151
|
Abstract
Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease.
Collapse
Affiliation(s)
- Ilia A Droujinine
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
- Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
152
|
Lipid metabolism in Rhodnius prolixus: Lessons from the genome. Gene 2016; 596:27-44. [PMID: 27697616 DOI: 10.1016/j.gene.2016.09.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023]
Abstract
The kissing bug Rhodnius prolixus is both an important vector of Chagas' disease and an interesting model for investigation into the field of physiology, including lipid metabolism. The publication of this insect genome will bring a huge amount of new molecular biology data to be used in future experiments. Although this work represents a promising scenario, a preliminary analysis of the sequence data is necessary to identify and annotate the genes involved in lipid metabolism. Here, we used bioinformatics tools and gene expression analysis to explore genes from different genes families and pathways, including genes for fat breakdown, as lipases and phospholipases, and enzymes from β-oxidation, fatty acid metabolism, and acyl-CoA and glycerolipid synthesis. The R. prolixus genome encodes 31 putative lipase genes, including 21 neutral lipases and 5 acid lipases. The expression profiles of some of these genes were analyzed. We were able to identify nine phospholipase A2 genes. A variety of gene families that participate in fatty acid synthesis and modification were studied, including fatty acid synthase, elongase, desaturase and reductase. Concerning the synthesis of glycerolipids, we found a second isoform of glycerol-3-phosphate acyltransferase that was ubiquitously expressed throughout the organs. Finally, all genes involved in fatty acid β-oxidation were identified, but not a long-chain acyl-CoA dehydrogenase. These results provide fundamental data to be used in future research on insect lipid metabolism and its possible relevance to Chagas' disease transmission.
Collapse
|
153
|
Oladeji BS, Irinkoyenikan OA, Gbadamosi OS, Ibironke SI, Akanbi CT, Taiwo KA. Comparative analysis of physico-chemical properties and amino acids profile of three tropical maize hybrid cultivars in Nigeria. ACTA ACUST UNITED AC 2016. [DOI: 10.1108/nfs-10-2015-0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this study was to compare the physico-chemical properties and amino acid profile of three maize hybrid cultivars grown in Nigeria.
Design/methodology/approach
Two normal maize endosperm varieties, yellow SUWAN-ISR (YNM) and white ART/98/SW05-OB-WC (WNM), and one yellow QPM variety, TZE-POP-DT-STR-QPM (YQPM), were selected for the study. Physico-chemical properties, physical tests, proximate composition analysis, functional properties and characteristics and amino acid profile tests were carried out on the grains using standard methods.
Findings
Protein was significantly higher (p < 0.05) in YQPM (10.49 per cent) than in normal endosperm, YNM (8.83 per cent) and WNM (8.50 per cent). Amino acid profile of the grains revealed that total amino acid of YQPM (94.67 g/100 g of protein) and essential amino acid of YQPM (39.070) were the highest among the three, with highest significantly different value of tryptophan (0.388 g/100 g of protein) at p < 0.05. The cooking quality of YQPM was found to be better than the other two, with highest hydration capacity and increase in volume after cooking (90.8 ± 0.01 g/1000 grains and 147.53 ± 0.02 per cent).
Originality/value
YQPM will be highly beneficial in the tropics, where maize is grown as the major staple food to reduce hunger and malnutrition because of its amino acid balance and its better cooking quality.
Collapse
|
154
|
Chen N, Fan YL, Bai Y, Li XD, Zhang ZF, Liu TX. Cytochrome P450 gene, CYP4G51, modulates hydrocarbon production in the pea aphid, Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:84-94. [PMID: 27425674 DOI: 10.1016/j.ibmb.2016.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/02/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Terrestrial insects deposit a layer of hydrocarbons (HCs) as waterproofing agents on their epicuticle. The insect-specific CYP4G genes, subfamily members of P450, have been found in all insects with sequenced genomes to date. They are critical for HC biosynthesis in Drosophila; however, their functional roles in other insects including the piercing-sucking hemipterous aphids remain unknown. In this study, we presented the molecular characterization and a functional study of the CYP4G51 gene in the pea aphid, Acyrthosiphon pisum (Harris). CYP4G51 transcript was detectable across the whole life cycle of A. pisum, and was prominently expressed in the aphid head and abdominal cuticle. Up-regulation of CYP4G51 under desiccation stress was more significant in the third instar nymphs compared with the adults. Also, up-regulation of CYP4G51 was observed when the aphids fed on an artificial diet compared with those fed on the broad bean plant, and was positively correlated with a high level of cuticular HCs (CHCs). RNAi knockdown of CYP4G51 significantly reduced its expression and caused reductions in both internal and external HCs. A deficiency in CHCs resulted in aphids being more susceptible to desiccation, with increased mortality under desiccation stress. The current results confirm that CYP4G51 modulates HC biosynthesis to protect aphids from desiccation. Moreover, our data also indicate that saturated and straight-chain HCs play a major role in cuticular waterproofing in the pea aphid. A. pisum CYP4G51 could be considered as a novel RNAi target in the field of insect pest management.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yu Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiang-Dong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
155
|
Cinnamon E, Makki R, Sawala A, Wickenberg LP, Blomquist GJ, Tittiger C, Paroush Z, Gould AP. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling. PLoS Genet 2016; 12:e1006154. [PMID: 27500738 PMCID: PMC4976899 DOI: 10.1371/journal.pgen.1006154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. Lipids play diverse roles in health and disease. Some types of lipids function as metabolic fuels for energy homeostasis, whereas others act as components of cell membranes or serve as signals regulating cell behaviors. Much, however, remains to be discovered about the molecular connections between different categories of lipids. Phosphatidylinositide 3-kinase (PI3K) is an enzyme that synthesizes phosphatidylinositide lipids, which act as signals essential for growth during normal development and cancer. Using genetics in the fruit fly, Drosophila, we identify new regulatory links between phosphatidylinositides and lipid oxidoreductases in specialized fat-metabolizing cells called oenocytes. We find that an enzyme metabolizing very long chain fatty acids (VLCFAs) and also a putative lipid dehydrogenase/reductase both act to prevent the inappropriate overgrowth of oenocytes. In the case of the latter enzyme, it suppresses cell growth by inhibiting phosphatidylinositide signaling. Future studies will determine whether similar lipid enzymes regulate PI3K signaling in other cell and tissue types during normal development and tumorigenesis.
Collapse
Affiliation(s)
- Einat Cinnamon
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, United Kingdom
| | - Rami Makki
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, United Kingdom
| | - Annick Sawala
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, United Kingdom
| | - Leah P. Wickenberg
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada, United States of America
| | - Gary J. Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada, United States of America
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada, United States of America
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Alex P. Gould
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, United Kingdom
- * E-mail:
| |
Collapse
|
156
|
Hu X, Richtman NM, Zhao JZ, Duncan KE, Niu X, Procyk LA, Oneal MA, Kernodle BM, Steimel JP, Crane VC, Sandahl G, Ritland JL, Howard RJ, Presnail JK, Lu AL, Wu G. Discovery of midgut genes for the RNA interference control of corn rootworm. Sci Rep 2016; 6:30542. [PMID: 27464714 PMCID: PMC4964579 DOI: 10.1038/srep30542] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/06/2016] [Indexed: 01/18/2023] Open
Abstract
RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by "blebbing" of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality.
