151
|
Repair pathway choice for double-strand breaks. Essays Biochem 2021; 64:765-777. [PMID: 32648897 DOI: 10.1042/ebc20200007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Deoxyribonucleic acid (DNA) is at a constant risk of damage from endogenous substances, environmental radiation, and chemical stressors. DNA double-strand breaks (DSBs) pose a significant threat to genomic integrity and cell survival. There are two major pathways for DSB repair: nonhomologous end-joining (NHEJ) and homologous recombination (HR). The extent of DNA end resection, which determines the length of the 3' single-stranded DNA (ssDNA) overhang, is the primary factor that determines whether repair is carried out via NHEJ or HR. NHEJ, which does not require a 3' ssDNA tail, occurs throughout the cell cycle. 53BP1 and the cofactors PTIP or RIF1-shieldin protect the broken DNA end, inhibit long-range end resection and thus promote NHEJ. In contrast, HR mainly occurs during the S/G2 phase and requires DNA end processing to create a 3' tail that can invade a homologous region, ensuring faithful gene repair. BRCA1 and the cofactors CtIP, EXO1, BLM/DNA2, and the MRE11-RAD50-NBS1 (MRN) complex promote DNA end resection and thus HR. DNA resection is influenced by the cell cycle, the chromatin environment, and the complexity of the DNA end break. Herein, we summarize the key factors involved in repair pathway selection for DSBs and discuss recent related publications.
Collapse
|
152
|
Leibowitz ML, Papathanasiou S, Doerfler PA, Blaine LJ, Sun L, Yao Y, Zhang CZ, Weiss MJ, Pellman D. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nat Genet 2021; 53:895-905. [PMID: 33846636 PMCID: PMC8192433 DOI: 10.1038/s41588-021-00838-7] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR-Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR-Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored.
Collapse
Affiliation(s)
- Mitchell L Leibowitz
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stamatis Papathanasiou
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Logan J Blaine
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lili Sun
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng-Zhong Zhang
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
153
|
Geijer ME, Zhou D, Selvam K, Steurer B, Mukherjee C, Evers B, Cugusi S, van Toorn M, van der Woude M, Janssens RC, Kok YP, Gong W, Raams A, Lo CSY, Lebbink JHG, Geverts B, Plummer DA, Bezstarosti K, Theil AF, Mitter R, Houtsmuller AB, Vermeulen W, Demmers JAA, Li S, van Vugt MATM, Lans H, Bernards R, Svejstrup JQ, Ray Chaudhuri A, Wyrick JJ, Marteijn JA. Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nat Cell Biol 2021; 23:608-619. [PMID: 34108662 PMCID: PMC7611218 DOI: 10.1038/s41556-021-00692-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms.
Collapse
Affiliation(s)
- Marit E Geijer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Barbara Steurer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chirantani Mukherjee
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bastiaan Evers
- Oncode Institute, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Simona Cugusi
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
| | - Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wenzhi Gong
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Calvin S Y Lo
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bart Geverts
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dalton A Plummer
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - René Bernards
- Oncode Institute, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
154
|
Fan Y, Köberlin MS, Ratnayeke N, Liu C, Deshpande M, Gerhardt J, Meyer T. LRR1-mediated replisome disassembly promotes DNA replication by recycling replisome components. J Cell Biol 2021; 220:212186. [PMID: 34037657 PMCID: PMC8160578 DOI: 10.1083/jcb.202009147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
After two converging DNA replication forks meet, active replisomes are disassembled and unloaded from chromatin. A key process in replisome disassembly is the unloading of CMG helicases (CDC45–MCM–GINS), which is initiated in Caenorhabditis elegans and Xenopus laevis by the E3 ubiquitin ligase CRL2LRR1. Here, we show that human cells lacking LRR1 fail to unload CMG helicases and accumulate increasing amounts of chromatin-bound replisome components as cells progress through S phase. Markedly, we demonstrate that the failure to disassemble replisomes reduces the rate of DNA replication increasingly throughout S phase by sequestering rate-limiting replisome components on chromatin and blocking their recycling. Continued binding of CMG helicases to chromatin during G2 phase blocks mitosis by activating an ATR-mediated G2/M checkpoint. Finally, we provide evidence that LRR1 is an essential gene for human cell division, suggesting that CRL2LRR1 enzyme activity is required for the proliferation of cancer cells and is thus a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yilin Fan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| | - Marielle S Köberlin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Nalin Ratnayeke
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Madhura Deshpande
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
| | - Jeannine Gerhardt
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
155
|
RTEL1 influences the abundance and localization of TERRA RNA. Nat Commun 2021; 12:3016. [PMID: 34021146 PMCID: PMC8140157 DOI: 10.1038/s41467-021-23299-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Telomere repeat containing RNAs (TERRAs) are a family of long non-coding RNAs transcribed from the subtelomeric regions of eukaryotic chromosomes. TERRA transcripts can form R-loops at chromosome ends; however the importance of these structures or the regulation of TERRA expression and retention in telomeric R-loops remain unclear. Here, we show that the RTEL1 (Regulator of Telomere Length 1) helicase influences the abundance and localization of TERRA in human cells. Depletion of RTEL1 leads to increased levels of TERRA RNA while reducing TERRA-containing R loops at telomeres. In vitro, RTEL1 shows a strong preference for binding G-quadruplex structures which form in TERRA. This binding is mediated by the C-terminal region of RTEL1, and is independent of the RTEL1 helicase domain. RTEL1 binding to TERRA appears to be essential for cell viability, underscoring the importance of this function. Degradation of TERRA-containing R-loops by overexpression of RNAse H1 partially recapitulates the increased TERRA levels and telomeric instability associated with RTEL1 deficiency. Collectively, these data suggest that regulation of TERRA is a key function of the RTEL1 helicase, and that loss of that function may contribute to the disease phenotypes of patients with RTEL1 mutations. Long non coding RNA TERRA transcripts can form R-loops at chromosome ends. Here, the authors reveal a role for the helicase RTEL in affecting TERRA levels and localization.
Collapse
|
156
|
Ishimoto R, Tsuzuki Y, Matsumura T, Kurashige S, Enokitani K, Narimatsu K, Higa M, Sugimoto N, Yoshida K, Fujita M. SLX4-XPF mediates DNA damage responses to replication stress induced by DNA-protein interactions. J Cell Biol 2021; 220:211628. [PMID: 33347546 PMCID: PMC7754685 DOI: 10.1083/jcb.202003148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/05/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
The DNA damage response (DDR) has a critical role in the maintenance of genomic integrity during chromosome replication. However, responses to replication stress evoked by tight DNA–protein complexes have not been fully elucidated. Here, we used bacterial LacI protein binding to lacO arrays to make site-specific replication fork barriers on the human chromosome. These barriers induced the accumulation of single-stranded DNA (ssDNA) and various DDR proteins at the lacO site. SLX4–XPF functioned as an upstream factor for the accumulation of DDR proteins, and consequently, ATR and FANCD2 were interdependently recruited. Moreover, LacI binding in S phase caused underreplication and abnormal mitotic segregation of the lacO arrays. Finally, we show that the SLX4–ATR axis represses the anaphase abnormality induced by LacI binding. Our results outline a long-term process by which human cells manage nucleoprotein obstacles ahead of the replication fork to prevent chromosomal instability.
Collapse
Affiliation(s)
- Riko Ishimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yota Tsuzuki
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Matsumura
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiichiro Kurashige
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kouki Enokitani
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Koki Narimatsu
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsunori Higa
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
157
|
Stok C, Kok Y, van den Tempel N, van Vugt MATM. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res 2021; 49:4239-4257. [PMID: 33744950 PMCID: PMC8096281 DOI: 10.1093/nar/gkab151] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as 'BRCAness'. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.
