151
|
Casellas-Díaz S, Larramona-Arcas R, Riqué-Pujol G, Tena-Morraja P, Müller-Sánchez C, Segarra-Mondejar M, Gavaldà-Navarro A, Villarroya F, Reina M, Martínez-Estrada OM, Soriano FX. Mfn2 localization in the ER is necessary for its bioenergetic function and neuritic development. EMBO Rep 2021; 22:e51954. [PMID: 34296790 PMCID: PMC8419703 DOI: 10.15252/embr.202051954] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria‐targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER‐located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2‐dependent ER‐mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER‐targeted Mfn2 or an artificial ER‐mitochondria tether, indicating that manipulation of ER‐mitochondria contacts could be used to treat pathologic conditions involving Mfn2.
Collapse
Affiliation(s)
- Sergi Casellas-Díaz
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Raquel Larramona-Arcas
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Guillem Riqué-Pujol
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Paula Tena-Morraja
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Claudia Müller-Sánchez
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain
| | - Marc Segarra-Mondejar
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Manuel Reina
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain
| | - Ofelia M Martínez-Estrada
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Francesc X Soriano
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
152
|
Han S, Zhao F, Hsia J, Ma X, Liu Y, Torres S, Fujioka H, Zhu X. The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo. J Cell Sci 2021; 134:269077. [PMID: 34110411 DOI: 10.1242/jcs.253443] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) play an essential role in multiple cell physiological processes. Although Mfn2 was the first protein implicated in the formation of MERCs, there is debate as to whether it acts as a tether or antagonizer, largely based on in vitro studies. To understand the role of Mfn2 in MERCs in vivo, we characterized ultrastructural and biochemical changes of MERCs in pyramidal neurons of hippocampus in Mfn2 conditional knockout mice and in Mfn2 overexpressing mice, and found that Mfn2 ablation caused reduced close contacts, whereas Mfn2 overexpression caused increased close contacts between the endoplasmic reticulum (ER) and mitochondria in vivo. Functional studies on SH-SY5Y cells with Mfn2 knockout or overexpression demonstrating similar biochemical changes found that mitochondrial calcium uptake along with IP3R3-Grp75 interaction was decreased in Mfn2 knockout cells but increased in Mfn2 overexpressing cells. Lastly, we found Mfn2 knockout decreased and Mfn2 overexpression increased the interaction between the ER-mitochondria tethering pair of VAPB-PTPIP51. In conclusion, our study supports the notion that Mfn2 plays a critical role in ER-mitochondrial tethering and the formation of close contacts in neuronal cells in vivo.
Collapse
Affiliation(s)
- Song Han
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey Hsia
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yi Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sandy Torres
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
153
|
Lopez-Crisosto C, Díaz-Vegas A, Castro PF, Rothermel BA, Bravo-Sagua R, Lavandero S. Endoplasmic reticulum-mitochondria coupling increases during doxycycline-induced mitochondrial stress in HeLa cells. Cell Death Dis 2021; 12:657. [PMID: 34183648 PMCID: PMC8238934 DOI: 10.1038/s41419-021-03945-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Subcellular organelles communicate with each other to regulate function and coordinate responses to changing cellular conditions. The physical-functional coupling of the endoplasmic reticulum (ER) with mitochondria allows for the direct transfer of Ca2+ between organelles and is an important avenue for rapidly increasing mitochondrial metabolic activity. As such, increasing ER-mitochondrial coupling can boost the generation of ATP that is needed to restore homeostasis in the face of cellular stress. The mitochondrial unfolded protein response (mtUPR) is activated by the accumulation of unfolded proteins in mitochondria. Retrograde signaling from mitochondria to the nucleus promotes mtUPR transcriptional responses aimed at restoring protein homeostasis. It is currently unknown whether the changes in mitochondrial-ER coupling also play a role during mtUPR stress. We hypothesized that mitochondrial stress favors an expansion of functional contacts between mitochondria and ER, thereby increasing mitochondrial metabolism as part of a protective response. Hela cells were treated with doxycycline, an antibiotic that inhibits the translation of mitochondrial-encoded proteins to create protein disequilibrium. Treatment with doxycycline decreased the abundance of mitochondrial encoded proteins while increasing expression of CHOP, C/EBPβ, ClpP, and mtHsp60, markers of the mtUPR. There was no change in either mitophagic activity or cell viability. Furthermore, ER UPR was not activated, suggesting focused activation of the mtUPR. Within 2 h of doxycycline treatment, there was a significant increase in physical contacts between mitochondria and ER that was distributed throughout the cell, along with an increase in the kinetics of mitochondrial Ca2+ uptake. This was followed by the rise in the rate of oxygen consumption at 4 h, indicating a boost in mitochondrial metabolic activity. In conclusion, an early phase of the response to doxycycline-induced mitochondrial stress is an increase in mitochondrial-ER coupling that potentiates mitochondrial metabolic activity as a means to support subsequent steps in the mtUPR pathway and sustain cellular adaptation.