Collapse
Affiliation(s)
- Xu Hu
- DuPont Pioneer, Johnston, IA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gusui Wu
- DuPont Pioneer, Johnston, IA, USA
| |
Collapse
|
157
|
Yu Z, Zhang X, Wang Y, Moussian B, Zhu KY, Li S, Ma E, Zhang J. LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria. Sci Rep 2016; 6:29980. [PMID: 27444410 PMCID: PMC4957221 DOI: 10.1038/srep29980] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/24/2016] [Indexed: 01/05/2023] Open
Abstract
Cytochrome P450 superfamily proteins play important roles in detoxification of xenobiotics and during physiological and developmental processes. To contribute to our understanding of this large gene family in insects, we have investigated the function of the cytochrome P450 gene LmCYP4G102 in the migratory locust Locusta migratoria. Suppression of LmCYP4G102 expression by RNA interference (RNAi) does not interfere with moulting but causes rapid loss of body weight - probably due to massive loss of water, and death soon after moulting. Accordingly, maintaining these animals at 90% relative humidity prevented lethality. Consistently, RNAi against LmCYP4G102 provoked a decrease in the content of cuticular alkanes, which as an important fraction of cuticular hydrocarbons have been shown to confer desiccation resistance. In addition, the cuticle of LmCYP4G102-knockdown locusts was fragile and easier deformable than in control animals. Presumably, this phenotype is due to decreased amounts of cuticular water that is reported to modulate cuticle mechanics. Interestingly, LmCYP4G102 was not expressed in the epidermis that produces the cuticle but in the sub-epdiermal hepatocyte-like oenocytes. Together, our results suggest that the oenocyte-specific LmCYP4G102 plays a critical role in the synthesis of cuticular hydrocarbons, which are important for cuticle waterproofing and mechanical stability in L. migratoria
Collapse
Affiliation(s)
- Zhitao Yu
- Institute of Applied Biology &School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xueyao Zhang
- Institute of Applied Biology &School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yiwen Wang
- Robert-Bosch Krankenhaus, Institut für Klinische Pharmakologie, Auerbachstrasse 112, Stuttgart 70376, Germany.,Genetik der Tiere, Universität Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Bernard Moussian
- Angewandte Zoologie, TU Dresden, Zellescher Weg 20b, Dresden 01217, Germany.,iBV, Université Nice, Parc Valrose, Nice 06000, France
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Enbo Ma
- Institute of Applied Biology &School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Institute of Applied Biology &School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
158
|
Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci U S A 2016; 113:9268-73. [PMID: 27439866 DOI: 10.1073/pnas.1608295113] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae.
Collapse
|
159
|
Chiang YN, Tan KJ, Chung H, Lavrynenko O, Shevchenko A, Yew JY. Steroid Hormone Signaling Is Essential for Pheromone Production and Oenocyte Survival. PLoS Genet 2016; 12:e1006126. [PMID: 27333054 PMCID: PMC4917198 DOI: 10.1371/journal.pgen.1006126] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/25/2016] [Indexed: 01/04/2023] Open
Abstract
Many of the lipids found on the cuticles of insects function as pheromones and communicate information about age, sex, and reproductive status. In Drosophila, the composition of the information-rich lipid profile is dynamic and changes over the lifetime of an individual. However, the molecular basis of this change is not well understood. To identify genes that control cuticular lipid production in Drosophila, we performed a RNA interference screen and used Direct Analysis in Real Time and gas chromatography mass spectrometry to quantify changes in the chemical profiles. Twelve putative genes were identified whereby transcriptional silencing led to significant differences in cuticular lipid production. Amongst them, we characterized a gene which we name spidey, and which encodes a putative steroid dehydrogenase that has sex- and age-dependent effects on viability, pheromone production, and oenocyte survival. Transcriptional silencing or overexpression of spidey during embryonic development results in pupal lethality and significant changes in levels of the ecdysone metabolite 20-hydroxyecdysonic acid and 20-hydroxyecdysone. In contrast, inhibiting gene expression only during adulthood resulted in a striking loss of oenocyte cells and a concomitant reduction of cuticular hydrocarbons, desiccation resistance, and lifespan. Oenocyte loss and cuticular lipid levels were partially rescued by 20-hydroxyecdysone supplementation. Taken together, these results identify a novel regulator of pheromone synthesis and reveal that ecdysteroid signaling is essential for the maintenance of cuticular lipids and oenocytes throughout adulthood. Pheromones are used by many animals to control social behaviors such as mate choice and kin recognition. The pheromone profile of insects is dynamic and can change depending on environmental, physiological, and social conditions. While many genes responsible for the biosynthesis of insect pheromones have been identified, much less is known about how pheromone production is systemically regulated over the lifetime of an animal. In this work, we identify 12 genes in Drosophila melanogaster that play a role in pheromone production. We characterized the function of one gene, which we name spidey, and which encodes a steroid dehydrogenase. Silencing spidey expression during the larval stage results in the rapid inactivation of an essential insect steroid, 20-hydroxyecdysone, and developmental arrest. In adults, spidey is needed for maintaining the viability of oenocytes, specialized cells that produce pheromones and also regulate energy homeostasis. Our work reveals a novel role for ecdysteroids in the adult animal and uncovers a regulatory mechanism for oenocyte activity. Potentially, ecdysteroid signaling serves as a mechanism by which environmental or social conditions shape pheromone production. Exploitation of this conserved pathway could be useful for interfering with the mating behavior and lifespan of disease-bearing insects or agricultural pests.
Collapse
Affiliation(s)
- Yin Ning Chiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Kah Junn Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Henry Chung
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Oksana Lavrynenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
160
|
Marriel NB, Tomé HVV, Guedes RCN, Martins GF. Deltamethrin-mediated survival, behavior, and oenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitos (Aedes aegypti). Acta Trop 2016; 158:88-96. [PMID: 26943998 DOI: 10.1016/j.actatropica.2016.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 11/30/2022]
Abstract
Insecticide use is the prevailing control tactic for the mosquito Aedes aegypti, a vector of several human viruses, which leads to ever-increasing problems of insecticide resistance in populations of this insect pest species. The underlying mechanisms of insecticide resistance may be linked to the metabolism of insecticides by various cells, including oenocytes. Oenocytes are ectodermal cells responsible for lipid metabolism and detoxification. The goal of this study was to evaluate the sublethal effects of deltamethrin on survival, behavior, and oenocyte structure in the immature mosquitoes of insecticide-susceptible and resistant strains of A. aegypti. Fourth instar larvae (L4) of both strains were exposed to different concentrations of deltamethrin (i.e., 0.001, 0.003, 0.005, and 0.007 ppm). After exposure, L4 were subjected to behavioral bioassays. Insecticide effects on cell integrity after deltamethrin exposure (at 0.003 or 0.005 ppm) were assessed by processing pupal oenocytes for transmission electron microscopy or TUNEL reaction. The insecticide resistant L4 survived all the tested concentrations, whereas the 0.007-ppm deltamethrin concentration had lethal effects on susceptible L4. Susceptible L4 were lethargic and exhibited less swimming activity than unexposed larvae, whereas the resistant L4 were hyperexcited following exposure to 0.005 ppm deltamethrin. No sublethal effects and no significant cell death were observed in the oenocytes of either susceptible or resistant insects exposed to deltamethrin. The present study illustrated the different responses of susceptible and resistant strains of A. aegypti following exposure to sublethal concentration of deltamethrin, and demonstrated how the behavior of the immature stage of the two strains varied, as well as oenocyte structure following insecticide exposure.
Collapse
Affiliation(s)
- Nadja Biondine Marriel
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil
| | - Hudson Vaner Ventura Tomé
- Departamento de Entomologia, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil
| | - Raul Carvalho Narciso Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| |
Collapse
|
161
|
Wang Y, da Cruz TC, Pulfemuller A, Grégoire S, Ferveur JF, Moussian B. INHIBITION OF FATTY ACID DESATURASES IN Drosophila melanogaster LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:6-23. [PMID: 27037621 DOI: 10.1002/arch.21329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Fatty acid desaturases are metabolic setscrews. To study their systemic impact on growth in Drosophila melanogaster, we inhibited fatty acid desaturases using the inhibitor CAY10566. As expected, the amount of desaturated lipids is reduced in larvae fed with CAY10566. These animals cease feeding soon after hatching, and their growth is strongly attenuated. A starvation program is not launched, but the expression of distinct metabolic genes is activated, possibly to mobilize storage material. Without attaining the normal size, inhibitor-fed larvae molt to the next stage indicating that the steroid hormone ecdysone triggers molting correctly. Nevertheless, after molting, expression of ecdysone-dependent regulators is not induced. While control larvae molt a second time, these larvae fail to do so and die after few days of straying. These effects are similar to those observed in experiments using larvae deficient for the fatty acid desaturase1 gene. Based on these data, we propose that the ratio of saturated to unsaturated fatty acids adjusts a sensor system that directs feeding behavior. We also hypothesize that loss of fatty acid desaturase activity leads to a block of the genetic program of development progression indirectly by switching on a metabolic compensation program.
