151
|
García-Rojo G, Gámiz F, Ampuero E, Rojas-Espina D, Sandoval R, Rozas C, Morales B, Wyneken U, Pancetti F. In Vivo Sub-chronic Treatment with Dichlorvos in Young Rats Promotes Synaptic Plasticity and Learning by a Mechanism that Involves Acylpeptide Hydrolase Instead of Acetylcholinesterase Inhibition. Correlation with Endogenous β-Amyloid Levels. Front Pharmacol 2017; 8:483. [PMID: 28790916 PMCID: PMC5524899 DOI: 10.3389/fphar.2017.00483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022] Open
Abstract
Acylpeptide hydrolase (APEH) is a serine hydrolase that displays two catalytic activities, acting both as an exopeptidase toward short N-acylated peptides and as an endopeptidase toward oxidized peptides or proteins. It has been demonstrated that this enzyme can degrade monomers, dimers, and trimers of the Aβ1-40 peptide in the conditioned media of neuroblastoma cells. In a previous report, we showed that the specific inhibition of this enzyme by the organophosphate molecule dichlorvos (DDVP) triggers an enhancement of long-term potentiation in rat hippocampal slices. In this study, we demonstrate that the same effect can be accomplished in vivo by sub-chronic treatment of young rats with a low dose of DDVP (0.1 mg/kg). Besides exhibiting a significant enhancement of LTP, the treated animals also showed improvements in parameters of spatial learning and memory. Interestingly, higher doses of DDVP such as 2 mg/kg did not prove to be beneficial for synaptic plasticity or behavior. Due to the fact that at 2 mg/kg we observed inhibition of both APEH and acetylcholinesterase, we interpret that in order to achieve positive effects on the measured parameters only APEH inhibition should be obtained. The treatment with both DDVP doses produced an increase in the endogenous concentration of Aβ1-40, although this was statistically significant only at the dose of 0.1 mg/kg. We propose that APEH represents an interesting pharmacological target for cognitive enhancement, acting through the modulation of the endogenous concentration of Aβ1-40.
Collapse
Affiliation(s)
- Gonzalo García-Rojo
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Fernando Gámiz
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Estíbaliz Ampuero
- Laboratory of Neuroscience, Faculty of Medicine, Universidad de Los AndesSantiago, Chile
| | - Daniel Rojas-Espina
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Rodrigo Sandoval
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| | - Ursula Wyneken
- Laboratory of Neuroscience, Faculty of Medicine, Universidad de Los AndesSantiago, Chile
| | - Floria Pancetti
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| |
Collapse
|
152
|
Pawlowski M, Meuth SG, Duning T. Cerebrospinal Fluid Biomarkers in Alzheimer's Disease-From Brain Starch to Bench and Bedside. Diagnostics (Basel) 2017; 7:diagnostics7030042. [PMID: 28703785 PMCID: PMC5617942 DOI: 10.3390/diagnostics7030042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/21/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease is the most common cause of dementia. Over the last three decades, research has advanced dramatically and provided a detailed understanding of the molecular events underlying the pathogenesis of Alzheimer’s disease. In parallel, assays for the detection of biomarkers that reflect the typical Alzheimer’s disease-associated pathology have been developed and validated in myriads of clinical studies. Such biomarkers complement clinical diagnosis and improve diagnostic accuracy. The use of biomarkers will become even more important with the advent of disease-modifying therapies. Such therapies will likely be most beneficial when administered early in the disease course. Here, we summarise the development of the core Alzheimer’s disease cerebrospinal fluid biomarkers: amyloid-β and tau. We provide an overview of their role in cellular physiology and Alzheimer’s disease pathology, and embed their development as cerebrospinal fluid biomarkers into the historical context of Alzheimer’s disease research. Finally, we summarise recommendations for their use in clinical practice, and outline perspectives for novel cerebrospinal fluid candidate biomarkers.
Collapse
Affiliation(s)
- Matthias Pawlowski
- Department of Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, Münster 48149, Germany.
| | - Sven G Meuth
- Department of Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, Münster 48149, Germany.
| | - Thomas Duning
- Department of Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, Münster 48149, Germany.
| |
Collapse
|
153
|
Dammers C, Schwarten M, Buell AK, Willbold D. Pyroglutamate-modified Aβ(3-42) affects aggregation kinetics of Aβ(1-42) by accelerating primary and secondary pathways. Chem Sci 2017; 8:4996-5004. [PMID: 28970886 PMCID: PMC5612032 DOI: 10.1039/c6sc04797a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
The aggregation into amyloid fibrils of amyloid-β (Aβ) peptides is a hallmark of Alzheimer's disease. A variety of Aβ peptides have been discovered in vivo, with pyroglutamate-modified Aβ (pEAβ) forming a significant proportion. pEAβ is mainly localized in the core of plaques, suggesting a possible role in inducing and facilitating Aβ oligomerization and accumulation. Despite this potential importance, the aggregation mechanism of pEAβ and its influence on the aggregation kinetics of other Aβ variants have not yet been elucidated. Here we show that pEAβ(3-42) forms fibrils much faster than Aβ(1-42) and the critical concentration above which aggregation was observed was drastically decreased by one order of magnitude compared to Aβ(1-42). We elucidated the co-aggregation mechanism of Aβ(1-42) with pEAβ(3-42). At concentrations at which both species do not aggregate as homofibrils, mixtures of pEAβ(3-42) and Aβ(1-42) aggregate, suggesting the formation of mixed nuclei. We show that the presence of pEAβ(3-42) monomers increases the rate of primary nucleation of Aβ(1-42) and that fibrils of pEAβ(3-42) serve as highly efficient templates for elongation and catalytic surfaces for secondary nucleation of Aβ(1-42). On the other hand, the addition of Aβ(1-42) monomers drastically decelerates the primary and secondary nucleation of pEAβ(3-42) while not altering the pEAβ(3-42) elongation rate. In addition, even moderate concentrations of fibrillar Aβ(1-42) prevent pEAβ(3-42) aggregation, likely due to non-reactive binding of pEAβ(3-42) monomers to the surfaces of Aβ(1-42) fibrils. Thus, pEAβ(3-42) accelerates aggregation of Aβ(1-42) by affecting all individual reaction steps of the aggregation process while Aβ(1-42) dramatically slows down the primary and secondary nucleation of pEAβ(3-42).
Collapse
Affiliation(s)
- C Dammers
- Institute of Complex Systems (ICS-6) Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany .
| | - M Schwarten
- Institute of Complex Systems (ICS-6) Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany .
| | - A K Buell
- Institut für Physikalische Biologie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| | - D Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany .