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Díaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2050, Sydney, NSW, Australia
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, 7680201, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile
- Chilean State Universities Network on Aging, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, 7680201, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
154
|
Nguyen DT, Le TM, Hattori T, Takarada-Iemata M, Ishii H, Roboon J, Tamatani T, Kannon T, Hosomichi K, Tajima A, Taniuchi S, Miyake M, Oyadomari S, Tanaka T, Kato N, Saito S, Mori K, Hori O. The ATF6β-calreticulin axis promotes neuronal survival under endoplasmic reticulum stress and excitotoxicity. Sci Rep 2021; 11:13086. [PMID: 34158584 PMCID: PMC8219835 DOI: 10.1038/s41598-021-92529-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
While ATF6α plays a central role in the endoplasmic reticulum (ER) stress response, the function of its paralogue ATF6β remains elusive, especially in the central nervous system (CNS). Here, we demonstrate that ATF6β is highly expressed in the hippocampus of the brain, and specifically regulates the expression of calreticulin (CRT), a molecular chaperone in the ER with a high Ca2+-binding capacity. CRT expression was reduced to ~ 50% in the CNS of Atf6b−/− mice under both normal and ER stress conditions. Analysis using cultured hippocampal neurons revealed that ATF6β deficiency reduced Ca2+ stores in the ER and enhanced ER stress-induced death. The higher levels of death in Atf6b−/− neurons were recovered by ATF6β and CRT overexpressions, or by treatment with Ca2+-modulating reagents such as BAPTA-AM and 2-APB, and with an ER stress inhibitor salubrinal. In vivo, kainate-induced neuronal death was enhanced in the hippocampi of Atf6b−/− and Calr+/− mice, and restored by administration of 2-APB and salubrinal. These results suggest that the ATF6β-CRT axis promotes neuronal survival under ER stress and excitotoxity by improving intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Thuong Manh Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.,Department of Human Anatomy, Hanoi Medical University, Hanoi, Vietnam
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shusuke Taniuchi
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Tanaka
- Department of Anatomy II, Kanazawa Medical University, Kahoku, Japan
| | - Nobuo Kato
- Department of Physiology I, Kanazawa Medical University, Kahoku, Japan
| | - Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.
| |
Collapse
|
155
|
Sakata K, Matsuyama S, Kurebayashi N, Hayamizu K, Murayama T, Nakamura K, Kitamura K, Morimoto S, Takeya R. Differential effects of the formin inhibitor SMIFH2 on contractility and Ca 2+ handling in frog and mouse cardiomyocytes. Genes Cells 2021; 26:583-595. [PMID: 34060165 DOI: 10.1111/gtc.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Genetic mutations in actin regulators have been emerging as a cause of cardiomyopathy, although the functional link between actin dynamics and cardiac contraction remains largely unknown. To obtain insight into this issue, we examined the effects of pharmacological inhibition of formins, a major class of actin-assembling proteins. The formin inhibitor SMIFH2 significantly enhanced the cardiac contractility of isolated frog hearts, thereby augmenting cardiac performance. SMIFH2 treatment had no significant effects on the Ca2+ sensitivity of frog muscle fibers. Instead, it unexpectedly increased Ca2+ concentrations of isolated frog cardiomyocytes, suggesting that the inotropic effect is due to enhanced Ca2+ transients. In contrast to frog hearts, the contractility of mouse cardiomyocytes was attenuated by SMIFH2 treatment with decreasing Ca2+ transients. Thus, SMIFH2 has opposing effects on the Ca2+ transient and contractility between frog and mouse cardiomyocytes. We further found that SMIFH2 suppressed Ca2+ -release via type 2 ryanodine receptor (RyR2); this inhibitory effect may explain the species differences, since RyR2 is critical for Ca2+ transients in mouse myocardium but absent in frog myocardium. Although the mechanisms underlying the enhancement of Ca2+ transients in frog cardiomyocytes remain unclear, SMIFH2 differentially affects the cardiac contraction of amphibian and mammalian by differentially modulating their Ca2+ handling.