Collapse
Affiliation(s)
- Yiwen Wang
- Animal Genetics, Universität Tübingen, Tübingen, Germany
| | | | | | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | | |
Collapse
|
162
|
Men TT, Binh TD, Yamaguchi M, Huy NT, Kamei K. Function of Lipid Storage Droplet 1 (Lsd1) in Wing Development of Drosophila melanogaster. Int J Mol Sci 2016; 17:ijms17050648. [PMID: 27136547 PMCID: PMC4881474 DOI: 10.3390/ijms17050648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 11/16/2022] Open
Abstract
Perilipins are evolutionarily conserved from Drosophila to humans, the lipid storage droplet 1 (Lsd1) is a Drosophila homolog of human perilipin 1. The function of Lsd1 as a regulator of lipolysis in Drosophila has been demonstrated, as the Lsd1 mutant causes an increase of lipid droplet size. However, the functions of this gene during development are still under investigation. In order to determine the function of Lsd1 during development, Lsd1 was knocked down in Drosophila using the GAL4-UAS system. Selective knockdown of Lsd1 in the dorsal wing disc caused an atrophied wing phenotype. The generation of reactive oxygen species in the wing pouch compartment of the Lsd1-knockdown flies was significantly higher than in the control. Immunostaining with caspase-3 antibody revealed a greater number of apoptotic cells in Lsd1-knockdown wing discs than in the control. Cell death by autophagy was also induced in the knockdown flies. Moreover, cells deprived of Lsd1 showed mitochondrial expansion and decreased ATP levels. These results strongly suggest that knockdown of Lsd1 induces mitochondrial stress and the production of reactive oxygen species that result in cell death, via apoptosis and the autophagy pathway. These results highlight the roles of DrosophilaLsd1 during wing development.
Collapse
Affiliation(s)
- Tran Thanh Men
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | - Tran Duy Binh
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | - Nguyen Tien Huy
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan.
| | - Kaeko Kamei
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| |
Collapse
|
163
|
Gold KS, Brückner K. Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 2016; 27:357-68. [PMID: 27117654 DOI: 10.1016/j.smim.2016.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life.
Collapse
Affiliation(s)
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Department of Cell and Tissue Biology; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
164
|
Min S, Chae HS, Jang YH, Choi S, Lee S, Jeong Y, Jones W, Moon S, Kim YJ, Chung J. Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila. Curr Biol 2016; 26:814-20. [DOI: 10.1016/j.cub.2016.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 11/09/2015] [Accepted: 01/13/2016] [Indexed: 11/26/2022]
|
165
|
Schama R, Pedrini N, Juárez MP, Nelson DR, Torres AQ, Valle D, Mesquita RD. Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:91-104. [PMID: 26079630 DOI: 10.1016/j.ibmb.2015.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 05/25/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process - carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) - are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.
Collapse
Affiliation(s)
- Renata Schama
- Laboratório de Biologia Computacional e de Sistemas, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil.
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-CCT La Plata) - Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - M Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-CCT La Plata) - Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - André Q Torres
- Laboratório de Biologia Computacional e de Sistemas, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil
| | - Denise Valle
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| | - Rafael D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| |
Collapse
|
166
|
Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, Lechene CP, Postle AD, Gould AP. Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila. Cell 2016; 163:340-53. [PMID: 26451484 PMCID: PMC4601084 DOI: 10.1016/j.cell.2015.09.020] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/15/2015] [Accepted: 08/12/2015] [Indexed: 12/19/2022]
Abstract
Stem cells reside in specialized microenvironments known as niches. During Drosophila development, glial cells provide a niche that sustains the proliferation of neural stem cells (neuroblasts) during starvation. We now find that the glial cell niche also preserves neuroblast proliferation under conditions of hypoxia and oxidative stress. Lipid droplets that form in niche glia during oxidative stress limit the levels of reactive oxygen species (ROS) and inhibit the oxidation of polyunsaturated fatty acids (PUFAs). These droplets protect glia and also neuroblasts from peroxidation chain reactions that can damage many types of macromolecules. The underlying antioxidant mechanism involves diverting PUFAs, including diet-derived linoleic acid, away from membranes to the core of lipid droplets, where they are less vulnerable to peroxidation. This study reveals an antioxidant role for lipid droplets that could be relevant in many different biological contexts. Oxidative stress stimulates lipid droplet biosynthesis in a neural stem cell niche Lipid droplets protect niche and neural stem cells from damaging PUFA peroxidation PUFAs are less vulnerable to peroxidation in lipid droplets than in cell membranes
Collapse
Affiliation(s)
- Andrew P Bailey
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Grielof Koster
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Christelle Guillermier
- National Resource for Imaging Mass Spectroscopy, Harvard Medical School and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Elizabeth M A Hirst
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - James I MacRae
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Claude P Lechene
- National Resource for Imaging Mass Spectroscopy, Harvard Medical School and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Anthony D Postle
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Alex P Gould
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
167
|
Bousquet F, Chauvel I, Flaven-Pouchon J, Farine JP, Ferveur JF. Dietary rescue of altered metabolism gene reveals unexpected Drosophila mating cues. J Lipid Res 2016; 57:443-50. [PMID: 26759364 DOI: 10.1194/jlr.m064683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/20/2022] Open
Abstract
To develop and reproduce, animals need long-chain MUFAs and PUFAs. Although some unsaturated FAs (UFAs) can be synthesized by the organism, others must be provided by the diet. The gene, desat1, involved in Drosophila melanogaster UFA metabolism, is necessary for both larval development and for adult sex pheromone communication. We first characterized desat1 expression in larval tissues. Then, we found that larvae in which desat1 expression was knocked down throughout development died during the larval stages when raised on standard food. By contrast pure MUFAs or PUFAs, but not saturated FAs, added to the larval diet rescued animals to adulthood with the best effect being obtained with oleic acid (C18:1). Male and female mating behavior and fertility were affected very differently by preimaginal UFA-rich diet. Adult diet also strongly influenced several aspects of reproduction: flies raised on a C18:1-rich diet showed increased mating performance compared with flies raised on standard adult diet. Therefore, both larval and adult desat1 expression control sex-specific mating signals. A similar nutrigenetics approach may be useful in other metabolic mutants to uncover cryptic effects otherwise masked by severe developmental defects.
Collapse
Affiliation(s)
- François Bousquet
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France
| | - Isabelle Chauvel
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France
| | - Justin Flaven-Pouchon
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France Centro Interdisciplinario de Neurociencia de Valparaiso, University of Valparaiso, Valparaiso, Chile
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France
| |
Collapse
|
168
|
James SA, Burke R, Howard DL, Spiers KM, Paterson DJ, Murphy S, Ramm G, Kirkham R, Ryan CG, de Jonge MD. Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography. Chem Commun (Camb) 2016; 52:11834-11837. [DOI: 10.1039/c6cc06747f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here we develop a measurement scheme to determine the abundance, distribution, and coordination environment of biological copper complexes in situ, without need for complex sample preparation.
Collapse
Affiliation(s)
| | - R. Burke
- School of Biological Sciences
- Monash University
- Clayton 3800
- Australia
| | | | | | | | - S. Murphy
- School of Biological Sciences
- Monash University
- Clayton 3800
- Australia
| | - G. Ramm
- School of Biological Sciences
- Monash University
- Clayton 3800
- Australia
| | - R. Kirkham
- Commonwealth Science Industry Research Organisation
- Clayton 3168
- Australia
| | - C. G. Ryan
- Commonwealth Science Industry Research Organisation
- Clayton 3168
- Australia
| | | |
Collapse
|
169
|
Diop SB, Bodmer R. Gaining Insights into Diabetic Cardiomyopathy from Drosophila. Trends Endocrinol Metab 2015; 26:618-627. [PMID: 26482877 PMCID: PMC4638170 DOI: 10.1016/j.tem.2015.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022]
Abstract
The high degree of genetic conservation between Drosophila melanogaster and mammals has helped to translate many important findings into new knowledge, and has led to better understanding of many biological processes in vertebrates. For over a century, the Drosophila model has been used in studies aimed at understanding the molecular mechanisms implicated in heredity, development, disease progression, and aging. The current epidemic of obesity and associated diabetic cardiomyopathy and heart failure has led to a shift in Drosophila research towards understanding the basic mechanisms leading to metabolic syndrome and associated cardiac risk factors. We discuss recent findings in Drosophila that highlight the importance of this organism as an excellent model for studying the effects of metabolic imbalance on cardiac function.
