151
|
|
152
|
Is a Darwinian taxonomy of animal learning possible? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00055205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
153
|
Editorial Commentary. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00055291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
154
|
Overcoming contextual variables, negative results, and Macphail's null hypothesis. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x0005528x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
155
|
|
156
|
|
157
|
|
158
|
Within-species variations in g: The case of Homo sapiens. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00055035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
159
|
Abstract
In the forty years since the Society for Neuroscience was founded, our understanding of the biology of memory has progressed dramatically. From a historical perspective, one can discern four distinct periods of growth in neurobiological research during that time. Here I use that chronology to chart a personalized and selective course through forty years of extraordinary advances in our understanding of the biology of memory storage.
Collapse
|
160
|
Abstract
Modern theories on memory storage have mainly focused on Hebbian long-term potentiation (LTP), which requires coincident activation of presynaptic and postsynaptic neurons for its induction. In addition to Hebbian LTP, the roles of non-Hebbian plasticity have also been predicted by some neuronal network models. However, still only a few pieces of evidence have been presented for the presence of such plasticity. In this study, we show in mouse hippocampal slices that LTP can be induced by postsynaptic repetitive depolarization alone in the absence of presynaptic inputs. The induction was dependent on voltage-dependent calcium channels instead of NMDA receptors (NMDARs), whereas the expression mechanism was shared with conventional NMDAR-dependent LTP. During the potentiation, the amplitude of spontaneous EPSCs was increased, suggesting a novel neuron-wide nature of this form of LTP. Furthermore, we also successfully induced LTP with trains of action potentials, which supported the possible existence of depolarizing pulse-induced LTP in vivo. Based on these findings, we suggest a model in which neuron-wide LTP works in concert with synapse-specific Hebbian plasticity to help information processing in memory formation.
Collapse
|
161
|
Simons SB, Escobedo Y, Yasuda R, Dudek SM. Regional differences in hippocampal calcium handling provide a cellular mechanism for limiting plasticity. Proc Natl Acad Sci U S A 2009; 106:14080-4. [PMID: 19666491 PMCID: PMC2729023 DOI: 10.1073/pnas.0904775106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Indexed: 01/23/2023] Open
Abstract
Although much is known about the mechanisms underlying synaptic plasticity, the cellular mechanisms that negatively regulate plasticity in some brain regions are considerably less studied. One region where neurons do not reliably express long-term potentiation (LTP) is the CA2 subfield of the hippocampus. Given the connection between synaptic plasticity and increases in postsynaptic [Ca(2+)], and that CA2 neurons express a large number of calcium-regulating proteins, we tested the hypothesis that the relative lack of LTP in CA2 results from differences in the calcium dynamics of these neurons. By measuring calcium-dependent fluorescence transients in dendritic spines, we show that CA2 neurons have smaller action potential-evoked intracellular Ca(2+) transients because of a higher endogenous Ca(2+)-buffering capacity and significantly higher rates of Ca(2+) extrusion when compared with CA1 and CA3 neurons. Perfusion with higher external [Ca(2+)] during induction restores LTP to CA2 neurons, suggesting that they possess the cellular machinery required for plasticity, but that the restriction of postsynaptic [Ca(2+)] limits its expression. Camstatin, an analogue of the calcium-modulating protein Pep-19 strongly expressed in CA2 neurons, blocked LTP and increased Ca(2+) extrusion in CA1 neurons, suggesting a role for extrusion in the regulation of plasticity in CA2. In agreement with this idea, we found that intracellular introduction of a PMCA pump inhibitor (carboxyeosin) allows for the induction of LTP in CA2 neurons. Our results indicate that regulation of postsynaptic [Ca(2+)] through modulation of extrusion and/or buffering regulates expression of LTP in CA2 and potentially other brain regions.
Collapse
Affiliation(s)
- Stephen B. Simons
- Laboratory of Neurobiology, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Yasmin Escobedo
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Ryohei Yasuda
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Serena M. Dudek
- Laboratory of Neurobiology, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| |
Collapse
|
162
|
Abstract
The development of drug addiction progresses along a continuum from acute drug use to compulsive use and drug seeking behavior. Many researchers have focused on identifying the physiological mechanisms involved in drug addiction in order to develop effective pharmacotherapies. Neuroplasticity, the putative mechanism underlying learning and memory, is modified by drugs of abuse and may contribute to the development of the eventual addicted state. Innovative treatments directly targeting these drug-induced changes in brain reward components and circuits may be efficacious in reducing drug use and relapse.
Collapse
Affiliation(s)
- Jason L. Niehaus
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
| | - Nelson D. Cruz-Bermúdez
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
| | - Julie A. Kauer
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
- Department of Neuroscience, Brown University, Providence, Rhode Island
| |
Collapse
|
163
|
Romberg C, Raffel J, Martin L, Sprengel R, Seeburg PH, Rawlins JNP, Bannerman DM, Paulsen O. Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus. Eur J Neurosci 2009; 29:1141-52. [PMID: 19302150 PMCID: PMC2695863 DOI: 10.1111/j.1460-9568.2009.06677.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long-term potentiation (LTP) at hippocampal CA3-CA1 synapses is thought to be mediated, at least in part, by an increase in the postsynaptic surface expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors induced by N-methyl-d-aspartate (NMDA) receptor activation. While this process was originally attributed to the regulated synaptic insertion of GluA1 (GluR-A) subunit-containing AMPA receptors, recent evidence suggests that regulated synaptic trafficking of GluA2 subunits might also contribute to one or several phases of potentiation. However, it has so far been difficult to separate these two mechanisms experimentally. Here we used genetically modified mice lacking the GluA1 subunit (Gria1(-/-) mice) to investigate GluA1-independent mechanisms of LTP at CA3-CA1 synapses in transverse hippocampal slices. An extracellular, paired theta-burst stimulation paradigm induced a robust GluA1-independent form of LTP lacking the early, rapidly decaying component characteristic of LTP in wild-type mice. This GluA1-independent form of LTP was attenuated by inhibitors of neuronal nitric oxide synthase and protein kinase C (PKC), two enzymes known to regulate GluA2 surface expression. Furthermore, the induction of GluA1-independent potentiation required the activation of GluN2B (NR2B) subunit-containing NMDA receptors. Our findings support and extend the evidence that LTP at hippocampal CA3-CA1 synapses comprises a rapidly decaying, GluA1-dependent component and a more sustained, GluA1-independent component, induced and expressed via a separate mechanism involving GluN2B-containing NMDA receptors, neuronal nitric oxide synthase and PKC.