Collapse
Affiliation(s)
- Koji Sakata
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sho Matsuyama
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kengo Hayamizu
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kunihide Nakamura
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sachio Morimoto
- Department of Health Sciences Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
156
|
Liu SS, Yang L, Kong FD, Zhao JH, Yao L, Yuchi ZG, Ma QY, Xie QY, Zhou LM, Guo MF, Dai HF, Zhao YX, Luo DQ. Three New Quinazoline-Containing Indole Alkaloids From the Marine-Derived Fungus Aspergillus sp. HNMF114. Front Microbiol 2021; 12:680879. [PMID: 34149672 PMCID: PMC8206283 DOI: 10.3389/fmicb.2021.680879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 11/20/2022] Open
Abstract
By feeding tryptophan to the marine-derived fungus Aspergillus sp. HNMF114 from the bivalve mollusk Sanguinolaria chinensis, 3 new quinazoline-containing indole alkaloids, named aspertoryadins H–J (1–3), along with 16 known ones (4–19), were obtained. The structures of the new compounds were elucidated by the analysis of spectroscopic data combined with quantum chemical calculations of nuclear magnetic resonance (NMR) chemical shifts and electron capture detector (ECD) spectra. Structurally, compound 3 represents the first example of this type of compound, bearing an amide group at C-3. Compounds 10 and 16 showed potent α-glucosidase inhibitory activity with IC50 values of 7.18 and 5.29 μM, and compounds 13 and 14 showed a clear activation effect on the ryanodine receptor from Spodoptera frugiperda (sfRyR), which reduced the [Ca2+]ER by 37.1 and 36.2%, respectively.
Collapse
Affiliation(s)
- Sha-Sha Liu
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, China
| | - Li Yang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Fan-Dong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Jia-Hui Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Li Yao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhi-Guang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Qing-Yun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Qing-Yi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Li-Man Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Meng-Fei Guo
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Hao-Fu Dai
- Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, China
| | - You-Xing Zhao
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Du-Qiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, China
| |
Collapse
|
157
|
Nakamura T, Ogawa M, Kojima K, Takayanagi S, Ishihara S, Hattori K, Naguro I, Ichijo H. The mitochondrial Ca 2+ uptake regulator, MICU1, is involved in cold stress-induced ferroptosis. EMBO Rep 2021; 22:e51532. [PMID: 33822458 PMCID: PMC8097382 DOI: 10.15252/embr.202051532] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis has recently attracted much interest because of its relevance to human diseases such as cancer and ischemia-reperfusion injury. We have reported that prolonged severe cold stress induces lipid peroxidation-dependent ferroptosis, but the upstream mechanism remains unknown. Here, using genome-wide CRISPR screening, we found that a mitochondrial Ca2+ uptake regulator, mitochondrial calcium uptake 1 (MICU1), is required for generating lipid peroxide and subsequent ferroptosis under cold stress. Furthermore, the gatekeeping activity of MICU1 through mitochondrial calcium uniporter (MCU) is suggested to be indispensable for cold stress-induced ferroptosis. MICU1 is required for mitochondrial Ca2+ increase, hyperpolarization of the mitochondrial membrane potential (MMP), and subsequent lipid peroxidation under cold stress. Collectively, these findings suggest that the MICU1-dependent mitochondrial Ca2+ homeostasis-MMP hyperpolarization axis is involved in cold stress-induced lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Toshitaka Nakamura
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Motoyuki Ogawa
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kazuki Kojima
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Saki Takayanagi
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Shunya Ishihara