Collapse
Affiliation(s)
- Soda Balla Diop
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Dicovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Rolf Bodmer
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Dicovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
170
|
Kayashima Y, Murata S, Sato M, Matsuura K, Asanuma T, Chimoto J, Ishii T, Mochizuki K, Kumazawa S, Nakayama T, Yamakawa-Kobayashi K. Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster. Biochem Biophys Rep 2015; 4:417-424. [PMID: 29124233 PMCID: PMC5669444 DOI: 10.1016/j.bbrep.2015.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/27/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Background Polyphenols in tea are considered beneficial to human health. However, many such claims of their bioactivity still require in vitro and in vivo evidence. Results Using Drosophila melanogaster as a model multicellular organism, we assess the fat accumulation-suppressing effects of theaflavin (TF), a tea polyphenol; epitheaflagallin (ETG), which has an unknown function; and epigallocatechin gallate (EGCg), a prominent component of green tea. Dietary TF reduced the malondialdehyde accumulation related to a high-fat diet in adult flies. Other physiological and genetic responses induced by the high-fat diet, such as lipid accumulation in the fat body and expression of lipid metabolism-related genes, were ameliorated by the addition of TF, ETG, and EGCg, in some cases approaching respective levels without high-fat diet exposure. Continuous ingestion of the three polyphenols resulted in a shortened lifespan. Conclusion We provide evidence in Drosophila that tea polyphenols have a fat accumulation-suppressing effect that has received recent attention. We also suggest that tea polyphenols can provide different desirable biological activities depending on their composition and the presence or absence of other chemical components. Tea polyphenols have a fat accumulation-suppressing effect in Drosophila. Dietary theaflavin ameliorates high-fat diet-induced hydroperoxidase accumulation. The novel tea polyphenol epitheaflagallin strongly suppresses lipid accumulation. The beneficial effects of tea polyphenols can be enhanced by altering composition.
Collapse
Affiliation(s)
- Yasunari Kayashima
- Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Corresponding author at: Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan. Fax: +81 55 224 1396.Department of Food and Nutrition, Yamanashi Gakuin Junior College2-4-5 SakaoriKofu-shiYamanashi400-8575Japan
| | - Shinichi Murata
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Misaki Sato
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kanako Matsuura
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimichi Asanuma
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Junko Chimoto
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takeshi Ishii
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kazuo Mochizuki
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Shigenori Kumazawa
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tsutomu Nakayama
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
171
|
Conservation of gene and tissue networks regulating insulin signalling in flies and vertebrates. Biochem Soc Trans 2015; 43:1057-62. [DOI: 10.1042/bst20150078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fruit flies have emerged as a powerful tool to investigate metabolism. Not only are gene structures and gene networks that control metabolism conserved through evolution, but the interactions among organs to store and process metabolites have strong similarities between flies and humans. Accordingly, the Drosophila system has the potential to address human disorders associated with metabolic dysfunction including obesity, type 2 diabetes and lipotoxicity.
Collapse
|
172
|
Fatty acid transport proteins in disease: New insights from invertebrate models. Prog Lipid Res 2015; 60:30-40. [PMID: 26416577 DOI: 10.1016/j.plipres.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022]
Abstract
The dysregulation of lipid metabolism has been implicated in various diseases, including diabetes, cardiopathies, dermopathies, retinal and neurodegenerative diseases. Mouse models have provided insights into lipid metabolism. However, progress in the understanding of these pathologies is hampered by the multiplicity of essential cellular processes and genes that modulate lipid metabolism. Drosophila and Caenorhabditis elegans have emerged as simple genetic models to improve our understanding of these metabolic diseases. Recent studies have characterized fatty acid transport protein (fatp) mutants in Drosophila and C. elegans, establishing new models of cardiomyopathy, retinal degeneration, fat storage disease and dermopathies. These models have generated novel insights into the physiological role of the Fatp protein family in vivo in multicellular organisms, and are likely to contribute substantially to progress in understanding the etiology of various metabolic disorders. Here, we describe and discuss the mechanisms underlying invertebrate fatp mutant models in the light of the current knowledge relating to FATPs and lipid disorders in vertebrates.
Collapse
|
173
|
Wicker-Thomas C, Garrido D, Bontonou G, Napal L, Mazuras N, Denis B, Rubin T, Parvy JP, Montagne J. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J Lipid Res 2015; 56:2094-101. [PMID: 26353752 DOI: 10.1194/jlr.m060368] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
In terrestrial insects, cuticular hydrocarbons (CHCs) provide protection from desiccation. Specific CHCs can also act as pheromones, which are important for successful mating. Oenocytes are abdominal cells thought to act as specialized units for CHC biogenesis that consists of long-chain fatty acid (LCFA) synthesis, optional desaturation(s), elongation to very long-chain fatty acids (VLCFAs), and removal of the carboxyl group. By investigating CHC biogenesis in Drosophila melanogaster, we showed that VLCFA synthesis takes place only within the oenocytes. Conversely, several pathways, which may compensate for one another, can feed the oenocyte pool of LCFAs, suggesting that this step is a critical node for regulating CHC synthesis. Importantly, flies deficient in LCFA synthesis sacrificed their triacylglycerol stores while maintaining some CHC production. Moreover, pheromone production was lower in adult flies that emerged from larvae that were fed excess dietary lipids, and their mating success was lower. Further, we showed that pheromone production in the oenocytes depends on lipid metabolism in the fat tissue and that fatty acid transport protein, a bipartite acyl-CoA synthase (ACS)/FA transporter, likely acts through its ACS domain in the oenocyte pathway of CHC biogenesis. Our study highlights the importance of environmental and physiological inputs in regulating LCFA synthesis to eventually control sexual communication in a polyphagous animal.
Collapse
Affiliation(s)
- Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Damien Garrido
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Gwénaëlle Bontonou
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Laura Napal
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Thomas Rubin
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Jean-Philippe Parvy
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France Sorbonne Universités, UPMC Univ Paris 06, UFR 927, F-75005, Paris, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| |
Collapse
|
174
|
Pontier SM, Schweisguth F. A Wolbachia-Sensitive Communication between Male and Female Pupae Controls Gamete Compatibility in Drosophila. Curr Biol 2015; 25:2339-48. [PMID: 26344089 DOI: 10.1016/j.cub.2015.07.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 01/22/2023]
Abstract
Gamete compatibility is fundamental to sexual reproduction. Wolbachia are maternally inherited endosymbiotic bacteria that manipulate gamete compatibility in many arthropod species. In Drosophila, the fertilization of uninfected eggs by sperm from Wolbachia-infected males often results in early developmental arrest. This gamete incompatibility is called cytoplasmic incompatibility (CI). CI is highest in young males, suggesting that Wolbachia affect sperm properties during male development. Here, we show that Wolbachia modulate testis development. Unexpectedly, this effect was associated with Wolbachia infection in females, not males. This raised the possibility that females influenced testis development by communicating with males prior to adulthood. Using a combinatorial rearing protocol, we provide evidence for such a female-to-male communication during metamorphosis. This communication involves the perception of female pheromones by male olfactory receptors. We found that this communication determines the compatibility range of sperm. Wolbachia interfere with this female-to-male communication through changes in female pheromone production. Strikingly, restoring this communication partially suppressed CI in Wolbachia-infected males. We further identified a reciprocal male-to-female communication at metamorphosis that restricts the compatibility range of female gametes. Wolbachia also perturb this communication by feminizing male pheromone production. Thus, Wolbachia broaden the compatibility range of eggs, promoting thereby the reproductive success of Wolbachia-infected females. We conclude that pheromone communication between pupae regulates gamete compatibility and is sensitive to Wolbachia in Drosophila.
