151
|
Abstract
Immunity could be viewed as the common factor in neurodevelopmental disorders and cancer. The immune and nervous systems coevolve as the embryo develops. Immunity can release cytokines that activate MAPK signaling in neural cells. In specific embryonic brain cell types, dysregulated signaling that results from germline or embryonic mutations can promote changes in chromatin organization and gene accessibility, and thus expression levels of essential genes in neurodevelopment. In cancer, dysregulated signaling can emerge from sporadic somatic mutations during human life. Neurodevelopmental disorders and cancer share similarities. In neurodevelopmental disorders, immunity, and cancer, there appears an almost invariable involvement of small GTPases (e.g., Ras, RhoA, and Rac) and their pathways. TLRs, IL-1, GIT1, and FGFR signaling pathways, all can be dysregulated in neurodevelopmental disorders and cancer. Although there are signaling similarities, decisive differentiating factors are timing windows, and cell type specific perturbation levels, pointing to chromatin reorganization. Finally, we discuss drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Corresponding author
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
152
|
Tang Y, Yang X, Wang Q, Huang H, Wang Q, Jiang M, Yuan C, Huang Y, Chen Y. ING4 Promotes Stemness Enrichment of Human Renal Cell Carcinoma Cells Through Inhibiting DUSP4 Expression to Activate the p38 MAPK/type I IFN-Stimulated Gene Signaling Pathway. Front Pharmacol 2022; 13:845097. [PMID: 35496267 PMCID: PMC9046557 DOI: 10.3389/fphar.2022.845097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Renal cell carcinoma (RCC) recurs frequently due to high metastatic spread, resulting in a high mortality. Cancer stem cells play a critical role in initiating the tumor metastasis. Inhibitor of growth 4 (ING4) is a member of the ING family, but its impact on cancer stem cells in RCC is still unknown. In this study, we found that ING4 significantly promoted the sphere-forming size and number of RCC cells under an ultralow-attachment culture condition in vitro, tumor growth and metastasis in vivo, and the expression of some stem-like or pluripotent biomarkers CD44, MYC, OCT4, and NANOG, indicating that ING4 increased the stemness enrichment of RCC cells. Mechanistically, the ING4-activated p38 MAPK pathway possibly upregulated the expression of type I IFN-stimulated genes to promote the formation of RCC stem cells. ING4 could inhibit the expression of DUSP4 to activate p38 MAPK. In addition, selective pharmacological p38 MAPK inhibitors could significantly inhibit stemness enrichment only in ING4-overexpressed RCC cells, suggesting that the p38 MAPK inhibitors might be effective in patients with high ING4 expression in RCC tissue. Taken together, our findings proposed that ING4 might serve as a potential therapeutic target for metastatic RCC, particularly RCC stem cells.
Collapse
Affiliation(s)
- Yu Tang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Xinyue Yang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Qing Wang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Haoyu Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Qinzhi Wang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Min Jiang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Chunluan Yuan
- Department of Oncology, First People’s Hospital of Lianyungang, Lianyungang, China
| | - Yefei Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Yansu Chen
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yansu Chen,
| |
Collapse
|
153
|
Richard V, Davey MG, Annuk H, Miller N, Kerin MJ. The double agents in liquid biopsy: promoter and informant biomarkers of early metastases in breast cancer. Mol Cancer 2022; 21:95. [PMID: 35379239 PMCID: PMC8978379 DOI: 10.1186/s12943-022-01506-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer continues to be a major global problem with significant mortality associated with advanced stage and metastases at clinical presentation. However, several findings suggest that metastasis is indeed an early occurrence. The standard diagnostic techniques such as invasive core needle biopsy, serological protein marker assays, and non-invasive radiological imaging do not provide information about the presence and molecular profile of small fractions of early metastatic tumor cells which are prematurely dispersed in the circulatory system. These circulating tumor cells (CTCs) diverge from the primary tumors as clusters with a defined secretome comprised of circulating cell-free nucleic acids and small microRNAs (miRNAs). These circulatory biomarkers provide a blueprint of the mutational profile of the tumor burden and tumor associated alterations in the molecular signaling pathways involved in oncogenesis. Amidst the multitude of circulatory biomarkers, miRNAs serve as relatively stable and precise biomarkers in the blood for the early detection of CTCs, and promote step-wise disease progression by executing paracrine signaling that transforms the microenvironment to guide the metastatic CTCs to anchor at a conducive new organ. Random sampling of easily accessible patient blood or its serum/plasma derivatives and other bodily fluids collectively known as liquid biopsy (LB), forms an efficient alternative to tissue biopsies. In this review, we discuss in detail the divergence of early metastases as CTCs and the involvement of miRNAs as detectable blood-based diagnostic biomarkers that warrant a timely screening of cancer, serial monitoring of therapeutic response, and the dynamic molecular adaptations induced by miRNAs on CTCs in guiding primary and second-line systemic therapy.
Collapse
|
154
|
Haldavnekar R, Venkatakrishnan A, Kiani A. Tracking the Evolution of Metastasis with Self-Functionalized 3D Nanoprobes. ACS APPLIED BIO MATERIALS 2022; 5:1633-1647. [PMID: 35316034 DOI: 10.1021/acsabm.2c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite recent advances in cancer treatment, metastasis is the cause of mortality in 90% of cancer cases. It has now been well-established that dissemination of cancer cells to distant sites occurs very early during tumorigenesis, resulting in the minimal effect of surgical or chemotherapeutic treatments after the detection of metastasis. The underlying reason for this challenge is mostly due to the limited understanding of molecular mechanisms of the metastasis cascade, particularly related to metastatic traits. Therefore, there is an urgent need to investigate this currently invisible evolution of metastasis. The tracking of metastasis evolution has not been addressed yet. Here, we introduce, for the first time, a synchronous approach to unveil the molecular mechanisms of the metastasis cascade. As cancer stem cells (CSCs) demonstrate cancer initiation, drug resistance, metastasis, and tumor relapse and can exist in a quasi-intermediate epithelial-mesenchymal transition state, the tumor-initiating events during a CSCs metamorphosis were monitored with single-cell sensitivity. Because of the invasive and resistive properties of the metastable intermediate CSCs, investigation of the molecular profiles of the quasi-intermediate CSCs was necessary for the detection of metastasis dissemination. For this purpose, the ultrasensitive technique of surface-enhanced Raman scattering (SERS) was adopted. Titanium-based, biocompatible three-dimensional (3D) nanoprobes that were synthesized for multiphoton ionization achieved a substantial SERS enhancement of ∼80-fold due to the oxygen vacancy-enriched composition of the nanoprobes. The 3D interconnected complex nanoarchitecture of the nanoprobes enabled us to entrap the nonadherent CSCs of three metastatic cancer cell lines (triple negative breast adenocarcinoma (MDAMB231), human Caucasian colon adenocarcinoma (COLO 205), and cervical adenocarcinoma (HeLa)─all very aggressive forms of cancer). The nanoprobes not only promoted the CSC proliferation to successfully attain the quasi-intermediate states but also monitored its reprogramming into a cancer cell state. The nanoprobes substantially amplified weak intracellular Raman signals to capture the molecular events during a CSC transformation. The detection of cancer was achieved with 100% accuracy. We experimentally demonstrated that the molecular signatures of CSC reprogramming are cancer-type specific. This observation enabled us to identify the origin of metastasis with 100% accuracy, providing more clarity on the relatively unknown quasi-intermediate states. This first demonstration of CSC-based tracking of metastasis evolution has the potential to provide an insightful perspective of tumorigenesis that could be useful in cancer diagnosis and prognosis as well as in the monitoring of therapeutic interventions.
Collapse
Affiliation(s)
- Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology, 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada.,Ultrashort Laser Nanomanufacturing research facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada.,BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada.,Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada.,Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada
| | - Akshay Venkatakrishnan
- Department of Basic Medical Sciences, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A3K7, Canada
| | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility, Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe Street N, Oshawa, Ontario L1G0C5, Canada.,Department of Mechanical and Manufacturing Engineering, Ontario Tech University, 2000 Simcoe Street N, Oshawa, Ontario L1G0C5, Canada
| |
Collapse
|
155
|
Abstract
During cancer progression, metastatic dissemination accounts for ∼90% of death in patients. Metastasis occurs upon dissemination of circulating tumor cells (CTC) through body fluids, in particular the bloodstream, and several key steps remain elusive. Although the majority of CTCs travel as single cells, they can form clusters either with themselves (homoclusters) or with other circulating cells (heteroclusters) and thereby increase their metastatic potential. In addition, cancer cell mechanics and mechanical cues from the microenvironment are important factors during metastatic progression. Recent progress in intravital imaging technologies, biophysical methods, and microfluidic-based isolation of CTCs allow now to probe mechanics at single cell resolution while shedding light on key steps of the hematogenous metastatic cascade. In this review, we discuss the importance of CTC mechanics and their correlation with metastatic success and how such development could lead to the identification of therapeutically relevant targets.
Collapse
Affiliation(s)
- Marina Peralta
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67000, France.,Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France.,Equipe Labellisée Ligue Contre le Cancer
| | - Naël Osmani
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67000, France.,Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France.,Equipe Labellisée Ligue Contre le Cancer
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67000, France.,Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France.,Equipe Labellisée Ligue Contre le Cancer
| |
Collapse
|
156
|
Elkholi IE, Elsherbiny ME, Emara M. Myoglobin: From physiological role to potential implications in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188706. [PMID: 35247507 DOI: 10.1016/j.bbcan.2022.188706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
Myoglobin (MB) belongs to the well-studied globin proteins superfamily. It has been extensively studied for its physiological roles in oxygen storage and transport for about a century now. However, the last two decades shed the light on unexpected aspects for MB research. Myoglobin has been suggested as a scavenger for nitric oxide and reactive oxygen species (ROS). Furthermore, MB was found to be expressed and regulated in different tissues, beyond the muscle lineage, including cancers. Current evidence suggest that MB is directly regulated by hypoxia and might be contributing to the metabolic rewiring in cancer tissues. In this article, we first discuss the MB physiological roles and then focus on the latter potential roles and regulatory networks of MB in cancer.