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kazuki Hattori
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Isao Naguro
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hidenori Ichijo
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
158
|
Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 2021; 593:435-439. [PMID: 33953403 DOI: 10.1038/s41586-021-03510-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 116.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Mitochondrial fission is a highly regulated process that, when disrupted, can alter metabolism, proliferation and apoptosis1-3. Dysregulation has been linked to neurodegeneration3,4, cardiovascular disease3 and cancer5. Key components of the fission machinery include the endoplasmic reticulum6 and actin7, which initiate constriction before dynamin-related protein 1 (DRP1)8 binds to the outer mitochondrial membrane via adaptor proteins9-11, to drive scission12. In the mitochondrial life cycle, fission enables both biogenesis of new mitochondria and clearance of dysfunctional mitochondria through mitophagy1,13. Current models of fission regulation cannot explain how those dual fates are decided. However, uncovering fate determinants is challenging, as fission is unpredictable, and mitochondrial morphology is heterogeneous, with ultrastructural features that are below the diffraction limit. Here, we used live-cell structured illumination microscopy to capture mitochondrial dynamics. By analysing hundreds of fissions in African green monkey Cos-7 cells and mouse cardiomyocytes, we discovered two functionally and mechanistically distinct types of fission. Division at the periphery enables damaged material to be shed into smaller mitochondria destined for mitophagy, whereas division at the midzone leads to the proliferation of mitochondria. Both types are mediated by DRP1, but endoplasmic reticulum- and actin-mediated pre-constriction and the adaptor MFF govern only midzone fission. Peripheral fission is preceded by lysosomal contact and is regulated by the mitochondrial outer membrane protein FIS1. These distinct molecular mechanisms explain how cells independently regulate fission, leading to distinct mitochondrial fates.
Collapse
|
159
|
Weissenrieder JS, Reed JL, Moldovan G, Johnson MT, Trebak M, Neighbors JD, Mailman RB, Hohl RJ. Antipsychotic drugs elicit cytotoxicity in glioblastoma multiforme in a calcium-dependent, non-D 2 receptor-dependent, manner. Pharmacol Res Perspect 2021; 9:e00689. [PMID: 34003586 PMCID: PMC8130568 DOI: 10.1002/prp2.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Dopamine D2 -like receptor antagonists have been suggested as being potential anticancer therapeutics with specific utility for central nervous system cancers due to their ability to cross the blood-brain barrier. Despite a plethora of data reporting anticancer effects for D2 R antagonists in cell or animal studies, the ligand concentrations or doses required to achieve such effects greatly exceed the levels known to cause high degrees of occupancy of the D2 receptor. To resolve this conundrum, we interrogated a panel of glioblastoma multiforme (GBM) cell lines using D2 antagonists of varying chemotype. We studied the cytotoxic effects of these compounds, and also ascertained the expression of D2 receptors (D2 R) on these cells. Although several chemotypes of D2 R antagonists, including phenothiazines and phenylbutylpiperidines, were effective against GBM cell line cultures, the highly selective antagonist remoxipride had no anticancer activity at biologically relevant concentrations. Moreover the D2 R antagonist-induced cytotoxicity in monolayer cultures was independent of whether the cells expressed D2 R. Instead, cytotoxicity was associated with a rapid, high-magnitude calcium flux into the cytoplasm and mitochondria, which then induced depolarization and apoptosis. Blocking this flux protected the GBM cell lines U87MG, U251MG, and A172. Together, these data suggest that the cytotoxicity of these D2 R antagonists involves calcium signaling mechanisms, not D2 R antagonism. Repurposing of existing drugs should focus on the former, not latter, mechanism.