Collapse
Affiliation(s)
- Stéphanie M Pontier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS, URA2578, 75015 Paris, France.
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS, URA2578, 75015 Paris, France
| |
Collapse
|
175
|
Fischer P, La Rosa MK, Schulz A, Preiss A, Nagel AC. Cyclin G Functions as a Positive Regulator of Growth and Metabolism in Drosophila. PLoS Genet 2015; 11:e1005440. [PMID: 26274446 PMCID: PMC4537266 DOI: 10.1371/journal.pgen.1005440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023] Open
Abstract
In multicellular organisms, growth and proliferation is adjusted to nutritional conditions by a complex signaling network. The Insulin receptor/target of rapamycin (InR/TOR) signaling cascade plays a pivotal role in nutrient dependent growth regulation in Drosophila and mammals alike. Here we identify Cyclin G (CycG) as a regulator of growth and metabolism in Drosophila. CycG mutants have a reduced body size and weight and show signs of starvation accompanied by a disturbed fat metabolism. InR/TOR signaling activity is impaired in cycG mutants, combined with a reduced phosphorylation status of the kinase Akt1 and the downstream factors S6-kinase and eukaryotic translation initiation factor 4E binding protein (4E-BP). Moreover, the expression and accumulation of Drosophila insulin like peptides (dILPs) is disturbed in cycG mutant brains. Using a reporter assay, we show that the activity of one of the first effectors of InR signaling, Phosphoinositide 3-kinase (PI3K92E), is unaffected in cycG mutants. However, the metabolic defects and weight loss in cycG mutants were rescued by overexpression of Akt1 specifically in the fat body and by mutants in widerborst (wdb), the B'-subunit of the phosphatase PP2A, known to downregulate Akt1 by dephosphorylation. Together, our data suggest that CycG acts at the level of Akt1 to regulate growth and metabolism via PP2A in Drosophila. Size and growth of an organism are adjusted to nutritional conditions by a complex regulatory network involving the Insulin receptor and TOR signaling cascades. Drosophila melanogaster has been used in the past as a genetically tractable model to unravel the complex circuitry by genetic means. We have identified CycG as an important player in the regulation of TOR signaling. CycG mutants are underweight in the midst of food and show typical signs of TOR defects. We provide evidence that CycG acts at the level of Akt1 kinase that links the Insulin receptor and TOR signaling cascades. Molecular and genetic data point to an interplay of CycG and phosphatase PP2A, a well established negative regulator of Akt1 activity. Moreover, CycG may influence PP2A-Akt1 binding. We propose that CycG, by impeding PP2A-Akt1 interaction, acts as a positive regulator of growth in Drosophila.
Collapse
Affiliation(s)
- Patrick Fischer
- Institute of Genetics, University of Hohenheim, Stuttgart, Germany
| | | | - Adriana Schulz
- Institute of Genetics, University of Hohenheim, Stuttgart, Germany
| | - Anette Preiss
- Institute of Genetics, University of Hohenheim, Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Genetics, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
176
|
Rhomboid Enhancer Activity Defines a Subset of Drosophila Neural Precursors Required for Proper Feeding, Growth and Viability. PLoS One 2015; 10:e0134915. [PMID: 26252385 PMCID: PMC4529294 DOI: 10.1371/journal.pone.0134915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification and maturation of discrete cell populations with their subsequent regulatory roles. In this study, we characterize a rhomboid enhancer element that selectively labels four Drosophila embryonic neural precursors. These precursors give rise to the hypopharyngeal sensory organ of the peripheral nervous system and a subset of neurons in the deutocerebral region of the embryonic central nervous system. Post embryogenesis, the rhomboid enhancer is active in a subset of cells within the larval pharyngeal epithelium. Enhancer-targeted toxin expression alters the morphology of the sense organ and results in impaired larval growth, developmental delay, defective anterior spiracle eversion and lethality. Limiting the duration of toxin expression reveals differences in the critical periods for these effects. Embryonic expression causes developmental defects and partially penetrant pre-pupal lethality. Survivors of embryonic expression, however, ultimately become viable adults. In contrast, post-embryonic toxin expression results in fully penetrant lethality. To better define the larval growth defect, we used a variety of assays to demonstrate that toxin-targeted larvae are capable of locating, ingesting and clearing food and they exhibit normal food search behaviors. Strikingly, however, following food exposure these larvae show a rapid decrease in consumption suggesting a satiety-like phenomenon that correlates with the period of impaired larval growth. Together, these data suggest a critical role for these enhancer-defined lineages in regulating feeding, growth and viability.
Collapse
|
177
|
Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 2015; 59:88-105. [DOI: 10.1016/j.plipres.2015.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
|
178
|
Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015; 576:17-31. [PMID: 25447815 PMCID: PMC4409928 DOI: 10.1016/j.abb.2014.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Abstract
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States.
| |
Collapse
|
179
|
Figueroa-Clarevega A, Bilder D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev Cell 2015; 33:47-55. [PMID: 25850672 DOI: 10.1016/j.devcel.2015.03.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/24/2014] [Accepted: 02/27/2015] [Indexed: 02/07/2023]
Abstract
Tumors kill patients not only through well-characterized perturbations to their local environment but also through poorly understood pathophysiological interactions with distant tissues. Here, we use a Drosophila tumor model to investigate the elusive mechanisms underlying such long-range interactions. Transplantation of tumors into adults induces robust wasting of adipose, muscle, and gonadal tissues that are distant from the tumor, phenotypes that resemble the cancer cachexia seen in human patients. Notably, malignant, but not benign, tumors induce peripheral wasting. We identify the insulin growth factor binding protein (IGFBP) homolog ImpL2, an antagonist of insulin signaling, as a secreted factor mediating wasting. ImpL2 is sufficient to drive tissue loss, and insulin activity is reduced in peripheral tissues of tumor-bearing hosts. Importantly, knocking down ImpL2, specifically in the tumor, ameliorates wasting phenotypes. We propose that the tumor-secreted IGFBP creates insulin resistance in distant tissues, thus driving a systemic wasting response.
Collapse
Affiliation(s)
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
180
|
El-Kholy S, Stephano F, Li Y, Bhandari A, Fink C, Roeder T. Expression analysis of octopamine and tyramine receptors in Drosophila. Cell Tissue Res 2015; 361:669-84. [PMID: 25743690 DOI: 10.1007/s00441-015-2137-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/27/2015] [Indexed: 02/08/2023]
Abstract
The monoamines octopamine and tyramine, which are the invertebrate counterparts of epinephrine and norepinephrine, transmit their action through sets of G protein-coupled receptors. Four different octopamine receptors (Oamb, Octß1R, Octß2R, Octß3R) and 3 different tyramine receptors (TyrR, TyrRII, TyrRIII) are present in the fruit fly Drosophila melanogaster. Utilizing the presumptive promoter regions of all 7 octopamine and tyramine receptors, the Gal4/UAS system is utilized to elucidate their complete expression pattern in larvae as well as in adult flies. All these receptors show strong expression in the nervous system but their exact expression patterns vary substantially. Common to all octopamine and tyramine receptors is their expression in mushroom bodies, centers for learning and memory in insects. Outside the central nervous system, the differences in the expression patterns are more conspicuous. However, four of them are present in the tracheal system, where they show different regional preferences within this organ. On the other hand, TyrR appears to be the only receptor present in the heart muscles and TyrRII the only one expressed in oenocytes. Skeletal muscles express octß2R, Oamb and TyrRIII, with octß2R being present in almost all larval muscles. Taken together, this study provides comprehensive information about the sites of expression of all octopamine and tyramine receptors in the fruit fly, thus facilitating future research in the field.