Collapse
Affiliation(s)
- Carola Romberg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Marambaud P, Dreses-Werringloer U, Vingtdeux V. Calcium signaling in neurodegeneration. Mol Neurodegener 2009; 4:20. [PMID: 19419557 PMCID: PMC2689218 DOI: 10.1186/1750-1326-4-20] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/06/2009] [Indexed: 12/16/2022] Open
Abstract
Calcium is a key signaling ion involved in many different intracellular and extracellular processes ranging from synaptic activity to cell-cell communication and adhesion. The exact definition at the molecular level of the versatility of this ion has made overwhelming progress in the past several years and has been extensively reviewed. In the brain, calcium is fundamental in the control of synaptic activity and memory formation, a process that leads to the activation of specific calcium-dependent signal transduction pathways and implicates key protein effectors, such as CaMKs, MAPK/ERKs, and CREB. Properly controlled homeostasis of calcium signaling not only supports normal brain physiology but also maintains neuronal integrity and long-term cell survival. Emerging knowledge indicates that calcium homeostasis is not only critical for cell physiology and health, but also, when deregulated, can lead to neurodegeneration via complex and diverse mechanisms involved in selective neuronal impairments and death. The identification of several modulators of calcium homeostasis, such as presenilins and CALHM1, as potential factors involved in the pathogenesis of Alzheimer's disease, provides strong support for a role of calcium in neurodegeneration. These observations represent an important step towards understanding the molecular mechanisms of calcium signaling disturbances observed in different brain diseases such as Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, North Shore-LIJ, Manhasset, New York 11030, USA.
| | | | | |
Collapse
|
165
|
Singh S, Mistry S, Jefferson S, Davies K, Rothwell J, Williams S, Hamdy S. A magnetic resonance spectroscopy study of brain glutamate in a model of plasticity in human pharyngeal motor cortex. Gastroenterology 2009; 136:417-24. [PMID: 19101557 DOI: 10.1053/j.gastro.2008.10.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/07/2008] [Accepted: 10/30/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Coordinated delivery of peripheral and cortical stimuli (paired associative stimulation [PAS]) has been shown to induce plasticity in limb motor cortex, however, its application in pharyngeal motor cortex and the molecular mechanisms involved in human neuroplasticity remain uncertain. Because neuroplasticity appears to form the basis for functional recovery of digestive functions such as swallowing after brain injury, the aim of this study was to characterize the induction of cortical plasticity in human pharyngeal motor cortex through PAS applied to pharyngeal musculature and investigate the potential role of glutamate in this process. METHODS Fifteen healthy volunteers completed a series of experiments in which cortical excitability was assessed through pharyngeal motor evoked potential amplitudes in response to transcranial magnetic stimulation. The optimal parameters and interhemispheric interactions of PAS in the bilaterally represented pharyngeal system initially were investigated. Cortical glutamate after PAS then was assessed with magnetic resonance spectroscopy. RESULTS The greatest increase in cortical pharyngeal excitability was seen if paired stimuli were separated by 100 ms (F[15,210] = 2.28; P < or = .05). Cortical excitability increased over 2 hours with analogous albeit lesser changes in the contralateral hemisphere. A focal and transient reduction in glutamate was found in the stimulated pharyngeal motor cortex (F[1,12] = 21.9; P = .001), without changes in any other measured brain metabolites. CONCLUSIONS This study shows that PAS-induced plasticity in the human pharyngeal motor system is both timing- and hemisphere-dependent and provides novel evidence for the potential role of glutamate in modulating this effect.
Collapse
Affiliation(s)
- Salil Singh
- Gastrointestinal Science, Salford Royal Hospital, Salford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
166
|
Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM, Weiss JL, Sheng M, Collingridge GL, Cho K. Metabotropic glutamate receptor-mediated LTD involves two interacting Ca(2+) sensors, NCS-1 and PICK1. Neuron 2008; 60:1095-111. [PMID: 19109914 PMCID: PMC3310905 DOI: 10.1016/j.neuron.2008.10.050] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 08/26/2008] [Accepted: 10/29/2008] [Indexed: 11/21/2022]
Abstract
There are two major forms of long-term depression (LTD) of synaptic transmission in the central nervous system that require activation of either N-methyl-D-aspartate receptors (NMDARs) or metabotropic glutamate receptors (mGluRs). In synapses in the perirhinal cortex, we have directly compared the Ca(2+) signaling mechanisms involved in NMDAR-LTD and mGluR-LTD. While both forms of LTD involve Ca(2+) release from intracellular stores, the Ca(2+) sensors involved are different; NMDAR-LTD involves calmodulin, while mGluR-LTD involves the neuronal Ca(2+) sensor (NCS) protein NCS-1. In addition, there is a specific requirement for IP3 and PKC, as well as protein interacting with C kinase (PICK-1) in mGluR-LTD. NCS-1 binds directly to PICK1 via its BAR domain in a Ca(2+)-dependent manner. Furthermore, the NCS-1-PICK1 association is stimulated by activation of mGluRs, but not NMDARs, and introduction of a PICK1 BAR domain fusion protein specifically blocks mGluR-LTD. Thus, NCS-1 plays a distinct role in mGluR-LTD.
Collapse
Affiliation(s)
- Jihoon Jo
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, UK
| | - Seok Heon
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, UK
| | - Myung Jong Kim
- The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gi Hoon Son
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, UK
| | - Yunkyung Park
- Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Jeremy M. Henley
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| | - Jamie L. Weiss
- Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Graham L. Collingridge
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, UK
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
167
|
Zhang XL, Sullivan JA, Moskal JR, Stanton PK. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus. Neuropharmacology 2008; 55:1238-50. [PMID: 18796308 PMCID: PMC2661239 DOI: 10.1016/j.neuropharm.2008.08.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/18/2008] [Accepted: 08/04/2008] [Indexed: 11/30/2022]
Abstract
N-methyl-D-aspartate glutamate receptors (NMDARs) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist d-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD.
Collapse
Affiliation(s)
- Xiao-lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595
| | - John A. Sullivan
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595
| | - Joseph R. Moskal
- The Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60201
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595
- Department of Neurology, New York Medical College, Valhalla, NY, 10595
| |
Collapse
|
168
|
Abstract
The formation of memories relies in part on plastic changes at synapses between neurons. Although the mechanisms of synaptic plasticity have been studied extensively over several decades, many aspects of this process remain controversial. The cellular locus of expression of long-term potentiation (LTP), a major form of synaptic plasticity, is one of the most important unresolved phenomena. In this article, some recent advances in this area made possible by the development of new imaging tools are summarized. These studies have demonstrated that LTP is compound in nature and consists of both presynaptic and postsynaptic components. Some features of presynaptic and postsynaptic changes during compound LTP are also reviewed.
Collapse
Affiliation(s)
- Jay A. Blundon
- Department of Development Neurobiology, St. Jude Children's Research Hospital, Memphis TN
- Neuroscience Program, Department of Biology, Rhodes College, Memphis TN
| | | |
Collapse
|
169
|
Yashiro K, Philpot BD. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 2008; 55:1081-94. [PMID: 18755202 PMCID: PMC2590778 DOI: 10.1016/j.neuropharm.2008.07.046] [Citation(s) in RCA: 501] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 01/26/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) mediate many forms of synaptic plasticity. These tetrameric receptors consist of two obligatory NR1 subunits and two regulatory subunits, usually a combination of NR2A and NR2B. In the neonatal neocortex NR2B-containing NMDARs predominate, and sensory experience facilitates a developmental switch in which NR2A levels increase relative to NR2B. In this review, we clarify the roles of NR2 subunits in synaptic plasticity, and argue that a primary role of this shift is to control the threshold, rather than determining the direction, for modifying synaptic strength. We also discuss recent studies that illuminate the mechanisms regulating NR2 subunits, and suggest that the NR2A/NR2B ratio is regulated by multiple means, which may control the ratio both locally at individual synapses and globally in a cell-wide manner. Finally, we use the visual cortex as a model system to illustrate how activity-dependent modifications in the NR2A/NR2B ratio may contribute to the development of cortical functions.