Collapse
Affiliation(s)
- Jillian S. Weissenrieder
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - Jessie L. Reed
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - George‐Lucian Moldovan
- Penn State Cancer InstituteHersheyPAUSA
- Department of Biochemistry and Molecular BiologyPenn State College of MedicineHersheyPAUSA
| | - Martin T. Johnson
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Mohamed Trebak
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Jeffrey D. Neighbors
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | | | - Raymond J. Hohl
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| |
Collapse
|
160
|
Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. In vivo brain imaging of mitochondrial Ca 2+ in neurodegenerative diseases with multiphoton microscopy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118998. [PMID: 33684410 PMCID: PMC8057769 DOI: 10.1016/j.bbamcr.2021.118998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Mitochondria are involved in a large number of essential roles related to neuronal function. Ca2+ handling by mitochondria is critical for many of these functions, including energy production and cellular fate. Conversely, mitochondrial Ca2+ mishandling has been related to a variety of neurodegenerative diseases. Investigating mitochondrial Ca2+ dynamics is essential for advancing our understanding of the role of intracellular mitochondrial Ca2+ signals in physiology and pathology. Improved Ca2+ indicators, and the ability to target them to different cells and compartments, have emerged as useful tools for analysis of Ca2+ signals in living organisms. Combined with state-of-the-art techniques such as multiphoton microscopy, they allow for the study of mitochondrial Ca2+ dynamics in vivo in mouse models of the disease. Here, we provide an overview of the Ca2+ transporters/ion channels in mitochondrial membranes, and the involvement of mitochondrial Ca2+ in neurodegenerative diseases followed by a summary of the main tools available to evaluate mitochondrial Ca2+ dynamics in vivo using the aforementioned technique.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.
| | - Elizabeth K Kharitonova
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| |
Collapse
|
161
|
Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM, Stathopulos PB, Madesh M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol 2021; 320:C465-C482. [PMID: 33296287 PMCID: PMC8260355 DOI: 10.1152/ajpcell.00502.2020] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca2+ concentration ([Ca2+]i). Mitochondrial Ca2+ uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and the mitochondrial pathway of apoptosis. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex. This review summarizes the present knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca2+ homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and essential MCU regulators (EMRE). Regulatory proteins that interact with them include mitochondrial Ca2+ uptake 1/2 (MICU1/2), MCU dominant-negative β-subunit (MCUb), MCU regulator 1 (MCUR1), and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mitochondrial membrane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regulatory proteins modulates MCU channel activity after sensing local changes in [Ca2+]i, reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca2+ homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca2+ dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca2+ uptake have been implicated in pathological conditions affecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete, and understanding the precise role for MCU-mediated mitochondrial Ca2+ signaling in disease requires further research efforts.
Collapse
Affiliation(s)
- B Rita Alevriadou
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences and School of Engineering and Applied Sciences, University at Buffalo-State University of New York, Buffalo, New York
| | - Akshar Patel
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences and School of Engineering and Applied Sciences, University at Buffalo-State University of New York, Buffalo, New York
| | - Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sagnika Ghosh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Muniswamy Madesh
- Department of Medicine/Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
162
|
Perni S, Beam K. Neuronal junctophilins recruit specific Ca V and RyR isoforms to ER-PM junctions and functionally alter Ca V2.1 and Ca V2.2. eLife 2021; 10:64249. [PMID: 33769283 PMCID: PMC8046434 DOI: 10.7554/elife.64249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Junctions between the endoplasmic reticulum and plasma membrane that are induced by the neuronal junctophilins are of demonstrated importance, but their molecular architecture is still poorly understood and challenging to address in neurons. This is due to the small size of the junctions and the multiple isoforms of candidate junctional proteins in different brain areas. Using colocalization of tagged proteins expressed in tsA201 cells, and electrophysiology, we compared the interactions of JPH3 and JPH4 with different calcium channels. We found that JPH3 and JPH4 caused junctional accumulation of all the tested high-voltage-activated CaV isoforms, but not a low-voltage-activated CaV. Also, JPH3 and JPH4 noticeably modify CaV2.1 and CaV2.2 inactivation rate. RyR3 moderately colocalized at junctions with JPH4, whereas RyR1 and RyR2 did not. By contrast, RyR1 and RyR3 strongly colocalized with JPH3, and RyR2 moderately. Likely contributing to this difference, JPH3 binds to cytoplasmic domain constructs of RyR1 and RyR3, but not of RyR2.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, United States