Collapse
Affiliation(s)
- Samar El-Kholy
- Zoological Institute, Molecular Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
181
|
Fatty acid synthase cooperates with glyoxalase 1 to protect against sugar toxicity. PLoS Genet 2015; 11:e1004995. [PMID: 25692475 PMCID: PMC4334898 DOI: 10.1371/journal.pgen.1004995] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 01/08/2015] [Indexed: 01/03/2023] Open
Abstract
Fatty acid (FA) metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs)—composed of three FA units esterified to a glycerol backbone—is increased in response to dietary sugar. Saturation in the storage and synthesis capacity of TAGs is associated with type 2 diabetes progression. Sugar toxicity likely depends on advanced-glycation-end-products (AGEs) that form through covalent bounding between amine groups and carbonyl groups of sugar or their derivatives α-oxoaldehydes. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that is derived from glycolysis through a non-enzymatic reaction. Glyoxalase 1 (Glo1) works to neutralize MG, reducing its deleterious effects. Here, we have used the power of Drosophila genetics to generate Fatty acid synthase (FASN) mutants, allowing us to investigate the consequence of this deficiency upon sugar-supplemented diets. We found that FASN mutants are lethal but can be rescued by an appropriate lipid diet. Rescued animals do not exhibit insulin resistance, are dramatically sensitive to dietary sugar and accumulate AGEs. We show that FASN and Glo1 cooperate at systemic and cell-autonomous levels to protect against sugar toxicity. We observed that the size of FASN mutant cells decreases as dietary sucrose increases. Genetic interactions at the cell-autonomous level, where glycolytic enzymes or Glo1 were manipulated in FASN mutant cells, revealed that this sugar-dependent size reduction is a direct consequence of MG-derived-AGE accumulation. In summary, our findings indicate that FASN is dispensable for cell growth if extracellular lipids are available. In contrast, FA-synthesis appears to be required to limit a cell-autonomous accumulation of MG-derived-AGEs, supporting the notion that MG is the most deleterious α-oxoaldehyde at the intracellular level. Consumption of sugar and lipid (fat) enriched food increases the risk of developing metabolic diseases and cancers. However, lipids are essential molecules for life, as they are the major components of cell membranes. Metabolism refers to biochemical reactions that transform nutrients into molecules required by an organism, although toxic by-products can also formed. Sugars or their derivatives are likely to induce toxic effects by forming stable conjugates with proteins. To neutralize their toxic potential, sugars are metabolized and stored as fat. Here, we have used the fruitfly model to investigate the consequences of lipogenesis deficiency upon ingestion of sugar-enriched diets. We show that lipogenesis deficient animals are dramatically sensitive to dietary sugar. Further, we have identified the sugar by-product responsible for intracellular toxicity, in the context of lipogenesis inhibition. Our study reveals that inhibiting lipogenesis does not disrupt cellular growth if extracellular lipids are available. In contrast lipogenesis inhibition may have deleterious consequences due to accumulation of toxic by-products. The efficacy of lipogenic inhibitors in fighting cancers and metabolic diseases is currently under investigation. Therefore, to evaluate the clinical benefit of these inhibitors, accumulation of the toxic molecules should be monitored in both sick and healthy cells.
Collapse
|
182
|
Tsuda-Sakurai K, Seong KH, Horiuchi J, Aigaki T, Tsuda M. Identification of a novel role forDrosophilaMESR4 in lipid metabolism. Genes Cells 2015; 20:358-65. [DOI: 10.1111/gtc.12221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/18/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Kayoko Tsuda-Sakurai
- Ochadai Academic Production; Ochanomizu University; 2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610 Japan
- Department of Biological Sciences; Tokyo Metropolitan University; 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
| | - Ki-Hyeon Seong
- Laboratory of Molecular Genetics; RIKEN Tsukuba Institute; Tsukuba Ibaraki 305-0074 Japan
| | - Junjiro Horiuchi
- Department of Biological Sciences; Tokyo Metropolitan University; 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
| | - Toshiro Aigaki
- Department of Biological Sciences; Tokyo Metropolitan University; 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
| | - Manabu Tsuda
- Department of Liberal Arts and Human Development; Kanagawa University of Human Services; 1-10-1 Heiseicho Yokosuka Kanagawa 238-8522 Japan
| |
Collapse
|
183
|
Owusu-Ansah E, Perrimon N. Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Dis Model Mech 2015; 7:343-50. [PMID: 24609035 PMCID: PMC3944494 DOI: 10.1242/dmm.012989] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, numerous reports have underscored the similarities between the metabolism of Drosophila and vertebrates, with the identification of evolutionarily conserved enzymes and analogous organs that regulate carbohydrate and lipid metabolism. It is now well established that the major metabolic, energy-sensing and endocrine signaling networks of vertebrate systems are also conserved in flies. Accordingly, studies in Drosophila are beginning to unravel how perturbed energy balance impinges on lifespan and on the ensuing diseases when energy homeostasis goes awry. Here, we highlight several emerging concepts that are at the nexus between obesity, nutrient sensing, metabolic homeostasis and aging. Specifically, we summarize the endocrine mechanisms that regulate carbohydrate and lipid metabolism, and provide an overview of the neuropeptides that regulate feeding behavior. We further describe the various efforts at modeling the effects of high-fat or -sugar diets in Drosophila and the signaling mechanisms involved in integrating organ function. Finally, we draw attention to some of the cardinal discoveries made with these disease models and how these could spur new research questions in vertebrate systems.
Collapse
Affiliation(s)
- Edward Owusu-Ansah
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
184
|
Insulin- and warts-dependent regulation of tracheal plasticity modulates systemic larval growth during hypoxia in Drosophila melanogaster. PLoS One 2014; 9:e115297. [PMID: 25541690 PMCID: PMC4277339 DOI: 10.1371/journal.pone.0115297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/22/2014] [Indexed: 01/07/2023] Open
Abstract
Adaptation to dynamic environmental cues during organismal development requires coordination of tissue growth with available resources. More specifically, the effects of oxygen availability on body size have been well-documented, but the mechanisms through which hypoxia restricts systemic growth have not been fully elucidated. Here, we characterize the larval growth and metabolic defects in Drosophila that result from hypoxia. Hypoxic conditions reduced fat body opacity and increased lipid droplet accumulation in this tissue, without eliciting lipid aggregation in hepatocyte-like cells called oenocytes. Additionally, hypoxia increased the retention of Dilp2 in the insulin-producing cells of the larval brain, associated with a reduction of insulin signaling in peripheral tissues. Overexpression of the wildtype form of the insulin receptor ubiquitously and in the larval trachea rendered larvae resistant to hypoxia-induced growth restriction. Furthermore, Warts downregulation in the trachea was similar to increased insulin receptor signaling during oxygen deprivation, which both rescued hypoxia-induced growth restriction, inhibition of tracheal molting, and developmental delay. Insulin signaling and loss of Warts function increased tracheal growth and augmented tracheal plasticity under hypoxic conditions, enhancing oxygen delivery during periods of oxygen deprivation. Our findings demonstrate a mechanism that coordinates oxygen availability with systemic growth in which hypoxia-induced reduction of insulin receptor signaling decreases plasticity of the larval trachea that is required for the maintenance of systemic growth during times of limiting oxygen availability.
Collapse
|
185
|
Control of metabolic adaptation to fasting by dILP6-induced insulin signaling in Drosophila oenocytes. Proc Natl Acad Sci U S A 2014; 111:17959-64. [PMID: 25472843 DOI: 10.1073/pnas.1409241111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabolic adaptation to changing dietary conditions is critical to maintain homeostasis of the internal milieu. In metazoans, this adaptation is achieved by a combination of tissue-autonomous metabolic adjustments and endocrine signals that coordinate the mobilization, turnover, and storage of nutrients across tissues. To understand metabolic adaptation comprehensively, detailed insight into these tissue interactions is necessary. Here we characterize the tissue-specific response to fasting in adult flies and identify an endocrine interaction between the fat body and liver-like oenocytes that regulates the mobilization of lipid stores. Using tissue-specific expression profiling, we confirm that oenocytes in adult flies play a central role in the metabolic adaptation to fasting. Furthermore, we find that fat body-derived Drosophila insulin-like peptide 6 (dILP6) induces lipid uptake in oenocytes, promoting lipid turnover during fasting and increasing starvation tolerance of the animal. Selective activation of insulin/IGF signaling in oenocytes by a fat body-derived peptide represents a previously unidentified regulatory principle in the control of metabolic adaptation and starvation tolerance.