Collapse
Affiliation(s)
- Koji Yashiro
- Department of Cell and Molecular Physiology, Neuroscience Center, and Neurobiology Curriculum, University of North Carolina, Neuroscience Research Building, Campus Box 7545, 115 Mason Farm Road, Chapel Hill, NC 27599-7545, USA.
| | | |
Collapse
|
170
|
Wang Z, Edwards JG, Riley N, Provance DW, Karcher R, Li XD, Davison IG, Ikebe M, Mercer JA, Kauer JA, Ehlers MD. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 2008; 135:535-48. [PMID: 18984164 PMCID: PMC2585749 DOI: 10.1016/j.cell.2008.09.057] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 07/16/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
Learning-related plasticity at excitatory synapses in the mammalian brain requires the trafficking of AMPA receptors and the growth of dendritic spines. However, the mechanisms that couple plasticity stimuli to the trafficking of postsynaptic cargo are poorly understood. Here we demonstrate that myosin Vb (MyoVb), a Ca2+-sensitive motor, conducts spine trafficking during long-term potentiation (LTP) of synaptic strength. Upon activation of NMDA receptors and corresponding Ca2+ influx, MyoVb associates with recycling endosomes (REs), triggering rapid spine recruitment of endosomes and local exocytosis in spines. Disruption of MyoVb or its interaction with the RE adaptor Rab11-FIP2 abolishes LTP-induced exocytosis from REs and prevents both AMPA receptor insertion and spine growth. Furthermore, induction of tight binding of MyoVb to actin using an acute chemical genetic strategy eradicates LTP in hippocampal slices. Thus, Ca2+-activated MyoVb captures and mobilizes REs for AMPA receptor insertion and spine growth, providing a mechanistic link between the induction and expression of postsynaptic plasticity.
Collapse
Affiliation(s)
- Zhiping Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Katoh-Semba R, Takeuchi IK, Inaguma Y, Ichisaka S, Hata Y, Tsumoto T, Iwai M, Mikoshiba K, Kato K. Induction of brain-derived neurotrophic factor by convulsant drugs in the rat brain: involvement of region-specific voltage-dependent calcium channels. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00138.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
172
|
Le Roux N, Amar M, Fossier P. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity]. ACTA ACUST UNITED AC 2008; 202:143-60. [PMID: 18547512 DOI: 10.1051/jbio:2008018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Synaptic plasticity is the cellular mechanism underlying the phenomena of learning and memory. Much of the research on synaptic plasticity is based on the postulate of Hebb (1949) who proposed that, when a neuron repeatedly takes part in the activation of another neuron, the efficacy of the connections between these neurons is increased. Plasticity has been extensively studied, and often demonstrated through the processes of LTP (Long Term Potentiation) and LTD (Long Term Depression), which represent an increase and a decrease of the efficacy of long-term synaptic transmission. This review summarizes current knowledge concerning the cellular mechanisms of LTP and LTD, whether at the level of excitatory synapses, which have been the most studied, or at the level of inhibitory synapses. However, if we consider neuronal networks rather than the individual synapses, the consequences of synaptic plasticity need to be considered on a large scale to determine if the activity of networks are changed or not. Homeostatic plasticity takes into account the mechanisms which control the efficacy of synaptic transmission for all the synaptic inputs of a neuron. Consequently, this new concept deals with the coordinated activity of excitatory and inhibitory networks afferent to a neuron which maintain a controlled level of excitability during the acquisition of new information related to the potentiation or to the depression of synaptic efficacy. We propose that the protocols of stimulation used to induce plasticity at the synaptic level set up a "homeostatic potentiation" or a "homeostatic depression" of excitation and inhibition at the level of the neuronal networks. The coordination between excitatory and inhibitory circuits allows the neuronal networks to preserve a level of stable activity, thus avoiding episodes of hyper- or hypo-activity during the learning and memory phases.
Collapse
Affiliation(s)
- Nicolas Le Roux
- CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire - UPR9040, 91198 Gif sur Yvette, France.
| | | | | |
Collapse
|
173
|
Lynch G, Rex CS, Chen LY, Gall CM. The substrates of memory: defects, treatments, and enhancement. Eur J Pharmacol 2008; 585:2-13. [PMID: 18374328 PMCID: PMC2427007 DOI: 10.1016/j.ejphar.2007.11.082] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/11/2007] [Accepted: 11/29/2007] [Indexed: 12/12/2022]
Abstract
Recent work has added strong support to the long-standing hypothesis that the stabilization of both long-term potentiation and memory requires rapid reorganization of the spine actin cytoskeleton. This development has led to new insights into the origins of cognitive disorders, and raised the possibility that a diverse array of memory problems, including those associated with diabetes, reflect disturbances to various components of the same mechanism. In accord with this argument, impairments to long-term potentiation in mouse models of Huntington's disease and in middle-aged rats have both been linked to problems with modulatory factors that control actin polymerization in spine heads. Complementary to the common mechanism hypothesis is the idea of a single treatment for addressing seemingly unrelated memory diseases. First tests of the point were positive: Brain-Derived Neurotrophic Factor (BDNF), a potent activator of actin signaling cascades in adult spines, rescued potentiation in Huntington's disease mutant mice, middle-aged rats, and a mouse model of Fragile-X syndrome. A similar reversal of impairments to long-term potentiation was obtained in middle-aged rats by up-regulating BDNF production with brief exposures to ampakines, a class of drugs that positively modulate AMPA-type glutamate receptors. Work now in progress will test if chronic elevation of BDNF enhances memory in normal animals.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, United States
| | | | | | | |
Collapse
|
174
|
Artola A. Diabetes-, stress- and ageing-related changes in synaptic plasticity in hippocampus and neocortex — The same metaplastic process? Eur J Pharmacol 2008; 585:153-62. [DOI: 10.1016/j.ejphar.2007.11.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/04/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|
175
|
Lin CY, Hilgenberg LGW, Smith MA, Lynch G, Gall CM. Integrin regulation of cytoplasmic calcium in excitatory neurons depends upon glutamate receptors and release from intracellular stores. Mol Cell Neurosci 2008; 37:770-80. [PMID: 18289871 PMCID: PMC2396149 DOI: 10.1016/j.mcn.2008.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/27/2007] [Accepted: 01/03/2008] [Indexed: 01/12/2023] Open
Abstract
Integrins regulate cytoplasmic calcium levels ([Ca(2+)]i) in various cell types but information on activities in neurons is limited. The issue is of current interest because of the evidence that both integrins and changes in [Ca(2+)]i are required for Long-Term Potentiation. Accordingly, the present studies evaluated integrin ligand effects in cortical neurons. Integrin ligands or alpha5beta1 integrin activating antisera rapidly increased [Ca(2+)]i with effects greater in glutamatergic than GABAergic neurons, absent in astroglia, and blocked by beta1 integrin neutralizing antisera and the tyrosine kinase antagonist genistein. Increases depended upon extracellular calcium and intracellular store release. Ligand-induced effects were reduced by voltage-sensitive calcium channel and NMDA receptor antagonists, but blocked by tetrodotoxin or AMPA receptor antagonists. These results indicate that integrin ligation triggers AMPA receptor/depolarization-dependent calcium influx followed by intracellular store release and suggest the possibility that integrin modulation of activity-induced changes in [Ca(2+)]i contributes importantly to lasting synaptic plasticity in forebrain neurons.