- Institut für Physikalische Biologie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| |
Collapse
|
154
|
Azimi S, Zonouzi A, Firuzi O, Iraji A, Saeedi M, Mahdavi M, Edraki N. Discovery of imidazopyridines containing isoindoline-1,3-dione framework as a new class of BACE1 inhibitors: Design, synthesis and SAR analysis. Eur J Med Chem 2017; 138:729-737. [PMID: 28728105 DOI: 10.1016/j.ejmech.2017.06.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/31/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease is characterized by chronic neurodegeneration leading to dementia. The main cause of neurodegeneration is considered to be the accumulation of amyloid-β. Inhibiting BACE1 is a well-studied approach to lower the burden of amyloid-β aggregates. We designed a series of imidazopyridines-based compounds bearing phthalimide moieties as inhibitors of BACE1. The compounds 8a-o were synthesized by the Groebke-Blackburn-Bienaymé three-component reaction of heteroaromatic amidines, aldehydes and isocyanides. Evaluating the BACE1 inhibitory effects of the synthesized compounds revealed that introducing an aminocyclohexyl moiety in the imidazopyridine core resulted in a significant improvement in its BACE1 inhibitory potential. In this regard, compound 8e was the most potent against BACE1 with an IC50 value of 2.84 (±0.95) μM. Molecular docking revealed that the nitrogen atom of imidazopyridines and the oxygen atom of the phenoxypropyl linker were involved in hydrogen bound interactions with Asp228 and Asp32 of BACE1 active site, respectively. The phthalimide moiety oriented toward the flap pocket and interacted with phe108, lle110, Trp115, Ile118 through van der Waal's and hydrophobic interactions. These findings demonstrate that imidazopyridines-based compounds bearing phthalimide moiety have the potential to decrease amyloid-β levels and ameliorate the symptoms of Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Azimi
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
| | - Afsaneh Zonouzi
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
155
|
Oliveira J, Costa M, de Almeida MSC, da Cruz e Silva OA, Henriques AG. Protein Phosphorylation is a Key Mechanism in Alzheimer’s Disease. J Alzheimers Dis 2017; 58:953-978. [DOI: 10.3233/jad-170176] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joana Oliveira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Márcio Costa
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | | | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
156
|
García-Ayllón MS, Lopez-Font I, Boix CP, Fortea J, Sánchez-Valle R, Lleó A, Molinuevo JL, Zetterberg H, Blennow K, Sáez-Valero J. C-terminal fragments of the amyloid precursor protein in cerebrospinal fluid as potential biomarkers for Alzheimer disease. Sci Rep 2017; 7:2477. [PMID: 28559572 PMCID: PMC5449401 DOI: 10.1038/s41598-017-02841-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 11/15/2022] Open
Abstract
This study assesses whether C-terminal fragments (CTF) of the amyloid precursor protein (APP) are present in cerebrospinal fluid (CSF) and their potential as biomarkers for Alzheimer’s disease (AD). Immunoprecipitation and simultaneous assay by Western blotting using multiplex fluorescence imaging with specific antibodies against particular domains served to characterize CTFs of APP in human CSF. We demonstrate that APP-CTFs are detectable in human CSF, being the most abundant a 25-kDa fragment, probably resulting from proteolytic processing by η-secretase. The level of the 25-kDa APP-CTF was evaluated in three independent CSF sample sets of patients and controls. The CSF level of this 25-kDa CTF is higher in subjects with autosomal dominant AD linked to PSEN1 mutations, in demented Down syndrome individuals and in sporadic AD subjects compared to age-matched controls. Our data suggest that APP-CTF could be a potential diagnostic biomarker for AD.
Collapse
Affiliation(s)
- María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, España.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España.,Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, España.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España
| | - Claudia P Boix
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, España.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España
| | - Juan Fortea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España.,Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, 08036, Barcelona, Spain
| | - Alberto Lleó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España.,Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - José-Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, 08036, Barcelona, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal Campus, Sweden.,Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal Campus, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, España. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España.
| |
Collapse
|
157
|
Abstract
IMPORTANCE To provide a comprehensive review of knowledge of the genomics of Alzheimer disease (AD) and DNA amyloid β 42 (Aβ42) vaccination as a potential therapy. OBSERVATIONS Genotype-phenotype correlations of AD are presented to provide a comprehensive appreciation of the spectrum of disease causation. Alzheimer disease is caused in part by the overproduction and lack of clearance of Aβ protein. Oligomer Aβ, the most toxic species of Aβ, causes direct injury to neurons, accompanied by enhanced neuroinflammation, astrocytosis and gliosis, and eventually neuronal loss. The strongest genetic evidence supporting this hypothesis derives from mutations in the amyloid precursor protein (APP) gene. A detrimental APP mutation at the β-secretase cleavage site linked to early-onset AD found in a Swedish pedigree enhances Aβ production, in contrast to a beneficial mutation 2 residues away in APP that reduces Aβ production and protects against the onset of sporadic AD. A number of common variants associated with late-onset AD have been identified including apolipoprotein E, BIN1, ABC7, PICALM, MS4A4E/MS4A6A, CD2Ap, CD33, EPHA1, CLU, CR1, and SORL1. One or 2 copies of the apolipoprotein E ε4 allele are a major risk factor for late-onset AD. With DNA Aβ42 vaccination, a Th2-type noninflammatory immune response was achieved with a downregulation of Aβ42-specific effector (Th1, Th17, and Th2) cell responses at later immunization times. DNA Aβ42 vaccination upregulated T regulator cells (CD4+, CD25+, and FoxP3+) and its cytokine interleukin 10, resulting in downregulation of T effectors. CONCLUSIONS AND RELEVANCE Mutations in APP and PS-1 and PS-2 genes that are associated with early-onset, autosomal, dominantly inherited AD, in addition to the at-risk gene polymorphisms responsible for late-onset AD, all indicate a direct and early role of Aβ in the pathogenesis of AD. A translational result of genomic research has been Aβ-reducing therapies including DNA Aβ42 vaccination as a promising approach to delay or prevent this disease.
Collapse
Affiliation(s)
- Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas2Editor, JAMA Neurology
| | | | - Gang Yu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas
| | - Weiming Xia
- Geriatric Research, Education and Clinical Center, Bedford Veterans Hospital, Bedford, Massachusetts5Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
158
|
Yang Q, Song D, Qing H. Neural changes in Alzheimer's disease from circuit to molecule: Perspective of optogenetics. Neurosci Biobehav Rev 2017; 79:110-118. [PMID: 28522119 DOI: 10.1016/j.neubiorev.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD), as a crucial neurodegenerative disorder, affects neural activities at many levels. Synaptic plasticity and neural circuits are most susceptible in AD, but the detailed mechanism is unclear. Optogenetic tools provide unprecedented spatio-temporal specificity to stimulate specific neural circuits or synaptic molecules to reveal the precise function of normal brain and mechanism of deficits in AD models. Furthermore, using optogenetics to stimulate neurons can rescue learning and memory loss caused by AD. It also has possibility to use light to control the Neurotransmitter receptors and their downstream signal pathway. These technical methods have broad therapeutic application prospect.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Da Song
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
159
|
Wang Y, MacDonald RG, Thinakaran G, Kar S. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Mol Neurobiol 2017; 54:2636-2658. [PMID: 26993302 PMCID: PMC5901910 DOI: 10.1007/s12035-016-9849-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein. Recent studies have advanced our understanding of the structure, ligand-binding properties, and trafficking of the IGF-II/M6P receptor. This receptor has been implicated in a variety of important cellular processes including growth and development, clearance of IGF-II, proteolytic activation of enzymes, and growth factor precursors, in addition to its well-known role in the delivery of lysosomal enzymes. The IGF-II/M6P receptor, distributed widely in the central nervous system, has additional roles in mediating neurotransmitter release and memory enhancement/consolidation, possibly through activating IGF-II-related intracellular signaling pathways. Recent studies suggest that overexpression of the IGF-II/M6P receptor may have an important role in regulating the levels of transcripts and proteins involved in the development of Alzheimer's disease (AD)-the prevalent cause of dementia affecting the elderly population in our society. It is reported that IGF-II/M6P receptor overexpression can increase the levels/processing of amyloid precursor protein leading to the generation of β-amyloid peptide, which is associated with degeneration of neurons and subsequent development of AD pathology. Given the significance of the receptor in mediating the transport and functioning of the lysosomal enzymes, it is being considered for therapeutic delivery of enzymes to the lysosomes to treat lysosomal storage disorders. Notwithstanding these results, additional studies are required to validate and fully characterize the function of the IGF-II/M6P receptor in the normal brain and its involvement in various neurodegenerative disorders including AD. It is also critical to understand the interaction between the IGF-II/M6P receptor and lysosomal enzymes in neurodegenerative processes, which may shed some light on developing approaches to detect and prevent neurodegeneration through the dysfunction of the receptor and the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - R G MacDonald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - G Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
160
|
Andreeva TV, Lukiw WJ, Rogaev EI. Biological Basis for Amyloidogenesis in Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2017; 82:122-139. [PMID: 28320296 DOI: 10.1134/s0006297917020043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Certain cellular proteins normally soluble in the living organism under certain conditions form aggregates with a specific cross-β sheet structure called amyloid. These intra- or extracellular insoluble aggregates (fibers or plaques) are hallmarks of many neurodegenerative pathologies including Alzheimer's disease (AD), Huntington's disease, Parkinson's disease, prion disease, and other progressive neurological diseases that develop in the aging human central nervous system. Amyloid diseases (amyloidoses) are widespread in the elderly human population, a rapidly expanding demographic in many global populations. Increasing age is the most significant risk factor for neurodegenerative diseases associated with amyloid plaques. To date, nearly three dozen different misfolded proteins targeting brain and other organs have been identified in amyloid diseases and AD, the most prevalent neurodegenerative amyloid disease affecting over 15 million people worldwide. Here we (i) highlight the latest data on mechanisms of amyloid formation and further discuss a hypothesis on the amyloid cascade as a primary mechanism of AD pathogenesis and (ii) review the evolutionary aspects of amyloidosis, which allow new insight on human-specific mechanisms of dementia development.