| | - Kurt Beam
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, United States
| |
Collapse
|
163
|
Reddish FN, Miller CL, Deng X, Dong B, Patel AA, Ghane MA, Mosca B, McBean C, Wu S, Solntsev KM, Zhuo Y, Gadda G, Fang N, Cox DN, Mabb AM, Treves S, Zorzato F, Yang JJ. Rapid subcellular calcium responses and dynamics by calcium sensor G-CatchER . iScience 2021; 24:102129. [PMID: 33665552 PMCID: PMC7900224 DOI: 10.1016/j.isci.2021.102129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
The precise spatiotemporal characteristics of subcellular calcium (Ca2+) transients are critical for the physiological processes. Here we report a green Ca2+ sensor called "G-CatchER+" using a protein design to report rapid local ER Ca2+ dynamics with significantly improved folding properties. G-CatchER+ exhibits a superior Ca2+ on rate to G-CEPIA1er and has a Ca2+-induced fluorescence lifetimes increase. G-CatchER+ also reports agonist/antagonist triggered Ca2+ dynamics in several cell types including primary neurons that are orchestrated by IP3Rs, RyRs, and SERCAs with an ability to differentiate expression. Upon localization to the lumen of the RyR channel (G-CatchER+-JP45), we report a rapid local Ca2+ release that is likely due to calsequestrin. Transgenic expression of G-CatchER+ in Drosophila muscle demonstrates its utility as an in vivo reporter of stimulus-evoked SR local Ca2+ dynamics. G-CatchER+ will be an invaluable tool to examine local ER/SR Ca2+ dynamics and facilitate drug development associated with ER dysfunction.
Collapse
Affiliation(s)
- Florence N. Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Cassandra L. Miller
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaonan Deng
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Dong
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Mohammad A. Ghane
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Barbara Mosca
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
| | - Cheyenne McBean
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Shengnan Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You Zhuo
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Ning Fang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Susan Treves
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
- Department of Biomedicine, Basel University, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Francesco Zorzato
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
- Department of Biomedicine, Basel University, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
164
|
Shields LY, Li H, Nguyen K, Kim H, Doric Z, Garcia JH, Gill TM, Haddad D, Vossel K, Calvert M, Nakamura K. Mitochondrial fission is a critical modulator of mutant APP-induced neural toxicity. J Biol Chem 2021; 296:100469. [PMID: 33639169 PMCID: PMC8042169 DOI: 10.1016/j.jbc.2021.100469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022] Open
Abstract
Alterations in mitochondrial fission may contribute to the pathophysiology of several neurodegenerative diseases, including Alzheimer's disease (AD). However, we understand very little about the normal functions of fission or how fission disruption may interact with AD-associated proteins to modulate pathogenesis. Here we show that loss of the central mitochondrial fission protein dynamin-related protein 1 (Drp1) in CA1 and other forebrain neurons markedly worsens the learning and memory of mice expressing mutant human amyloid precursor protein (hAPP) in neurons. In cultured neurons, Drp1KO and hAPP converge to produce mitochondrial Ca2+ (mitoCa2+) overload, despite decreasing mitochondria-associated ER membranes (MAMs) and cytosolic Ca2+. This mitoCa2+ overload occurs independently of ATP levels. These findings reveal a potential mechanism by which mitochondrial fission protects against hAPP-driven pathology.
Collapse
Affiliation(s)
- Lauren Y Shields
- Gladstone Institute of Neurological Disease, San Francisco, California, USA; Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Huihui Li
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Kevin Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Hwajin Kim
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Zak Doric
- Gladstone Institute of Neurological Disease, San Francisco, California, USA; Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Joseph H Garcia
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - T Michael Gill
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Dominik Haddad
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Keith Vossel
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Meredith Calvert
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, California, USA; Department of Neurology, University of California, San Francisco, San Francisco, California, USA; Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
165
|
Li ES, Saha MS. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021; 11:343. [PMID: 33668387 PMCID: PMC7996158 DOI: 10.3390/biom11030343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.