Collapse
Affiliation(s)
- C-Y Lin
- Department of Anatomy and Neurobiology, University of California, Irvine CA 92697-4292, USA
| | | | | | | | | |
Collapse
|
176
|
Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, El-Husseini A, Passafaro M, Esteban JA. Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat Neurosci 2008; 11:457-66. [PMID: 18311135 DOI: 10.1038/nn2063] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 02/01/2008] [Indexed: 12/12/2022]
Abstract
The regulated trafficking of neurotransmitter receptors at synapses is critical for synaptic function and plasticity. However, the molecular machinery that controls active transport of receptors into synapses is largely unknown. We found that, in rat hippocampus, the insertion of AMPA receptors (AMPARs) into spines during synaptic plasticity requires a specific motor protein, which we identified as myosin Va. We found that myosin Va associates with AMPARs through its cargo binding domain. This interaction was enhanced by active, GTP-bound Rab11, which is also transported by the motor protein. Myosin Va mediated the CaMKII-triggered translocation of GluR1 receptors from the dendritic shaft into spines, but it was not required for constitutive GluR2 trafficking. Accordingly, myosin Va was specifically required for long-term potentiation, but not for basal synaptic transmission. In summary, we identified the specific motor protein and organelle acceptor that catalyze the directional transport of AMPARs into spines during activity-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Susana S Correia
- Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109-0632, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Most synaptic inputs are made onto the dendritic tree. Recent work has shown that dendrites play an active role in transforming synaptic input into neuronal output and in defining the relationships between active synapses. In this review, we discuss how these dendritic properties influence the rules governing the induction of synaptic plasticity. We argue that the location of synapses in the dendritic tree, and the type of dendritic excitability associated with each synapse, play decisive roles in determining the plastic properties of that synapse. Furthermore, since the electrical properties of the dendritic tree are not static, but can be altered by neuromodulators and by synaptic activity itself, we discuss how learning rules may be dynamically shaped by tuning dendritic function. We conclude by describing how this reciprocal relationship between plasticity of dendritic excitability and synaptic plasticity has changed our view of information processing and memory storage in neuronal networks.
Collapse
Affiliation(s)
- P Jesper Sjöström
- Wolfson Institute for Biomedical Research and Department of Physiology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
178
|
Huddleston AT, Tang W, Takeshima H, Hamilton SL, Klann E. Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK. J Neurophysiol 2008; 99:1565-71. [PMID: 18199822 DOI: 10.1152/jn.00659.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) are required for the induction of long-term potentiation (LTP) and behave as signaling molecules via redox modifications of target proteins. In particular, superoxide is necessary for induction of LTP, and application of superoxide to hippocampal slices is sufficient to induce LTP in area CA1. Although a rise in postsynaptic intracellular calcium is necessary for LTP induction, superoxide-induced potentiation does not require calcium flux through N-methyl-d-aspartate (NMDA) receptors. Ryanodine receptors (RyRs) mediate calcium-induced calcium release from intracellular stores and have been shown to modulate LTP. In this study, we investigated the highly redox-sensitive RyRs and L-type calcium channels as calcium sources that might mediate superoxide-induced potentiation. In agreement with previous studies of skeletal and cardiac muscle, we found that superoxide enhances activation of RyRs in the mouse hippocampus. We identified a functional coupling between L-type voltage-gated calcium channels and RyRs and identified RyR3, a subtype enriched in area CA1, as the specific isoform required for superoxide-induced potentiation. Superoxide also enhanced the phosphorylation of extracellular signal-regulated kinase (ERK) in area CA1, and ERK was necessary for superoxide-induced potentiation. Thus superoxide-induced potentiation requires the redox targeting of RyR3 and the subsequent activation of ERK.
Collapse
Affiliation(s)
- A Tara Huddleston
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
179
|
Pelletier JG, Lacaille JC. Long-term synaptic plasticity in hippocampal feedback inhibitory networks. PROGRESS IN BRAIN RESEARCH 2008; 169:241-50. [PMID: 18394478 DOI: 10.1016/s0079-6123(07)00014-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies clearly indicate that long-term synaptic plasticity in hippocampal networks not only takes place at excitatory synapses of hippocampal granule and pyramidal cells, but also at excitatory synapses onto inhibitory interneurons. Various forms of long-term potentiation (LTP) and depression (LTD) have now been reported at glutamatergic synapses of interneurons in dentate gyrus (DG), CA3, and CA1 regions of the hippocampus. Importantly, the presence and type of these changes in synaptic efficacy appear to depend on the interneuron subtype, including its specific role within the hippocampal network. The data reviewed here suggest the existence of cell-type specific rules for synaptic plasticity in hippocampal feed-forward and feedback inhibitory networks. This specialized tuning of inhibition is likely important for global hippocampal function.
Collapse
Affiliation(s)
- Joe Guillaume Pelletier
- Département de Physiologie, GRSNC, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | | |
Collapse
|
180
|
Changes of the EPSP waveform regulate the temporal window for spike-timing-dependent plasticity. J Neurosci 2007; 27:11940-8. [PMID: 17978034 DOI: 10.1523/jneurosci.0900-07.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using spike-timing-dependent plasticity (STDP) protocols that consist of pairing an EPSP and a postsynaptic backpropagating action potential (BAP), we investigated the contribution of the changes in EPSP waveform induced by the slow Ca2+-dependent K+-mediated afterhyperpolarization (sAHP) in the regulation of long-term potentiation (LTP). The "temporal window" between Schaffer collateral EPSPs and BAPs in CA1 pyramidal neurons required to induce LTP was narrowed by a reduction of the amplitude and decay time constant of the EPSP, which could be reversed with cyclothiazide. The EPSP changes were caused by the increased conductance induced by activation of the sAHP. Therefore, the EPSP waveform and its regulation by the sAHP are central in determining the duration of the temporal window for STDP, thus providing a possible dynamic regulatory mechanism for the encoding of cognitive processes.
Collapse
|
181
|
Abstract
Long-term potentiation (LTP) mediates learning and memory in the mammalian hippocampus. Whether a presynaptic or postsynaptic neuron principally enhances synaptic transmission during LTP remains controversial. Acute hippocampal slices were made from transgenic mouse strains that express synaptopHluorin in neurons. SynaptopHluorin is an indicator of synaptic vesicle recycling; thus, we monitored functional changes in presynaptic boutons of CA3 pyramidal cells by measuring changes in synaptopHluorin fluorescence. Simultaneously, we recorded field excitatory postsynaptic potentials to monitor changes in the strength of excitatory synapses between CA3 and CA1 pyramidal neurons. We found that LTP consists of two components, a slow presynaptic component and a fast postsynaptic component. The presynaptic mechanisms contribute mostly to the late phase of compound LTP, whereas the postsynaptic mechanisms are crucial during the early phase of LTP. We also found that protein kinase A (PKA) and L-type voltage-gated calcium channels are crucial for the expression of the presynaptic component of compound LTP, and NMDA channels are essential for that of the postsynaptic component of LTP. These data are the first direct evidence that presynaptic and postsynaptic components of LTP are temporally and mechanistically distinct.