Collapse
Affiliation(s)
- Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| |
Collapse
|
158
|
Tsao WC, Buj R, Aird KM, Sidorova JM, Eckert KA. Overexpression of oncogenic H-Ras in hTERT-immortalized and SV40-transformed human cells targets replicative and specialized DNA polymerases for depletion. PLoS One 2021; 16:e0251188. [PMID: 33961649 PMCID: PMC8104423 DOI: 10.1371/journal.pone.0251188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
DNA polymerases play essential functions in replication fork progression and genome maintenance. DNA lesions and drug-induced replication stress result in up-regulation and re-localization of specialized DNA polymerases η and κ. Although oncogene activation significantly alters DNA replication dynamics, causing replication stress and genome instability, little is known about DNA polymerase expression and regulation in response to oncogene activation. Here, we investigated the consequences of mutant H-RASG12V overexpression on the regulation of DNA polymerases in h-TERT immortalized and SV40-transformed human cells. Focusing on DNA polymerases associated with the replication fork, we demonstrate that DNA polymerases are depleted in a temporal manner in response to H-RASG12V overexpression. The polymerases targeted for depletion, as cells display markers of senescence, include the Pol α catalytic subunit (POLA1), Pol δ catalytic and p68 subunits (POLD1 and POLD3), Pol η, and Pol κ. Both transcriptional and post-transcriptional mechanisms mediate this response. Pol η (POLH) depletion is sufficient to induce a senescence-like growth arrest in human foreskin fibroblast BJ5a cells, and is associated with decreased Pol α expression. Using an SV-40 transformed cell model, we observed cell cycle checkpoint signaling differences in cells with H-RasG12V-induced polymerase depletion, as compared to Pol η-deficient cells. Our findings contribute to our understanding of cellular events following oncogene activation and cellular transformation.
Collapse
Affiliation(s)
- Wei-chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Raquel Buj
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Katherine M. Aird
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Julia M. Sidorova
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kristin A. Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
159
|
Boteva L, Nozawa RS, Naughton C, Samejima K, Earnshaw WC, Gilbert N. Common Fragile Sites Are Characterized by Faulty Condensin Loading after Replication Stress. Cell Rep 2021; 32:108177. [PMID: 32966795 PMCID: PMC7511797 DOI: 10.1016/j.celrep.2020.108177] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cells coordinate interphase-to-mitosis transition, but recurrent cytogenetic lesions appear at common fragile sites (CFSs), termed CFS expression, in a tissue-specific manner after replication stress, marking regions of instability in cancer. Despite such a distinct defect, no model fully provides a molecular explanation for CFSs. We show that CFSs are characterized by impaired chromatin folding, manifesting as disrupted mitotic structures visible with molecular fluorescence in situ hybridization (FISH) probes in the presence and absence of replication stress. Chromosome condensation assays reveal that compaction-resistant chromatin lesions persist at CFSs throughout the cell cycle and mitosis. Cytogenetic and molecular lesions are marked by faulty condensin loading at CFSs, a defect in condensin-I-mediated compaction, and are coincident with mitotic DNA synthesis (MIDAS). This model suggests that, in conditions of exogenous replication stress, aberrant condensin loading leads to molecular defects and CFS expression, concomitantly providing an environment for MIDAS, which, if not resolved, results in chromosome instability.
Collapse
Affiliation(s)
- Lora Boteva
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Ryu-Suke Nozawa
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK.
| |
Collapse
|
160
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
161
|
Kockler ZW, Osia B, Lee R, Musmaker K, Malkova A. Repair of DNA Breaks by Break-Induced Replication. Annu Rev Biochem 2021; 90:165-191. [PMID: 33792375 DOI: 10.1146/annurev-biochem-081420-095551] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.
Collapse
Affiliation(s)
- Z W Kockler
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - B Osia
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - R Lee
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - K Musmaker
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - A Malkova
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|
162
|
Elucidating Recombination Mediator Function Using Biophysical Tools. BIOLOGY 2021; 10:biology10040288. [PMID: 33916151 PMCID: PMC8066028 DOI: 10.3390/biology10040288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review recapitulates the initial knowledge acquired with genetics and biochemical experiments on Recombination mediator proteins in different domains of life. We further address how recent in vivo and in vitro biophysical tools were critical to deepen the understanding of RMPs molecular mechanisms in DNA and replication repair, and unveiled unexpected features. For instance, in bacteria, genetic and biochemical studies suggest a close proximity and coordination of action of the RecF, RecR and RecO proteins in order to ensure their RMP function, which is to overcome the single-strand binding protein (SSB) and facilitate the loading of the recombinase RecA onto ssDNA. In contrary to this expectation, using single-molecule fluorescent imaging in living cells, we showed recently that RecO and RecF do not colocalize and moreover harbor different spatiotemporal behavior relative to the replication machinery, suggesting distinct functions. Finally, we address how new biophysics tools could be used to answer outstanding questions about RMP function. Abstract The recombination mediator proteins (RMPs) are ubiquitous and play a crucial role in genome stability. RMPs facilitate the loading of recombinases like RecA onto single-stranded (ss) DNA coated by single-strand binding proteins like SSB. Despite sharing a common function, RMPs are the products of a convergent evolution and differ in (1) structure, (2) interaction partners and (3) molecular mechanisms. The RMP function is usually realized by a single protein in bacteriophages and eukaryotes, respectively UvsY or Orf, and RAD52 or BRCA2, while in bacteria three proteins RecF, RecO and RecR act cooperatively to displace SSB and load RecA onto a ssDNA region. Proteins working alongside to the RMPs in homologous recombination and DNA repair notably belongs to the RAD52 epistasis group in eukaryote and the RecF epistasis group in bacteria. Although RMPs have been studied for several decades, molecular mechanisms at the single-cell level are still not fully understood. Here, we summarize the current knowledge acquired on RMPs and review the crucial role of biophysical tools to investigate molecular mechanisms at the single-cell level in the physiological context.
Collapse
|
163
|
Ehlén Å, Sessa G, Zinn-Justin S, Carreira A. The phospho-dependent role of BRCA2 on the maintenance of chromosome integrity. Cell Cycle 2021; 20:731-741. [PMID: 33691600 PMCID: PMC8098065 DOI: 10.1080/15384101.2021.1892994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Chromosomal instability is a hallmark of cancer. The tumor suppressor protein BRCA2 performs an important role in the maintenance of genome integrity particularly in interphase; as a mediator of homologous recombination DNA repair pathway, it participates in the repair of DNA double-strand breaks, inter-strand crosslinks and replicative DNA lesions. BRCA2 also protects stalled replication forks from aberrant degradation. Defects in these functions lead to structural chromosomal aberrations. BRCA2 is a large protein containing highly disordered regions that are heavily phosphorylated particularly in mitosis. The functions of these modifications are getting elucidated and reveal emerging activities in chromosome alignment, chromosome segregation and abscission during cell division. Defects in these activities result in numerical chromosomal aberrations. In addition to BRCA2, other factors of the DNA damage response (DDR) participate in mitosis in close association with cell cycle kinases and phosphatases suggesting that the maintenance of genome integrity functions of these factors extends beyond DNA repair. Here we will discuss the regulation of BRCA2 functions through phosphorylation by cell cycle kinases particularly in mitosis, and illustrate with some examples how BRCA2 and other DDR proteins partially rewire their interactions, essentially via phosphorylation, to fulfill mitotic specific functions that ensure chromosome stability.
Collapse
Affiliation(s)
- Åsa Ehlén
- Institut Curie, PSL University, CNRS, UMR3348, Orsay, France
- Paris-Saclay University CNRS, UMR3348, Orsay, France
| | - Gaetana Sessa
- Institut Curie, PSL University, CNRS, UMR3348, Orsay, France
- Paris-Saclay University CNRS, UMR3348, Orsay, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Aura Carreira
- Institut Curie, PSL University, CNRS, UMR3348, Orsay, France
- Paris-Saclay University CNRS, UMR3348, Orsay, France
| |
Collapse
|
164
|
Young SJ, West SC. Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of genome stability. Crit Rev Biochem Mol Biol 2021; 56:157-177. [PMID: 33596761 PMCID: PMC7610648 DOI: 10.1080/10409238.2021.1881433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
SLX4 provides a molecular scaffold for the assembly of multiple protein complexes required for the maintenance of genome stability. It is involved in the repair of DNA crosslinks, the resolution of recombination intermediates, the response to replication stress and the maintenance of telomere length. To carry out these diverse functions, SLX4 interacts with three structure-selective endonucleases, MUS81-EME1, SLX1 and XPF-ERCC1, as well as the telomere binding proteins TRF2, RTEL1 and SLX4IP. Recently, SLX4 was shown to interact with MutSβ, a heterodimeric protein involved in DNA mismatch repair, trinucleotide repeat instability, crosslink repair and recombination. Importantly, MutSβ promotes the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease. The colocalization and specific interaction of MutSβ with SLX4, together with their apparently overlapping functions, are suggestive of a common role in reactions that promote DNA maintenance and genome stability. This review will focus on the role of SLX4 in DNA repair, the interplay between MutSβ and SLX4, and detail how they cooperate to promote recombinational repair and DNA crosslink repair. Furthermore, we speculate that MutSβ and SLX4 may provide an alternative cellular mechanism that modulates trinucleotide instability.