Collapse
Affiliation(s)
- Islam E Elkholi
- Center for Aging and Associated Diseases (CAAD), Zewail City of Science, Technology, and Innovation, 6th of October City, Giza 12578, Egypt; Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Marwan Emara
- Center for Aging and Associated Diseases (CAAD), Zewail City of Science, Technology, and Innovation, 6th of October City, Giza 12578, Egypt.
| |
Collapse
|
157
|
Muraoka S, Hirano M, Isoyama J, Nagayama S, Tomonaga T, Adachi J. Comprehensive proteomic profiling of plasma and serum phosphatidylserine-positive extracellular vesicles reveals tissue-specific proteins. iScience 2022; 25:104012. [PMID: 35340435 PMCID: PMC8941215 DOI: 10.1016/j.isci.2022.104012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) are ubiquitously secreted by almost all tissues and carry many cargoes, including proteins, RNAs, and lipids, which are related to various biological processes. EVs are shed from tissues into the blood and expected to be used as biomarkers for diseases. Here, we isolated EVs from EDTA plasma and serum of six healthy subjects by an affinity capture isolation method, and a total of 4,079 proteins were successfully identified by comprehensive EV proteomics. Our reliable and detailed catalog of the differential expression profiles of EV proteins in plasma and serum between healthy individuals could be useful as a reference for biomarker discovery. Furthermore, tissue-specific protein groups co-regulated between blood EVs from healthy individuals were identified. These EV proteins are expected to be used for more specific and sensitive enrichment of tissue-specific EVs and for screening and monitoring of disease without diagnostic imaging in patient blood in the future. Catalog of EV proteome created by state-of-the-art proteome analysis technologies Plasma and serum EV proteome profiles showed a difference in healthy individuals Novel standard reference proteins in plasma and serum EVs were identified Tissue-specific EV marker candidates were presented by the informatics approach
Collapse
Affiliation(s)
- Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Masayo Hirano
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Corresponding author
| |
Collapse
|
158
|
The potential of liquid biopsy in the management of cancer patients. Semin Cancer Biol 2022; 84:69-79. [PMID: 35331850 DOI: 10.1016/j.semcancer.2022.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
159
|
Borriello L, Coste A, Traub B, Sharma VP, Karagiannis GS, Lin Y, Wang Y, Ye X, Duran CL, Chen X, Friedman M, Sosa MS, Sun D, Dalla E, Singh DK, Oktay MH, Aguirre-Ghiso JA, Condeelis JS, Entenberg D. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat Commun 2022; 13:626. [PMID: 35110548 PMCID: PMC8811052 DOI: 10.1038/s41467-022-28076-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Metastases are initiated by disseminated tumor cells (DTCs) that colonize distant organs. Growing evidence suggests that the microenvironment of the primary tumor primes DTCs for dormant or proliferative fates. However, the manner in which this occurs remains poorly understood. Here, using the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find that spontaneously DTCs have increased levels of retention, increased speed of extravasation, and greater survival after extravasation, compared to experimentally metastasized tumor cells. Detailed analysis reveals that a subset of macrophages within the primary tumor induces a pro-dissemination and pro-dormancy DTC phenotype. Our work provides insight into how specific primary tumor microenvironments prime a subpopulation of cells for expression of proteins associated with dissemination and dormancy.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Brian Traub
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yu Lin
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Madeline Friedman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Sun
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Erica Dalla
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak K Singh
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Julio A Aguirre-Ghiso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
160
|
Gasparini A, Humphreys K. Estimating latent, dynamic processes of breast cancer tumour growth and distant metastatic spread from mammography screening data. Stat Methods Med Res 2022; 31:862-881. [PMID: 35103530 PMCID: PMC9099158 DOI: 10.1177/09622802211072496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We propose a framework for jointly modelling tumour size at diagnosis and time to
distant metastatic spread, from diagnosis, based on latent dynamic sub-models of
growth of the primary tumour and of distant metastatic detection. The framework
also includes a sub-model for screening sensitivity as a function of latent
tumour size. Our approach connects post-diagnosis events to the natural history
of cancer and, once refined, may prove useful for evaluating new interventions,
such as personalised screening regimes. We evaluate our model-fitting procedure
using Monte Carlo simulation, showing that the estimation algorithm can retrieve
the correct model parameters, that key patterns in the data can be captured by
the model even with misspecification of some structural assumptions, and that,
still, with enough data it should be possible to detect strong
misspecifications. Furthermore, we fit our model to observational data from an
extension of a case-control study of post-menopausal breast cancer in Sweden,
providing model-based estimates of the probability of being free from detected
distant metastasis as a function of tumour size, mode of detection (of the
primary tumour), and screening history. For women with screen-detected cancer
and two previous negative screens, the probabilities of being free from detected
distant metastases 5 years after detection and removal of the primary tumour are
0.97, 0.89 and 0.59 for tumours of diameter 5, 15 and 35 mm, respectively. We
also study the probability of having latent/dormant metastases at detection of
the primary tumour, estimating that 33% of patients in our study had such
metastases.
Collapse
Affiliation(s)
- Alessandro Gasparini
- Alessandro Gasparini, Department of Medical
Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-17177,
Stockholm, Sweden.
| | | |
Collapse
|
161
|
The WID-BC-index identifies women with primary poor prognostic breast cancer based on DNA methylation in cervical samples. Nat Commun 2022; 13:449. [PMID: 35105882 PMCID: PMC8807602 DOI: 10.1038/s41467-021-27918-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic and non-genetic factors contribute to breast cancer development. An epigenome-based signature capturing these components in easily accessible samples could identify women at risk. Here, we analyse the DNA methylome in 2,818 cervical, 357 and 227 matched buccal and blood samples respectively, and 42 breast tissue samples from women with and without breast cancer. Utilising cervical liquid-based cytology samples, we develop the DNA methylation-based Women’s risk IDentification for Breast Cancer index (WID-BC-index) that identifies women with breast cancer with an AUROC (Area Under the Receiver Operator Characteristic) of 0.84 (95% CI: 0.80–0.88) and 0.81 (95% CI: 0.76–0.86) in internal and external validation sets, respectively. CpGs at progesterone receptor binding sites hypomethylated in normal breast tissue of women with breast cancer or in BRCA mutation carriers are also hypomethylated in cervical samples of women with poor prognostic breast cancer. Our data indicate that a systemic epigenetic programming defect is highly prevalent in women who develop breast cancer. Further studies validating the WID-BC-index may enable clinical implementation for monitoring breast cancer risk. Breast cancer is most commonly diagnosed via a needle biopsy. In this study, the authors show that cervical samples from women with breast cancer have a methylation signature different to that of healthy controls.
Collapse
|
162
|
Volmer L, Koch A, Matovina S, Dannehl D, Weiss M, Welker G, Hahn M, Engler T, Wallwiener M, Walter CB, Oberlechner E, Brucker SY, Pantel K, Hartkopf A. Neoadjuvant Chemotherapy of Patients with Early Breast Cancer Is Associated with Increased Detection of Disseminated Tumor Cells in the Bone Marrow. Cancers (Basel) 2022; 14:cancers14030635. [PMID: 35158902 PMCID: PMC8833450 DOI: 10.3390/cancers14030635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Disseminated tumor cells (DTCs) present in the bone marrow of breast cancer patients are an indicator of minimal residual disease and micrometastatic spread. These cells can already be found at the earliest disease stages and are associated with poorer outcomes. In preclinical models, neoadjuvant chemotherapy was shown to promote micrometastatic spread. The aim of this large single-center retrospective study was to compare the frequency and prognostic significance of DTC detection between patients treated with neoadjuvant chemotherapy and treatment-naive patients. Abstract Preclinical data suggest that neoadjuvant chemotherapy (NAT) may promote micrometastatic spread. We aimed to compare the detection rate and prognostic relevance of disseminated tumor cells (DTCs) from the bone marrow (BM) of patients with early-stage breast cancer (EBC) after NAT with that of therapy-naive EBC patients. DTCs were identified from BM samples, collected during primary surgery. Patients who received NAT were compared to patients who received chemotherapy after surgery. In total, 809 patients were analyzed. After NAT, 45.4% of patients were DTC-positive as compared to 19.9% of patients in the adjuvant chemotherapy group (p < 0.001). When sampled in patients who had undergone NAT, the detection of DTCs in the BM was significantly increased (OR: 3.1; 95% confidence interval (CI): 2.1–4.4; p < 0.001). After NAT, DTC-positive patients with ≥2 DTCs per 1.5 × 106 mononuclear cells in their BM had an impaired disease-free survival (HR: 4.8, 95% CI: 0.9–26.6; p = 0.050) and overall survival (HR: 4.2; 95% CI: 1.4–12.7; p = 0.005). The higher rate of DTC-positive patients after NAT as compared to a treatment-naive comparable control cohort suggests that NAT supports tumor cell dissemination into the bone marrow. DTC positivity in BM predicted relapse in various distant organs, implying that tumor cell dissemination was not restricted to the bone marrow.
Collapse
Affiliation(s)
- Léa Volmer
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
- Correspondence: ; Tel./Fax: +49-7071-29-82211
| | - André Koch
- Research Institute for Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (A.K.); (G.W.)
| | - Sabine Matovina
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Dominik Dannehl
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Martin Weiss
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Ganna Welker
- Research Institute for Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (A.K.); (G.W.)