Collapse
|
182
|
Collingridge GL, Randall AD, Davies CH, Alford S. The synaptic activation of NMDA receptors and Ca2+ signalling in neurons. CIBA FOUNDATION SYMPOSIUM 2007; 164:162-71; discussion 172-5. [PMID: 1327677 DOI: 10.1002/9780470514207.ch11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long-term potentiation (LTP) in the hippocampus is a model system for understanding the synaptic basis of learning and memory. We have studied the mechanism of induction of LTP using voltage-clamp techniques and confocal imaging of Ca2+ in rat hippocampal slices. In the Schaffer collateral-commissural pathway the neurotransmitter L-glutamate activates two classes of ionotropic receptor, named after the selective ligands AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate) and NMDA (N-methyl-D-aspartate). During low frequency transmission the excitatory postsynaptic potential (EPSP) is mediated predominantly by AMPA receptors. NMDA receptors play a minor role because their ion channels are substantially blocked by Mg2+, and this block is intensified by GABA-mediated synaptic inhibition. During high frequency transmission the GABA-mediated inhibition is depressed, by mechanisms initiated by GABAB autoreceptors. This allows a greater contribution from the NMDA receptors, through which Ca2+ enters the dendrites of the postsynaptic neurons to initiate a cascade of biochemical processes which ultimately result in enhanced synaptic efficiency.
Collapse
Affiliation(s)
- G L Collingridge
- Department of Pharmacology, University of Birmingham, Medical School, Edgbaston, UK
| | | | | | | |
Collapse
|
183
|
Malgaroli A, Malinow R, Schulman H, Tsien RW. Persistent signalling and changes in presynaptic function in long-term potentiation. CIBA FOUNDATION SYMPOSIUM 2007; 164:176-91; discussion 192-6. [PMID: 1327679 DOI: 10.1002/9780470514207.ch12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long-term potentiation (LTP) is an example of a persistent change in synaptic function in the mammalian brain, thought to be essential for learning and memory. At the synapse between hippocampal CA3 and CA1 neurons LTP is induced by a Ca2+ influx through glutamate receptors of the NMDA (N-methyl-D-aspartate) type (see Collingridge et al 1992, this volume). How does a rise in [Ca2+]i lead to enhancement of synaptic function? We have tested the popular hypothesis that Ca2+ acts via a Ca(2+)-dependent protein kinase. We found that long-lasting synaptic enhancement was prevented by prior intracellular injection of potent and selective inhibitory peptide blockers of either protein kinase C (PKC) or Ca2+/calmodulin-dependent protein kinase II (CaMKII), such as PKC(19-31) or CaMKII(273-302), but not by control peptides. Evidently, activity of both PKC and CaMKII is somehow necessary for the postsynaptic induction of LTP. To determine if these kinases are also involved in the expression of LTP, we impaled cells with microelectrodes containing protein kinase inhibitors after LTP had already been induced. Strikingly, established LTP was not suppressed by a combination of PKC and CaMKII blocking peptides, or by intracellular postsynaptic H-7. However, established LTP remained sensitive to bath application of H-7. Thus, the persistent signal may be a persistent kinase, but if so, the kinase cannot be accessed within the postsynaptic cell. Evidence for a presynaptic locus of expression comes from our studies of quantal synaptic transmission under whole-cell voltage clamp. We find changes in synaptic variability expected to result from enhanced presynaptic transmitter release, but little or no increase in quantal size. Furthermore, miniature synaptic currents in hippocampal cultures are increased in frequency but not amplitude as a result of a glutamate-driven postsynaptic induction. The combination of postsynaptic induction and presynaptic expression necessitates a retrograde signal from the postsynaptic cell to the presynaptic terminal.
Collapse
Affiliation(s)
- A Malgaroli
- Department of Molecular and Cellular Physiology, Stanford University Medical Center, CA 94305-5425
| | | | | | | |
Collapse
|
184
|
Nie T, McDonough CB, Huang T, Nguyen PV, Abel T. Genetic disruption of protein kinase A anchoring reveals a role for compartmentalized kinase signaling in theta-burst long-term potentiation and spatial memory. J Neurosci 2007; 27:10278-88. [PMID: 17881534 PMCID: PMC2927986 DOI: 10.1523/jneurosci.1602-07.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/02/2007] [Accepted: 08/02/2007] [Indexed: 11/21/2022] Open
Abstract
Studies of hippocampal long-term potentiation (LTP), a cellular model of memory storage, implicate cAMP-dependent protein kinase (PKA) in presynaptic and postsynaptic mechanisms of LTP. The anchoring of PKA to AKAPs (A kinase-anchoring proteins) creates compartmentalized pools of PKA, but the roles of presynaptically and postsynaptically anchored forms of PKA in late-phase LTP are unclear. In this study, we have created genetically modified mice that conditionally express Ht31, an inhibitor of PKA anchoring, to probe the roles of anchored PKA in hippocampal LTP and spatial memory. Our findings show that at hippocampal Schaffer collateral CA3-CA1 synapses, theta-burst LTP requires presynaptically anchored PKA. In addition, a pool of anchored PKA in hippocampal area CA3 is required for spatial memory. These findings reveal a novel and significant role for anchored PKA signaling in cellular mechanisms underlying memory storage.
Collapse
Affiliation(s)
- Ting Nie
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Conor B. McDonough
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Ted Huang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Peter V. Nguyen
- Departments of Physiology and Psychiatry, Centre for Neuroscience, University of Alberta School of Medicine, Edmonton, Alberta, Canada T6G 2H7
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|
185
|
Hofmann SG. Enhancing exposure-based therapy from a translational research perspective. Behav Res Ther 2007; 45:1987-2001. [PMID: 17659253 PMCID: PMC2174693 DOI: 10.1016/j.brat.2007.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 11/21/2022]
Abstract
Combining an effective psychological treatment with conventional anxiolytic medication is typically not more effective than unimodal therapy for treating anxiety disorders. However, recent advances in the neuroscience of fear reduction have led to novel approaches for combining psychological therapy and pharmacological agents. Exposure-based treatments in humans partly rely on extinction to reduce the fear response in anxiety disorders. Animal studies have shown that D-cycloserine (DCS), a partial agonist at the glycine recognition site of the glutamatergic N-methyl-D-aspartate receptor facilitates extinction learning. Similarly, recent human trials have shown that DCS enhances fear reduction during exposure therapy of some anxiety disorders. This article discusses the biological and psychological mechanisms of extinction learning and the therapeutic value of DCS as an augmentation strategy for exposure therapy. Areas of future research will be identified.
Collapse
Affiliation(s)
- Stefan G Hofmann
- Department of Psychology, Boston University, 648 Beacon Street, 6th Floor, Boston, MA 02215-2002, USA.
| |
Collapse
|
186
|
Sashkov VA, Dzhandarova TI, Sel'verova NB. Interaction of total blood calcium levels and brain catecholamines during the formation and reinforcement of memory traces in hypoparathyroidism. ACTA ACUST UNITED AC 2007; 37:623-9. [PMID: 17657434 DOI: 10.1007/s11055-007-0061-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 05/15/2006] [Indexed: 10/23/2022]
Abstract
Interactions between the total blood calcium level and catecholamine contents in limbic brain structures during the formation and extinction of a conditioned passive avoidance reflex were studied in rats with hypoparathyroidism. Impairments of calcium support for the processes of conditioned reflex activity were seen after removal of the parathyroid glands. Animals with hypoparathyroidism not only showed changes in basal dopamine and noradrenaline levels in limbic structures, but also impairments of catecholamine dynamics during the acquisition and forced extinction of a conditioned passive avoidance reflex. These results demonstrate changes in the functional dynamics of the dopaminergic and noradrenergic systems of the brain in conditions of abnormal calcium homeostasis in the body, which underlie abnormalities of conditioned reflex activity and the acquisition of the adaptive behavioral strategies.