Collapse
Affiliation(s)
- Sarah J Young
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
165
|
Chen S, Geng X, Syeda MZ, Huang Z, Zhang C, Ying S. Human MUS81: A Fence-Sitter in Cancer. Front Cell Dev Biol 2021; 9:657305. [PMID: 33791310 PMCID: PMC8005573 DOI: 10.3389/fcell.2021.657305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
MUS81 complex, exhibiting endonuclease activity on specific DNA structures, plays an influential part in DNA repair. Research has proved that MUS81 is dispensable for embryonic development and cell viability in mammals. However, an intricate picture has emerged from studies in which discrepant gene mutations completely alter the role of MUS81 in human cancers. Here, we review the recent understanding of how MUS81 functions in tumors with distinct genetic backgrounds and discuss the potential therapeutic strategies targeting MUS81 in cancer.
Collapse
Affiliation(s)
- Sisi Chen
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinwei Geng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengming Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
166
|
Giunta S, Hervé S, White RR, Wilhelm T, Dumont M, Scelfo A, Gamba R, Wong CK, Rancati G, Smogorzewska A, Funabiki H, Fachinetti D. CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy. Proc Natl Acad Sci U S A 2021; 118:e2015634118. [PMID: 33653953 PMCID: PMC7958389 DOI: 10.1073/pnas.2015634118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromosome segregation relies on centromeres, yet their repetitive DNA is often prone to aberrant rearrangements under pathological conditions. Factors that maintain centromere integrity to prevent centromere-associated chromosome translocations are unknown. Here, we demonstrate the importance of the centromere-specific histone H3 variant CENP-A in safeguarding DNA replication of alpha-satellite repeats to prevent structural aneuploidy. Rapid removal of CENP-A in S phase, but not other cell-cycle stages, caused accumulation of R loops with increased centromeric transcripts, and interfered with replication fork progression. Replication without CENP-A causes recombination at alpha-satellites in an R loop-dependent manner, unfinished replication, and anaphase bridges. In turn, chromosome breakage and translocations arise specifically at centromeric regions. Our findings provide insights into how specialized centromeric chromatin maintains the integrity of transcribed noncoding repetitive DNA during S phase.
Collapse
Affiliation(s)
- Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065;
| | - Solène Hervé
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Ryan R White
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065
| | - Therese Wilhelm
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Riccardo Gamba
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Cheng Kit Wong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648 Singapore, Singapore
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648 Singapore, Singapore
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065;
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France;
| |
Collapse
|
167
|
Ercilla A, Benada J, Amitash S, Zonderland G, Baldi G, Somyajit K, Ochs F, Costanzo V, Lukas J, Toledo L. Physiological Tolerance to ssDNA Enables Strand Uncoupling during DNA Replication. Cell Rep 2021; 30:2416-2429.e7. [PMID: 32075739 DOI: 10.1016/j.celrep.2020.01.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/17/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
It has been long assumed that normally leading strand synthesis must proceed coordinated with the lagging strand to prevent strand uncoupling and the pathological accumulation of single-stranded DNA (ssDNA) in the cell, a dogma recently challenged by in vitro studies in prokaryotes. Here, we report that human DNA polymerases can function independently at each strand in vivo and that the resulting strand uncoupling is supported physiologically by a cellular tolerance to ssDNA. Active forks rapidly accumulate ssDNA at the lagging strand when POLA1 is inhibited without triggering a stress response, despite ssDNA formation being considered a hallmark of replication stress. Acute POLA1 inhibition causes a lethal RPA exhaustion, but cells can duplicate their DNA with limited POLA1 activity and exacerbated strand uncoupling as long as RPA molecules suffice to protect the elevated ssDNA. Although robust, this uncoupled mode of DNA replication is also an in-built weakness that can be targeted for cancer treatment.
Collapse
Affiliation(s)
- Amaia Ercilla
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jan Benada
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sampath Amitash
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Gijs Zonderland
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Giorgio Baldi
- DNA Metabolism Laboratory, FIRC Institute for Molecular Oncology (IFOM), Milan 20139, Italy
| | - Kumar Somyajit
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Fena Ochs
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, FIRC Institute for Molecular Oncology (IFOM), Milan 20139, Italy
| | - Jiri Lukas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Luis Toledo
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
168
|
Mechanisms of eukaryotic replisome disassembly. Biochem Soc Trans 2021; 48:823-836. [PMID: 32490508 PMCID: PMC7329349 DOI: 10.1042/bst20190363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
DNA replication is a complex process that needs to be executed accurately before cell division in order to maintain genome integrity. DNA replication is divided into three main stages: initiation, elongation and termination. One of the key events during initiation is the assembly of the replicative helicase at origins of replication, and this mechanism has been very well described over the last decades. In the last six years however, researchers have also focused on deciphering the molecular mechanisms underlying the disassembly of the replicative helicase during termination. Similar to replisome assembly, the mechanism of replisome disassembly is strictly regulated and well conserved throughout evolution, although its complexity increases in higher eukaryotes. While budding yeast rely on just one pathway for replisome disassembly in S phase, higher eukaryotes evolved an additional mitotic pathway over and above the default S phase specific pathway. Moreover, replisome disassembly has been recently found to be a key event prior to the repair of certain DNA lesions, such as under-replicated DNA in mitosis and inter-strand cross-links (ICLs) in S phase. Although replisome disassembly in human cells has not been characterised yet, they possess all of the factors involved in these pathways in model organisms, and de-regulation of many of them are known to contribute to tumorigenesis and other pathological conditions.
Collapse
|
169
|
Fuchs J, Cheblal A, Gasser SM. Underappreciated Roles of DNA Polymerase δ in Replication Stress Survival. Trends Genet 2021; 37:476-487. [PMID: 33608117 DOI: 10.1016/j.tig.2020.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
Recent structural analysis of Fe-S centers in replication proteins and insights into the structure and function of DNA polymerase δ (DNA Pol δ) subunits have shed light on the key role played by this polymerase at replication forks under stress. The sequencing of cancer genomes reveals multiple point mutations that compromise the activity of POLD1, the DNA Pol δ catalytic subunit, whereas the loci encoding the accessory subunits POLD2 and POLD3 are amplified in a very high proportion of human tumors. Consistently, DNA Pol δ is key for the survival of replication stress and is involved in multiple long-patch repair pathways. Synthetic lethality arises from compromising the function and availability of the noncatalytic subunits of DNA Pol δ under conditions of replication stress, opening the door to novel therapies.
Collapse
Affiliation(s)
- Jeannette Fuchs
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland.
| |
Collapse
|
170
|
Wang J, Rojas P, Mao J, Mustè Sadurnì M, Garnier O, Xiao S, Higgs MR, Garcia P, Saponaro M. Persistence of RNA transcription during DNA replication delays duplication of transcription start sites until G2/M. Cell Rep 2021; 34:108759. [PMID: 33596418 PMCID: PMC7900609 DOI: 10.1016/j.celrep.2021.108759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
As transcription and replication use DNA as substrate, conflicts between transcription and replication can occur, leading to genome instability with direct consequences for human health. To determine how the two processes are coordinated throughout S phase, we characterize both processes together at high resolution. We find that transcription occurs during DNA replication, with transcription start sites (TSSs) not fully replicated along with surrounding regions and remaining under-replicated until late in the cell cycle. TSSs undergo completion of DNA replication specifically when cells enter mitosis, when RNA polymerase II is removed. Intriguingly, G2/M DNA synthesis occurs at high frequency in unperturbed cell culture, but it is not associated with increased DNA damage and is fundamentally separated from mitotic DNA synthesis. TSSs duplicated in G2/M are characterized by a series of specific features, including high levels of antisense transcription, making them difficult to duplicate during S phase.
