however, the molecular nature of the interaction between LMAN1 and its cargo was not characterized. Using coimmunoprecipitation of LMAN1 and FVIII from transfected HeLa and COS-1 cells, we demonstrate an interaction between LMAN1 and FVIII in vivo. The interaction was mediated via high mannose-containing asparagine-linked oligosaccharides that are densely situated within the B domain of FVIII, as well as protein-protein interactions. These results are interpreted based on the recent determination of the crystal structure of the carbohydrate recognition domain of LMAN1.
Collapse
Affiliation(s)
- M A Cunningham
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0650, USA
| | | | | | | | | | | |
Collapse
|
187
|
Nufer O, Kappeler F, Guldbrandsen S, Hauri HP. ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. J Cell Sci 2003; 116:4429-40. [PMID: 13130098 DOI: 10.1242/jcs.00759] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective export of proteins from the endoplasmic reticulum (ER) requires transport signals that have not been fully characterized. Here, we provide the first complete map of ER export determinants of a type I membrane protein, ERGIC-53, that cycles in the early secretory pathway. ER export requires a phenylalanine motif at the C-terminus, known to mediate coat protein II (COPII) interaction, that is assisted by a glutamine in the cytoplasmic domain. Disulfide bond-stabilized oligomerization is also required. Efficient hexamerization depends on the presence of a polar and two aromatic residues in the transmembrane domain (TMD). Oligomerization becomes independent on disulfide bonds when TMD hydrophobicity is increased. ER export is also influenced by TMD length, 21 amino acids being most efficient. When transferred to a signal-less construct, the established targeting motifs reconstitute full transport activity. The results suggest an ER-export mechanism in which transmembrane and luminal determinants mediate oligomerization required for efficient recruitment of ERGIC-53 into budding vesicles via the C-terminal COPII-binding phenylalanine motif.
Collapse
Affiliation(s)
- Oliver Nufer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
188
|
Grunwald ME, Kaplan JM. Mutations in the ligand-binding and pore domains control exit of glutamate receptors from the endoplasmic reticulum in C. elegans. Neuropharmacology 2003; 45:768-76. [PMID: 14529715 DOI: 10.1016/s0028-3908(03)00274-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The abundance of ion channels and neurotransmitter receptors in the plasma membrane is limited by the efficiency of protein folding and subunit assembly in the endoplasmic reticulum (ER). The ER has a quality-control system for monitoring nascent proteins, which prevents incompletely folded and assembled proteins from being transported from the ER. Chaperone proteins identify unfolded and misassembled proteins in the ER via retention motifs that are normally buried at intersubunit contacts or via carbohydrate residues that are attached to misfolded domains. Here, we examined the trafficking of a C. elegans non-NMDA glutamate receptor (GLR-1). We show that mutations in the pore domain (predicted to block ion permeation) and mutations in the ligand-binding domain (predicted to block glutamate binding) both caused a dramatic reduction in the synaptic abundance of GLR-1 and increased retention of GLR-1 in the ER. These results suggest that the structural integrity of the ligand-binding site and the pore domain of GLR-1 are monitored in the ER during the process of quality control.
Collapse
Affiliation(s)
- Maria E Grunwald
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, 50 Blossom St., Wellman 8, Boston, MA 02114, USA
| | | |
Collapse
|
189
|
Shimada O, Hara-Kuge S, Yamashita K, Tosaka-Shimada H, Yanchao L, Einan L, Atsumi S, Ishikawa H. Localization of VIP36 in the post-Golgi secretory pathway also of rat parotid acinar cells. J Histochem Cytochem 2003; 51:1057-63. [PMID: 12871987 DOI: 10.1177/002215540305100809] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
VIP36 (36-kD vesicular integral membrane protein), originally purified from Madin-Darby canine kidney (MDCK) epithelial cells, belongs to a family of animal lectins and may act as a cargo receptor. To understand its role in secretory processes, we performed morphological analysis of the rat parotid gland. Immunoelectron microscopy provided evidence that endogenous VIP36 is localized in the trans-Golgi network, on immature granules, and on mature secretory granules in acinar cells. Double-staining immunofluorescence experiments confirmed that VIP36 and amylase co-localized in the apical regions of the acinar cells. This is the first study to demonstrate that endogenous VIP36 is involved in the post-Golgi secretory pathway, suggesting that VIP36 plays a role in trafficking and sorting of secretory and/or membrane proteins during granule formation.