Collapse
Affiliation(s)
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA;
| |
Collapse
|
166
|
Kim HS, Kim JE, Hwangbo A, Akerboom J, Looger LL, Duncan R, Son H, Czymmek KJ, Kang S. Evaluation of multi-color genetically encoded Ca 2+ indicators in filamentous fungi. Fungal Genet Biol 2021; 149:103540. [PMID: 33607281 DOI: 10.1016/j.fgb.2021.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/18/2022]
Abstract
Genetically encoded Ca2+ indicators (GECIs) enable long-term monitoring of cellular and subcellular dynamics of this second messenger in response to environmental and developmental cues without relying on exogenous dyes. Continued development and optimization in GECIs, combined with advances in gene manipulation, offer new opportunities for investigating the mechanism of Ca2+ signaling in fungi, ranging from documenting Ca2+ signatures under diverse conditions and genetic backgrounds to evaluating how changes in Ca2+ signature impact calcium-binding proteins and subsequent cellular changes. Here, we attempted to express multi-color (green, yellow, blue, cyan, and red) circularly permuted fluorescent protein (FP)-based Ca2+ indicators driven by multiple fungal promoters in Fusarium oxysporum, F. graminearum, and Neurospora crassa. Several variants were successfully expressed, with GCaMP5G driven by the Magnaporthe oryzae ribosomal protein 27 and F. verticillioides elongation factor-1α gene promoters being optimal for F. graminearum and F. oxysporum, respectively. Transformants expressing GCaMP5G were compared with those expressing YC3.60, a ratiometric Cameleon Ca2+ indicator. Wild-type and three Ca2+ signaling mutants of F. graminearum expressing GCaMP5G exhibited improved signal-to-noise and increased temporal and spatial resolution and are also more amenable to studies involving multiple FPs compared to strains expressing YC3.60.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Delaware Biotechnology Institute, Newark, DE 19711, United States
| | - Jung-Eun Kim
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Aram Hwangbo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jasper Akerboom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Delaware Biotechnology Institute, Newark, DE 19711, United States; Donald Danforth Plant Science Center, Saint Louis, MO 63132, United States.
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
167
|
Ziegler DV, Vindrieux D, Goehrig D, Jaber S, Collin G, Griveau A, Wiel C, Bendridi N, Djebali S, Farfariello V, Prevarskaya N, Payen L, Marvel J, Aubert S, Flaman JM, Rieusset J, Martin N, Bernard D. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat Commun 2021; 12:720. [PMID: 33526781 PMCID: PMC7851384 DOI: 10.1038/s41467-021-20993-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/15/2020] [Indexed: 12/29/2022] Open
Abstract
Cellular senescence is induced by stresses and results in a stable proliferation arrest accompanied by a pro-inflammatory secretome. Senescent cells accumulate during aging, promoting various age-related pathologies and limiting lifespan. The endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) calcium-release channel and calcium fluxes from the ER to the mitochondria are drivers of senescence in human cells. Here we show that Itpr2 knockout (KO) mice display improved aging such as increased lifespan, a better response to metabolic stress, less immunosenescence, as well as less liver steatosis and fibrosis. Cellular senescence, which is known to promote these alterations, is decreased in Itpr2 KO mice and Itpr2 KO embryo-derived cells. Interestingly, ablation of ITPR2 in vivo and in vitro decreases the number of contacts between the mitochondria and the ER and their forced contacts induce premature senescence. These findings shed light on the role of contacts and facilitated exchanges between the ER and the mitochondria through ITPR2 in regulating senescence and aging.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - David Vindrieux
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Delphine Goehrig
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Sara Jaber
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Guillaume Collin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Clotilde Wiel
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Nadia Bendridi
- CarMeN Laboratory, INSERM UMR-1060, Lyon 1 University, INRA U1397, F-69921, Oullins, France
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Valerio Farfariello
- INSERM U1003, Laboratoire d'Excellence, Canaux Ioniques d'Intérêt Thérapeutique, Équipe Labellisée Par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Natacha Prevarskaya
- INSERM U1003, Laboratoire d'Excellence, Canaux Ioniques d'Intérêt Thérapeutique, Équipe Labellisée Par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Léa Payen
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Aubert
- Institut de Pathologie, Centre de Biologie Pathologie, CHRU de Lille, Faculté de Médecine, Université de Lille, Lille Cedex, France
| | - Jean-Michel Flaman
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Jennifer Rieusset
- CarMeN Laboratory, INSERM UMR-1060, Lyon 1 University, INRA U1397, F-69921, Oullins, France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France.