| | - Markus Hahn
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Tobias Engler
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Markus Wallwiener
- Department of Gynecology and Obstetrics, University Medical Center Heidelberg, 69120 Heidelberg, Germany;
| | - Christina Barbara Walter
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Ernst Oberlechner
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Sara Yvonne Brucker
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Hartkopf
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| |
Collapse
|
163
|
Grüntkemeier L, Khurana A, Bischoff FZ, Hoffmann O, Kimmig R, Moore M, Cotter P, Kasimir-Bauer S. Single HER2-positive tumor cells are detected in initially HER2-negative breast carcinomas using the DEPArray™-HER2-FISH workflow. Breast Cancer 2022; 29:487-497. [PMID: 35025065 PMCID: PMC9021056 DOI: 10.1007/s12282-022-01330-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Background In breast cancer (BC), overexpression of HER2 on the primary tumor (PT) is determined by immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) to stratify samples as negative, equivocal and positive to identify patients (pts) for anti-HER2 therapy. CAP/ASCO guidelines recommend FISH for analyzing HER2/neu (ERBB2) gene amplification and for resolving equivocal HER2 IHC results. However, pre-analytical and analytical aspects are often confounded by sample related limitations and tumor heterogeneity and HER2 expression may differ between the PT and circulating tumor cells (CTCs), the precursors of metastasis. We used a validation cohort of BC patients to establish a new DEPArray™-PT-HER2-FISH workflow for further application in a development cohort, characterized as PT-HER2-negative but CTC-HER2/neu-positive, to identify patients with PT-HER2 amplified cells not detected by routine pathology. Methods 50 µm FFPE tumor curls from the validation cohort (n = 49) and the development cohort (n = 25) underwent cutting, deparaffinization and antigen retrieval followed by dissociation into a single-cell suspension. After staining for cytokeratin, vimentin, DAPI and separation via DEPArray™, single cells were processed for HER2-FISH analysis to assess the number of chromosome 17 and HER2 loci signals for comparison, either with available IHC or conventional tissue section FISH. CTC-HER2/neu status was determined using the AdnaTest BreastCancer (QIAGEN, Hilden, Germany). Results Applying CAP/ASCO guidelines for HER2 evaluation of single PT cells, the comparison of routine pathology and DEPArray™-HER2-FISH analysis resulted in a concordance rate of 81.6% (40/49 pts) in the validation cohort and 84% (21/25 pts) in the development cohort, respectively. In the latter one, 4/25 patients had single HER2-positive tumor cells with 2/25 BC patients proven to be HER2-positive, despite being HER2-negative in routine pathology. The two other patients showed an equivocal HER2 status in the DEPArray™-HER2-FISH workflow but a negative result in routine pathology. Whereas all four patients with discordant HER2 results had already died, 17/21 patients with concordant HER2 results are still alive. Conclusions The DEPArray™ system allows pure tumor cell recovery for subsequent HER2/neu FISH analysis and is highly concordant with conventional pathology. For PT-HER2-negative patients, harboring HER2/neu-positive CTCs, this approach might allow caregivers to more effectively offer anti-HER2 treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-022-01330-8.
Collapse
Affiliation(s)
- Lisa Grüntkemeier
- Department of Gynecology and Obstetrics, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
164
|
Fan B, Xu X, Wang X. Mutational landscape of paired primary and synchronous metastatic lymph node in chemotherapy naive gallbladder cancer. Mol Biol Rep 2022; 49:1295-1301. [PMID: 34988893 DOI: 10.1007/s11033-021-06957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Comprehensive genomic analysis of paired primary tumors and their metastatic lesions may provide new insights into the biology of metastatic processes and therefore guide the development of novel strategies for intervention. To date, our knowledge of the genetic divergence and phylogenetic relationships in gallbladder cancer (GBC) is limited. METHODS We performed whole exome sequencing for 5 patients with primary tumor, metastatic lymph node (LNM) and corresponding normal tissue. Mutations, mutation signatures and copy number variations were analyzed with state-of-art bioinformatics methods. Phylogenetic tree was also generated to infer metastatic pattern. RESULTS Five driver mutations were detected in these patients. Among which, TP53 was the only shared mutation between primary tumor and LNM. Although tumor mutational burden was comparable between primary tumor and LNM, higher mutation burden was observed in LNM of one patient. Copy number variations (CNVs) burden was higher in LNM than their primary tumor. Phylogenetic analysis indicated both linear and parallel progression of metastasis exist in these patients. TP53 mutation and CNVs were homogenously between primary tumor and LNM. CONCLUSIONS High consistence of genetic landscape were shown between primary tumor and LNM in GBC. However, heterogenicity still exist between primary tumor and LNM in particular patients in term of driver mutation, TMB and CNV burden. Phylogenetic analysis indicated both Linear and parallel progression of metastasis were exist among these patients.
Collapse
Affiliation(s)
- Boqiang Fan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xianfeng Xu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, China.
| |
Collapse
|
165
|
Optimal Strategy for Colorectal Cancer Patients' Diagnosis Based on Circulating Tumor Cells and Circulating Tumor Endothelial Cells by Subtraction Enrichment and Immunostaining-Fluorescence In Situ Hybridization Combining with CEA and CA19-9. JOURNAL OF ONCOLOGY 2022; 2021:1517488. [PMID: 34976053 PMCID: PMC8720022 DOI: 10.1155/2021/1517488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
Background Cancerous embryo antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) are commonly used in clinical practice to assist in diagnosing CRC. However, their sensitivity is very low. This study aims to investigate the clinical significance of circulating tumor cells (CTCs) and circulating tumor endothelial cells (CTECs) compared with CEA and CA19-9 in the auxiliary diagnosis of colorectal cancer (CRC) patients. Methods 115 pathologically confirmed CRC patients and 20 healthy controls were enrolled in this study. CTCs and CTECs were enriched and identified by subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH). A logistic regression was used to establish a model for the receiver-operating characteristic (ROC) curve analysis, and the diagnostic efficacy of CTCs, CTECs, CEA, CA19-9, and their combinations was analyzed. Results The CTC (P < 0.0001) and CTEC (P=0.0009) level was significantly higher in CRC patients than that in healthy controls. For CRC patients, CTC and CTEC level was significantly correlated with tumor stage and lymph node metastasis status, but not with sex, age, tumor location, and degree of differentiation. The positive rate of CTCs, CTECs, CEA, and CA19-9 in CRC patients was 87.8%, 39.1%, 28.7%, and 26.1%, respectively. To distinguish CRC patients from controls, the area under the curve (AUC) of CTC was 0.889, which was much higher than 0.695 of CTEC, 0.696 of CEA, and 0.695 of CA19-9. Establishing ROC curve by logistic regression algorithm, the highest AUC was 0.935, which combined CTCs with CTEC, CEA, and CA19-9. Conclusions CTCs combined with CTEC, CEA, and CA19-9 are useful to improve the diagnostic efficiency, which has high clinical significance in the diagnosis of colorectal cancer.
Collapse
|
166
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
167
|
Parker KA, Robinson NJ, Schiemann WP. The role of RNA processing and regulation in metastatic dormancy. Semin Cancer Biol 2022; 78:23-34. [PMID: 33775829 PMCID: PMC8464634 DOI: 10.1016/j.semcancer.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Tumor dormancy is a major contributor to the lethality of metastatic disease, especially for cancer patients who develop metastases years-to-decades after initial diagnosis. Indeed, tumor cells can disseminate during early disease stages and persist in new microenvironments at distal sites for months, years, or even decades before initiating metastatic outgrowth. This delay between primary tumor remission and metastatic relapse is known as "dormancy," during which disseminated tumor cells (DTCs) acquire quiescent states in response to intrinsic (i.e., cellular) and extrinsic (i.e., microenvironmental) signals. Maintaining dormancy-associated phenotypes requires DTCs to activate transcriptional, translational, and post-translational mechanisms that engender cellular plasticity. RNA processing is emerging as an essential facet of cellular plasticity, particularly with respect to the initiation, maintenance, and reversal of dormancy-associated phenotypes. Moreover, dysregulated RNA processing, particularly that associated with alternative RNA splicing and expression of noncoding RNAs (ncRNAs), can occur in DTCs to mediate intrinsic and extrinsic metastatic dormancy. Here we review the pathophysiological impact of alternative RNA splicing and ncRNAs in promoting metastatic dormancy and disease recurrence in human cancers.
Collapse
Affiliation(s)
- Kimberly A. Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nathaniel J. Robinson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA,Corresponding Author: William P. Schiemann, Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106 Phone: 216-368-5763.
| |
Collapse
|
168
|
Dong J, Zhu C, Zhang F, Zhou Z, Sun M. "Attractive/adhesion force" dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release 2021; 341:892-903. [PMID: 34953982 DOI: 10.1016/j.jconrel.2021.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is refractory systemic disease resulting in low survival rate of breast cancer patients, especially in the late stage. The processes of metastasis are mainly initiated by strong "attractive force" from distant organs and deteriorated by weak "adhesion force" in primary tumor. Here, we reported "attractive/adhesion force" dual-regulatory nanogels (CQ-HF/PTX) for the precise treatment of both primary and metastasis of metastatic breast cancer. Hydroxychloroquine (HCQ) and hydrophobic Fmoc were grafted on hydrophilic hydroxyethyl starch (HES) to obtain amphiphilic CQ-HF polymer, which was assembly with chemotherapy drug paclitaxel (PTX) to form the nanogels for anti-primary tumor. Meanwhile, CQ-HF/PTX nanogels play two roles in anti-metastasis: i) For reducing the "attractive force", it could block the CXCR4/SDF-1 pathway, preventing tumor cells metastasis to the lung; ii) For reinforcing "adhesion force", it could inhibit the excessive autophagy for hindering the degradation of paxillin and enhancing the cell adhesion. As a result, dual-regulatory CQ-HF/PTX nanogels dramatically inhibited tumor and the lung metastasis of mouse breast cancer. Therefore, the fabricating of synergetic dual-regulatory nanogels uncovered the explicit mechanism and provided an efficient strategy for combating malignant metastatic tumors.
Collapse
Affiliation(s)
- Jingwen Dong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Chenfei Zhu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Feiran Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
169
|
Han L, Wan Q, Zheng A, Guo Y, Chen Y. Demonstration of a Flexible Graphene-Based Biosensor for Sensitive and Rapid Detection of Ovarian Cancer Cells. NANOSCALE RESEARCH LETTERS 2021; 16:181. [PMID: 34940924 PMCID: PMC8702589 DOI: 10.1186/s11671-021-03633-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
It is significant to develop an efficient early detection and prediction method for ovarian cancer via a facile and low-cost approach. To address such issues, herein, we develop a novel circulating tumor cell (CTC) detection method to sensitively detect ovarian cancer by using a flexible graphene-based biosensor on polyethylene terephthalate (PET) substrate. The results show that the graphene-based flexible biosensor demonstrates sensitive and rapid detection for ovarian cancer cells: it delivers obvious different responses for cell culture medium and cancer solution, different cancer cells and cancer cell solution with different concentrations; it demonstrates high sensitivity for detecting several tens of ovarian cancer cells per ml; moreover, the flexible graphene biosensor is very suitable for rapid and sensitive detection of ovarian cancer cells within 5 s. This work provides a low-cost and facile graphene biosensor fabrication strategy to sensitively and rapidly detect / identify CTC ovarian cancer cells.