Collapse
Affiliation(s)
- Jianming Wang
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Rojas
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jingwen Mao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martina Mustè Sadurnì
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Olivia Garnier
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Songshu Xiao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin R Higgs
- Lysine Methylation and DNA Damage Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paloma Garcia
- Stem Cells and Genome Stability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
171
|
Wu RA, Pellman DS, Walter JC. The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends Cell Biol 2021; 31:75-85. [PMID: 33317933 PMCID: PMC7856240 DOI: 10.1016/j.tcb.2020.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
In preparation for cell division, the genome must be copied with high fidelity. However, replisomes often encounter obstacles, including bulky DNA lesions caused by reactive metabolites and chemotherapeutics, as well as stable nucleoprotein complexes. Here, we discuss recent advances in our understanding of TRAIP, a replisome-associated E3 ubiquitin ligase that is mutated in microcephalic primordial dwarfism. In interphase, TRAIP helps replisomes overcome DNA interstrand crosslinks and DNA-protein crosslinks, whereas in mitosis it triggers disassembly of all replisomes that remain on chromatin. We describe a model to explain how TRAIP performs these disparate functions and how they help maintain genome integrity.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - David S Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
172
|
Li S, Wang H, Jehi S, Li J, Liu S, Wang Z, Truong L, Chiba T, Wang Z, Wu X. PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J 2021; 40:e104509. [PMID: 33470420 PMCID: PMC8047440 DOI: 10.15252/embj.2020104509] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Break‐induced replication (BIR) is a specialized homologous‐recombination pathway for DNA double‐strand break (DSB) repair, which often induces genome instability. In this study, we establish EGFP‐based recombination reporters to systematically study BIR in mammalian cells and demonstrate an important role of human PIF1 helicase in promoting BIR. We show that at endonuclease cleavage sites, PIF1‐dependent BIR is used for homology‐initiated recombination requiring long track DNA synthesis, but not short track gene conversion (STGC). We also show that structure formation‐prone AT‐rich DNA sequences derived from common fragile sites (CFS‐ATs) induce BIR upon replication stress and oncogenic stress, and PCNA‐dependent loading of PIF1 onto collapsed/broken forks is critical for BIR activation. At broken replication forks, even STGC‐mediated repair of double‐ended DSBs depends on POLD3 and PIF1, revealing an unexpected mechanism of BIR activation upon replication stress that differs from the conventional BIR activation model requiring DSB end sensing at endonuclease‐generated breaks. Furthermore, loss of PIF1 is synthetically lethal with loss of FANCM, which is involved in protecting CFS‐ATs. The breast cancer‐associated PIF1 mutant L319P is defective in BIR, suggesting a direct link of BIR to oncogenic processes.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hailong Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sanaa Jehi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jun Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shuo Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Zi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Lan Truong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, University of Chinese Academy of Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
173
|
Liu L, Yan Z, Osia BA, Twarowski J, Sun L, Kramara J, Lee RS, Kumar S, Elango R, Li H, Dang W, Ira G, Malkova A. Tracking break-induced replication shows that it stalls at roadblocks. Nature 2021; 590:655-659. [PMID: 33473214 PMCID: PMC8219245 DOI: 10.1038/s41586-020-03172-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
Break-induced replication (BIR) repairs one-ended double strand breaks (DSBs) similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human disease1,2. Previous studies have defined the enzymes required for BIR1–5; however, understanding of initial and extended BIR synthesis as well as how the migrating D-loop proceeds through known replication roadblocks has been precluded by technical limitations. Here, using a newly developed assay, we demonstrate that BIR synthesis initiates soon after strand invasion and proceeds slower than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but fails to proceed beyond 30 kb, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32 but does not proceed efficiently. We demonstrate that interstitial telomeric DNA disrupts and terminates BIR progression. Also, BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and on how BIR contributes to genome instability.
Collapse
Affiliation(s)
- Liping Liu
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Beth A Osia
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Jerzy Twarowski
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Luyang Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Juraj Kramara
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Rosemary S Lee
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA.,Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hanzeng Li
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA. .,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
174
|
Stivison EA, Young KJ, Symington LS. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres. Nucleic Acids Res 2021; 48:12697-12710. [PMID: 33264397 PMCID: PMC7736798 DOI: 10.1093/nar/gkaa1081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Break-induced replication (BIR) is a mechanism used to heal one-ended DNA double-strand breaks, such as those formed at collapsed replication forks or eroded telomeres. Instead of utilizing a canonical replication fork, BIR is driven by a migrating D-loop and is associated with a high frequency of mutagenesis. Here we show that when BIR encounters an interstitial telomere sequence (ITS), the machinery frequently terminates, resulting in the formation of an ectopic telomere. The primary mechanism to convert the ITS to a functional telomere is by telomerase-catalyzed addition of telomeric repeats with homology-directed repair serving as a back-up mechanism. Termination of BIR and creation of an ectopic telomere is promoted by Mph1/FANCM helicase, which has the capacity to disassemble D-loops. Other sequences that have the potential to seed new telomeres but lack the unique features of a natural telomere sequence, do not terminate BIR at a significant frequency in wild-type cells. However, these sequences can form ectopic telomeres if BIR is made less processive. Our results support a model in which features of the ITS itself, such as the propensity to form secondary structures and telomeric protein binding, pose a challenge to BIR and increase the vulnerability of the D-loop to dissociation by helicases, thereby promoting ectopic telomere formation.
Collapse
Affiliation(s)
- Elizabeth A Stivison
- Program in Nutritional and Metabolic Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kati J Young
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
175
|
Alnajjar K, Sweasy JB. Timing Is Everything: Misincorporation of 8oxodG during Mitosis Is Lethal. Cancer Res 2021; 80:3459-3460. [PMID: 32878864 DOI: 10.1158/0008-5472.can-20-1904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022]
Abstract
Exploiting universal cancer vulnerabilities has been used as an approach for developing targeted therapies. In this issue of Cancer Research, Rudd and colleagues show that the dual-functioning inhibitor TH588 potentiates the accumulation of reactive oxygen species during mitosis in cancer by disturbing mitotic progression and simultaneously inhibiting the hydrolysis of 8oxodGTP. This leads to increased incorporation of 8oxodG into the DNA during mitotic replication and increased toxicity. Understanding the mechanism of this inhibitor lays the groundwork for identifying cancer targets.See related article by Rudd et al., p. 3530.
Collapse
Affiliation(s)
- Khadijeh Alnajjar
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, Tucson, Arizona
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, Tucson, Arizona.
| |
Collapse
|
176
|
Sakamoto Y, Kokuta T, Teshigahara A, Iijima K, Kitao H, Takata M, Tauchi H. Mitotic cells can repair DNA double-strand breaks via a homology-directed pathway. JOURNAL OF RADIATION RESEARCH 2021; 62:25-33. [PMID: 33009557 PMCID: PMC7779344 DOI: 10.1093/jrr/rraa095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/21/2020] [Indexed: 05/04/2023]
Abstract
The choice of repair pathways of DNA double-strand breaks (DSBs) is dependent upon the cell cycle phases. While homologous recombination repair (HRR) is active between the S and G2 phases, its involvement in mitotic DSB repair has not been examined in detail. In the present study, we developed a new reporter assay system to detect homology-directed repair (HDR), a major pathway used for HRR, in combination with an inducible DSB-generation system. As expected, the maximal HDR activity was observed in the late S phase, along with minimal activity in the G1 phase and at the G1/S boundary. Surprisingly, significant HDR activity was observed in M phase, and the repair efficiency was similar to that observed in late S phase. HDR was also confirmed in metaphase cells collected with continuous colcemid exposure. ChIP assays revealed the recruitment of RAD51 to the vicinity of DSBs in M phase. In addition, the ChIP assay for gamma-H2AX and phosphorylated DNA-PKcs indicated that a part of M-phase cells with DSBs could proceed into the next G1 phase. These results provide evidence showing that a portion of mitotic cell DSBs are undoubtedly repaired through action of the HDR repair pathway.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Tetsuya Kokuta
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Ai Teshigahara
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Kenta Iijima
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Minoru Takata
- Radiation Biology Center, Kyoto University, Yoshida-Konoe Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Tauchi
- Corresponding author. Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan. Tel: +81-29-228-8383; Fax: +81-29-228-8403;
| |
Collapse
|
177
|
Hashimoto Y, Tanaka H. Ongoing replication forks delay the nuclear envelope breakdown upon mitotic entry. J Biol Chem 2021; 296:100033. [PMID: 33148697 PMCID: PMC7948514 DOI: 10.1074/jbc.ra120.015142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/22/2023] Open
Abstract
DNA replication is a major contributor to genomic instability, and protection against DNA replication perturbation is essential for normal cell division. Certain types of replication stress agents, such as aphidicolin and hydroxyurea, have been shown to cause reversible replication fork stalling, wherein replisome complexes are stably maintained with competence to restart in the S phase of the cell cycle. If these stalled forks persist into the M phase without a replication restart, replisomes are disassembled in a p97-dependent pathway and under-replicated DNA is subjected to mitotic DNA repair synthesis. Here, using Xenopus egg extracts, we investigated the consequences that arise when stalled forks are released simultaneously with the induction of mitosis. Ara-cytidine-5'-triphosphate-induced stalled forks were able to restart with the addition of excess dCTP during early mitosis before the nuclear envelope breakdown (NEB). However, stalled forks could no longer restart efficiently after the NEB. Although replisome complexes were finally disassembled in a p97-dependent manner during mitotic progression whether or not fork stalling was relieved, the timing of the NEB was delayed with the ongoing forks, rather than the stalled forks, and the delay was dependent on Wee1/Myt1 kinase activities. Thus, ongoing DNA replication was found to be directly linked to the regulation of Wee1/Myt1 kinases to modulate cyclin-dependent kinase activities because of which DNA replication and mitosis occur in a mutually exclusive and sequential manner.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | - Hirofumi Tanaka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
178
|
A FOXO-dependent replication checkpoint restricts proliferation of damaged cells. Cell Rep 2021; 34:108675. [PMID: 33503422 DOI: 10.1016/j.celrep.2020.108675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 01/05/2023] Open
Abstract
DNA replication is challenged by numerous exogenous and endogenous factors that can interfere with the progression of replication forks. Substantial accumulation of single-stranded DNA during DNA replication activates the DNA replication stress checkpoint response that slows progression from S/G2 to M phase to protect genomic integrity. Whether and how mild replication stress restricts proliferation remains controversial. Here, we identify a cell cycle exit mechanism that prevents S/G2 phase arrested cells from undergoing mitosis after exposure to mild replication stress through premature activation of the anaphase promoting complex/cyclosome (APC/CCDH1). We find that replication stress causes a gradual decrease of the levels of the APC/CCDH1 inhibitor EMI1/FBXO5 through Forkhead box O (FOXO)-mediated inhibition of its transcription factor E2F1. By doing so, FOXOs limit the time during which the replication stress checkpoint is reversible and thereby play an important role in maintaining genomic stability.