Collapse
Affiliation(s)
- T V Andreeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | |
Collapse
|
161
|
Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease. Pathol Int 2017; 67:185-193. [PMID: 28261941 DOI: 10.1111/pin.12520] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/02/2017] [Indexed: 12/25/2022]
Abstract
Amyloid plaques and neurofibrillary tangles (NFTs) in the brain are the neuropathological hallmarks of Alzheimer's disease (AD). Amyloid plaques are composed of β-amyloid peptides (Aβ), while NFTs contain hyperphosphorylated tau proteins. Patients with familial AD who have mutations in the amyloid precursor protein (APP) gene have either increased production of Aβ or generate more aggregation-prone forms of Aβ. The findings of familial AD mutations in the APP gene suggest that Aβ plays a central role in the pathophysiology of AD. Aβ42, composed of 42 amino acid residues, aggregates readily and is considered to form amyloid plaque. However, the processes of plaque formation are still not well known. It is generally thought that Aβ is secreted into the extracellular space and aggregates to form amyloid plaques. Aβ as extracellular aggregates and amyloid plaques are thought to be toxic to the surrounding neurons. The intraneuronal accumulation of Aβ has more recently been demonstrated and is reported to be involved in synaptic dysfunction, cognitive impairment, and the formation of amyloid plaques in AD. We herein provide an overview of the process of the intraneuronal accumulation of Aβ and plaque formation, and discuss its implications for the pathology, early diagnosis, and therapy of AD.
Collapse
Affiliation(s)
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Gunnar K Gouras
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
162
|
Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein Cell 2017; 8:90-102. [PMID: 27866330 PMCID: PMC5291774 DOI: 10.1007/s13238-016-0338-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
Dementia is a comprehensive category of brain diseases that is great enough to affect a person's daily functioning. The most common type of dementia is Alzheimer's disease, which makes most of cases. New researches indicate that gastrointestinal tract microbiota are directly linked to dementia pathogenesis through triggering metabolic diseases and low-grade inflammation progress. A novel strategy is proposed for the management of these disorders and as an adjuvant for psychiatric treatment of dementia and other related diseases through modulation of the microbiota (e.g. with the use of probiotics).
Collapse
Affiliation(s)
- Rashad Alkasir
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Li
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Jin
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Attainted Hospital College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
163
|
Whyte LS, Lau AA, Hemsley KM, Hopwood JJ, Sargeant TJ. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease? J Neurochem 2017; 140:703-717. [PMID: 28027395 DOI: 10.1111/jnc.13935] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence will increase significantly in the coming decades. Although important progress has been made, fundamental pathogenic mechanisms as well as most hereditary contributions to the sporadic form of the disease remain unknown. In this review, we examine the now substantial links between AD pathogenesis and lysosomal biology. The lysosome hydrolyses and processes cargo delivered by multiple pathways, including endocytosis and autophagy. The endo-lysosomal and autophagic networks are central to clearance of cellular macromolecules, which is important given there is a deficit in clearance of amyloid-β in AD. Numerous studies show prominent lysosomal dysfunction in AD, including perturbed trafficking of lysosomal enzymes and accumulation of the same substrates that accumulate in lysosomal storage disorders. Examination of the brain in lysosomal storage disorders shows the accumulation of amyloid precursor protein metabolites, which further links lysosomal dysfunction with AD. This and other evidence leads us to hypothesise that genetic variation in lysosomal genes modifies the disease course of sporadic AD.
Collapse
Affiliation(s)
- Lauren S Whyte
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Adeline A Lau
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
164
|
Siwy CM, Lockhart C, Klimov DK. Is the Conformational Ensemble of Alzheimer's Aβ10-40 Peptide Force Field Dependent? PLoS Comput Biol 2017; 13:e1005314. [PMID: 28085875 PMCID: PMC5279813 DOI: 10.1371/journal.pcbi.1005314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/30/2017] [Accepted: 12/16/2016] [Indexed: 11/21/2022] Open
Abstract
By applying REMD simulations we have performed comparative analysis of the conformational ensembles of amino-truncated Aβ10-40 peptide produced with five force fields, which combine four protein parameterizations (CHARMM36, CHARMM22*, CHARMM22/cmap, and OPLS-AA) and two water models (standard and modified TIP3P). Aβ10-40 conformations were analyzed by computing secondary structure, backbone fluctuations, tertiary interactions, and radius of gyration. We have also calculated Aβ10-40 3JHNHα-coupling and RDC constants and compared them with their experimental counterparts obtained for the full-length Aβ1-40 peptide. Our study led us to several conclusions. First, all force fields predict that Aβ adopts unfolded structure dominated by turn and random coil conformations. Second, specific TIP3P water model does not dramatically affect secondary or tertiary Aβ10-40 structure, albeit standard TIP3P model favors slightly more compact states. Third, although the secondary structures observed in CHARMM36 and CHARMM22/cmap simulations are qualitatively similar, their tertiary interactions show little consistency. Fourth, two force fields, OPLS-AA and CHARMM22* have unique features setting them apart from CHARMM36 or CHARMM22/cmap. OPLS-AA reveals moderate β-structure propensity coupled with extensive, but weak long-range tertiary interactions leading to Aβ collapsed conformations. CHARMM22* exhibits moderate helix propensity and generates multiple exceptionally stable long- and short-range interactions. Our investigation suggests that among all force fields CHARMM22* differs the most from CHARMM36. Fifth, the analysis of 3JHNHα-coupling and RDC constants based on CHARMM36 force field with standard TIP3P model led us to an unexpected finding that in silico Aβ10-40 and experimental Aβ1-40 constants are generally in better agreement than these quantities computed and measured for identical peptides, such as Aβ1-40 or Aβ1-42. This observation suggests that the differences in the conformational ensembles of Aβ10-40 and Aβ1-40 are small and the former can be used as proxy of the full-length peptide. Based on this argument, we concluded that CHARMM36 force field with standard TIP3P model produces the most accurate representation of Aβ10-40 conformational ensemble. Dependence of protein conformational ensembles on force field parameterizations limits the predictive power of molecular dynamics simulations. To address this problem, we evaluated five all-atom force fields for their consistency in reproducing the conformational ensemble of Alzheimer’s Aβ10-40 peptide. To generate conformational ensembles, we have used replica exchange molecular dynamics and computed Aβ10-40 secondary and tertiary structures. We found that, although all force fields predict Aβ10-40 unfolded structure, they strongly disagree on helix and β propensities and tertiary structure distributions. We have also calculated Aβ10-40 J-coupling and residual dipolar coupling constants and compared them with the experimental data for the full-length Aβ1-40 peptide. Unexpectedly, we determined that in silico Aβ10-40 and experimental Aβ1-40 constants are in better agreement than these quantities computed and measured previously for identical peptides, such as Aβ1-40 or Aβ1-42. We then concluded that the conformational ensembles of Aβ10-40 and Aβ1-40 are similar and on this basis argue that CHARMM36 force field with standard TIP3P water model provides the most accurate description of Aβ10-40. Although our objective was not to evaluate the biomolecular force fields in general, our study is expected to facilitate their proper selection for the simulations of Alzheimer’s peptides.
Collapse
Affiliation(s)
- Christopher M. Siwy
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Dmitri K. Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
165
|
Grigorashvili EI, Selivanova OM, Dovidchenko NV, Dzhus UF, Mikhailina AO, Suvorina MY, Marchenkov VV, Surin AK, Galzitskaya OV. Determination of Size of Folding Nuclei of Fibrils Formed from Recombinant Aβ(1-40) Peptide. BIOCHEMISTRY (MOSCOW) 2017; 81:538-47. [PMID: 27297904 DOI: 10.1134/s0006297916050114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a highly efficient method for purification of the recombinant product Aβ(1-40) peptide. The concentration dependence of amyloid formation by recombinant Aβ(1-40) peptide was studied using fluorescence spectroscopy and electron microscopy. We found that the process of amyloid formation is preceded by lag time, which indicates that the process is nucleation-dependent. Further exponential growth of amyloid fibrils is followed by branching scenarios. Based on the experimental data on the concentration dependence, the sizes of the folding nuclei of fibrils were calculated. It turned out that the size of the primary nucleus is one "monomer" and the size of the secondary nucleus is zero. This means that the nucleus for new aggregates can be a surface of the fibrils themselves. Using electron microscopy, we have demonstrated that fibrils of these peptides are formed by the association of rounded ring structures.