Collapse
Affiliation(s)
- Ling Han
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China
| | - Qi Wan
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China
| | - Ai Zheng
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China
| | - Yunchuan Guo
- Chengdu Ginkgo Electronics Technology Co., Ltd., Chengdu, 610213, People's Republic of China
| | - Yali Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
170
|
Ray A, Callaway MK, Rodríguez-Merced NJ, Crampton AL, Carlson M, Emme KB, Ensminger EA, Kinne AA, Schrope JH, Rasmussen HR, Jiang H, DeNardo DG, Wood DK, Provenzano PP. Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight 2021; 7:150330. [PMID: 34914633 PMCID: PMC8855836 DOI: 10.1172/jci.insight.150330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease. Furthermore, we show that pancreatitis results in invasion-conducive architectures, thus priming the stroma prior to malignant disease. Analysis in potentially novel microfluidic-derived microtissues and in vivo demonstrates decreased extrusion and invasion following focal adhesion kinase (FAK) inhibition, consistent with decreased metastasis. Thus, data suggest that targeting FAK or strategies to reengineer and normalize tumor microenvironments may have roles not only in very early disease, but also for limiting continued dissemination from unresectable disease. Likewise, it may be beneficial to employ stroma-targeting strategies to resolve precursor diseases such as pancreatitis in order to remove stromal architectures that increase risk for early dissemination.
Collapse
Affiliation(s)
- Arja Ray
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Mackenzie K Callaway
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Nelson J Rodríguez-Merced
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexandra L Crampton
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Marjorie Carlson
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Kenneth B Emme
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Ethan A Ensminger
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexander A Kinne
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Jonathan H Schrope
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Haley R Rasmussen
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Hong Jiang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David K Wood
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Paolo P Provenzano
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
171
|
van der Ven CFT, Tibbitt MW, Conde J, van Mil A, Hjortnaes J, Doevendans PA, Sluijter JPG, Aikawa E, Langer RS. Controlled delivery of gold nanoparticle-coupled miRNA therapeutics via an injectable self-healing hydrogel. NANOSCALE 2021; 13:20451-20461. [PMID: 34817483 PMCID: PMC8675028 DOI: 10.1039/d1nr04973a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Differential expression of microRNAs (miRNAs) plays a role in many diseases, including cancer and cardiovascular diseases. Potentially, miRNAs could be targeted with miRNA-therapeutics. Sustained delivery of these therapeutics remains challenging. This study couples miR-mimics to PEG-peptide gold nanoparticles (AuNP) and loads these AuNP-miRNAs in an injectable, shear thinning, self-assembling polymer nanoparticle (PNP) hydrogel drug delivery platform to improve delivery. Spherical AuNPs coated with fluorescently labelled miR-214 are loaded into an HPMC-PEG-b-PLA PNP hydrogel. Release of AuNP/miRNAs is quantified, AuNP-miR-214 functionality is shown in vitro in HEK293 cells, and AuNP-miRNAs are tracked in a 3D bioprinted human model of calcific aortic valve disease (CAVD). Lastly, biodistribution of PNP-AuNP-miR-67 is assessed after subcutaneous injection in C57BL/6 mice. AuNP-miRNA release from the PNP hydrogel in vitro demonstrates a linear pattern over 5 days up to 20%. AuNP-miR-214 transfection in HEK293 results in 33% decrease of Luciferase reporter activity. In the CAVD model, AuNP-miR-214 are tracked into the cytoplasm of human aortic valve interstitial cells. Lastly, 11 days after subcutaneous injection, AuNP-miR-67 predominantly clears via the liver and kidneys, and fluorescence levels are again comparable to control animals. Thus, the PNP-AuNP-miRNA drug delivery platform provides linear release of functional miRNAs in vitro and has potential for in vivo applications.
Collapse
Affiliation(s)
- Casper F T van der Ven
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Center of Excellence in Cardiovascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Woman's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA
| | - Mark W Tibbitt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Alain van Mil
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Jesper Hjortnaes
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Elena Aikawa
- Center of Excellence in Cardiovascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Woman's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston 02115, MA, USA.
| | - Robert S Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge 02142, MA, USA.
| |
Collapse
|
172
|
Gui P, Bivona TG. Evolution of metastasis: new tools and insights. Trends Cancer 2021; 8:98-109. [PMID: 34872888 DOI: 10.1016/j.trecan.2021.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is an evolutionary process occurring across multiple organs and timescales. Due to its continuous and dynamic nature, this multifaceted process has been challenging to investigate and remains incompletely understood, in part due to the lack of tools capable of probing genomic evolution at high enough resolution. However, technological advances in genetic sequencing and editing have provided new and powerful methods to refine our understanding of the complex series of events that lead to metastatic dissemination. In this review, we summarize the latest genetic and lineage-tracing approaches developed to unravel the genetic evolution of metastasis. The findings that have emerged have enhanced our comprehension of the mechanistic trajectories and timescales of metastasis and could provide new strategies for therapy.
Collapse
Affiliation(s)
- Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
173
|
Segura-Bautista D, Maya-Nunez G, Aguilar-Rojas A, Huerta-Reyes M, Pérez-Solis MA. Contribution of Stemness-linked Transcription Regulators to the Progression of Breast Cancer. Curr Mol Med 2021; 22:766-778. [PMID: 34819003 DOI: 10.2174/1566524021666211124154803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Although there are currently several factors that allow measuring the risk of having breast cancer or predicting its progression, the underlying causes of this malignancy have remained unknown. Several molecular studies have described some mechanisms involved in the progress of breast cancer. These have helped in identifying new targets with therapeutic potential. However, despite the therapeutic strategies implemented from the advances achieved in breast cancer research, a large percentage of patients with breast cancer die due to the spread of malignant cells to other tissues or organs, such as bones and lungs. Therefore, determining the processes that promote the migration of malignant cells remains one of the greatest challenges for oncological research. Several research groups have reported evidence on how the dedifferentiation of tumor cells leads to the acquisition of stemness characteristics, such as invasion, metastasis, the capability to evade the immunological response, and resistance to several cytotoxic drugs. These phenotypic changes have been associated with a complex reprogramming of gene expression in tumor cells during the Epithelial-Mesenchymal Transition (EMT). Considering the determining role that the transcriptional regulation plays in the expression of the specific characteristics and attributes of breast cancer during ETM, in the present work, we reviewed and analyzed several transcriptional mechanisms that support the mesenchymal phenotype. In the same way, we established the importance of transcription factors with a therapeutic perspective in the progress of breast cancer.
Collapse
Affiliation(s)
- David Segura-Bautista
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Guadalupe Maya-Nunez
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Arturo Aguilar-Rojas
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Maira Huerta-Reyes
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Marco Allan Pérez-Solis
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| |
Collapse
|
174
|
Huang YK, Busuttil RA, Boussioutas A. The Role of Innate Immune Cells in Tumor Invasion and Metastasis. Cancers (Basel) 2021; 13:5885. [PMID: 34884995 PMCID: PMC8656477 DOI: 10.3390/cancers13235885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is considered one of the hallmarks of cancer and enhanced tumor invasion and metastasis is significantly associated with cancer mortality. Metastasis occurs via a series of integrated processes involving tumor cells and the tumor microenvironment. The innate immune components of the microenvironment have been shown to engage with tumor cells and not only regulate their proliferation and survival, but also modulate the surrounding environment to enable cancer progression. In the era of immune therapies, it is critical to understand how different innate immune cell populations are involved in this process. This review summarizes recent literature describing the roles of innate immune cells during the tumor metastatic cascade.
Collapse
Affiliation(s)
- Yu-Kuan Huang
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
| | - Rita A. Busuttil
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
| | - Alex Boussioutas
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
175
|
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther 2021; 6:404. [PMID: 34803167 PMCID: PMC8606574 DOI: 10.1038/s41392-021-00817-8] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have sloughed off the primary tumor and extravasate into and circulate in the blood. Understanding of the metastatic cascade of CTCs has tremendous potential for the identification of targets against cancer metastasis. Detecting these very rare CTCs among the massive blood cells is challenging. However, emerging technologies for CTCs detection have profoundly contributed to deepening investigation into the biology of CTCs and have facilitated their clinical application. Current technologies for the detection of CTCs are summarized herein, together with their advantages and disadvantages. The detection of CTCs is usually dependent on molecular markers, with the epithelial cell adhesion molecule being the most widely used, although molecular markers vary between different types of cancer. Properties associated with epithelial-to-mesenchymal transition and stemness have been identified in CTCs, indicating their increased metastatic capacity. Only a small proportion of CTCs can survive and eventually initiate metastases, suggesting that an interaction and modulation between CTCs and the hostile blood microenvironment is essential for CTC metastasis. Single-cell sequencing of CTCs has been extensively investigated, and has enabled researchers to reveal the genome and transcriptome of CTCs. Herein, we also review the clinical applications of CTCs, especially for monitoring response to cancer treatment and in evaluating prognosis. Hence, CTCs have and will continue to contribute to providing significant insights into metastatic processes and will open new avenues for useful clinical applications.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lesang Shen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Zhu
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhou
- Department of Surgery, Traditional Chinese Medical Hospital of Zhuji, Shaoxing, China
| | - Shu Zheng
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiaojiao Zhou
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
176
|
Chernosky NM, Tamagno I. The Role of the Innate Immune System in Cancer Dormancy and Relapse. Cancers (Basel) 2021; 13:5621. [PMID: 34830776 PMCID: PMC8615859 DOI: 10.3390/cancers13225621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic spread and recurrence are intimately linked to therapy failure, which remains an overarching clinical challenge for patients with cancer. Cancer cells often disseminate early in the disease process and can remain dormant for years or decades before re-emerging as metastatic disease, often after successful treatment. The interactions of dormant cancer cells and their metastatic niche, comprised of various stromal and immune cells, can determine the length of time that cancer cells remain dormant, as well as when they reactivate. New studies are defining how innate immune cells in the primary tumor may be corrupted to help facilitate many aspects of dissemination and re-emergence from a dormant state. Although the scientific literature has partially shed light on the drivers of immune escape in cancer, the specific mechanisms regulating metastasis and dormancy in the context of anti-tumor immunity are still mostly unknown. This review follows the journey of metastatic cells from dissemination to dormancy and the onset of metastatic outgrowth and recurrent tumor development, with emphasis on the role of the innate immune system. To this end, further research identifying how immune cells interact with cancer cells at each step of cancer progression will pave the way for new therapies that target the reactivation of dormant cancer cells into recurrent, metastatic cancers.