Collapse
|
179
|
Ngo ST, Vu VV, Phung HTT. Computational investigation of possible inhibitors of the winged-helix domain of MUS81. J Mol Graph Model 2020; 103:107771. [PMID: 33340918 DOI: 10.1016/j.jmgm.2020.107771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
The methyl methanesulfonate and ultraviolet sensitive 81 (MUS81) is a structure-specific endonuclease that is highly conserved in eukaryotes and essential for homologous recombination repair. The winged-helix domain at the N-terminus of MUS81 (wMUS81) can bind DNA substrates and regulate the endonuclease activity. The repression of MUS81 activity could enhance the sensitivity to antitumor compounds of different tumour cells. Thus, MUS81 is a potential therapeutic target in cancer therapy. However, specific inhibitors of MUS81 have remained elusive. Here, for the first time, we attempt to discover the compounds disrupting the wMUS81 activity. The binding affinity of available drugs to wMUS81 was first estimated by molecular docking. pKa values were taken into consideration to eliminate unlikely protonation states of the ligands. Top-lead compounds were then estimated the binding affinity using the fast pulling ligand simulations. Finally, the free energy perturbation method accurately defined the absolute binding free energy of the top four ligands, revealing the most potential inhibitors of wMUS81 including simeprevir and nilotinib. Binding of simeprevir destabilizes the β-hairpin region of wMUS81, likely disturbing the wMUS81 function. The van der Waals free binding energy majorly modulates the ligand-binding mechanism. The two conserved residues Leu189 and Arg196 are likely important in monitoring the interacting process of simeprevir to wMUS81.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam.
| | - Van Van Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
180
|
Hume S, Dianov GL, Ramadan K. A unified model for the G1/S cell cycle transition. Nucleic Acids Res 2020; 48:12483-12501. [PMID: 33166394 PMCID: PMC7736809 DOI: 10.1093/nar/gkaa1002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient S phase entry is essential for development, tissue repair, and immune defences. However, hyperactive or expedited S phase entry causes replication stress, DNA damage and oncogenesis, highlighting the need for strict regulation. Recent paradigm shifts and conflicting reports demonstrate the requirement for a discussion of the G1/S transition literature. Here, we review the recent studies, and propose a unified model for the S phase entry decision. In this model, competition between mitogen and DNA damage signalling over the course of the mother cell cycle constitutes the predominant control mechanism for S phase entry of daughter cells. Mitogens and DNA damage have distinct sensing periods, giving rise to three Commitment Points for S phase entry (CP1-3). S phase entry is mitogen-independent in the daughter G1 phase, but remains sensitive to DNA damage, such as single strand breaks, the most frequently-occurring lesions that uniquely threaten DNA replication. To control CP1-3, dedicated hubs integrate the antagonistic mitogenic and DNA damage signals, regulating the stoichiometric cyclin: CDK inhibitor ratio for ultrasensitive control of CDK4/6 and CDK2. This unified model for the G1/S cell cycle transition combines the findings of decades of study, and provides an updated foundation for cell cycle research.
Collapse
Affiliation(s)
- Samuel Hume
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Grigory L Dianov
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 630090 Novosibirsk, Russian Federation
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
181
|
Lezaja A, Altmeyer M. Dealing with DNA lesions: When one cell cycle is not enough. Curr Opin Cell Biol 2020; 70:27-36. [PMID: 33310228 DOI: 10.1016/j.ceb.2020.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Subversion of genome integrity fuels cellular adaptation and is a prerequisite for organismal evolution, yet genomic lesions are also the harmful driving force of cancer and other age-related human diseases. Genome integrity maintenance is inherently linked to genome organization and nuclear architecture, which are substantially remodeled during the cell cycle. Here we discuss recent findings on how actively dividing cells cope with endogenous genomic lesions that occur frequently at repetitive, heterochromatic, and late replicating regions as byproducts of genome duplication. We discuss how such lesions, rather than being resolved immediately when they occur, are dealt with in subsequent cell cycle phases, and even after mitotic cell division, and how this in turn affects genome organization, stability, and function.
Collapse
Affiliation(s)
- Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
182
|
Panagopoulos A, Altmeyer M. The Hammer and the Dance of Cell Cycle Control. Trends Biochem Sci 2020; 46:301-314. [PMID: 33279370 DOI: 10.1016/j.tibs.2020.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Cell cycle checkpoints secure ordered progression from one cell cycle phase to the next. They are important to signal cell stress and DNA lesions and to stop cell cycle progression when severe problems occur. Recent work suggests, however, that the cell cycle control machinery responds in more subtle and sophisticated ways when cells are faced with naturally occurring challenges, such as replication impediments associated with endogenous replication stress. Instead of following a stop and go approach, cells use fine-tuned deceleration and brake release mechanisms under the control of ataxia telangiectasia and Rad3-related protein kinase (ATR) and checkpoint kinase 1 (CHK1) to more flexibly adapt their cell cycle program to changing conditions. We highlight emerging examples of such intrinsic cell cycle checkpoint regulation and discuss their physiological and clinical relevance.
Collapse
Affiliation(s)
- Andreas Panagopoulos
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
183
|
Calzetta NL, González Besteiro MA, Gottifredi V. Mus81-Eme1-dependent aberrant processing of DNA replication intermediates in mitosis impairs genome integrity. SCIENCE ADVANCES 2020; 6:6/50/eabc8257. [PMID: 33298441 PMCID: PMC7725468 DOI: 10.1126/sciadv.abc8257] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Chromosome instability (CIN) underpins cancer evolution and is associated with drug resistance and poor prognosis. Understanding the mechanistic basis of CIN is thus a priority. The structure-specific endonuclease Mus81-Eme1 is known to prevent CIN. Intriguingly, however, here we show that the aberrant processing of late replication intermediates by Mus81-Eme1 is a source of CIN. Upon depletion of checkpoint kinase 1 (Chk1), Mus81-Eme1 cleaves under-replicated DNA engaged in mitotic DNA synthesis, leading to chromosome segregation defects. Supplementing cells with nucleosides allows the completion of mitotic DNA synthesis, restraining Mus81-Eme1-dependent DNA damage in mitosis and the ensuing CIN. We found no correlation between CIN arising from nucleotide shortage in mitosis and cell death, which were selectively linked to DNA damage load in mitosis and S phase, respectively. Our findings imply the possibility of optimizing Chk1-directed therapies by inducing cell death while curtailing CIN, a common side effect of chemotherapy.