Collapse
Affiliation(s)
- E I Grigorashvili
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Becker-Pauly C, Pietrzik CU. The Metalloprotease Meprin β Is an Alternative β-Secretase of APP. Front Mol Neurosci 2017; 9:159. [PMID: 28105004 PMCID: PMC5215381 DOI: 10.3389/fnmol.2016.00159] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023] Open
Abstract
The membrane bound metalloprotease meprin β is important for collagen fibril assembly in connective tissue formation and for the detachment of the intestinal mucus layer for proper barrier function. Recent proteomic studies revealed dozens of putative new substrates of meprin β, including the amyloid precursor protein (APP). It was shown that APP is cleaved by meprin β in distinct ways, either at the β-secretase site resulting in increased levels of Aβ peptides, or at the N-terminus releasing 11 kDa, and 20 kDa peptide fragments. The latter event was discussed to be rather neuroprotective, whereas the ectodomain shedding of APP by meprin β reminiscent to BACE-1 is in line with the amyloid hypothesis of Alzheimer's disease, promoting neurodegeneration. The N-terminal 11 kDa and 20 kDa peptide fragments represent physiological cleavage products, since they are found in human brains under different diseased or non-diseased states, whereas these fragments are completely missing in brains of meprin β knock-out animals. Meprin β is not only a sheddase of adhesion molecules, such as APP, but was additionally demonstrated to cleave within the prodomain of ADAM10. Activated ADAM10, the α-secretase of APP, is then able to shed meprin β from the cell surface thereby abolishing the β-secretase activity. All together meprin β seems to be a novel player in APP processing events, even influencing other enzymes involved in APP cleavage.
Collapse
Affiliation(s)
- Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel Kiel, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz Mainz, Germany
| |
Collapse
|
167
|
Parikh N, Klimov DK. Inclusion of lipopeptides into the DMPC lipid bilayers prevents Aβ peptide insertion. Phys Chem Chem Phys 2017; 19:10087-10098. [DOI: 10.1039/c7cp01003f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipopeptides prevent penetration of Alzheimer's Aβ peptides into lipid bilayers.
Collapse
Affiliation(s)
- Niyati Parikh
- School of Systems Biology
- George Mason University
- Manassas
- USA
| | | |
Collapse
|
168
|
Domingues C, Cruz e Silva OA, Henriques AG. Impact of Cytokines and Chemokines on Alzheimer's Disease Neuropathological Hallmarks. Curr Alzheimer Res 2017; 14:870-882. [PMID: 28317487 PMCID: PMC5543563 DOI: 10.2174/1567205014666170317113606] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/08/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder, neuropathologically characterized by aggregates of β-amyloid peptides, which deposit as senile plaques, and of TAU protein, which forms neurofibrillary tangles. It is now widely accepted that neuroinflammation is implicated in AD pathogenesis. METHOD Indeed, inflammatory mediators, such as cytokines and chemokines (chemotactic cytokines) can impact on the Alzheimer´s amyloid precursor protein by affecting its expression levels and amyloidogenic processing and/or β -amyloid aggregation. Additionally, cytokines and chemokines can influence kinases' activities, leading to abnormal TAU phosphorylation. To date there is no cure for AD, but several therapeutic strategies have been directed to prevent neuroinflammation. Anti-inflammatory, but also anti-amyloidogenic compounds, such as flavonoids were shown to favourably modulate some pathological events associated with neurodegeneration. CONCLUSION This review focuses on the role of cytokines and chemokines in AD-associated pathologies, and summarizes the potential anti-inflammatory therapeutic approaches aimed at preventing or slowing down disease progression.
Collapse
Affiliation(s)
- Catarina Domingues
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193Aveiro, Portugal
| | - Odete A.B. Cruz e Silva
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193Aveiro, Portugal
| | - Ana Gabriela Henriques
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193Aveiro, Portugal
| |
Collapse
|
169
|
Jin WS, Bu XL, Liu YH, Shen LL, Zhuang ZQ, Jiao SS, Zhu C, Wang QH, Zhou HD, Zhang T, Wang YJ. Plasma Amyloid-Beta Levels in Patients with Different Types of Cancer. Neurotox Res 2016; 31:283-288. [PMID: 27913965 DOI: 10.1007/s12640-016-9682-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 01/27/2023]
Abstract
Several epidemiological investigations indicate that cancer survivors have a lower risk for Alzheimer's disease (AD) and vice versa. However, the associations between plasma amyloid-beta (Aβ) levels with cancer remain largely unknown. In this case-control study, 110 cancer patients, 70 AD patients, and 70 age- and gender-matched normal controls were recruited. The cancer types include esophagus cancer, colorectal cancer, hepatic cancer, and lung cancer, all of which were reported to be associated with a lower risk for AD. Plasma levels of Aβ40, Aβ42, common pro-inflammatory cytokines, IL-1β, IL-6, TNF-α, IFN-γ, anti-inflammatory IL-4, chemokines, and cytokines MCP-1 were measured with enzyme-linked immunosorbent assay (ELISA) kits. Plasma levels of Aβ40 and Aβ42 in all cancer patients were higher than that in normal controls. More specifically, hepatic cancer patients exhibited significantly higher plasma Aβ levels. No significant difference in plasma Aβ levels was found between chemotherapy and no chemotherapy subgroups. Plasma Aβ levels were not significantly correlated with pro-inflammatory cytokines, anti-inflammatory, chemokines, and cytokines. Peripheral Aβ levels increased in cancer patients, especially in patients with hepatic cancer, independent of chemotherapy and inflammation. Further verification is required for the association between plasma Aβ and cancer.
Collapse
Affiliation(s)
- Wang-Sheng Jin
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Xian-Le Bu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Yu-Hui Liu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Lin-Lin Shen
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Zhen-Qian Zhuang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Shu-Sheng Jiao
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Chi Zhu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Qing-Hua Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Hua-Dong Zhou
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Tao Zhang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
170
|
Solé-Domènech S, Cruz DL, Capetillo-Zarate E, Maxfield FR. The endocytic pathway in microglia during health, aging and Alzheimer's disease. Ageing Res Rev 2016; 32:89-103. [PMID: 27421577 DOI: 10.1016/j.arr.2016.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022]
Abstract
Microglia, the main phagocytes of the central nervous system (CNS), are involved in the surveillance and maintenance of nervous tissue. During normal tissue homeostasis, microglia migrates within the CNS, phagocytose dead cells and tissue debris, and modulate synapse pruning and spine formation via controlled phagocytosis. In the event of an invasion by a foreign body, microglia are able to phagocytose the invading pathogen and process it proteolytically for antigen presentation. Internalized substrates are incorporated and sorted within the endocytic pathway and thereafter transported via complex vesicular routes. When targeted for degradation, substrates are delivered to acidic late endosomes and lysosomes. In these, the enzymatic degradation relies on pH and enzyme content. Endocytosis, sorting, transport, compartment acidification and degradation are regulated by complex signaling mechanisms, and these may be altered during aging and pathology. In this review, we discuss the endocytic pathway in microglia, with insight into the mechanisms controlling lysosomal biogenesis and pH regulation. We also discuss microglial lysosome function associated with Alzheimer's disease (AD) and the mechanisms of amyloid-beta (Aβ) internalization and degradation. Finally, we explore some therapies currently being investigated to treat AD and their effects on microglial response to Aβ, with insight in those involving enhancement of lysosomal function.