Collapse
Affiliation(s)
- Osamu Shimada
- Department of Anatomy, Yamanashi University School of Medicine, Yamanashi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Sato K, Nakano A. Oligomerization of a cargo receptor directs protein sorting into COPII-coated transport vesicles. Mol Biol Cell 2003; 14:3055-63. [PMID: 12857885 PMCID: PMC165697 DOI: 10.1091/mbc.e03-02-0115] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in vesicles coated with coat protein complex II (COPII). The incorporation of certain transport molecules (cargo) into the COPII vesicles is thought to be mediated by cargo receptors. Here we show that Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Exit of Emp46p from the ER was saturable and dependent on the expression level of Emp47p. Emp46p binding to Emp47p occurs in the ER through the coiled-coil region in the luminal domains of both Emp47p and Emp46p, and dissociation occurs in the Golgi. Further, this coiled-coil region is also required for Emp47p to form an oligomeric complex of itself in the ER, which is essential for exit of Emp47p from the ER. Our results suggest that Emp47p is a receptor protein for Emp46p that allows for the selective transport of this protein, and this event involves receptor oligomerization.
Collapse
Affiliation(s)
- Ken Sato
- Molecular Membrane Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | | |
Collapse
|
191
|
Abstract
COP I and COP II coat proteins direct protein and membrane trafficking in between early compartments of the secretory pathway in eukaryotic cells. These coat proteins perform the dual, essential tasks of selecting appropriate cargo proteins and deforming the lipid bilayer of appropriate donor membranes into buds and vesicles. COP II proteins are required for selective export of newly synthesized proteins from the endoplasmic reticulum (ER). COP I proteins mediate a retrograde transport pathway that selectively recycles proteins from the cis-Golgi complex to the ER. Additionally, COP I coat proteins have complex functions in intra-Golgi trafficking and in maintaining the normal structure of the mammalian interphase Golgi complex.
Collapse
Affiliation(s)
- Rainer Duden
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK.
| |
Collapse
|
192
|
Paulsson K, Wang P. Chaperones and folding of MHC class I molecules in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:1-12. [PMID: 12788224 DOI: 10.1016/s0167-4889(03)00048-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review we discuss the influence of chaperones on the general phenomena of folding as well as on the specific folding of an individual protein, MHC class I. MHC class I maturation is a highly sophisticated process in which the folding machinery of the endoplasmic reticulum (ER) is heavily involved. Understanding the MHC class I maturation per se is important since peptides loaded onto MHC class I molecules are the base for antigen presentation generating immune responses against virus, intracellular bacteria as well as tumours. This review discusses the early stages of MHC class I maturation regarding BiP and calnexin association, and differences in MHC class I heavy chain (HC) interaction with calnexin and calreticulin are highlighted. Late stage MHC class I maturation with focus on the dedicated chaperone tapasin is also discussed.
Collapse
Affiliation(s)
- Kajsa Paulsson
- The Institution of Tumour Immunology, Lund University, BMC I12, S-223 62, Lund, Sweden.