Collapse
Affiliation(s)
- Nicolás Luis Calzetta
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Marina Alejandra González Besteiro
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| | - Vanesa Gottifredi
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
184
|
Kwon M, Leibowitz ML, Lee JH. Small but mighty: the causes and consequences of micronucleus rupture. Exp Mol Med 2020; 52:1777-1786. [PMID: 33230251 PMCID: PMC8080619 DOI: 10.1038/s12276-020-00529-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Micronuclei are small DNA-containing nuclear structures that are spatially isolated from the main nucleus. They are frequently found in pathologies, including cancer. It was recently shown that these nuclear structures are not only biomarkers of disease but also play an active role in tumor biology. Many consequences of micronucleus formation on tumor biology are dependent on the frequent and irreversible rupture of their nuclear envelopes, which results in the exposure of their DNA contents to the cytoplasm. In this review, we discuss models of defective nuclear envelope deposition on missegregated chromosomes that lead to nuclear envelope rupture. Furthermore, we expound upon the various downstream consequences of micronucleus nuclear envelope rupture on cells. These consequences include a massive DNA rearrangement phenomenon called chromothripsis and activation of the cGAS-STING innate immune signaling pathway, which can be a double-edged sword with tumorigenesis and tumor prevention functions. Although micronuclei are small structures, the impact they have on cells and their microenvironment is quite large. Micronuclei, which contain faulty chromosomes or chromosome fragments and occur outside the main cellular nucleus, are prone to rupturing, which leads to DNA changes that can drive tumor development. A team led by Mijung Kwon from Ewha Womans University in Seoul and Jae-Ho Lee of Ajou University School of Medicine in Suwon, both in South Korea, review how these micronuclei tend to burst, spilling their contents into the cell with devastating consequences. The chromosomes they contain break into tiny fragments and this broken DNA finds its way into the main nucleus, leading to chromosomal rearrangements that can permanently alter genomic function. The rupture of micronuclei also activates a part of the innate immune system that can promote cancer cell invasion and spread. Drugs targeting these processes could aid in the treatment of cancer.
Collapse
Affiliation(s)
- Mijung Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea.
| | - Mitchell L Leibowitz
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Suwon, 16499, South Korea. .,Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea.
| |
Collapse
|
185
|
Pentzold C, Kokal M, Pentzold S, Weise A. Sites of chromosomal instability in the context of nuclear architecture and function. Cell Mol Life Sci 2020; 78:2095-2103. [PMID: 33219838 PMCID: PMC7966619 DOI: 10.1007/s00018-020-03698-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
Chromosomal fragile sites are described as areas within the tightly packed mitotic chromatin that appear as breaks or gaps mostly tracing back to a loosened structure and not a real nicked break within the DNA molecule. Most facts about fragile sites result from studies in mitotic cells, mainly during metaphase and mainly in lymphocytes. Here, we synthesize facts about the genomic regions that are prone to form gaps and breaks on metaphase chromosomes in the context of interphase. We conclude that nuclear architecture shapes the activity profile of the cell, i.e. replication timing and transcriptional activity, thereby influencing genomic integrity during interphase with the potential to cause fragility in mitosis. We further propose fragile sites as examples of regions specifically positioned in the interphase nucleus with putative anchoring points at the nuclear lamina to enable a tightly regulated replication–transcription profile and diverse signalling functions in the cell. Consequently, fragility starts before the actual display as chromosomal breakage in metaphase to balance the initial contradiction of cellular overgrowth or malfunctioning and maintaining diversity in molecular evolution.
Collapse
Affiliation(s)
- Constanze Pentzold
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany.
| | - Miriam Kokal
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Stefan Pentzold
- Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Anja Weise
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany
| |
Collapse
|
186
|
Atkins A, Xu MJ, Li M, Rogers NP, Pryzhkova MV, Jordan PW. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. eLife 2020; 9:e61171. [PMID: 33200984 PMCID: PMC7723410 DOI: 10.7554/elife.61171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations of SMC5/6 components cause developmental defects, including primary microcephaly. To model neurodevelopmental defects, we engineered a mouse wherein Smc5 is conditionally knocked out (cKO) in the developing neocortex. Smc5 cKO mice exhibited neurodevelopmental defects due to neural progenitor cell (NPC) apoptosis, which led to reduction in cortical layer neurons. Smc5 cKO NPCs formed DNA bridges during mitosis and underwent chromosome missegregation. SMC5/6 depletion triggers a CHEK2-p53 DNA damage response, as concomitant deletion of the Trp53 tumor suppressor or Chek2 DNA damage checkpoint kinase rescued Smc5 cKO neurodevelopmental defects. Further assessment using Smc5 cKO and auxin-inducible degron systems demonstrated that absence of SMC5/6 leads to DNA replication stress at late-replicating regions such as pericentromeric heterochromatin. In summary, SMC5/6 is important for completion of DNA replication prior to entering mitosis, which ensures accurate chromosome segregation. Thus, SMC5/6 functions are critical in highly proliferative stem cells during organism development.
Collapse
Affiliation(s)
- Alisa Atkins
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Michelle J Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Maggie Li
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Nathaniel P Rogers
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Marina V Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Philip W Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
187
|
Macheret M, Bhowmick R, Sobkowiak K, Padayachy L, Mailler J, Hickson ID, Halazonetis TD. High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing. Cell Res 2020; 30:997-1008. [PMID: 32561860 PMCID: PMC7784693 DOI: 10.1038/s41422-020-0358-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/31/2020] [Indexed: 12/22/2022] Open
Abstract
DNA replication stress, a feature of human cancers, often leads to instability at specific genomic loci, such as the common fragile sites (CFSs). Cells experiencing DNA replication stress may also exhibit mitotic DNA synthesis (MiDAS). To understand the physiological function of MiDAS and its relationship to CFSs, we mapped, at high resolution, the genomic sites of MiDAS in cells treated with the DNA polymerase inhibitor aphidicolin. Sites of MiDAS were evident as well-defined peaks that were largely conserved between cell lines and encompassed all known CFSs. The MiDAS peaks mapped within large, transcribed, origin-poor genomic regions. In cells that had been treated with aphidicolin, these regions remained unreplicated even in late S phase; MiDAS then served to complete their replication after the cells entered mitosis. Interestingly, leading and lagging strand synthesis were uncoupled in MiDAS, consistent with MiDAS being a form of break-induced replication, a repair mechanism for collapsed DNA replication forks. Our results provide a better understanding of the mechanisms leading to genomic instability at CFSs and in cancer cells.
Collapse
Affiliation(s)
- Morgane Macheret
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Rahul Bhowmick
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Katarzyna Sobkowiak
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Laura Padayachy
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Jonathan Mailler
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland.
| |
Collapse
|
188
|
Affiliation(s)
- Thomas W Glover
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
189
|
Wood M, Quinet A, Lin YL, Davis AA, Pasero P, Ayala YM, Vindigni A. TDP-43 dysfunction results in R-loop accumulation and DNA replication defects. J Cell Sci 2020; 133:jcs244129. [PMID: 32989039 PMCID: PMC7648616 DOI: 10.1242/jcs.244129] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43; also known as TARDBP) is an RNA-binding protein whose aggregation is a hallmark of the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 loss increases DNA damage and compromises cell viability, but the actual function of TDP-43 in preventing genome instability remains unclear. Here, we show that loss of TDP-43 increases R-loop formation in a transcription-dependent manner and results in DNA replication stress. TDP-43 nucleic-acid-binding and self-assembly activities are important in inhibiting R-loop accumulation and preserving normal DNA replication. We also found that TDP-43 cytoplasmic aggregation impairs TDP-43 function in R-loop regulation. Furthermore, increased R-loop accumulation and DNA damage is observed in neurons upon loss of TDP-43. Together, our findings indicate that TDP-43 function and normal protein homeostasis are crucial in maintaining genomic stability through a co-transcriptional process that prevents aberrant R-loop accumulation. We propose that the increased R-loop formation and genomic instability associated with TDP-43 loss are linked to the pathogenesis of TDP-43 proteinopathies.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Matthew Wood
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier 34396, France
| | - Albert A Davis
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier 34396, France
| | - Yuna M Ayala
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
190
|
Replication stress conferred by POT1 dysfunction promotes telomere relocalization to the nuclear pore. Genes Dev 2020; 34:1619-1636. [PMID: 33122293 PMCID: PMC7706707 DOI: 10.1101/gad.337287.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
In this study, Pinzaru et al. set out to uncover the pathways that enable the proliferation of cells expressing cancer-associated POT1 mutations. Using complementary genetic and proteomic approaches, the authors identify a conserved function for the NPC in resolving replication defects at telomere loci. Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.