Collapse
|
186
|
Abstract
Living organisms adapt to environmental changes through metabolic homeostasis. Sugars are used primarily for the metabolic production of ATP energy and carbon sources. Trehalose is a nonreducing disaccharide that is present in many organisms. In insects, the principal hemolymph sugar is trehalose instead of glucose. As in mammals, hemolymph sugar levels in Drosophila are regulated by the action of endocrine hormones. Therefore, the mobilization of trehalose to glucose is thought to be critical for metabolic homeostasis. However, the physiological role of trehalose as a hemolymph sugar during insect development remains largely unclear. Here, we demonstrate that mutants of the trehalose-synthesizing enzyme Tps1 failed to produce trehalose as expected but survived into the late pupal period and died before eclosion. Larvae without trehalose grew normally, with a slight reduction in body size, under normal food conditions. However, these larvae were extremely sensitive to starvation, possibly due to a local defect in the central nervous system. Furthermore, Tps1 mutant larvae failed to grow on a low-sugar diet and exhibited severe growth defects on a low-protein diet. These diet-dependent phenotypes of Tps1 mutants demonstrate the critical role of trehalose during development in Drosophila and reveal how animals adapt to changes in nutrient availability.
Collapse
Affiliation(s)
- Hiroko Matsuda
- From the Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0047 and
| | - Takayuki Yamada
- From the Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0047 and
| | - Miki Yoshida
- From the Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0047 and the Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Takashi Nishimura
- From the Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0047 and the Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
187
|
Armstrong AR, Laws KM, Drummond-Barbosa D. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila. Development 2014; 141:4479-88. [PMID: 25359724 DOI: 10.1242/dev.116467] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk.
Collapse
Affiliation(s)
- Alissa R Armstrong
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
188
|
Padmanabha D, Baker KD. Drosophila gains traction as a repurposed tool to investigate metabolism. Trends Endocrinol Metab 2014; 25:518-27. [PMID: 24768030 DOI: 10.1016/j.tem.2014.03.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
The use of fruit flies has recently emerged as a powerful experimental paradigm to study the core aspects of energy metabolism. The fundamental need for lipid and carbohydrate processing and storage across species dictates that the central regulators that control metabolism are highly conserved through evolution. Accordingly, the Drosophila system is being used to identify human disease genes and has the potential to model successfully human disorders that center on excessive caloric intake and metabolic dysfunction, including diet-induced lipotoxicity and type 2 diabetes. We review here recent progress on this front and contend that increasing such efforts will yield unexpectedly high rates of experimental return, thereby leading to novel approaches in the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Divya Padmanabha
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street Room 2052, Richmond, VA 23298, USA
| | - Keith D Baker
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street Room 2052, Richmond, VA 23298, USA.
| |
Collapse
|
189
|
Abstract
UNLABELLED Drosophila C virus (DCV) is a positive-sense RNA virus belonging to the Dicistroviridae family. This natural pathogen of the model organism Drosophila melanogaster is commonly used to investigate antiviral host defense in flies, which involves both RNA interference and inducible responses. Although lethality is used routinely as a readout for the efficiency of the antiviral immune response in these studies, virus-induced pathologies in flies still are poorly understood. Here, we characterize the pathogenesis associated with systemic DCV infection. Comparison of the transcriptome of flies infected with DCV or two other positive-sense RNA viruses, Flock House virus and Sindbis virus, reveals that DCV infection, unlike those of the other two viruses, represses the expression of a large number of genes. Several of these genes are expressed specifically in the midgut and also are repressed by starvation. We show that systemic DCV infection triggers a nutritional stress in Drosophila which results from intestinal obstruction with the accumulation of peritrophic matrix at the entry of the midgut and the accumulation of the food ingested in the crop, a blind muscular food storage organ. The related virus cricket paralysis virus (CrPV), which efficiently grows in Drosophila, does not trigger this pathology. We show that DCV, but not CrPV, infects the smooth muscles surrounding the crop, causing extensive cytopathology and strongly reducing the rate of contractions. We conclude that the pathogenesis associated with systemic DCV infection results from the tropism of the virus for an important organ within the foregut of dipteran insects, the crop. IMPORTANCE DCV is one of the few identified natural viral pathogens affecting the model organism Drosophila melanogaster. As such, it is an important virus for the deciphering of host-virus interactions in insects. We characterize here the pathogenesis associated with DCV infection in flies and show that it results from the tropism of the virus for an essential but poorly characterized organ in the digestive tract, the crop. Our results may have relevance for other members of the Dicistroviridae, some of which are pathogenic to beneficial or pest insect species.
Collapse
|
190
|
de Assis WA, Malta J, Pimenta PFP, Ramalho-Ortigão JM, Martins GF. The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:501-9. [PMID: 24863740 DOI: 10.1016/j.asd.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
The fat body (FB) is responsible for the storage and synthesis of the majority of proteins and metabolites secreted into the hemolymph. Oenocytes are responsible for lipid processing and detoxification. The FB is distributed throughout the insect body cavity and organized as peripheral and perivisceral portions in the abdomen, with trophocytes and oenocytes attached to the peripheral portion. Here, we investigated the morphology and the subcellular changes in the peripheral and perivisceral FBs and in oenocytes of the sand flies Lutzomyia longipalpis and Phlebotomus papatasi after blood feeding. In L. longipalpis two-sized oenocytes (small and large) were identified, with both cell types displaying well-developed reticular system and smooth endoplasmic reticulum, whereas in P. papatasi, only small cells were observed. Detailed features of FBs of L. longipalpis and P. papatasi are shared either prior to or after blood feeding. The peripheral and perivisceral FBs responded to blood feeding with the development of glycogen zones and rough endoplasmic reticulum. This study provides the first detailed description of the FBs and oenocytes in sand flies, contributing significantly towards are better understanding of the biology of such important disease vectors.
Collapse
Affiliation(s)
- Wiviane Alves de Assis
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Juliana Malta
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Paulo Filemon P Pimenta
- Laboratório de Entomologia Médica, Instituto de Pesquisas René Rachou-CPqRR, Fundação Oswaldo Cruz (Fiocruz-MG), Avenida Augusto de Lima, 1715, Belo Horizonte, Minas Gerais CEP 30190-002, Brazil.
| | | | - Gustavo Ferreira Martins
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| |
Collapse
|
191
|
Gold KS, Brückner K. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol 2014; 42:717-27. [PMID: 24946019 PMCID: PMC5013032 DOI: 10.1016/j.exphem.2014.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Fish, mice, and humans rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments (niches) in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, which we refer to as tissue hemocytes, as well as a "definitive" lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges, and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to maximize fitness of the animal.
Collapse
Affiliation(s)
| | - Katja Brückner
- Department of Cell and Tissue Biology; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
192
|
Schoofs A, Hückesfeld S, Schlegel P, Miroschnikow A, Peters M, Zeymer M, Spieß R, Chiang AS, Pankratz MJ. Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain. PLoS Biol 2014; 12:e1001893. [PMID: 24960360 PMCID: PMC4068981 DOI: 10.1371/journal.pbio.1001893] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022] Open
Abstract
Central mechanisms by which specific motor programs are selected to achieve meaningful behaviors are not well understood. Using electrophysiological recordings from pharyngeal nerves upon central activation of neurotransmitter-expressing cells, we show that distinct neuronal ensembles can regulate different feeding motor programs. In behavioral and electrophysiological experiments, activation of 20 neurons in the brain expressing the neuropeptide hugin, a homolog of mammalian neuromedin U, simultaneously suppressed the motor program for food intake while inducing the motor program for locomotion. Decreasing hugin neuropeptide levels in the neurons by RNAi prevented this action. Reducing the level of hugin neuronal activity alone did not have any effect on feeding or locomotion motor programs. Furthermore, use of promoter-specific constructs that labeled subsets of hugin neurons demonstrated that initiation of locomotion can be separated from modulation of its motor pattern. These results provide insights into a neural mechanism of how opposing motor programs can be selected in order to coordinate feeding and locomotive behaviors.