| | | |
Collapse
|
193
|
Shimada O, Hara-Kuge S, Yamashita K, Tosaka-Shimada H, Yanchao L, Yongnan L, Atsumi S, Ishikawa H. Clusters of VIP-36-positive vesicles between endoplasmic reticulum and Golgi apparatus in GH3 cells. Cell Struct Funct 2003; 28:155-63. [PMID: 12951436 DOI: 10.1247/csf.28.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vesicular integral membrane protein VIP36 belongs to the family of animal lectins and may act as a cargo receptor trafficking certain glycoproteins in the secretory pathway. Immunoelectron microscopy of GH3 cells provided evidence that endogenous VIP36 is localized mainly in 70-100-nm-diameter uncoated transport vesicles between the exit site on the ER and the neighboring cis-Golgi cisterna. The thyrotrophin-releasing hormone (TRH) stimulation and treatment with actin filament-perturbing agents, cytochalasin D or B or latrunculin-B, caused marked aggregation of the VIP36-positive vesicles and the appearance of a VIP36-positive clustering structure located near the cis-Golgi cisterna. The size of this structure, which comprised conspicuous clusters of VIP36, depended on the TRH concentration. Confocal laser scanning microscopy confirmed the electron microscopically demonstrated distribution and redistribution of VIP36 in these cells. Furthermore, VIP36 colocalized with filamentous actin in the paranuclear Golgi area and its vicinity. This is the first study to show the ultrastructural distribution of VIP36 in the early secretory pathway in GH3 cells. It suggests that actin filaments are involved in glycoprotein transport between the ER and cis-Golgi cisterna by using the lectin VIP36.
Collapse
Affiliation(s)
- Osamu Shimada
- Department of Anatomy, Yamanashi University School of Medicine, 1110 Tamaho-cho, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Nyfeler B, Nufer O, Matsui T, Mori K, Hauri HP. The cargo receptor ERGIC-53 is a target of the unfolded protein response. Biochem Biophys Res Commun 2003; 304:599-604. [PMID: 12727195 DOI: 10.1016/s0006-291x(03)00634-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The accumulation of unfolded proteins in the ER triggers a signaling response known as unfolded protein response (UPR). In yeast the UPR affects several hundred genes that encode ER chaperones and proteins operating at later stages of secretion. In mammalian cells the UPR appears to be more limited to chaperones of the ER and genes assumed to be important after cell recovery from ER stress that are not important for secretion. Here, we report that the mRNA of lectin ERGIC-53, a cargo receptor for the transport of glycoproteins from ER to ERGIC, and of its related protein VIP36 is induced by the known inducers of ER stress, tunicamycin and thapsigargin. In parallel, the rate of synthesis of the ERGIC-53 protein was induced by these agents. The response was due to the UPR since it was also triggered by castanospermine, a specific inducer of UPR, and inhibited by genistein. Thapsigargin-induced upregulation of ERGIC-53 could be fully accounted for by the ATF6 pathway of UPR. The results suggest that in mammalian cells the UPR also affects traffic from and beyond the ER.
Collapse
Affiliation(s)
- Beat Nyfeler
- Department of Pharmacology and Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
195
|
Nufer O, Mitrovic S, Hauri HP. Profile-based data base scanning for animal L-type lectins and characterization of VIPL, a novel VIP36-like endoplasmic reticulum protein. J Biol Chem 2003; 278:15886-96. [PMID: 12609988 DOI: 10.1074/jbc.m211199200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Consensus profiles were established to screen data bases for novel animal L-type lectins. The profiles were generated from linear sequence motifs of the human L-type lectin-like membrane proteins ERGIC-53, ERGL, and VIP36 and by optimal alignment of the entire carbohydrate recognition domain of these proteins. The search revealed numerous orthologous and homologous L-type lectin-like proteins in animals, protozoans, and yeast, as well as the sequence of a novel family member related to VIP36, named VIPL for VIP36-like. Sequence analysis suggests that VIPL is a ubiquitously expressed protein and appeared earlier in evolution than VIP36. The cDNA of VIPL was cloned and expressed in cell culture. VIPL is a high-mannose type I membrane glycoprotein with similar domain organization as VIP36. Unlike VIP36 and ERGIC-53 that are predominantly associated with postendoplasmic reticulum (ER) membranes and cycle in the early secretory pathway, VIPL is a non-cycling resident protein of the ER. Mutagenesis experiments indicate that ER retention of VIPL involves a RKR di-arginine signal. Overexpression of VIPL redistributed ERGIC-53 to the ER without affecting the cycling of the KDEL-receptor and the overall morphology of the early secretory pathway. The results suggest that VIPL may function as a regulator of ERGIC-53.