Collapse
|
191
|
Nonrandom DNA Segregation Detection under Replication Stress. STAR Protoc 2020; 1:100143. [PMID: 33377037 PMCID: PMC7757299 DOI: 10.1016/j.xpro.2020.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nonrandom DNA segregation (NDS) is a mitotic event in which sister chromatids carrying the old (parent) DNA strands are distributed exclusively to one of the two daughter cells. Although this phenomenon occurs in multiple organisms, the low frequency poses an obstacle to observation. Here, we present an improved protocol to induce NDS under replication stress. This protocol can be modified to accommodate various cell lines. For complete details on the use and execution of this protocol, please refer to Xing et al. (2020). Nonrandom DNA segregation is of significant relevance but difficult to observe Efficient induction of nonrandom DNA segregation by replication stress A step-by-step protocol for nonrandom DNA segregation detection by immunofluorescence
Collapse
|
192
|
Wu Y, Wang D, Wei F, Xiong F, Zhang S, Gong Z, Shi L, Li X, Xiang B, Ma J, Deng H, He Y, Liao Q, Zhang W, Li X, Li Y, Guo C, Zeng Z, Li G, Xiong W. EBV-miR-BART12 accelerates migration and invasion in EBV-associated cancer cells by targeting tubulin polymerization-promoting protein 1. FASEB J 2020; 34:16205-16223. [PMID: 33094864 DOI: 10.1096/fj.202001508r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) infection leads to cancers with an epithelial origin, such as nasopharyngeal cancer and gastric cancer, as well as multiple blood cell-based malignant tumors, such as lymphoma. Interestingly, EBV is also the first virus found to carry genes encoding miRNAs. EBV encodes 25 types of pre-miRNAs which are finally processed into 44 mature miRNAs. Most EBV-encoded miRNAs were found to be involved in the occurrence and development of EBV-related tumors. However, the function of EBV-miR-BART12 remains unclear. The findings of the current study revealed that EBV-miR-BART12 binds to the 3'UTR region of Tubulin Polymerization-Promoting Protein 1 (TPPP1) mRNA and downregulates TPPP1, thereby promoting the invasion and migration of EBV-related cancers, such as nasopharyngeal cancer and gastric cancer. The mechanism underlying this process was found to be the inhibition of TPPP1 by EBV-miRNA-BART12, which, in turn, inhibits the acetylation of α-tubulin, and promotes the dynamic assembly of microtubules, remodels the cytoskeleton, and enhances the acetylation of β-catenin. β-catenin activates epithelial to mesenchymal transition (EMT). These two processes synergistically promote the invasion and metastasis of tumor cells. To the best of our knowledge, this is the first study to reveal the role of EBV-miRNA-BART12 in the development of EBV-related tumors as well as the mechanism underlying this process, and suggests potential targets and strategies for the treatment of EBV-related tumors.
Collapse
Affiliation(s)
- Yingfen Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
193
|
Kawamoto M, Yamaji T, Saito K, Shirasago Y, Satomura K, Endo T, Fukasawa M, Hanada K, Osada N. Identification of Characteristic Genomic Markers in Human Hepatoma HuH-7 and Huh7.5.1-8 Cell Lines. Front Genet 2020; 11:546106. [PMID: 33193621 PMCID: PMC7581915 DOI: 10.3389/fgene.2020.546106] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
The human hepatoma-derived HuH-7 cell line and its derivatives (Huh7.5 and Huh7.5.1) have been widely used as a convenient experimental substitute for primary hepatocytes. In particular, these cell lines represent host cells suitable for propagating the hepatitis C virus (HCV) in vitro. The Huh7.5.1-8 cell line, a subline of Huh7.5.1, can propagate HCV more efficiently than its parental cells. To provide genomic information for cells' quality control, we performed whole-genome sequencing of HuH-7 and Huh7.5.1-8 and identified their characteristic genomic deletions, some of which are applicable to an in-house test for cell authentication. Among the genes related to HCV infection and replication, 53 genes were found to carry missense or loss-of-function mutations likely specific to the HuH-7 and/or Huh7.5.1-8. Eight genes, including DDX58 (RIG-I), BAX, EP300, and SPP1 (osteopontin), contained mutations observed only in Huh7.5.1-8 or mutations with higher frequency in Huh7.5.1-8. These mutations might be relevant to phenotypic differences between the two cell lines and may also serve as genetic markers to distinguish Huh7.5.1-8 cells from the ancestral HuH-7 cells.
Collapse
Affiliation(s)
- Masaki Kawamoto
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyoko Saito
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiro Satomura
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Toshinori Endo
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Osada
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan.,Global Station for Big Data and Cybersecurity, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
194
|
Overexpression of Cyclin E1 or Cdc25A leads to replication stress, mitotic aberrancies, and increased sensitivity to replication checkpoint inhibitors. Oncogenesis 2020; 9:88. [PMID: 33028815 PMCID: PMC7542455 DOI: 10.1038/s41389-020-00270-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Oncogene-induced replication stress, for instance as a result of Cyclin E1 overexpression, causes genomic instability and has been linked to tumorigenesis. To survive high levels of replication stress, tumors depend on pathways to deal with these DNA lesions, which represent a therapeutically actionable vulnerability. We aimed to uncover the consequences of Cyclin E1 or Cdc25A overexpression on replication kinetics, mitotic progression, and the sensitivity to inhibitors of the WEE1 and ATR replication checkpoint kinases. We modeled oncogene-induced replication stress using inducible expression of Cyclin E1 or Cdc25A in non-transformed RPE-1 cells, either in a TP53 wild-type or TP53-mutant background. DNA fiber analysis showed Cyclin E1 or Cdc25A overexpression to slow replication speed. The resulting replication-derived DNA lesions were transmitted into mitosis causing chromosome segregation defects. Single cell sequencing revealed that replication stress and mitotic defects upon Cyclin E1 or Cdc25A overexpression resulted in genomic instability. ATR or WEE1 inhibition exacerbated the mitotic aberrancies induced by Cyclin E1 or Cdc25A overexpression, and caused cytotoxicity. Both these phenotypes were exacerbated upon p53 inactivation. Conversely, downregulation of Cyclin E1 rescued both replication kinetics, as well as sensitivity to ATR and WEE1 inhibitors. Taken together, Cyclin E1 or Cdc25A-induced replication stress leads to mitotic segregation defects and genomic instability. These mitotic defects are exacerbated by inhibition of ATR or WEE1 and therefore point to mitotic catastrophe as an underlying mechanism. Importantly, our data suggest that Cyclin E1 overexpression can be used to select patients for treatment with replication checkpoint inhibitors.
Collapse
|
195
|
Yang Z, Takai KK, Lovejoy CA, de Lange T. Break-induced replication promotes fragile telomere formation. Genes Dev 2020; 34:1392-1405. [PMID: 32883681 PMCID: PMC7528700 DOI: 10.1101/gad.328575.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
TRF1 facilitates the replication of telomeric DNA in part by recruiting the BLM helicase, which can resolve G-quadruplexes on the lagging-strand template. Lagging-strand telomeres lacking TRF1 or BLM form fragile telomeres-structures that resemble common fragile sites (CFSs)-but how they are formed is not known. We report that analogous to CFSs, fragile telomeres in BLM-deficient cells involved double-strand break (DSB) formation, in this case by the SLX4/SLX1 nuclease. The DSBs were repaired by POLD3/POLD4-dependent break-induced replication (BIR), resulting in fragile telomeres containing conservatively replicated DNA. BIR also promoted fragile telomere formation in cells with FokI-induced telomeric DSBs and in alternative lengthening of telomeres (ALT) cells, which have spontaneous telomeric damage. BIR of telomeric DSBs competed with PARP1-, LIG3-, and XPF-dependent alternative nonhomologous end joining (alt-NHEJ), which did not generate fragile telomeres. Collectively, these findings indicate that fragile telomeres can arise from BIR-mediated repair of telomeric DSBs.