Collapse
Affiliation(s)
- Noah M. Chernosky
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
177
|
Ghoroghi S, Mary B, Asokan N, Goetz JG, Hyenne V. Tumor extracellular vesicles drive metastasis (it's a long way from home). FASEB Bioadv 2021; 3:930-943. [PMID: 34761175 PMCID: PMC8565230 DOI: 10.1096/fba.2021-00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Among a plethora of functions, extracellular vesicles released by primary tumors spread in the organism and reach distant organs where they can induce the formation of a premetastatic niche. This constitutes a favorable microenvironment for circulating tumor cells which facilitates their seeding and colonization. In this review, we describe the journey of extracellular vesicles (EVs) from the primary tumor to the future metastatic organ, with a focus on the mechanisms used by EVs to target organs with a specific tropism (i.e., organotropism). We then highlight important tumor EV cargos in the context of premetastatic niche formation and summarize their known effects on extracellular matrix remodeling, angiogenesis, vessel permeabilization, resident cell activation, recruitment of foreign cells, and ultimately the formation of a pro-inflammatory and immuno-tolerant microenvironment. Finally, we discuss current experimental limitations and remaining opened questions in light of metastatic diagnosis and potential therapies targeting PMN formation.
Collapse
Affiliation(s)
- Shima Ghoroghi
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Benjamin Mary
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Nandini Asokan
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Jacky G Goetz
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Vincent Hyenne
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
- CNRS SNC5055 Strasbourg France
| |
Collapse
|
178
|
Zhao L, Zhang K, He H, Yang Y, Li W, Liu T, Li J. The Relationship Between Mesenchymal Stem Cells and Tumor Dormancy. Front Cell Dev Biol 2021; 9:731393. [PMID: 34712663 PMCID: PMC8545891 DOI: 10.3389/fcell.2021.731393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor dormancy, a state of tumor, is clinically undetectable and the outgrowth of dormant tumor cells into overt metastases is responsible for cancer-associated deaths. However, the dormancy-related molecular mechanism has not been clearly described. Some researchers have proposed that cancer stem cells (CSCs) and disseminated tumor cells (DTCs) can be seen as progenitor cells of tumor dormancy, both of which can remain dormant in a non-permissive soil/niche. Nowadays, research interest in the cancer biology field is skyrocketing as mesenchymal stem cells (MSCs) are capable of regulating tumor dormancy, which will provide a unique therapeutic window to cure cancer. Although the influence of MSCs on tumor dormancy has been investigated in previous studies, there is no thorough review on the relationship between MSCs and tumor dormancy. In this paper, the root of tumor dormancy is analyzed and dormancy-related molecular mechanisms are summarized. With an emphasis on the role of the MSCs during tumor dormancy, new therapeutic strategies to prevent metastatic disease are proposed, whose clinical application potentials are discussed, and some challenges and prospects of the studies of tumor dormancy are also described.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu He
- Operating Theater and Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yongping Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
179
|
Zhu Z, Wang W, Lin F, Jordan T, Li G, Silverman S, Qiu S, Joy AA, Chen C, Hockley DL, Zhang X, Zhou Q, Postovit LM, Zhang X, Hou Y, Mackey JR, Li B, Wong GKS. Genome profiles of pathologist-defined cell clusters by multiregional LCM and G&T-seq in one triple-negative breast cancer patient. CELL REPORTS MEDICINE 2021; 2:100404. [PMID: 34755126 PMCID: PMC8561166 DOI: 10.1016/j.xcrm.2021.100404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/30/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
Pathological examination is the gold standard for cancer diagnosis, and breast tumor cells are often found in clusters. We report a case study on one triple-negative breast cancer (TNBC) patient, analyzing tumor development, metastasis, and prognosis with simultaneous DNA and RNA sequencing of pathologist-defined cell clusters from multiregional frozen sections. The cell clusters are isolated by laser capture microdissection (LCM) from primary tumor tissue, lymphatic vessels, and axillary lymph nodes. Data are reported for a total of 97 cell clusters. A combination of tumor cell-cluster clonality and phylogeny reveals 3 evolutionarily distinct pathways for this patient, each associated with a unique mRNA signature, and each correlated with disparate survival outcomes. Hub gene analysis indicates that extensive downregulation of ribosomal protein mRNA is a potential marker of poor prognosis in breast cancer. Pathologically diverse cell clusters share genomic and transcriptomic profiles Transcriptome-defined clones are more complex than genome-defined clones Three distinct pathways were inferred, each with disparate survival outcomes Lower expression of ribosomal proteins may be an indicator of poor prognosis
Collapse
Affiliation(s)
- Zhongyi Zhu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Wang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada.,Geneis, Bldg A, 5 Guangshun North Street, Beijing 100102, China
| | - Feng Lin
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Tracy Jordan
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Guibo Li
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Sveta Silverman
- Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Si Qiu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Anil Abraham Joy
- Division of Medical Oncology, Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Chao Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Deanna L Hockley
- Division of Medical Oncology, Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Xi Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Qing Zhou
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Lynne M Postovit
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Xiuqing Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yong Hou
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - John R Mackey
- Division of Medical Oncology, Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Bo Li
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Gane Ka-Shu Wong
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
180
|
Redox Control of the Dormant Cancer Cell Life Cycle. Cells 2021; 10:cells10102707. [PMID: 34685686 PMCID: PMC8535080 DOI: 10.3390/cells10102707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Following efficient tumor therapy, some cancer cells may survive through a dormancy process, contributing to tumor recurrence and worse outcomes. Dormancy is considered a process where most cancer cells in a tumor cell population are quiescent with no, or only slow, proliferation. Recent advances indicate that redox mechanisms control the dormant cancer cell life cycle, including dormancy entrance, long-term dormancy, and metastatic relapse. This regulatory network is orchestrated mainly through redox modification on key regulators or global change of reactive oxygen species (ROS) levels in dormant cancer cells. Encouragingly, several strategies targeting redox signaling, including sleeping, awaking, or killing dormant cancer cells are currently under early clinical evaluation. However, the molecular mechanisms underlying redox control of the dormant cancer cell cycle are poorly understood and need further exploration. In this review, we discuss the underlying molecular basis of redox signaling in the cell life cycle of dormant cancer and the potential redox-based targeting strategies for eliminating dormant cancer cells.
Collapse
|
181
|
Ángel-Parra C, Pascual-Domenech A, González-Mirasol E. Riesgo de cáncer de mama en portadoras de DIU de levonorgestrel. Revisión sistemática. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2021. [DOI: 10.1016/j.gine.2021.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
182
|
Attaran S, Skoko JJ, Hopkins BL, Wright MK, Wood LE, Asan A, Woo HA, Feinberg A, Neumann CA. Peroxiredoxin-1 Tyr194 phosphorylation regulates LOX-dependent extracellular matrix remodelling in breast cancer. Br J Cancer 2021; 125:1146-1157. [PMID: 34389806 PMCID: PMC8505437 DOI: 10.1038/s41416-021-01510-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Peroxiredoxin 1 (PRDX1) belongs to an abundant family of peroxidases whose role in cancer is still unresolved. While mouse knockout studies demonstrate a tumour suppressive role for PRDX1, in cancer cell xenografts, results denote PRDX1 as a drug target. Probably, this phenotypic discrepancy stems from distinct roles of PRDX1 in certain cell types or stages of tumour progression. METHODS We demonstrate an important cell-autonomous function for PRDX1 utilising a syngeneic mouse model (BALB/c) and mammary fibroblasts (MFs) obtained from it. RESULTS Loss of PRDX1 in vivo promotes collagen remodelling known to promote breast cancer progression. PRDX1 inactivation in MFs occurs via SRC-induced phosphorylation of PRDX1 TYR194 and not through the expected direct oxidation of CYS52 in PRDX1 by ROS. TYR194-phosphorylated PRDX1 fails to bind to lysyl oxidases (LOX) and leads to the accumulation of extracellular LOX proteins which supports enhanced collagen remodelling associated with breast cancer progression. CONCLUSIONS This study reveals a cell type-specific tumour suppressive role for PRDX1 that is supported by survival analyses, depending on PRDX1 protein levels in breast cancer cohorts.
Collapse
Affiliation(s)
- Shireen Attaran
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - John J Skoko
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Barbara L Hopkins
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan K Wright
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Laurel E Wood
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alparslan Asan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Adam Feinberg
- Department of Materials Science and Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
183
|
Heterogeneity of Circulating Tumor Cell Neoplastic Subpopulations Outlined by Single-Cell Transcriptomics. Cancers (Basel) 2021; 13:cancers13194885. [PMID: 34638368 PMCID: PMC8508335 DOI: 10.3390/cancers13194885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Over 12% of women in the United States will be diagnosed with breast cancer in their lifetime. The overall 5-year survival rate for breast cancer is 90%, but the 5-year survival rate for women diagnosed with metastatic breast cancer is 28.1%. This study aims to characterize the cancerous cells that have left the primary tumor site and entered the blood, known as circulating tumor cells (CTCs). These cells could adhere to a site distant from the tumor and initiate metastasis. CTCs in breast cancer patients’ blood samples were enumerated and imaged. Cells from the blood were collected, RNA extracted, and the gene expression patterns of CTCs and other cell populations in the blood were investigated at the population and single cell level. This is a crucial step in characterizing CTCs as seeds of metastasis in breast cancer and for developing methods of detection to intercept metastasis before it localizes to distant regions of the body. Abstract Fatal metastasis occurs when circulating tumor cells (CTCs) disperse through the blood to initiate a new tumor at specific sites distant from the primary tumor. CTCs have been classically defined as nucleated cells positive for epithelial cell adhesion molecule and select cytokeratins (EpCAM/CK/DAPI), while negative for the common lymphocyte marker CD45. The enumeration of CTCs allows an estimation of the overall metastatic burden in breast cancer patients, but challenges regarding CTC heterogeneity and metastatic propensities persist, and their decryption could improve therapies. CTCs from metastatic breast cancer (mBC) patients were captured using the RareCyteTM Cytefinder II platform. The Lin− and Lin+ (CD45+) cell populations isolated from the blood of three of these mBC patients were analyzed by single-cell transcriptomic methods, which identified a variety of immune cell populations and a cluster of cells with a distinct gene expression signature, which includes both cells expressing EpCAM/CK (“classic” CTCs) and cells possessing an array of genes not previously associated with CTCs. This study put forward notions that the identification of these genes and their interactions will promote novel areas of analysis by dissecting properties underlying CTC survival, proliferation, and interaction with circulatory immune cells. It improves upon capabilities to measure and interfere with CTCs for impactful therapeutic interventions.