Collapse
|
171
|
Ubelmann F, Burrinha T, Salavessa L, Gomes R, Ferreira C, Moreno N, Guimas Almeida C. Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. EMBO Rep 2016; 18:102-122. [PMID: 27895104 DOI: 10.15252/embr.201642738] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 01/31/2023] Open
Abstract
The mechanisms driving pathological beta-amyloid (Aβ) generation in late-onset Alzheimer's disease (AD) are unclear. Two late-onset AD risk factors, Bin1 and CD2AP, are regulators of endocytic trafficking, but it is unclear how their endocytic function regulates Aβ generation in neurons. We identify a novel neuron-specific polarisation of Aβ generation controlled by Bin1 and CD2AP We discover that Bin1 and CD2AP control Aβ generation in axonal and dendritic early endosomes, respectively. Both Bin1 loss of function and CD2AP loss of function raise Aβ generation by increasing APP and BACE1 convergence in early endosomes, however via distinct sorting events. When Bin1 levels are reduced, BACE1 is trapped in tubules of early endosomes and fails to recycle in axons. When CD2AP levels are reduced, APP is trapped at the limiting membrane of early endosomes and fails to be sorted for degradation in dendrites. Hence, Bin1 and CD2AP keep APP and BACE1 apart in early endosomes by distinct mechanisms in axon and dendrites. Individuals carrying variants of either factor would slowly accumulate Aβ in neurons increasing the risk for late-onset AD.
Collapse
Affiliation(s)
- Florent Ubelmann
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Tatiana Burrinha
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Laura Salavessa
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ricardo Gomes
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cláudio Ferreira
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Nuno Moreno
- Advance Imaging Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Cláudia Guimas Almeida
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
172
|
Abstract
Dementia is a comprehensive category of brain diseases that is great enough to affect a person's daily functioning. The most common type of dementia is Alzheimer's disease, which makes most of cases. New researches indicate that gastrointestinal tract microbiota are directly linked to dementia pathogenesis through triggering metabolic diseases and low-grade inflammation progress. A novel strategy is proposed for the management of these disorders and as an adjuvant for psychiatric treatment of dementia and other related diseases through modulation of the microbiota (e.g. with the use of probiotics).
Collapse
Affiliation(s)
- Rashad Alkasir
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Li
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Jin
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Attainted Hospital College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
173
|
Functional modulation of strychnine-sensitive glycine receptors in rat hippocampal pyramidal neurons by amyloid-β protein (1-42). Brain Res 2016; 1651:61-72. [DOI: 10.1016/j.brainres.2016.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
|
174
|
Kimura A, Hata S, Suzuki T. Alternative Selection of β-Site APP-Cleaving Enzyme 1 (BACE1) Cleavage Sites in Amyloid β-Protein Precursor (APP) Harboring Protective and Pathogenic Mutations within the Aβ Sequence. J Biol Chem 2016; 291:24041-24053. [PMID: 27687728 DOI: 10.1074/jbc.m116.744722] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/21/2016] [Indexed: 11/06/2022] Open
Abstract
β-Site APP-cleaving enzyme 1 (BACE1) cleaves amyloid β-protein precursor (APP) at the bond between Met671 and Asp672 (β-site) to generate the carboxyl-terminal fragment (CTFβ/C99). BACE1 also cleaves APP at another bond between Thr681 and Gln682 (β'-site), yielding CTFβ'/C89. Cleavage of CTFβ/C99 by γ-secretase generates Aβ(1-XX), whereas cleavage of CTFβ'/C89 generates Aβ(11-XX). Thus, β'-site cleavage by BACE1 is amyloidolytic rather than amyloidogenic. β' cleavage of mouse APP is more common than the corresponding cleavage of human APP. We found that the H684R substitution within human Aβ, which replaces the histidine in the human protein with the arginine found at the corresponding position in mouse, facilitated β' cleavage irrespective of the species origin of BACE1, thereby significantly increasing the level of Aβ(11-XX) and decreasing the level of Aβ(1-XX). Thus, amino acid substitutions within the Aβ sequence influenced the selectivity of alternative β- or β'-site cleavage of APP by BACE1. In familial Alzheimer's disease (FAD), the APP gene harbors pathogenic variations such as the Swedish (K670N/M671L), Leuven (E682K), and A673V mutations, all of which decrease Aβ(11-40) generation, whereas the protective Icelandic mutation (A673T) increases generation of Aβ(11-40). Thus, A673T promotes β' cleavage of APP and protects subjects against AD. In addition, CTFβ/C99 was cleaved by excess BACE1 activity to generate CTFβ'/C89, followed by Aβ(11-40), even if APP harbored pathogenic mutations. The resultant Aβ(11-40) was more metabolically labile in vivo than Aβ(1-40). Our analysis suggests that some FAD mutations in APP are amyloidogenic and/or amyloidolytic via selection of alternative BACE1 cleavage sites.
Collapse
Affiliation(s)
- Ayano Kimura
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Saori Hata
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Toshiharu Suzuki
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
175
|
Assessing the Effects of Acute Amyloid β Oligomer Exposure in the Rat. Int J Mol Sci 2016; 17:ijms17091390. [PMID: 27563885 PMCID: PMC5037670 DOI: 10.3390/ijms17091390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, yet there are no therapeutic treatments that can either cure or delay its onset. Currently, the pathogenesis of AD is still uncertain, especially with respect to how the disease develops from a normal healthy brain. Amyloid β oligomers (AβO) are highly neurotoxic proteins and are considered potential initiators to the pathogenesis of AD. Rat brains were exposed to AβO via bilateral intracerebroventricular injections. Rats were then euthanized at either 1, 3, 7 or 21-days post surgery. Rat behavioural testing was performed using the Morris water maze and open field tests. Post-mortem brain tissue was immunolabelled for Aβ, microglia, and cholinergic neurons. Rats exposed to AβO showed deficits in spatial learning and anxiety-like behaviour. Acute positive staining for Aβ was only observed in the corpus callosum surrounding the lateral ventricles. AβO exposed rat brains also showed a delayed increase in activated microglia within the corpus callosum and a decreased number of cholinergic neurons within the basal forebrain. Acute exposure to AβO resulted in mild learning and memory impairments with co-concomitant white matter pathology within the corpus callosum and cholinergic cell loss within the basal forebrain. Results suggest that acute exposure to AβO in the rat may be a useful tool in assessing the early phases for the pathogenesis of AD.
Collapse
|
176
|
|
177
|
Altered protein phosphorylation as a resource for potential AD biomarkers. Sci Rep 2016; 6:30319. [PMID: 27466139 PMCID: PMC4964585 DOI: 10.1038/srep30319] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/04/2016] [Indexed: 01/19/2023] Open
Abstract
The amyloidogenic peptide, Aβ, provokes a series of events affecting distinct cellular pathways regulated by protein phosphorylation. Aβ inhibits protein phosphatases in a dose-dependent manner, thus it is expected that the phosphorylation state of specific proteins would be altered in response to Aβ. In fact several Alzheimer’s disease related proteins, such as APP and TAU, exhibit pathology associated hyperphosphorylated states. A systems biology approach was adopted and the phosphoproteome, of primary cortical neuronal cells exposed to Aβ, was evaluated. Phosphorylated proteins were recovered and those whose recovery increased or decreased, upon Aβ exposure across experimental sets, were identified. Significant differences were evident for 141 proteins and investigation of their interactors revealed key protein clusters responsive to Aβ treatment. Of these, 73 phosphorylated proteins increased and 68 decreased upon Aβ addition. These phosphorylated proteins represent an important resource of potential AD phospho biomarkers that should be further pursued.
Collapse
|
178
|
Catania M, Di Fede G, Tonoli E, Benussi L, Pasquali C, Giaccone G, Maderna E, Ghidoni R, Tagliavini F. Mirror Image of the Amyloid-β Species in Cerebrospinal Fluid and Cerebral Amyloid in Alzheimer's Disease. J Alzheimers Dis 2016; 47:877-81. [PMID: 26401767 DOI: 10.3233/jad-150179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) accumulation in brain that is paralleled by Aβ(1-42) reduction in cerebrospinal fluid (CSF). We analyzed the pattern of Aβ peptides, including the N- and C-terminal truncated fragments, in brain and CSF from two familial and one sporadic AD cases. We found that (i) each patient is characterized by a distinct Aβ profile in CSF and brain deposits and (ii) the CSF Aβ pattern mirrors the Aβ profile of cerebral amyloid. These results suggest the existence of different molecular AD subtypes which can be recognized by CSF analysis, enabling patient stratification.