Collapse
Affiliation(s)
- V A Sashkov
- Institute of Aging Physiology, Russian Academy of Education, Moscow.
| | | | | |
Collapse
|
187
|
Abstract
In the central nervous system, long-term adaptive responses to changes in the environment, such as the processes involved in learning and memory, require the conversion of extracellular stimuli into intracellular signals. Many of these signals involve the induction of gene expression. The late, transcription- and translation-dependent phase of long-term synaptic potentiation (L-LTP) is an attractive cellular model for long-lasting memory formation. The transcription factor cAMP response element-binding protein (CREB) plays an essential role in the maintenance of L-LTP. However, how synaptic signals propagate to the nucleus to initiate CREB-target gene expression is unclear. Recent studies indicate that the CREB transducer of regulated CREB activity 1 coactivator undergoes neuronal activity-dependent translocation from the cytoplasm to the nucleus, a process required for CRE-dependent gene expression and the maintenance of L-LTP in the hippocampus.
Collapse
Affiliation(s)
- Hao Wu
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
188
|
Ris L, Capron B, Sclavons C, Liégeois JF, Seutin V, Godaux E. Metaplastic effect of apamin on LTP and paired-pulse facilitation. Learn Mem 2007; 14:390-9. [PMID: 17551097 PMCID: PMC1896089 DOI: 10.1101/lm.571007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In area CA1 of hippocampal slices, a single 1-sec train of 100-Hz stimulation generally triggers a short-lasting long-term potentiation (S-LTP) of 1-2 h. Here, we found that when such a train was applied 45 min after application of the small conductance Ca(2+)-activated K(+ )(SK) channel blocker apamin, it induced a long-lasting LTP (L-LTP) of several hours, instead of an S-LTP. Apamin-induced SK channel blockage is known to resist washing. Nevertheless, the aforementioned effect is not a mere delayed effect; it is metaplastic. Indeed, when a single train was delivered to the Schaffer's collaterals during apamin application, it induced an S-LTP, like in the control situation. At the moment of this LTP induction (15th min of apamin application), the SK channel blockage was nevertheless complete. Indeed, at that time, under the influence of apamin, the amplitude of the series of field excitatory postsynaptic potentials (fEPSPs) triggered by a stimulation train was increased. We found that the metaplastic effect of apamin on LTP was crucially dependent on the NO-synthase pathway, whereas the efficacy of the NMDA receptors was not modified at the time of its occurrence. We also found that apamin produced an increase in paired-pulse facilitation not during, but after, the application of the drug. Finally, we found that the induction of each of these two metaplastic phenomena was mediated by NMDA receptors. A speculative unitary hypothesis to explain these phenomena is proposed.
Collapse
Affiliation(s)
- Laurence Ris
- Laboratory of Neurosciences, University of Mons-Hainaut, 7000 Mons, Belgium
| | - Brigitte Capron
- Laboratory of Neurosciences, University of Mons-Hainaut, 7000 Mons, Belgium
- Department of Neurology, UCL, 1000 Brussels, Belgium
| | - Coralie Sclavons
- Laboratory of Neurosciences, University of Mons-Hainaut, 7000 Mons, Belgium
| | | | - Vincent Seutin
- Laboratory of Pharmacology and Center for Cellular and Molecular Neurobiology, University of Liège, 4000 Liège, Belgium
| | - Emile Godaux
- Laboratory of Neurosciences, University of Mons-Hainaut, 7000 Mons, Belgium
- Corresponding author.E-mail ; fax 32-65-373573
| |
Collapse
|
189
|
Hofmann SG, Pollack MH, Otto MW. Augmentation treatment of psychotherapy for anxiety disorders with D-cycloserine. CNS DRUG REVIEWS 2007; 12:208-17. [PMID: 17227287 PMCID: PMC2151200 DOI: 10.1111/j.1527-3458.2006.00208.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Anxiety disorders are among the most common mental disorders. One of the most effective strategies to treat anxiety disorders is exposure therapy with or without cognitive intervention. Fear reduction in exposure therapy is similar to extinction learning. Preclinical studies suggest that extinction learning can be blocked by antagonists at the glutamatergic N-methyl-D-aspartate (NMDA) receptor, and facilitated with D-cycloserine (DCS), a partial agonist at the glycine recognition site of the NMDA receptor in the amygdala. DCS is an established antibiotic drug for the chronic treatment of tuberculosis in humans, but has only recently been investigated as an augmentation therapy for psychological treatment procedures. The review of the literature provides preliminary support for the use of acute dosing of DCS as an adjunctive intervention to exposure therapy for anxiety disorders, including specific phobia and social anxiety disorder. Negative results have recently been reported in the treatment of subclinical fears of animals. These studies suggest that DCS needs to be administered on an acute rather than a chronic dosing schedule, include sufficient time for memory consolidation, and be administered together with psychological treatment that leaves sufficient room for further improvement. It remains to be seen whether these highly promising findings represent reliable pharmacological strategies to enhance exposure therapy of anxiety disorders.
Collapse
Affiliation(s)
- Stefan G Hofmann
- Department of Psychology, Center for Anxiety and Related Disorders, Boston University, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
190
|
Fernández de Sevilla D, Fuenzalida M, Porto Pazos AB, Buño W. Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons. J Neurophysiol 2007; 97:3242-55. [PMID: 17329628 DOI: 10.1152/jn.00422.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pyramidal neuron dendrites express voltage-gated conductances that control synaptic integration and plasticity, but the contribution of the Ca(2+)-activated K(+)-mediated currents to dendritic function is not well understood. Using dendritic and somatic recordings in rat hippocampal CA1 pyramidal neurons in vitro, we analyzed the changes induced by the slow Ca(2+)-activated K(+)-mediated afterhyperpolarization (sAHP) generated by bursts of action potentials on excitatory postsynaptic potentials (EPSPs) evoked at the apical dendrites by perforant path-Schaffer collateral stimulation. Both the amplitude and decay time constants of EPSPs (tau(EPSP)) were reduced by the sAHP in somatic recordings. In contrast, the dendritic EPSP amplitude remained unchanged, whereas tau(EPSP) was reduced. Temporal summation was reduced and spatial summation linearized by the sAHP. The amplitude of the isolated N-methyl-D-aspartate component of EPSPs (EPSP(NMDA)) was reduced, whereas tau(NMDA) was unaffected by the sAHP. In contrast, the sAHP did not modify the amplitude of the isolated EPSP(AMPA) but reduced tau(AMPA) both in dendritic and somatic recordings. These changes are attributable to a conductance increase that acted mainly via a selective "shunt" of EPSP(NMDA) because they were absent under voltage clamp, not present with imposed hyperpolarization simulating the sAHP, missing when the sAHP was inhibited with isoproterenol, and reduced under block of EPSP(NMDA). EPSPs generated at the basal dendrites were similarly modified by the sAHP, suggesting both a somatic and apical dendritic location of the sAHP channels. Therefore the sAHP may play a decisive role in the dendrites by regulating synaptic efficacy and temporal and spatial summation.