Collapse
Affiliation(s)
- Zhe Yang
- Laboratory for Cell Biology and Genetics, Rockefeller University; New York 10021, USA
| | - Kaori K Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University; New York 10021, USA
| | - Courtney A Lovejoy
- Laboratory for Cell Biology and Genetics, Rockefeller University; New York 10021, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University; New York 10021, USA
| |
Collapse
|
196
|
Minocherhomji S, Liu Y, He YD, Fielden MR. Biomarkers of genome instability in normal mammalian genomes following drug-induced replication stress. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:770-785. [PMID: 32078182 DOI: 10.1002/em.22364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Genome instability is a hallmark of most human cancers and is exacerbated following replication stress. However, the effects that drugs/xenobiotics have in promoting genome instability including chromosomal structural rearrangements in normal cells are not currently assessed in the genetic toxicology battery. Here, we show that drug-induced replication stress leads to increased genome instability in vitro using proliferating primary human cells as well as in vivo in rat bone marrow (BM) and duodenum (DD). p53-binding protein 1 (53BP1, biomarker of DNA damage repair) nuclear bodies were increased in a dose-dependent manner in normal proliferating human mammary epithelial fibroblasts following treatment with compounds traditionally classified as either genotoxic (hydralazine) and nongenotoxic (low-dose aphidicolin, duvelisib, idelalisib, and amiodarone). Comparatively, no increases in 53BP1 nuclear bodies were observed in nonproliferating cells. Negative control compounds (mannitol, alosteron, diclofenac, and zonisamide) not associated with cancer risk did not induce 53BP1 nuclear bodies in any cell type. Finally, we studied the in vivo genomic consequences of drug-induced replication stress in rats treated with 10 mg/kg of cyclophosphamide for up to 14 days followed by polymerase chain reaction-free whole genome sequencing (30X coverage) of BM and DD cells. Cyclophosphamide induced chromosomal structural rearrangements at an average of 90 genes, including 40 interchromosomal/intrachromosomal translocations, within 2 days of treatment. Collectively, these data demonstrate that this drug-induced genome instability test (DiGIT) can reveal potential adverse effects of drugs not otherwise informed by standard genetic toxicology testing batteries. These efforts are aligned with the food and drug administration's (FDA's) predictive toxicology roadmap initiative.
Collapse
Affiliation(s)
- Sheroy Minocherhomji
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Yang Liu
- Genome Analysis Unit, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Yudong D He
- Genome Analysis Unit, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Mark R Fielden
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
- Expansion Therapeutics, San Diego, California
| |
Collapse
|
197
|
Smith MT, Guyton KZ, Kleinstreuer N, Borrel A, Cardenas A, Chiu WA, Felsher DW, Gibbons CF, Goodson WH, Houck KA, Kane AB, La Merrill MA, Lebrec H, Lowe L, McHale CM, Minocherhomji S, Rieswijk L, Sandy MS, Sone H, Wang A, Zhang L, Zeise L, Fielden M. The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them. Cancer Epidemiol Biomarkers Prev 2020; 29:1887-1903. [PMID: 32152214 PMCID: PMC7483401 DOI: 10.1158/1055-9965.epi-19-1346] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The key characteristics (KC) of human carcinogens provide a uniform approach to evaluating mechanistic evidence in cancer hazard identification. Refinements to the approach were requested by organizations and individuals applying the KCs. We assembled an expert committee with knowledge of carcinogenesis and experience in applying the KCs in cancer hazard identification. We leveraged this expertise and examined the literature to more clearly describe each KC, identify current and emerging assays and in vivo biomarkers that can be used to measure them, and make recommendations for future assay development. We found that the KCs are clearly distinct from the Hallmarks of Cancer, that interrelationships among the KCs can be leveraged to strengthen the KC approach (and an understanding of environmental carcinogenesis), and that the KC approach is applicable to the systematic evaluation of a broad range of potential cancer hazards in vivo and in vitro We identified gaps in coverage of the KCs by current assays. Future efforts should expand the breadth, specificity, and sensitivity of validated assays and biomarkers that can measure the 10 KCs. Refinement of the KC approach will enhance and accelerate carcinogen identification, a first step in cancer prevention.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California.
| | - Kathryn Z Guyton
- Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Nicole Kleinstreuer
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandre Borrel
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Weihsueh A Chiu
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Catherine F Gibbons
- Office of Research and Development, US Environmental Protection Agency, Washington, D.C
| | - William H Goodson
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Keith A Houck
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California
| | - Herve Lebrec
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Sheroy Minocherhomji
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Linda Rieswijk
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
- Institute of Data Science, Maastricht University, Maastricht, the Netherlands
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Hideko Sone
- Yokohama University of Pharmacy and National Institute for Environmental Studies, Tsukuba Ibaraki, Japan
| | - Amy Wang
- Office of the Report on Carcinogens, Division of National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Mark Fielden
- Expansion Therapeutics Inc, San Diego, California
| |
Collapse
|
198
|
Damasceno JD, Marques CA, Black J, Briggs E, McCulloch R. Read, Write, Adapt: Challenges and Opportunities during Kinetoplastid Genome Replication. Trends Genet 2020; 37:21-34. [PMID: 32993968 PMCID: PMC9213392 DOI: 10.1016/j.tig.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome’s content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read–write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read–write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes. Polycistronic transcription dominates and shapes kinetoplastid genomes, inevitably leading to clashes with DNA replication. By harnessing the resultant DNA damage for adaptation, kinetoplastids have huge potential for dynamic read–write genome variation. Major origins of DNA replication are confined to the boundaries of polycistronic transcription units in the Trypanosoma brucei and Leishmania genomes, putatively limiting DNA damage. Subtelomeres may lack this arrangement, generating read–write hotspots. In T. brucei, early replication of the highly transcribed subtelomeric variant surface glycoprotein (VSG) expression site may ensure replication-transcription clashes within this site to trigger DNA recombination, an event critical for antigenic variation. Leishmania genomes show extensive aneuploidy and copy number variation. Notably, DNA replication requires recombination factors and relies on post-S phase replication of subtelomeres. Evolution of compartmentalised DNA replication programmes underpin important aspects of genome biology in kinetoplastids, illustrating the consolidation of genome maintenance strategies to promote genome plasticity.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jennifer Black
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK; Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
199
|
Guo X, Dai X, Wu X, Cao N, Wang X. Small but strong: Mutational and functional landscapes of micronuclei in cancer genomes. Int J Cancer 2020; 148:812-824. [PMID: 32949152 DOI: 10.1002/ijc.33300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Micronuclei, small spatially-separated, nucleus-like structures, are a common feature of human cancer cells. There are considerable heterogeneities in the sources, structures and genetic activities of micronuclei. Accumulating evidence suggests that micronuclei and main nuclei represent separate entities with respect to DNA replication, DNA damage sensing and repairing capacity because micronuclei are not monitored by the same checkpoints nor covered by the same nuclear envelope as the main nuclei. Thus, micronuclei are spatially restricted "mutation factories." Several large-scale DNA sequencing and bioinformatics studies over the last few years have revealed that most micronuclei display a mutational signature of chromothripsis immediately after their generation and the underlying molecular mechanisms have been dissected extensively. Clonal expansion of the micronucleated cells is context-dependent and is associated with chromothripsis and several other mutational signatures including extrachromosomal circular DNA, kataegis and chromoanasynthesis. These results suggest what was once thought to be merely a passive indicator of chromosomal instability is now being recognized as a strong mutator phenotype that may drive intratumoral genetic heterogeneity. Herein, we revisit the actionable determinants that contribute to the bursts of mutagenesis in micronuclei and present the growing number of evidence which suggests that micronuclei have distinct short- and long-term mutational and functional effects to cancer genomes. We also pose challenges for studying the long-term effects of micronucleation in the upcoming years.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Society, Kunming, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Neng Cao
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Society, Kunming, Yunnan, China
| |
Collapse
|
200
|
Under-Replicated DNA: The Byproduct of Large Genomes? Cancers (Basel) 2020; 12:cancers12102764. [PMID: 32992928 PMCID: PMC7601121 DOI: 10.3390/cancers12102764] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
In this review, we provide an overview of how proliferating eukaryotic cells overcome one of the main threats to genome stability: incomplete genomic DNA replication during S phase. We discuss why it is currently accepted that double fork stalling (DFS) events are unavoidable events in higher eukaryotes with large genomes and which responses have evolved to cope with its main consequence: the presence of under-replicated DNA (UR-DNA) outside S phase. Particular emphasis is placed on the processes that constrain the detrimental effects of UR-DNA. We discuss how mitotic DNA synthesis (MiDAS), mitotic end joining events and 53BP1 nuclear bodies (53BP1-NBs) deal with such specific S phase DNA replication remnants during the subsequent phases of the cell cycle.
Collapse
|