Collapse
|
184
|
Ozimski LL, Gremmelspacher D, Aceto N. A fatal affair: Circulating tumor cell relationships that shape metastasis. iScience 2021; 24:103073. [PMID: 34568794 PMCID: PMC8449241 DOI: 10.1016/j.isci.2021.103073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells are metastatic precursors in several cancer types. Their biology and clinical utility are subject to numerous investigations, yet one aspect that is often neglected is their entanglement with the tumor microenvironment, namely the cross talk with stromal and immune cells and their relationships with other tumor-derived components such as circulating tumor DNA and extracellular vesicles in circulation. We will focus our short review specifically on these aspects, i.e., providing some examples of the liaison that circulating tumor cells have with stromal or immune cells and illustrating their relationship with other circulating tumor derivatives such as circulating tumor DNA and extracellular vesicles.
Collapse
Affiliation(s)
- Lauren L. Ozimski
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - David Gremmelspacher
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
185
|
Todd VM, Vecchi LA, Clements ME, Snow KP, Ontko CD, Himmel L, Pinelli C, Rafat M, Johnson RW. Hypoxia inducible factor signaling in breast tumors controls spontaneous tumor dissemination in a site-specific manner. Commun Biol 2021; 4:1122. [PMID: 34556788 PMCID: PMC8460839 DOI: 10.1038/s42003-021-02648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common feature in tumors and induces signaling that promotes tumor cell survival, invasion, and metastasis, but the impact of hypoxia inducible factor (HIF) signaling in the primary tumor on dissemination to bone in particular remains unclear. To better understand the contributions of hypoxia inducible factor 1 alpha (HIF1α), HIF2α, and general HIF pathway activation in metastasis, we employ a PyMT-driven spontaneous murine mammary carcinoma model with mammary specific deletion of Hif1α, Hif2α, or von Hippel-Lindau factor (Vhl) using the Cre-lox system. Here we show that Hif1α or Hif2α deletion in the primary tumor decreases metastatic tumor burden in the bone marrow, while Vhl deletion increases bone tumor burden, as hypothesized. Unexpectedly, Hif1α deletion increases metastatic tumor burden in the lung, while deletion of Hif2α or Vhl does not affect pulmonary metastasis. Mice with Hif1α deleted tumors also exhibit reduced bone volume as measured by micro computed tomography, suggesting that disruption of the osteogenic niche may be involved in the preference for lung dissemination observed in this group. Thus, we reveal that HIF signaling in breast tumors controls tumor dissemination in a site-specific manner.
Collapse
Affiliation(s)
- Vera M Todd
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | - Lawrence A Vecchi
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miranda E Clements
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine P Snow
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Pinelli
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marjan Rafat
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
186
|
Feasibility of prognosis assessment for cancer of unknown primary origin using texture analysis of 18F-fluorodeoxyglucose PET/computed tomography images of largest metastatic lymph node. Nucl Med Commun 2021; 42:86-92. [PMID: 33044405 DOI: 10.1097/mnm.0000000000001310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Cancers of unknown primary origin cannot be staged using images, making the prognosis difficult. We attempted to predict prognosis of patients with unknown primary origin using tumour heterogeneity recently introduced in F-fluorodeoxyglucose (F-FDG) PET/computed tomography (CT). METHODS Overall, 30 patients with unknown primary origin who underwent whole-body F-FDG PET/CT scans were retrospectively enrolled for texture analysis. The volume of interest was placed in the largest metastatic lymph nodes and conventional parameters and grey-level co-occurrence matrix (GLCM) were calculated. Statistical analysis of image-based variables was performed using Cox regression analyses. Patients were stratified into two groups based on cutoff values of GLCMentropy obtained using receiver operating characteristics (ROCs). Patients were analyzed, and overall survival (OS) was compared using Kaplan-Meier analysis. RESULTS Univariate Cox regression analysis showed significant differences in prognosis for parenchymal organ metastasis (P < 0.01), GLCM homogeneity (P = 0.01), GLCMcontrast (P < 0.01), GLCMentropy (P < 0.01) and GLCMdissimilarity (P < 0.01). Multivariate Cox regression analysis showed a significant difference in reduced prognosis for GLCMentropy positive (P < 0.01). Stratification was performed based on the GLCMentropy cutoff value, determined using ROCs analysis, with smaller groups showing better OS. CONCLUSIONS Despite previous difficulties in predicting prognosis in patients with unknown primary origin, F-FDG PET/CT texture features may enable stratification of prognosis. This could be useful for appropriate patient selection and management and help identify a subset of patients with favourable outcomes. These novel findings may be helpful for prognostication and improving patient care.
Collapse
|
187
|
Clements ME, Holtslander L, Edwards C, Todd V, Dooyema SDR, Bullock K, Bergdorf K, Zahnow CA, Connolly RM, Johnson RW. HDAC inhibitors induce LIFR expression and promote a dormancy phenotype in breast cancer. Oncogene 2021; 40:5314-5326. [PMID: 34247191 PMCID: PMC8403155 DOI: 10.1038/s41388-021-01931-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Despite advances in breast cancer treatment, residual disease driven by dormant tumor cells continues to be a significant clinical problem. Leukemia inhibitory factor receptor (LIFR) promotes a dormancy phenotype in breast cancer cells and LIFR loss is correlated with poor patient survival. Herein, we demonstrate that histone deacetylase inhibitors (HDACi), which are in phase III clinical trials for breast cancer, epigenetically induced LIFR and activated a pro-dormancy program in breast cancer cells. HDACi slowed breast cancer cell proliferation and reduced primary tumor growth. Primary breast tumors from HDACi-treated patients had increased LIFR levels and reduced proliferation rates compared to pre-treatment levels. Recent Phase II clinical trial data studying entinostat and azacitidine in metastatic breast cancer revealed that induction of several pro-dormancy genes post-treatment was associated with prolonged patient survival. Together, these findings suggest HDACi as a potential therapeutic avenue to promote dormancy, prevent recurrence, and improve patient outcomes in breast cancer.
Collapse
Affiliation(s)
- Miranda E Clements
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren Holtslander
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Courtney Edwards
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vera Todd
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel D R Dooyema
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kennady Bullock
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kensey Bergdorf
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Cynthia A Zahnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Roisin M Connolly
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Rachelle W Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
188
|
Giacobbe A, Abate-Shen C. Modeling metastasis in mice: a closer look. Trends Cancer 2021; 7:916-929. [PMID: 34303648 DOI: 10.1016/j.trecan.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Unraveling the multifaceted cellular and physiological processes associated with metastasis is best achieved by using in vivo models that recapitulate the requisite tumor cell-intrinsic and -extrinsic mechanisms at the organismal level. We discuss the current status of mouse models of metastasis. We consider how mouse models can refine our understanding of the underlying biological and molecular processes that promote metastasis, and we envisage how the application of new technologies will further enhance investigations of metastasis at single-cell resolution in the context of the whole organism. Our view is that investigations based on state-of-the-art mouse models can propel a holistic understanding of the biology of metastasis, which will ultimately lead to the discovery of new therapeutic opportunities.
Collapse
Affiliation(s)
- Arianna Giacobbe
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
189
|
Abu Quora HA, Zahra MH, El-Ghlban S, Nair N, Afify SM, Hassan G, Nawara HM, Sheta M, Monzur S, Fu X, Osman A, Seno A, Seno M. Microenvironment of mammary fat pads affected the characteristics of the tumors derived from the induced cancer stem cells. Am J Cancer Res 2021; 11:3475-3495. [PMID: 34354856 PMCID: PMC8332865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is the first common cause of cancer-related death in women worldwide. Since the malignancy and aggressiveness of breast cancer have been correlated with the presence of breast cancer stem cells, the establishment of a disease model with cancer stem cells is required for the development of a novel therapeutic strategy. Here, we aimed to evaluate the availability of cancer stem cell models developed from mouse induced pluripotent stem cells with the conditioned medium of different subtypes of breast cancer cell lines, the hormonal-responsive T47D cell line and the triple-negative breast cancer BT549 cell line, to generate in vivo tumor models. When transplanted into the mammary fat pads of BALB/c nude mice, these two model cells formed malignant tumors exhibiting pronounced histopathological characteristics similar to breast cancers. Serial transplantation of the primary cultured cells into mammary fat pads evoked the same features of breast cancer, while this result was perturbed following subcutaneous transplantation. The tumors formed in the mammary fat pads exhibited immune reactivities to prolactin receptor, progesterone receptor, green florescent protein, Ki67, CD44, estrogen receptor α/β and cytokeratin 8, while all of the tumors and their derived primary cells exhibited immunoreactivity to estrogen receptor α/β and cytokeratin 8. Cancer stem cells can be developed from pluripotent stem cells via the secretory factors of cancer-derived cells with the capacity to inherit tissue specificity. However, cancer stem cells should be plastic enough to be affected by the microenvironment of specific tissues. In summary, we successfully established a breast cancer tumor model using mouse induced pluripotent stem cells developed from normal fibroblasts without genetic manipulation.