Collapse
Affiliation(s)
- Marcella Catania
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Giuseppe Di Fede
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Elisa Tonoli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Claudio Pasquali
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Emanuela Maderna
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Fabrizio Tagliavini
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| |
Collapse
|
179
|
Surin AK, Grigorashvili EI, Suvorina MY, Selivanova OM, Galzitskaya OV. Determination of regions involved in amyloid fibril formation for Aβ(1-40) peptide. BIOCHEMISTRY (MOSCOW) 2016; 81:762-769. [DOI: 10.1134/s0006297916070130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
180
|
Sabbah DA, Zhong HA. Modeling the protonation states of β-secretase binding pocket by molecular dynamics simulations and docking studies. J Mol Graph Model 2016; 68:206-215. [DOI: 10.1016/j.jmgm.2016.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/06/2016] [Accepted: 07/17/2016] [Indexed: 01/12/2023]
|
181
|
Cynis H, Frost JL, Crehan H, Lemere CA. Immunotherapy targeting pyroglutamate-3 Aβ: prospects and challenges. Mol Neurodegener 2016; 11:48. [PMID: 27363697 PMCID: PMC4929720 DOI: 10.1186/s13024-016-0115-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Immunization against amyloid-β (Aβ) peptides deposited in Alzheimer’s disease (AD) has shown considerable therapeutic effect in animal models however, the translation into human Alzheimer’s patients is challenging. In recent years, a number of promising Aβ immunotherapy trials failed to reach primary study endpoints. Aside from uncertainties in the selection of patients and the start and duration of treatment, these results also suggest that the mechanisms underlying AD are still not fully understood. Thorough characterizations of protein aggregates in AD brain have revealed a conspicuous heterogeneity of Aβ peptides enabling the study of the toxic potential of each of the major forms. One such form, amino-terminally truncated and modified pyroglutamate (pGlu)-3 Aβ peptide appears to play a seminal role for disease initiation, qualifying it as novel target for immunotherapy approaches.
Collapse
Affiliation(s)
- Holger Cynis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.,Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Jeffrey L Frost
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.,University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01605, USA
| | - Helen Crehan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.
| |
Collapse
|
182
|
Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 2016; 139 Suppl 2:237-252. [DOI: 10.1111/jnc.13632] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Karran
- Alzheimer's Research UK Research; Cambridge Cambridgeshire UK
- VIB Center for the Biology of Disease; VIB-Leuven; Leuven Belgium
- Institute of Neurology; University College London; London UK
| | - Bart De Strooper
- VIB Center for the Biology of Disease; VIB-Leuven; Leuven Belgium
- Center for Human Genetics; Universitaire ziekenhuizen and LIND; KU Leuven; Leuven Belgium
- Institute of Neurology; University College London; London UK
| |
Collapse
|
183
|
Lockhart C, Klimov DK. The Alzheimer's disease A β peptide binds to the anionic DMPS lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1118-28. [DOI: 10.1016/j.bbamem.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/24/2022]
|
184
|
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 2016; 8:595-608. [PMID: 27025652 PMCID: PMC4888851 DOI: 10.15252/emmm.201606210] [Citation(s) in RCA: 4125] [Impact Index Per Article: 458.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 12/12/2022] Open
Abstract
Despite continuing debate about the amyloid β-protein (or Aβ hypothesis, new lines of evidence from laboratories and clinics worldwide support the concept that an imbalance between production and clearance of Aβ42 and related Aβ peptides is a very early, often initiating factor in Alzheimer's disease (AD). Confirmation that presenilin is the catalytic site of γ-secretase has provided a linchpin: all dominant mutations causing early-onset AD occur either in the substrate (amyloid precursor protein, APP) or the protease (presenilin) of the reaction that generates Aβ. Duplication of the wild-type APP gene in Down's syndrome leads to Aβ deposits in the teens, followed by microgliosis, astrocytosis, and neurofibrillary tangles typical of AD Apolipoprotein E4, which predisposes to AD in > 40% of cases, has been found to impair Aβ clearance from the brain. Soluble oligomers of Aβ42 isolated from AD patients' brains can decrease synapse number, inhibit long-term potentiation, and enhance long-term synaptic depression in rodent hippocampus, and injecting them into healthy rats impairs memory. The human oligomers also induce hyperphosphorylation of tau at AD-relevant epitopes and cause neuritic dystrophy in cultured neurons. Crossing human APP with human tau transgenic mice enhances tau-positive neurotoxicity. In humans, new studies show that low cerebrospinal fluid (CSF) Aβ42 and amyloid-PET positivity precede other AD manifestations by many years. Most importantly, recent trials of three different Aβ antibodies (solanezumab, crenezumab, and aducanumab) have suggested a slowing of cognitive decline in post hoc analyses of mild AD subjects. Although many factors contribute to AD pathogenesis, Aβ dyshomeostasis has emerged as the most extensively validated and compelling therapeutic target.
Collapse
Affiliation(s)
- Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Hardy
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
185
|
Kim BM, You MH, Chen CH, Suh J, Tanzi RE, Ho Lee T. Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein. Hum Mol Genet 2016; 25:2498-2513. [PMID: 27094130 DOI: 10.1093/hmg/ddw114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/19/2022] Open
Abstract
Extracellular deposition of amyloid-beta (Aβ) peptide, a metabolite of sequential cleavage of amyloid precursor protein (APP), is a critical step in the pathogenesis of Alzheimer's disease (AD). While death-associated protein kinase 1 (DAPK1) is highly expressed in AD brains and its genetic variants are linked to AD risk, little is known about the impact of DAPK1 on APP metabolism and Aβ generation. In this study, we demonstrated a novel effect of DAPK1 in the regulation of APP processing using cell culture and mouse models. DAPK1, but not its kinase deficient mutant (K42A), significantly increased human Aβ secretion in neuronal cell culture models. Moreover, knockdown of DAPK1 expression or inhibition of DAPK1 catalytic activity significantly decreased Aβ secretion. Furthermore, DAPK1, but not K42A, triggered Thr668 phosphorylation of APP, which may initiate and facilitate amyloidogenic APP processing leading to the generation of Aβ. In Tg2576 APPswe-overexpressing mice, knockout of DAPK1 shifted APP processing toward non-amyloidogenic pathway and decreased Aβ generation. Finally, in AD brains, elevated DAPK1 levels showed co-relation with the increase of APP phosphorylation. Combined together, these results suggest that DAPK1 promotes the phosphorylation and amyloidogenic processing of APP, and that may serve a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Byeong Mo Kim
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Mi-Hyeon You
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chun-Hau Chen
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jaehong Suh
- Genetics and Aging Research Unit, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Tae Ho Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
186
|
Nguyen K, Rabenstein DL. Interaction of the Heparin-Binding Consensus Sequence of β-Amyloid Peptides with Heparin and Heparin-Derived Oligosaccharides. J Phys Chem B 2016; 120:2187-97. [PMID: 26872053 DOI: 10.1021/acs.jpcb.5b12235] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid plaques in the AD brain. Comprised primarily of the 40- and 42-residue β-amyloid (Aβ) peptides, there is evidence that the heparan sulfate (HS) of heparan sulfate proteoglycans (HSPGs) plays a role in amyloid plaque formation and stability; however, details of the interaction of Aβ peptides with HS are not known. We have characterized the interaction of heparin and heparin-derived oligosaccharides with a model peptide for the heparin- and HS-binding domain of Aβ peptides (Ac-VHHQKLV-NH2; Aβ(12-18)), with mutants of Aβ(12-18), and with additional histidine-containing peptides. The nature of the binding interaction was characterized by NMR, binding constants and other thermodynamic parameters were determined by isothermal titration calorimetry (ITC), and relative binding affinities were determined by heparin affinity chromatography. The binding of Aβ(12-18) by heparin and heparin-derived oligosaccharides is pH-dependent, with the imidazolium groups of the histidine side chains interacting site-specifically within a cleft created by a trisaccharide sequence of heparin, the binding is mediated by electrostatic interactions, and there is a significant entropic contribution to the binding free energy as a result of displacement of Na(+) ions from heparin upon binding of cationic Aβ(12-18). The binding constant decreases as the size of the heparin-derived oligosaccharide decreases and as the concentration of Na(+) ion in the bulk solution increases. Structure-binding relationships characterized in this study are analyzed and discussed in terms of the counterion condensation theory of the binding of cationic peptides by anionic polyelectrolytes.