Collapse
|
191
|
McGuinness L, Bardo SJ, Emptage NJ. The lysosome or lysosome-related organelle may serve as a Ca2+ store in the boutons of hippocampal pyramidal cells. Neuropharmacology 2007; 52:126-35. [PMID: 16930634 DOI: 10.1016/j.neuropharm.2006.07.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/17/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Boutons are specialised presynaptic compartments that lie along the axons of central neurons. Release of neurotransmitter from boutons is tightly regulated by the level of intracellular calcium [Ca2+]i. A rise in Ca2+ level may be generated in several ways; entry of extracellular Ca2+ via voltage gated calcium channels (VGCCs), entry via ligand-operated channels (LOCs) or the release of Ca2+ from intracellular Ca2+ stores. The role of Ca2+ stores in boutons remains poorly understood, despite recent work indicating that the release of Ca2+ from the endoplasmic reticulum (ER) may contribute to transmitter release. In this study we assess whether the lysosome or a closely related organelle functions as a Ca2+ store in the boutons of hippocampal pyramidal neurones. Lysosomes are small acidic organelles more commonly known for their role in degrading redundant cellular constituents. Using a fluorescent lysosomal marker, we show that lysosomes are located in the axons of hippocampal CA3 neurones. Selective pharmacological lysis of the lysosomes with glycyl-phenylalanine 2-naphthylamide (GPN) generates rapid, highly focal Ca2+ transients within the axon and increases the frequency of spontaneous miniature excitatory post-synaptic currents (mEPSCs), revealing that the organelle contains Ca2+ at a concentration sufficient to evoke transmitter release. Confocal laser scanning microscopy, combined with electrophysiology is used to monitor the action potential evoked increases in [Ca2+]i in boutons. We show that disruption of lysosomes compromises action potential evoked [Ca2+]i but this effect is occluded if the ER is discharged. Conversely, disruption of the lysosome does not appear to impact on the capacity of the ER to release Ca2+. These results suggest that the lysosome may serve as a Ca2+ store within hippocampal boutons, with a Ca2+ signalling role that is unique from that of the ER.
Collapse
Affiliation(s)
- Lindsay McGuinness
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | | | | |
Collapse
|
192
|
Lynch G, Rex CS, Gall CM. LTP consolidation: Substrates, explanatory power, and functional significance. Neuropharmacology 2007; 52:12-23. [PMID: 16949110 DOI: 10.1016/j.neuropharm.2006.07.027] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/05/2006] [Accepted: 07/17/2006] [Indexed: 12/18/2022]
Abstract
Long-term potentiation (LTP) resembles memory in that it is initially unstable and then, over about 30 min, becomes increasingly resistant to disruption. Here we present an hypothesis to account for this initial consolidation effect and consider implications that follow from it. Anatomical studies indicate that LTP is accompanied by changes in spine morphology and therefore likely involves cytoskeletal changes. Accordingly, theta bursts initiate calpain-mediated proteolysis of the actin cross-linking protein spectrin and trigger actin polymerization in spine heads, two effects indicative of cytoskeletal reorganization. Polymerization occurs within 2 min, has the same threshold as LTP, is dependent on integrins, and becomes resistant to disruption over 30 min. We propose that the stabilization of the new cytoskeletal organization, and thus of a new spine morphology, underlies the initial phase of LTP consolidation. This hypothesis helps explain the diverse array of proteins and signaling cascades implicated in LTP, as well as the often-contradictory results about contributions of particular molecules. It also provides a novel explanation for why LTP is potently modulated by factors likely to be released during theta trains (e.g., BDNF). Finally, building on evidence that normal patterns of activity reverse LTP, we suggest that consolidation provides a delay that allows brain networks to sculpt newly formed memories.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, Gillespie Neuroscience Research Facility, University of California, Irvine, CA 92697-4292, USA.
| | | | | |
Collapse
|
193
|
Abstract
Calcium is a second messenger, which can trigger the modification of synaptic efficacy. We investigated the question of whether a differential rise in postsynaptic Ca2+ ([Ca2+]i) alone is sufficient to account for the induction of long-term potentiation (LTP) and long-term depression (LTD) of EPSPs in the basal dendrites of layer 2/3 pyramidal neurons of the somatosensory cortex. Volume-averaged [Ca2+]i transients were measured in spines of the basal dendritic arbor for spike-timing-dependent plasticity induction protocols. The rise in [Ca2+]i was uncorrelated to the direction of the change in synaptic efficacy, because several pairing protocols evoked similar spine [Ca2+]i transients but resulted in either LTP or LTD. The sequence dependence of near-coincident presynaptic and postsynaptic activity on the direction of changes in synaptic strength suggested that LTP and LTD were induced by two processes, which were controlled separately by postsynaptic [Ca2+]i levels. Activation of voltage-dependent Ca2+ channels before metabotropic glutamate receptors (mGluRs) resulted in the phospholipase C-dependent (PLC-dependent) synthesis of endocannabinoids, which acted as a retrograde messenger to induce LTD. LTP required a large [Ca2+]i transient evoked by NMDA receptor activation. Blocking mGluRs abolished the induction of LTD and uncovered the Ca2+-dependent induction of LTP. We conclude that the volume-averaged peak elevation of [Ca2+]i in spines of layer 2/3 pyramids determines the magnitude of long-term changes in synaptic efficacy. The direction of the change is controlled, however, via a mGluR-coupled signaling cascade. mGluRs act in conjunction with PLC as sequence-sensitive coincidence detectors when postsynaptic precede presynaptic action potentials to induce LTD. Thus presumably two different Ca2+ sensors in spines control the induction of spike-timing-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Nevian
- Department of Cell Physiology, Max-Planck Institute for Medical Research, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
194
|
Belfield JL, Whittaker C, Cader MZ, Chawla S. Differential effects of Ca2+ and cAMP on transcription mediated by MEF2D and cAMP-response element-binding protein in hippocampal neurons. J Biol Chem 2006; 281:27724-32. [PMID: 16870618 DOI: 10.1074/jbc.m601485200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In neurons, the second messengers Ca(2+) and cAMP are mediators of transcriptional responses that are important for the development and function of the nervous system. The pro-survival neuronal transcription factors cAMP-response elementbinding protein (CREB) and myocyte enhancer factor-2 (MEF2) both stimulate gene expression in response to activity-dependent increases in the concentration of intracellular Ca(2+) ions. CREB is also activated by increases in intracellular cAMP. Here we have investigated whether the MEF2 family member MEF2D, similar to CREB, is also activated by cAMP in hippocampal neurons. We have shown that, unlike CREB, MEF2D is not activated by agents that increase intracellular cAMP. Moreover, increases in cAMP inhibit Ca(2+)-activated MEF2D-mediated gene expression. We have also shown that cAMP inhibits Ca(2+)-induced nuclear export of the MEF2 co-repressor HDAC5 and prevents Ca(2+)-stimulated nuclear import of the MEF2 co-activator NFAT3/c4. Our results suggest that cAMP interferes with MEF2D-mediated gene expression at multiple levels by antagonizing the derepression of MEF2D by HDAC5 and by inhibiting recruitment of the co-activator NFAT.
Collapse
Affiliation(s)
- Johanna L Belfield
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | |
Collapse
|
195
|
Ajay SM, Bhalla US. Synaptic plasticity in vitro and in silico: insights into an intracellular signaling maze. Physiology (Bethesda) 2006; 21:289-96. [PMID: 16868318 DOI: 10.1152/physiol.00009.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic plasticity provides a record of neuronal activity and is a likely basis for memory. The early apparent simplicity of the process of synaptic plasticity has been lost in a flood of experimental data that now implicates some 200 signaling molecules in cellular memory. It is now clear that these signaling networks perform surprisingly sophisticated cellular decisions that weigh factors such as input patterns, location of stimulus, history of activity, and context. Computer models have followed experiments into this maze of molecular detail, often matching closely with their experimental counterparts, but perhaps losing simplicity in the process. Here, we suggest that the merger of models and experiment have begun to restore the earlier simplicity by outlining a few key functional roles for signaling networks in synaptic plasticity. In this review, we discuss the current state of understanding of synaptic plasticity in terms of models and experiments.