Collapse
Affiliation(s)
- Oliver Nufer
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
196
|
|
197
|
Orci L, Ravazzola M, Mack GJ, Barlowe C, Otte S. Mammalian Erv46 localizes to the endoplasmic reticulum-Golgi intermediate compartment and to cis-Golgi cisternae. Proc Natl Acad Sci U S A 2003; 100:4586-91. [PMID: 12663859 PMCID: PMC153599 DOI: 10.1073/pnas.0730885100] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast endoplasmic reticulum (ER) vesicle protein Erv46p is a novel membrane protein involved in transport through the early secretory pathway. Investigation of mammalian Erv46 (mErv46) reveals that it is broadly expressed in tissues and protein-secreting cells. By immunofluorescence microscopy, mErv46 displays a crescent-shaped perinuclear staining pattern that is characteristic of the Golgi complex. Quantitative immunoelectron microscopy indicates that mErv46 is restricted to the cis face of the Golgi apparatus and to vesicular tubular structures between the transitional ER and cis-Golgi. Minor amounts of mErv46 reside in ER membranes and later Golgi cisternae. On Brefeldin A treatment, mErv46 redistributes to punctate structures that costain for ERGIC53. Depletion of mErv46 protein by RNA interference caused no apparent structural changes in the intermediate compartment or Golgi complex. These findings place mErv46 in a group of itinerant proteins that cycle between the ER and Golgi compartments such as ERGIC53 and the p24 proteins.
Collapse
Affiliation(s)
- Lelio Orci
- Department of Morphology, University Medical Center, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
198
|
Abstract
The endoplasmic reticulum (ER) has a quality-control system for 'proof-reading' newly synthesized proteins, so that only native conformers reach their final destinations. Non-native conformers and incompletely assembled oligomers are retained, and, if misfolded persistently, they are degraded. As a large fraction of ER-synthesized proteins fail to fold and mature properly, ER quality control is important for the fidelity of cellular functions. Here, we discuss recent progress in understanding the conformation-specific sorting of proteins at the level of ER retention and export.
Collapse
Affiliation(s)
- Lars Ellgaard
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH) Zürich, Hönggerberg, CH - 8093 Zürich, Switzerland
| | | |
Collapse
|
199
|
|
200
|
Schrag JD, Procopio DO, Cygler M, Thomas DY, Bergeron JJM. Lectin control of protein folding and sorting in the secretory pathway. Trends Biochem Sci 2003; 28:49-57. [PMID: 12517452 DOI: 10.1016/s0968-0004(02)00004-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycan moieties are essential for folding, sorting and targeting of glycoproteins through the secretory pathway to various cellular compartments. The molecular mechanisms that underlie these processes, however, are only now coming to light. Recent crystallographic and NMR studies of proteins located in the endoplasmic reticulum (ER), Golgi complex and ER-Golgi intermediate compartment have illuminated their roles in glycoprotein folding and secretion. Calnexin and calreticulin, both ER-resident proteins, have lectin domains that are crucial for their function as chaperones. The crystal structure of the carbohydrate-recognition domain of ER-Golgi intermediate compartment (ERGIC)-53 complements the biochemical and functional characterization of the protein, confirming that a lectin domain is essential for the role of this protein in sorting and transfer of glycoproteins from the ER to the Golgi complex. The lectin domains of calnexin and ERGIC-53 are structurally similar, although there is little primary sequence similarity. By contrast, sequence similarity between ERGIC-53 and vesicular integral membrane protein (VIP36), a Golgi-resident protein, leaves little doubt that a similar lectin domain is central to the transport and/or sorting functions of VIP36. The theme emerging from these studies is that carbohydrate recognition and modification are central to mediation of glycoprotein folding and secretion.
Collapse
Affiliation(s)
- Joseph D Schrag
- Biotechnology Research Institute, NRC of Canada, Montreal, PQ, Canada
| | | | | | | | | |
Collapse
|