Collapse
Affiliation(s)
- Hagar A Abu Quora
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
- Cytology, Histology and Histochemistry, Zoology Department, Faculty of Science, Menoufia UniversityMenoufia 32511, Egypt
| | - Maram H Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Samah El-Ghlban
- Division of Biochemistry, Faculty of Science, Menoufia UniversityMenoufia 32511, Egypt
| | - Neha Nair
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama UniversityOkayama 700-8530, Japan
| | - Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
- Division of Biochemistry, Faculty of Science, Menoufia UniversityMenoufia 32511, Egypt
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Hend M Nawara
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Mona Sheta
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Sadia Monzur
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Xiaoying Fu
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
- Department of Pathology, Tianjin University of Traditional Chinese MedicineTianjin 300193, China
| | - Amira Osman
- Department of Histology, Faculty of Medicine, Kafr Elsheikh UniversityKafr Elsheikh 33511, Egypt
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| |
Collapse
|
190
|
Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. Eur J Cancer 2021; 154:128-137. [PMID: 34265505 DOI: 10.1016/j.ejca.2021.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Presence of disseminated tumour cells (DTCs) in the bone marrow (BM) has been described as a surrogate of residual disease in patients with early breast cancer (EBC). PADDY (Pooled Analysis of DTC Detection in Early Breast Cancer) is a large international analysis of pooled data that aimed to assess the prognostic impact of DTCs in patients with EBC. EXPERIMENTAL DESIGN Individual patient data were collected from 11 centres. Patients with EBC and available follow-up data in whom BM sampling was performed at the time of primary diagnosis before receiving any anticancer treatment were eligible. DTCs were identified by antibody staining against epithelial cytokeratins. Multivariate Cox regression was used to compare the survival of DTC-positive versus DTC-negative patients. RESULTS In total, 10,307 patients were included. Of these, 2814 (27.3%) were DTC-positive. DTC detection was associated with higher tumour grade, larger tumour size, nodal positivity, oestrogen receptor and progesterone receptor negativity, and HER2 positivity (all p < 0.001). Multivariate analyses showed that DTC detection was an independent prognostic marker for overall survival, disease-free survival and distant disease-free survival with hazard ratios (HR) and 95% confidence intervals (CI) of 1.23 (95% CI: 1.06-1.43, p = 0.006), 1.30 (95% CI: 1.12-1.52, p < 0.001) and 1.30 (95% CI: 1.08-1.56, p = 0.006), respectively. There was no association between locoregional relapse-free survival and DTC detection (HR 1.21; 95% CI 0.68-2.16; p = 0.512). CONCLUSIONS DTCs in the BM represent an independent prognostic marker in patients with EBC. The heterogeneous metastasis-initiating potential of DTCs is consistent with the concept of cancer dormancy.
Collapse
|
191
|
De Santis C, Götte M. The Role of microRNA Let-7d in Female Malignancies and Diseases of the Female Reproductive Tract. Int J Mol Sci 2021; 22:ijms22147359. [PMID: 34298978 PMCID: PMC8305730 DOI: 10.3390/ijms22147359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Let-7d is a microRNA of the conserved let-7 family that is dysregulated in female malignancies including breast cancer, ovarian cancer, endometrial cancer, and cervical cancer. Moreover, a dysregulation is observed in endometriosis and pregnancy-associated diseases such as preeclampsia and fetal growth restriction. Let-7d expression is regulated by cytokines and steroids, involving transcriptional regulation by OCT4, MYC and p53, as well as posttranscriptional regulation via LIN28 and ADAR. By downregulating a wide range of relevant mRNA targets, let-7d affects cellular processes that drive disease progression such as cell proliferation, apoptosis (resistance), angiogenesis and immune cell function. In an oncological context, let-7d has a tumor-suppressive function, although some of its functions are context-dependent. Notably, its expression is associated with improved therapeutic responses to chemotherapy in breast and ovarian cancer. Studies in mouse models have furthermore revealed important roles in uterine development and function, with implications for obstetric diseases. Apart from a possible utility as a diagnostic blood-based biomarker, pharmacological modulation of let-7d emerges as a promising therapeutic concept in a variety of female disease conditions.
Collapse
MESH Headings
- Aging
- Animals
- Biomarkers
- Biomarkers, Tumor
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Female
- Fertility/genetics
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genital Diseases, Female/drug therapy
- Genital Diseases, Female/genetics
- Genital Neoplasms, Female/drug therapy
- Genital Neoplasms, Female/genetics
- Humans
- Mice
- MicroRNAs/genetics
- MicroRNAs/physiology
- Molecular Targeted Therapy
- Pregnancy
- Pregnancy Complications/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/physiology
Collapse
|
192
|
Xia L, Yang F, Wu X, Li S, Kan C, Zheng H, Wang S. SHP2 inhibition enhances the anticancer effect of Osimertinib in EGFR T790M mutant lung adenocarcinoma by blocking CXCL8 loop mediated stemness. Cancer Cell Int 2021; 21:337. [PMID: 34217295 PMCID: PMC8254369 DOI: 10.1186/s12935-021-02056-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Additional epidermal growth factor receptor (EGFR) mutations confer the drug resistance to generations of EGFR targeted tyrosine kinase inhibitor (EGFR-TKI), posing a major challenge to developing effective treatment of lung adenocarcinoma (LUAD). The strategy of combining EGFR-TKI with other synergistic or sensitizing therapeutic agents are considered a promising approach in the era of precision medicine. Moreover, the role and mechanism of SHP2, which is involved in cell proliferation, cytokine production, stemness maintenance and drug resistance, has not been carefully explored in lung adenocarcinoma (LUAD). METHODS To evaluate the impact of SHP2 on the efficacy of EGFR T790M mutant LUAD cells to Osimertinib, SHP2 inhibition was tested in Osimertinib treated LUAD cells. Cell proliferation and stemness were tested in SHP2 modified LUAD cells. RNA sequencing was performed to explore the mechanism of SHP2 promoted stemness. RESULTS This study demonstrated that high SHP2 expression level correlates with poor outcome of LUAD patients, and SHP2 expression is enriched in Osimertinib resistant LUAD cells. SHP2 inhibition suppressed the cell proliferation and damaged the stemness of EGFR T790M mutant LUAD. SHP2 facilitates the secretion of CXCL8 cytokine from the EGFR T790M mutant LUAD cells, through a CXCL8-CXCR1/2 positive feedback loop that promotes stemness and tumorigenesis. Our results further show that SHP2 mediates CXCL8-CXCR1/2 feedback loop through ERK-AKT-NFκB and GSK3β-β-Catenin signaling in EGFR T790M mutant LUAD cells. CONCLUSIONS Our data revealed that SHP2 inhibition enhances the anti-cancer effect of Osimertinib in EGFR T790M mutant LUAD by blocking CXCL8-CXCR1/2 loop mediated stemness, which may help provide an alternative therapeutic option to enhance the clinical efficacy of osimertinib in EGFR T790M mutant LUAD patients.
Collapse
Affiliation(s)
- Leiming Xia
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
- Department of Hematology, The Third affiliated hospital of Anhui Medical University, Hefei, China
- Department of Hematology, The fourth affiliated hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Xiao Wu
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Suzhi Li
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Chen Kan
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Hong Zheng
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Siying Wang
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China.
- Laboratory Center for Medical Science Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
193
|
Yu Z, Song M, Chouchane L, Ma X. Functional Genomic Analysis of Breast Cancer Metastasis: Implications for Diagnosis and Therapy. Cancers (Basel) 2021; 13:cancers13133276. [PMID: 34208889 PMCID: PMC8268362 DOI: 10.3390/cancers13133276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Metastasis remains the greatest cause of fatalities in breast cancer patients world-wide. The process of metastases is highly complex, and the current research efforts in this area are still rather fragmented. The revolution of genomic profiling methods to analyze samples from human and animal models dramatically improved our understanding of breast cancer metastasis. This article summarizes the recent breakthroughs in genomic analyses of breast cancer metastasis and discusses their implications for prognostic and therapeutic applications. Abstract Breast cancer (BC) is one of the most diagnosed cancers worldwide and is the second cause of cancer related death in women. The most frequent cause of BC-related deaths, like many cancers, is metastasis. However, metastasis is a complicated and poorly understood process for which there is a shortage of accurate prognostic indicators and effective treatments. With the rapid and ever-evolving development and application of genomic sequencing technologies, many novel molecules were identified that play previously unappreciated and important roles in the various stages of metastasis. In this review, we summarize current advancements in the functional genomic analysis of BC metastasis and discuss about the potential prognostic and therapeutic implications from the recent genomic findings.
Collapse
Affiliation(s)
- Ziqi Yu
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
- Correspondence: (Z.Y.); (X.M.)
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
- Correspondence: (Z.Y.); (X.M.)
| |
Collapse
|
194
|
Cui C, Zhang Y, Liu G, Zhang S, Zhang J, Wang X. Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:266-291. [PMID: 36046433 PMCID: PMC9400724 DOI: 10.37349/etat.2021.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
Metastasis is still the primary cause of cancer-related mortality. However, the underlying mechanisms of cancer metastasis are not yet fully understood. Currently, the epithelial-mesenchymal transition, metabolic remodeling, cancer cell intercommunication and the tumor microenvironment including diverse stromal cells, are reported to affect the metastatic process of cancer cells. Calcium ions (Ca2+) are ubiquitous second messengers that manipulate cancer metastasis by affecting signaling pathways. Diverse transporter/pump/channel-mediated Ca2+ currents form Ca2+ oscillations that can be decoded by Ca2+-binding proteins, which are promising prognostic biomarkers and therapeutic targets of cancer metastasis. This paper presents a review of the advances in research on the mechanisms underlying cancer metastasis and the roles of Ca2+-related signals in these events.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shuhong Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
195
|
Curtin J, Choi SW, Thomson PJ, Lam AKY. Characterization and clinicopathological significance of circulating tumour cells in patients with oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2021; 51:289-299. [PMID: 34154876 DOI: 10.1016/j.ijom.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Circulating tumour cells (CTCs) are cancer cells released by cancer into the peripheral circulation. Haematogenous tumour spread is a hallmark of metastatic malignancy and a key factor in cancer recurrence and prognosis. CTCs have diagnostic and prognostic significance for a number of adenocarcinomas and melanoma. A review of the published peer-reviewed literature was performed to determine the clinical relevance of CTCs as a biomarker in the management of oral squamous cell carcinoma (OSCC). Fourteen studies met the eligibility criteria. With regard to patients with OSCC, this review found the following: (1) CTCs have been detected using multiple techniques; (2) the presence of CTCs does not appear to be related to tumour differentiation or size; (3) CTCs may be detected without lymph node involvement; (4) the detection of CTCs may be prognostic for both disease-free survival and overall survival; (5) quantification of CTCs may reflect the efficacy of therapy; (6) CTCs may be of value for ongoing patient monitoring. Preliminary evidence suggests that CTCs have diagnostic and prognostic potential as a biomarker for oral cancer management and warrant further investigation to determine their appropriate place in the management of OSCC patients.