Collapse
|
196
|
Cooke SF, Wu J, Plattner F, Errington M, Rowan M, Peters M, Hirano A, Bradshaw KD, Anwyl R, Bliss TVP, Giese KP. Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. J Physiol 2006; 574:805-18. [PMID: 16728448 PMCID: PMC1817742 DOI: 10.1113/jphysiol.2006.111559] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/11/2006] [Accepted: 05/18/2006] [Indexed: 11/08/2022] Open
Abstract
Autophosphorylation of alpha-Ca2+/calmodulin kinase II (alphaCaMKII) at Thr286 is thought to be a general effector mechanism for sustaining transcription-independent long-term potentiation (LTP) at pathways where LTP is NMDA receptor-dependent. We have compared LTP at two such hippocampal pathways in mutant mice with a disabling point mutation at the Thr286 autophosphorylation site. We find that autophosphorylation of alphaCaMKII is essential for induction of LTP at Schaffer commissural-CA1 synapses in vivo, but is not required for LTP that can be sustained over days at medial perforant path-granule cell synapses in awake mice. At these latter synapses LTP is supported by cyclic AMP-dependent signalling in the absence of alphaCaMKII signalling. Thus, the autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse.
Collapse
Affiliation(s)
- Sam F Cooke
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Frégnac Y, Destexhe A. Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 2006; 16:79-97. [PMID: 16688849 DOI: 10.1142/s0129065706000524] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spike-timing dependent plasticity (STDP) is a form of associative synaptic modification which depends on the respective timing of pre- and post-synaptic spikes. The biophysical mechanisms underlying this form of plasticity are currently not known. We present here a biophysical model which captures the characteristics of STDP, such as its frequency dependency, and the effects of spike pair or spike triplet interactions. We also make links with other well-known plasticity rules. A simplified phenomenological model is also derived, which should be useful for fast numerical simulation and analytical investigation of the impact of STDP at the network level.
Collapse
Affiliation(s)
- Mathilde Badoual
- Integrative and Computational Neuroscience Unit (UNIC), CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
198
|
Holthoff K, Kovalchuk Y, Konnerth A. Dendritic spikes and activity-dependent synaptic plasticity. Cell Tissue Res 2006; 326:369-77. [PMID: 16816965 DOI: 10.1007/s00441-006-0263-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Whereas the regenerative nature of action potential conduction in axons has been known since the late 1940s, neuronal dendrites have been considered as passive cables transferring incoming synaptic activity to the soma. The relatively recent discovery that neuronal dendrites contain active conductances has revolutionized our view of information processing in neurons. In many neuronal cell types, sodium action potentials initiated at the axon initial segment can back-propagate actively into the dendrite thereby serving, for the dendrite, as an indicator of the output activity of the neuron. In addition, the dendrites themselves can initiate action-potential-like regenerative responses, so-called dendritic spikes, that are mediated either by the activation of sodium, calcium, and/or N-methyl-D-aspartate receptor channels. Here, we review the recent experimental and theoretical evidence for a role of regenerative dendritic activity in information processing within neurons and, especially, in activity-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Knut Holthoff
- Institute of Neuroscience, Technical University Munich, Biedersteinerstrasse 29, 80802 Munich, Germany.
| | | | | |
Collapse
|
199
|
Capron B, Sindic C, Godaux E, Ris L. The characteristics of LTP induced in hippocampal slices are dependent on slice-recovery conditions. Learn Mem 2006; 13:271-7. [PMID: 16705133 PMCID: PMC1475807 DOI: 10.1101/lm.135406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In area CA1 of hippocampal slices which are allowed to recover from slicing "in interface" and where recordings are carried out in interface, a single 1-sec train of 100-Hz stimulation triggers a short-lasting long-term potentiation (S-LTP), which lasts 1-2 h, whereas multiple 1-sec trains induce a long-lasting LTP (L-LTP), which lasts several hours. Moreover, the threshold and the features of these LTP depend on the history of the neurons, a phenomenon known as metaplasticity. Here, where all recordings were performed in interface, we found that allowing the slices to recover "in submersion" had dramatic metaplastic effects. In these conditions, a single 1-sec train at 100 Hz induced an L-LTP which lasted at least 4 h and was dependent on protein synthesis. Interestingly, this type of metaplasticity was observed when the concentration of Mg(++) used was 1.0 mM but not when it was 1.3 mM. The LTP induced by four 1-sec trains at 100 Hz was similar whatever the incubation method. However, the signaling cascades recruited to achieve that pattern were different. In the interface-interface paradigm (recovery and recording both in interface) the four-train induced LTP recruited the PKA signaling pathway but not that of the p42/44MAPK. On the contrary, in the submersion-interface paradigm the four-train induced LTP recruited the p42/44MAPK signaling pathway but not that of the PKA. To our knowledge this is the first example of metaplasticity involving the recruitment of signaling cascades in LTP.
Collapse
Affiliation(s)
- Brigitte Capron
- Department of Neurosciences, University of Mons-Hainaut, 7000 Mons, Belgium
| | | | | | | |
Collapse
|
200
|
Codazzi F, Di Cesare A, Chiulli N, Albanese A, Meyer T, Zacchetti D, Grohovaz F. Synergistic control of protein kinase Cgamma activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons. J Neurosci 2006; 26:3404-11. [PMID: 16571747 PMCID: PMC6673850 DOI: 10.1523/jneurosci.0478-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conventional protein kinase C (PKC) isoforms are abundant neuronal signaling proteins with important roles in regulating synaptic plasticity and other neuronal processes. Here, we investigate the role of ionotropic and metabotropic glutamate receptor (iGluR and mGluR, respectively) activation on the generation of Ca2+ and diacylglycerol (DAG) signals and the subsequent activation of the neuron-specific PKCgamma isoform in hippocampal neurons. By combining Ca2+ imaging with total internal reflection microscopy analysis of specific biosensors, we show that elevation of both Ca2+ and DAG is necessary for sustained translocation and activation of EGFP (enhanced green fluorescent protein)-PKCgamma. Both DAG production and PKCgamma translocation were localized processes, typically observed within discrete microdomains along the dendritic branches. Markedly, intermediate-strength NMDA receptor (NMDAR) activation or moderate electrical stimulation generated Ca2+ but no DAG signals, whereas mGluR activation generated DAG but no Ca2+ signals. Both receptors were needed for PKCgamma activation. This suggests that a coincidence detection process exists between iGluRs and mGluRs that relies on a molecular coincidence detection process based on the corequirement of Ca2+ and DAG for PKCgamma activation. Nevertheless, the requirement for costimulation with mGluRs could be overcome for maximal NMDAR stimulation through a direct production of DAG via activation of the Ca2+-sensitive PLCdelta (phospholipase Cdelta) isoform. In a second important exception, mGluRs were sufficient for PKCgamma activation in neurons in which Ca2+ stores were loaded by previous electrical activity. Together, the dual activation requirement for PKCgamma provides a plausible molecular interpretation for different synergistic contributions of mGluRs to long-term potentiation and other synaptic plasticity processes.
Collapse
|