Collapse
Affiliation(s)
- Andreas Schoofs
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Sebastian Hückesfeld
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Philipp Schlegel
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Anton Miroschnikow
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Marc Peters
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Malou Zeymer
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Roland Spieß
- Department of Forensic Entomology, Institute of Legal Medicine, Jena University Hospital, Germany
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Taiwan
| | - Michael J. Pankratz
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
- * E-mail:
| |
Collapse
|
193
|
Faust JE, Manisundaram A, Ivanova PT, Milne SB, Summerville JB, Brown HA, Wangler M, Stern M, McNew JA. Peroxisomes are required for lipid metabolism and muscle function in Drosophila melanogaster. PLoS One 2014; 9:e100213. [PMID: 24945818 PMCID: PMC4063865 DOI: 10.1371/journal.pone.0100213] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 01/19/2023] Open
Abstract
Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology.
Collapse
Affiliation(s)
- Joseph E. Faust
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Arvind Manisundaram
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Pavlina T. Ivanova
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Stephen B. Milne
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - James B. Summerville
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - H. Alex Brown
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Michael Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael Stern
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - James A. McNew
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| |
Collapse
|
194
|
Tennessen JM, Barry WE, Cox J, Thummel CS. Methods for studying metabolism in Drosophila. Methods 2014; 68:105-15. [PMID: 24631891 PMCID: PMC4048761 DOI: 10.1016/j.ymeth.2014.02.034] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/17/2023] Open
Abstract
Recent research using Drosophila melanogaster has seen a resurgence in studies of metabolism and physiology. This review focuses on major methods used to conduct this work. These include protocols for dietary interventions, measurements of triglycerides, cholesterol, glucose, trehalose, and glycogen, stains for lipid detection, and the use of gas chromatography-mass spectrometry (GC-MS) to detect major polar metabolites. It is our hope that this will provide a useful framework for both new and current researchers in the field.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - William E Barry
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - James Cox
- Department of Biochemistry and the Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
195
|
Abstract
Copper (Cu) is an essential redox active metal that is potentially toxic in excess. Multicellular organisms acquire Cu from the diet and must regulate uptake, storage, distribution and export of Cu at both the cellular and organismal levels. Systemic Cu deficiency can be fatal, as seen in Menkes disease patients. Conversely Cu toxicity occurs in patients with Wilson disease. Cu dyshomeostasis has also been implicated in neurodegenerative disorders such as Alzheimer's disease. Over the last decade, the fly Drosophila melanogaster has become an important model organism for the elucidation of eukaryotic Cu regulatory mechanisms. Gene discovery approaches with Drosophila have identified novel genes with conserved protein functions relevant to Cu homeostasis in humans. This review focuses on our current understanding of Cu uptake, distribution and export in Drosophila and the implications for mammals.
Collapse
Affiliation(s)
- Adam Southon
- Department of Genetics, University of Melbourne, Parkville, Australia.
| | | | | |
Collapse
|
196
|
Abstract
The lipid droplet (LD) is a unique cellular organelle containing a neutral-lipid core enclosed by a phospholipid monolayer and associated proteins. Despite the important function of LDs at the hub of cellular energy homeostasis regulation, major questions in the field of LD biology are still unanswered. Drosophila melanogaster has been used as a model organism to make fundamental discoveries in biology for over a century. In recent years, genome-wide unbiased reverse genetic screens using Drosophila cells or transgenic lines have been proven to provide valuable knowledge to the field of LD biology. Here we summarize the methods we use for functional genomic screens in Drosophila S2 cells to identify genes involved in LD biology, and the methods used for studying LD function in vivo using Drosophila as a model to combat metabolic diseases.
Collapse
|
197
|
Tower J, Landis G, Gao R, Luan A, Lee J, Sun Y. Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. J Gerontol A Biol Sci Med Sci 2014; 69:253-9. [PMID: 23723429 PMCID: PMC3976136 DOI: 10.1093/gerona/glt078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 01/10/2023] Open
Abstract
The cytoplasmic chaperone gene Hsp70 and the mitochondrial chaperone gene Hsp22 are upregulated during normal aging in Drosophila in tissue-general patterns. In addition, Hsp22 reporters are dramatically upregulated during aging in a subset of the oenocytes (liver-like cells). Hsp22 reporter expression varied dramatically between individual oenocytes and between groups of oenocytes located in adjacent body segments, and was negatively correlated with accumulation of age pigment, indicating cell-specific and cell-lineage-specific patterns of oenocyte aging. Conditional transgenic systems were used to express 88 transgenes to search for trans-regulators of the Hsp70 and Hsp22 reporters during aging. The wingless gene increased tissue-general upregulation of both Hsp70 and Hsp22 reporters. In contrast, the mitochondrial genes MnSOD and Hsp22 increased expression of Hsp22 reporters in the oenocytes and decreased accumulation of age pigment in these cells. The data suggest that cell-specific and cell lineage-specific patterns of mitochondrial malfunction contribute to oenocyte aging.
Collapse
Affiliation(s)
- John Tower
- University of Southern California, 1050 Childs Way, RRI 201, Los Angeles, CA 90089-2910.
| | | | | | | | | | | |
Collapse
|
198
|
Smith WW, Thomas J, Liu J, Li T, Moran TH. From fat fruit fly to human obesity. Physiol Behav 2014; 136:15-21. [PMID: 24508822 DOI: 10.1016/j.physbeh.2014.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/13/2014] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
Obesity is a chronic metabolic disease that has become a global problem. Although a tremendous amount of effort has been spent to prevent and treat obesity, its etiology is still largely unknown and there are not yet sufficient strategies to control obesity. Recently, the fruit fly, Drosophila melanogaster, has become a useful model for studying metabolic homeostasis and obesity related disorders. The goal of this mini-review is to summarize the recent achievements of Drosophila models and to highlight the experimental protocols used in studying feeding behavior and energy homeostasis in the fly. The Drosophila models provide useful tools to understand obesity pathogenesis and to develop novel therapeutics.
Collapse
Affiliation(s)
- Wanli W Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| | - Joseph Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jingnan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Timothy H Moran
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
199
|
Trinh I, Boulianne GL. Modeling obesity and its associated disorders in Drosophila. Physiology (Bethesda) 2014; 28:117-24. [PMID: 23455770 DOI: 10.1152/physiol.00025.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In recent years, obesity has been recognized as a major public health problem due to its increased prevalence in both children and adults and its association with numerous life-threatening complications including diabetes, heart disease, hypertension, and cancer. Obesity is a complex disorder that is the result of the interaction between predisposing genetic and environmental factors. However, the precise nature of these gene-gene and gene-environment interactions remains unclear. Here, we will describe recent studies demonstrating how fruit flies can be used to identify and characterize the mechanisms underlying obesity and to establish models of obesity-associated disorders.
Collapse
Affiliation(s)
- Irene Trinh
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
200
|
Abstract
Oenocytes have intrigued insect physiologists since the nineteenth century. Many years of careful but mostly descriptive research on these cells highlights their diverse sizes, numbers, and anatomical distributions across Insecta. Contemporary molecular genetic studies in Drosophila melanogaster and Tribolium castaneum support the hypothesis that oenocytes are of ectodermal origin. They also suggest that, in both short and long germ-band species, oenocytes are induced from a Spalt major/Engrailed ectodermal zone by MAPK signaling. Recent glimpses into some of the physiological functions of oenocytes indicate that they involve fatty acid and hydrocarbon metabolism. Genetic studies in D. melanogaster have shown that larval oenocytes synthesize very-long-chain fatty acids required for tracheal waterproofing and that adult oenocytes produce cuticular hydrocarbons required for desiccation resistance and pheromonal communication. Exciting areas of future research include the evolution of oenocytes and their cross talk with other tissues involved in lipid metabolism such as the fat body.
Collapse
Affiliation(s)
- Rami Makki
- Division of Physiology and Metabolism, Medical Research Council, National Institute for Medical Research, London, NW7 1AA, United Kingdom;
| | | | | |
Collapse
|