Collapse
Affiliation(s)
- J Curtin
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| | - S-W Choi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong
| | - P J Thomson
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong
| | - A K-Y Lam
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
196
|
Mauro LJ, Seibel MI, Diep CH, Spartz A, Perez Kerkvliet C, Singhal H, Swisher EM, Schwartz LE, Drapkin R, Saini S, Sesay F, Litovchick L, Lange CA. Progesterone Receptors Promote Quiescence and Ovarian Cancer Cell Phenotypes via DREAM in p53-Mutant Fallopian Tube Models. J Clin Endocrinol Metab 2021; 106:1929-1955. [PMID: 33755733 PMCID: PMC8499172 DOI: 10.1210/clinem/dgab195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT The ability of ovarian steroids to modify ovarian cancer (OC) risk remains controversial. Progesterone is considered to be protective; recent studies indicate no effect or enhanced OC risk. Knowledge of progesterone receptor (PR) signaling during altered physiology that typifies OC development is limited. OBJECTIVE This study defines PR-driven oncogenic signaling mechanisms in p53-mutant human fallopian tube epithelia (hFTE), a precursor of the most aggressive OC subtype. METHODS PR expression in clinical samples of serous tubal intraepithelial carcinoma (STIC) lesions and high-grade serous OC (HGSC) tumors was analyzed. Novel PR-A and PR-B isoform-expressing hFTE models were characterized for gene expression and cell cycle progression, emboli formation, and invasion. PR regulation of the DREAM quiescence complex and DYRK1 kinases was established. RESULTS STICs and HGSC express abundant activated phospho-PR. Progestin promoted reversible hFTE cell cycle arrest, spheroid formation, and invasion. RNAseq/biochemical studies revealed potent ligand-independent/-dependent PR actions, progestin-induced regulation of the DREAM quiescence complex, and cell cycle target genes through enhanced complex formation and chromatin recruitment. Disruption of DREAM/DYRK1s by pharmacological inhibition, HPV E6/E7 expression, or DYRK1A/B depletion blocked progestin-induced cell arrest and attenuated PR-driven gene expression and associated OC phenotypes. CONCLUSION Activated PRs support quiescence and pro-survival/pro-dissemination cell behaviors that may contribute to early HGSC progression. Our data support an alternative perspective on the tenet that progesterone always confers protection against OC. STICs can reside undetected for decades prior to invasive disease; our studies reveal clinical opportunities to prevent the ultimate development of HGSC by targeting PRs, DREAM, and/or DYRKs.
Collapse
Affiliation(s)
- Laura J Mauro
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
- University of Minnesota, Department of Animal Science, St. Paul, MN 55108, USA
| | - Megan I Seibel
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Caroline H Diep
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Angela Spartz
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | | | - Hari Singhal
- Northwestern University, Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M Swisher
- University of Washington Seattle, Dept Obstetrics & Gynecology, Division of Gynecologic Oncology, Seattle, WA 98109, USA
| | - Lauren E Schwartz
- University of Pennsylvania, Dept of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Dept Obstetrics & Gynecology, Philadelphia, PA 19104, USA
| | - Siddharth Saini
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Fatmata Sesay
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Larisa Litovchick
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Carol A Lange
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
- University of Minnesota, Dept Medicine, Division of Hematology, Oncology & Transplantation, Minneapolis, MN 55455, USA
| |
Collapse
|
197
|
Verbruggen SW, Thompson CL, Duffy MP, Lunetto S, Nolan J, Pearce OMT, Jacobs CR, Knight MM. Mechanical Stimulation Modulates Osteocyte Regulation of Cancer Cell Phenotype. Cancers (Basel) 2021; 13:2906. [PMID: 34200761 PMCID: PMC8230361 DOI: 10.3390/cancers13122906] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancers preferentially metastasise to bone tissue, with metastatic lesions forming in the skeletons of most patients. On arriving in bone tissue, disseminated tumour cells enter a mechanical microenvironment that is substantially different to that of the primary tumour and is largely regulated by bone cells. Osteocytes, the most ubiquitous bone cell type, orchestrate healthy bone remodelling in response to physical exercise. However, the effects of mechanical loading of osteocytes on cancer cell behaviour is still poorly understood. The aim of this study was to characterise the effects of osteocyte mechanical stimulation on the behaviour of breast and prostate cancer cells. To replicate an osteocyte-controlled environment, this study treated breast (MDA-MB-231 and MCF-7) and prostate (PC-3 and LNCaP) cancer cell lines with conditioned media from MLO-Y4 osteocyte-like cells exposed to mechanical stimulation in the form of fluid shear stress. We found that osteocyte paracrine signalling acted to inhibit metastatic breast and prostate tumour growth, characterised by reduced proliferation and invasion and increased migration. In breast cancer cells, these effects were largely reversed by mechanical stimulation of osteocytes. In contrast, conditioned media from mechanically stimulated osteocytes had no effect on prostate cancer cells. To further investigate these interactions, we developed a microfluidic organ-chip model using the Emulate platform. This new organ-chip model enabled analysis of cancer cell migration, proliferation and invasion in the presence of mechanical stimulation of osteocytes by fluid shear stress, resulting in increased invasion of breast and prostate cancer cells. These findings demonstrate the importance of osteocytes and mechanical loading in regulating cancer cell behaviour and the need to incorporate these factors into predictive in vitro models of bone metastasis.
Collapse
Affiliation(s)
- Stefaan W. Verbruggen
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, NY 10027, USA; (M.P.D.); (C.R.J.)
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (C.L.T.); (S.L.); (J.N.); (M.M.K.)
- Department of Mechanical Engineering and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
| | - Clare L. Thompson
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (C.L.T.); (S.L.); (J.N.); (M.M.K.)
- Queen Mary + Emulate Organs-on-Chips Centre, Queen Mary University of London, London E1 4NS, UK
| | - Michael P. Duffy
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, NY 10027, USA; (M.P.D.); (C.R.J.)
| | - Sophia Lunetto
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (C.L.T.); (S.L.); (J.N.); (M.M.K.)
| | - Joanne Nolan
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (C.L.T.); (S.L.); (J.N.); (M.M.K.)
- Queen Mary + Emulate Organs-on-Chips Centre, Queen Mary University of London, London E1 4NS, UK
- Barts Cancer Institute, School of Medicine and Dentistry, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Oliver M. T. Pearce
- Barts Cancer Institute, School of Medicine and Dentistry, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Christopher R. Jacobs
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, NY 10027, USA; (M.P.D.); (C.R.J.)
| | - Martin M. Knight
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (C.L.T.); (S.L.); (J.N.); (M.M.K.)
- Queen Mary + Emulate Organs-on-Chips Centre, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
198
|
Clark AM, Allbritton NL, Wells A. Integrative microphysiological tissue systems of cancer metastasis to the liver. Semin Cancer Biol 2021; 71:157-169. [PMID: 32580025 PMCID: PMC7750290 DOI: 10.1016/j.semcancer.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The liver is the most commonly involved organ in metastases from a wide variety of solid tumors. The use of biologically and cellularly complex liver tissue systems have shown that tumor cell behavior and therapeutic responses are modulated within the liver microenvironment and in ways distinct from the behaviors in the primary locations. These microphysiological systems have provided unexpected and powerful insights into the tumor cell biology of metastasis. However, neither the tumor nor the liver exist in an isolated tissue situation, having to function within a complete body and respond to systemic events as well as those in other organs. To examine the influence of one organ on the function of other tissues, microphysiological systems are being linked. Herein, we discuss extending this concept to tumor metastases by integrating complex models of the primary tumor with the liver metastatic environment. In addition, inflammatory organs and the immune system can be incorporated into these multi-organ systems to probe the effects on tumor behavior and cancer treatments.
Collapse
Affiliation(s)
- Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
199
|
Progesterone receptors in normal breast development and breast cancer. Essays Biochem 2021; 65:951-969. [PMID: 34061163 DOI: 10.1042/ebc20200163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Progesterone receptors (PR) play a pivotal role in many female reproductive tissues such as the uterus, the ovary, and the mammary gland (MG). Moreover, PR play a key role in breast cancer growth and progression. This has led to the development and study of different progestins and antiprogestins, many of which are currently being tested in clinical trials for cancer treatment. Recent reviews have addressed the role of PR in MG development, carcinogenesis, and breast cancer growth. Thus, in this review, in addition to making an overview on PR action in normal and tumor breast, the focus has been put on highlighting the still unresolved topics on hormone treatment involving PR isoforms and breast cancer prognosis.
Collapse
|
200
|
Shor RE, Dai J, Lee SY, Pisarsky L, Matei I, Lucotti S, Lyden D, Bissell MJ, Ghajar CM. The PI3K/mTOR inhibitor Gedatolisib eliminates dormant breast cancer cells in organotypic culture, but fails to prevent metastasis in preclinical settings. Mol Oncol 2021; 16:130-147. [PMID: 34058066 PMCID: PMC8732345 DOI: 10.1002/1878-0261.13031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Dormant, disseminated tumor cells (DTCs) are thought to be the source of breast cancer metastases several years or even decades after initial treatment. To date, a selective therapy that leads to their elimination has not been discovered. While dormant DTCs resist chemotherapy, evidence suggests that this resistance is driven not by their lack of proliferation, but by their engagement of the surrounding microenvironment, via integrin‐β1‐mediated interactions. Because integrin‐β1‐targeted agents have not been translated readily to the clinic, signaling nodes downstream of integrin‐β1 could serve as attractive therapeutic targets in order to sensitize dormant DTCs to therapy. By probing a number of kinases downstream of integrin‐β1, we determined that PI3K inhibition with either a tool compounds or a compound (PF‐05212384; aka Gedatolisib) in clinical trials robustly sensitizes quiescent breast tumor cells seeded in organotypic bone marrow cultures to chemotherapy. These results motivated the preclinical study of whether Gedatolisib—with or without genotoxic therapy—would reduce DTC burden and prevent metastases. Despite promising results in organotypic culture, Gedatolisib failed to reduce DTC burden or delay, reduce or prevent metastasis in murine models of either triple‐negative or estrogen receptor‐positive breast cancer dissemination and metastasis. This result held true whether analyzing Gedatolisib on its own (vs. vehicle‐treated animals) or in combination with dose‐dense doxorubicin and cyclophosphamide (vs. animals treated only with dose‐dense chemotherapies). These data suggest that PI3K is not the node downstream of integrin‐β1 that confers chemotherapeutic resistance to DTCs. More broadly, they cast doubt on the strategy to target PI3K in order to eliminate DTCs and prevent breast cancer metastasis.
Collapse
Affiliation(s)
- Ryann E Shor
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jinxiang Dai
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, CA, USA
| | - Laura Pisarsky
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Mina J Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, CA, USA
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|