Collapse
Affiliation(s)
- Khanh Nguyen
- Department of Chemistry University of California, Riverside , Riverside, California 92521, United States
| | - Dallas L Rabenstein
- Department of Chemistry University of California, Riverside , Riverside, California 92521, United States
| |
Collapse
|
187
|
Schönherr C, Bien J, Isbert S, Wichert R, Prox J, Altmeppen H, Kumar S, Walter J, Lichtenthaler SF, Weggen S, Glatzel M, Becker-Pauly C, Pietrzik CU. Generation of aggregation prone N-terminally truncated amyloid β peptides by meprin β depends on the sequence specificity at the cleavage site. Mol Neurodegener 2016; 11:19. [PMID: 26895626 PMCID: PMC4759862 DOI: 10.1186/s13024-016-0084-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metalloprotease meprin β cleaves the Alzheimer's Disease (AD) relevant amyloid precursor protein (APP) as a β-secretase reminiscent of BACE-1, however, predominantly generating N-terminally truncated Aβ2-x variants. RESULTS Herein, we observed increased endogenous sAPPα levels in the brains of meprin β knock-out (ko) mice compared to wild-type controls. We further analyzed the cellular interaction of APP and meprin β and found that cleavage of APP by meprin β occurs prior to endocytosis. The N-terminally truncated Aβ2-40 variant shows increased aggregation propensity compared to Aβ1-40 and acts even as a seed for Aβ1-40 aggregation. Additionally, we observed that different APP mutants affect the catalytic properties of meprin β and that, interestingly, meprin β is unable to generate N-terminally truncated Aβ peptides from Swedish mutant APP (APPswe). CONCLUSION Concluding, we propose that meprin β may be involved in the generation of N-terminally truncated Aβ2-x peptides of APP, but acts independently from BACE-1.
Collapse
Affiliation(s)
- Caroline Schönherr
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jessica Bien
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Simone Isbert
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Rielana Wichert
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Johannes Prox
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sathish Kumar
- Department of Neurology, Molecular Cell Biology, University of Bonn, 53127, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, Molecular Cell Biology, University of Bonn, 53127, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph Becker-Pauly
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University, Otto-Hahn-Platz 9, 24118, Kiel, Germany.
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
188
|
Mollenhauer B, Parnetti L, Rektorova I, Kramberger MG, Pikkarainen M, Schulz-Schaeffer WJ, Aarsland D, Svenningsson P, Farotti L, Verbeek MM, Schlossmacher MG. Biological confounders for the values of cerebrospinal fluid proteins in Parkinson's disease and related disorders. J Neurochem 2016; 139 Suppl 1:290-317. [DOI: 10.1111/jnc.13390] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brit Mollenhauer
- Paracelsus-Elena-Klinik; Kassel Germany
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Lucilla Parnetti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Irena Rektorova
- Applied Neuroscience Group; CEITEC MU; Masaryk University; Brno Czech Republic
| | - Milica G. Kramberger
- Department of Neurology; University Medical Center Ljubljana; Ljubljana Slovenia
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Maria Pikkarainen
- Institute of Clinical Medicine / Neurology; University of Eastern Finland; Kuopio Finland
| | - Walter J. Schulz-Schaeffer
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Dag Aarsland
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Per Svenningsson
- Department for Clinical Neuroscience; Karolinska Institute; Stockholm Sweden
| | - Lucia Farotti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Marcel M. Verbeek
- Department of Neurology; Department of Laboratory Medicine; Donders Institute for Brain, Cognition and Behaviour; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Michael G. Schlossmacher
- Program in Neuroscience and Division of Neurology; The Ottawa Hospital; University of Ottawa Brain & Mind Research Institute; Ottawa Ontario Canada
| |
Collapse
|
189
|
Awasthi M, Singh S, Pandey VP, Dwivedi UN. Alzheimer's disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J Neurol Sci 2016; 361:256-71. [DOI: 10.1016/j.jns.2016.01.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 01/09/2023]
|
190
|
|
191
|
Wang C, Cheng F, Xu L, Jia L. HSA targets multiple Aβ42 species and inhibits the seeding-mediated aggregation and cytotoxicity of Aβ42 aggregates. RSC Adv 2016. [DOI: 10.1039/c6ra14590f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HSA inhibits Aβ42 fibrillation and cytotoxicity through interfering with different stages of Aβ42 fibrillation and targeting different Aβ42 intermediate aggregates.
Collapse
Affiliation(s)
- Conggang Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Fang Cheng
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Li Xu
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Lingyun Jia
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| |
Collapse
|
192
|
Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer's Disease and Some Therapeutic Approaches Targeting Aβ by Using Several Synthetic and Herbal Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7361613. [PMID: 27034741 PMCID: PMC4807045 DOI: 10.1155/2016/7361613] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease. In this review, we carefully detail amyloid-β metabolism and its role in AD. We also consider the various genetic animal models used to evaluate therapeutics. Finally, we consider the role of synthetic and plant-based compounds in therapeutics.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saurabh Srivastav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Amarish Kumar Yadav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
193
|
Sjödin S, Andersson KKA, Mercken M, Zetterberg H, Borghys H, Blennow K, Portelius E. APLP1 as a cerebrospinal fluid biomarker for γ-secretase modulator treatment. ALZHEIMERS RESEARCH & THERAPY 2015; 7:77. [PMID: 26689589 PMCID: PMC4687145 DOI: 10.1186/s13195-015-0160-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Alzheimer's disease brains are characterized by extracellular plaques containing the aggregated amyloid β42 (Aβ42) peptide and intraneuronal tangles containing hyperphosphorylated tau. Aβ42 is produced by sequential processing of the amyloid precursor protein (APP) by β-secretase followed by γ-secretase. Substantial efforts have been put into developing pharmaceuticals preventing the production or increasing the clearance of Aβ42. However, treatments inhibiting γ-secretase have proven disappointing due to off-target effects. To circumvent these effects, γ-secretase modulators (GSMs) have been developed, which rather than inhibiting γ-secretase shift its preference into producing less aggregation-prone shorter Aβ peptides. Belonging to the same family of proteins as APP, amyloid-like protein 1 (APLP1) is also a substrate for γ-secretase. Herein we investigated whether the GSM E2012 affects APLP1 processing in the central nervous system by measuring APLP1 peptide levels in cerebrospinal fluid (CSF) before and after E2012 treatment in dogs. METHODS An in-house monoclonal APLP1 antibody, AP1, was produced and utilized for immunopurification of APLP1 from human and dog CSF in a hybrid immuno-affinity mass spectrometric method. Seven dogs received a single dose of 20 or 80 mg/kg of E2012 in a randomized cross-over design and CSF was collected prior to and 4, 8 and 24 hours after dosing. RESULTS We have identified 14 CSF APLP1 peptides in humans and 12 CSF APLP1 peptides in dogs. Of these, seven were reproducibly detectable in dogs who received E2012. We found a dose-dependent relative increase of the CSF peptides APLP1β17, 1β18 and 1β28 accompanied with a decrease of 1β25 and 1β27 in response to E2012 treatment. All peptides reverted to baseline over the time of sample collection. CONCLUSION We show an in vivo effect of the GSM E2012 on the processing of APLP1 which is measurable in CSF. These data suggest that APLP1 peptides may be used as biomarkers to monitor drug effects of GSMs on γ-secretase processing in clinical trials. However, this requires further investigation in larger cohorts, including studies in man.
Collapse
Affiliation(s)
- Simon Sjödin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden.
| | - Kerstin K A Andersson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden.
| | - Marc Mercken
- Janssen Research and Development, Beerse, Belgium.
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden. .,UCL Institute of Neurology, University College London, London, UK.
| | | | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden.
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden.
| |
Collapse
|
194
|
Chen AC, Kim S, Shepardson N, Patel S, Hong S, Selkoe DJ. Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis. J Cell Biol 2015; 211:1157-76. [PMID: 26694839 PMCID: PMC4687875 DOI: 10.1083/jcb.201502001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022] Open
Abstract
Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = -0.86) and decreased β-secretase processing of β-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ → α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that β- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism.
Collapse
Affiliation(s)
- Allen C Chen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sumin Kim
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Nina Shepardson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sarvagna Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Soyon Hong
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
195
|
Jiang Y, Rigoglioso A, Peterhoff CM, Pawlik M, Sato Y, Bleiwas C, Stavrides P, Smiley JF, Ginsberg SD, Mathews PM, Levy E, Nixon RA. Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF. Neurobiol Aging 2015; 39:90-8. [PMID: 26923405 DOI: 10.1016/j.neurobiolaging.2015.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/30/2022]
Abstract
β-amyloid precursor protein (APP) and amyloid beta peptide (Aβ) are strongly implicated in Alzheimer's disease (AD) pathogenesis, although recent evidence has linked APP-βCTF generated by BACE1 (β-APP cleaving enzyme 1) to the development of endocytic abnormalities and cholinergic neurodegeneration in early AD. We show that partial BACE1 genetic reduction prevents these AD-related pathological features in the Ts2 mouse model of Down syndrome. Partially reducing BACE1 by deleting one BACE1 allele blocked development of age-related endosome enlargement in the medial septal nucleus, cerebral cortex, and hippocampus and loss of choline acetyltransferase (ChAT)-positive medial septal nucleus neurons. BACE1 reduction normalized APP-βCTF elevation but did not alter Aβ40 and Aβ42 peptide levels in brain, supporting a critical role in vivo for APP-βCTF in the development of these abnormalities. Although ameliorative effects of BACE1 inhibition on β-amyloidosis and synaptic proteins levels have been previously noted in AD mouse models, our results highlight the additional potential value of BACE1 modulation in therapeutic targeting of endocytic dysfunction and cholinergic neurodegeneration in Down syndrome and AD.
Collapse
Affiliation(s)
- Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Andrew Rigoglioso
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | | | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Yutaka Sato
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Cynthia Bleiwas
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - John F Smiley
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA; Department of Neuroscience & Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Paul M Mathews
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA; Department of Cell Biology, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
196
|
Fedele E, Rivera D, Marengo B, Pronzato MA, Ricciarelli R. Amyloid β: Walking on the dark side of the moon. Mech Ageing Dev 2015; 152:1-4. [DOI: 10.1016/j.mad.2015.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022]
|
197
|
Yi X, Feng C, Hu S, Li H, Wang J. Surface plasmon resonance biosensors for simultaneous monitoring of amyloid-beta oligomers and fibrils and screening of select modulators. Analyst 2015; 141:331-6. [PMID: 26613550 DOI: 10.1039/c5an01864a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oligomeric amyloid-beta (Aβ) peptides are considered as the most toxic species in Alzheimer's disease (AD). Monitoring of the Aβ aggregation profiles is critical for elucidating the oligomer toxicity and may serve as a therapeutic target for AD. By immobilizing the capture antibodies of A11 and OC that are specific to the oligomers and fibrils, respectively, in separate fluidic channels, a novel surface plasmon resonance (SPR) biosensor was designed for monitoring the oligomeric and fibrillar species of Aβ(1-42) simultaneously. The influence of curcumin, Cu(2+) and methylene blue on the amount of toxic oligomers and fibrils was evaluated. The half maximal inhibitory concentration (IC50) of curcumin and methylene blue was determined. The formation of Aβ fibrils was also validated by the thioflavin T (ThT) fluorescence assay. The results demonstrate the utility of SPR as an analytical tool for rapid and comprehensive monitoring of Aβ aggregation and screening of Aβ modulators.
Collapse
Affiliation(s)
- Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, P. R. China 410083.
| | | | | | | | | |
Collapse
|
198
|
Szczepankiewicz O, Linse B, Meisl G, Thulin E, Frohm B, Frigerio CS, Colvin MT, Jacavone AC, Griffin RG, Knowles T, Walsh DM, Linse S. N-Terminal Extensions Retard Aβ42 Fibril Formation but Allow Cross-Seeding and Coaggregation with Aβ42. J Am Chem Soc 2015; 137:14673-85. [PMID: 26535489 PMCID: PMC5412961 DOI: 10.1021/jacs.5b07849] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid β-protein (Aβ) sequence length variants with varying aggregation propensity coexist in vivo, where coaggregation and cross-catalysis phenomena may affect the aggregation process. Until recently, naturally occurring amyloid β-protein (Aβ) variants were believed to begin at or after the canonical β-secretase cleavage site within the amyloid β-protein precursor. However, N-terminally extended forms of Aβ (NTE-Aβ) were recently discovered and may contribute to Alzheimer's disease. Here, we have used thioflavin T fluorescence to study the aggregation kinetics of Aβ42 variants with N-terminal extensions of 5-40 residues, and transmission electron microscopy to analyze the end states. We find that all variants form amyloid fibrils of similar morphology as Aβ42, but the half-time of aggregation (t1/2) increases exponentially with extension length. Monte Carlo simulations of model peptides suggest that the retardation is due to an underlying general physicochemical effect involving reduced frequency of productive molecular encounters. Indeed, global kinetic analyses reveal that NTE-Aβ42s form fibrils via the same mechanism as Aβ42, but all microscopic rate constants (primary and secondary nucleation, elongation) are reduced for the N-terminally extended variants. Still, Aβ42 and NTE-Aβ42 coaggregate to form mixed fibrils and fibrils of either Aβ42 or NTE-Aβ42 catalyze aggregation of all monomers. NTE-Aβ42 monomers display reduced aggregation rate with all kinds of seeds implying that extended termini interfere with the ability of monomers to nucleate or elongate. Cross-seeding or coaggregation may therefore represent an important contribution in the in vivo formation of assemblies believed to be important in disease.
Collapse
Affiliation(s)
- Olga Szczepankiewicz
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| | - Björn Linse
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| | - Georg Meisl
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Eva Thulin
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| | - Birgitta Frohm
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| | - Carlo Sala Frigerio
- Laboratory for Neurodegenerative Research, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Michael T. Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Angela C. Jacavone
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tuomas Knowles
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| |
Collapse
|
199
|
Foschi G, Albonetti C, Liscio F, Milita S, Greco P, Biscarini F. Amorphous Aggregation of Amyloid Beta 1-40 Peptide in Confined Space. Chemphyschem 2015; 16:3379-84. [PMID: 26342212 DOI: 10.1002/cphc.201500602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 01/02/2023]
Abstract
The amorphous aggregation of Aβ1-40 peptide is addressed by using micromolding in capillaries. Both the morphology and the size of the aggregates are modulated by changing the contact angle of the sub-micrometric channel walls. Upon decreasing the hydrophilicity of the channels, the aggregates change their morphology from small aligned drops to discontinuous lines, thereby keeping their amorphous structure. Aβ1-40 fibrils are observed at high contact angles.
Collapse
Affiliation(s)
- Giulia Foschi
- Scriba Nanotecnologie S. r. L., Via Corticella 183 -, 40128, Bologna, Italy
| | - Cristiano Albonetti
- Istituto per lo Studio dei Materiali Nanostrutturati - ISMN, Consiglio Nazionale delle Ricerche - CNR, Via P. Gobetti 101 -, 40129, Bologna, Italy).
| | - Fabiola Liscio
- Istituto di Microelettronica e Microsistemi - IMM, Consiglio Nazionale delle Ricerche - CNR, Via P. Gobetti 101 -, 40129, Bologna, Italy
| | - Silvia Milita
- Istituto di Microelettronica e Microsistemi - IMM, Consiglio Nazionale delle Ricerche - CNR, Via P. Gobetti 101 -, 40129, Bologna, Italy
| | - Pierpaolo Greco
- Scriba Nanotecnologie S. r. L., Via Corticella 183 -, 40128, Bologna, Italy
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, I-41125, Modena, Italy
| |
Collapse
|
200
|
Wang C, Wang Z. Studying the relationship between cell cycle and Alzheimer's disease by gold nanoparticle probes. Anal Biochem 2015; 489:32-7. [PMID: 26299647 DOI: 10.1016/j.ab.2015.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
Abstract
In this study, a simple gold nanoparticle (GNP)-based colorimetric assay has been developed for studying the relationship between cell cycle and β-amyloid peptide (Aβ, the biomarker of Alzheimer's disease [AD]) expression level. It was found that Aβ expression of neuronal cells (e.g., SHG-44 cell line) is strongly dependent on cell cycle phases; that is, the Aβ expression level was highest when cells were arrested in the G1/S phase by thymidine and was lowest when they were arrested in the G2/M phase by nocodazole. This finding may improve the understanding of AD pathology and provide a new tool for anti-dementia drug development.
Collapse
Affiliation(s)
- Chengke Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|