| |
Collapse
|
168
|
Morgan AJ, Galione A. Lysosomal agents inhibit store-operated Ca 2+ entry. J Cell Sci 2021; 134:224094. [PMID: 33328326 PMCID: PMC7860125 DOI: 10.1242/jcs.248658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
Pharmacological manipulation of lysosome membrane integrity or ionic movements is a key strategy for probing lysosomal involvement in cellular processes. However, we have found an unexpected inhibition of store-operated Ca2+ entry (SOCE) by these agents. Dipeptides [glycyl-L-phenylalanine 2-naphthylamide (GPN) and L-leucyl-L-leucine methyl ester] that are inducers of lysosomal membrane permeabilization (LMP) uncoupled endoplasmic reticulum Ca2+-store depletion from SOCE by interfering with Stim1 oligomerization and/or Stim1 activation of Orai. Similarly, the K+/H+ ionophore, nigericin, that rapidly elevates lysosomal pH, also inhibited SOCE in a Stim1-dependent manner. In contrast, other strategies for manipulating lysosomes (bafilomycin A1, lysosomal re-positioning) had no effect upon SOCE. Finally, the effects of GPN on SOCE and Stim1 was reversed by a dynamin inhibitor, dynasore. Our data show that lysosomal agents not only release Ca2+ from stores but also uncouple this release from the normal recruitment of Ca2+ influx. Summary: Lysosomal agents uncouple ER Ca2+-release from store-operated Ca2+ entry, predominantly by inhibiting Stim1 oligomerization and its activation of Orai.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
169
|
Uchida Y, Yamamoto Y, Sakisaka T. Trans-2-enoyl-CoA reductase limits Ca 2+ accumulation in the endoplasmic reticulum by inhibiting the Ca 2+ pump SERCA2b. J Biol Chem 2021; 296:100310. [PMID: 33482198 PMCID: PMC7949109 DOI: 10.1016/j.jbc.2021.100310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
The endoplasmic reticulum (ER) contains various enzymes that metabolize fatty acids (FAs). Given that FAs are the components of membranes, FA metabolic enzymes might be associated with regulation of ER membrane functions. However, it remains unclear whether there is the interplay between FA metabolic enzymes and ER membrane proteins. Trans-2-enoyl-CoA reductase (TER) is an FA reductase present in the ER membrane and catalyzes the last step in the FA elongation cycle and sphingosine degradation pathway. Here we identify sarco(endo)plasmic reticulum Ca2+-ATPase 2b (SERCA2b), an ER Ca2+ pump responsible for Ca2+ accumulation in the ER, as a TER-binding protein by affinity purification from HEK293 cell lysates. We show that TER directly binds to SERCA2b by in vitro assays using recombinant proteins. Thapsigargin, a specific SERCA inhibitor, inhibits this binding. TER binds to SERCA2b through its conserved C-terminal region. TER overexpression suppresses SERCA2b ATPase activity in microsomal membranes of HEK293 cells. Depletion of TER increases Ca2+ storage in the ER and accelerates SERCA2b-dependent Ca2+ uptake to the ER after ligand-induced Ca2+ release. Moreover, depletion of TER reduces the Ca2+-dependent nuclear translocation of nuclear factor of activated T cells 4. These results demonstrate that TER is a negative regulator of SERCA2b, implying the direct linkage of FA metabolism and Ca2+ accumulation in the ER.
Collapse
Affiliation(s)
- Yasunori Uchida
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan.
| |
Collapse
|
170
|
Transmembrane Prolyl 4-Hydroxylase is a Novel Regulator of Calcium Signaling in Astrocytes. eNeuro 2021; 8:ENEURO.0253-20.2020. [PMID: 33298456 PMCID: PMC7814479 DOI: 10.1523/eneuro.0253-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm -/- mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm -/- primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm -/- cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm -/- astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.
Collapse
|
171
|
Kaimachnikov NP, Kotova PD, Kochkina EN, Rogachevskaja OA, Khokhlov AA, Bystrova MF, Kolesnikov SS. Modeling of Ca2+ transients initiated by GPCR agonists in mesenchymal stromal cells. BBA ADVANCES 2021; 1:100012. [PMID: 37082025 PMCID: PMC10074909 DOI: 10.1016/j.bbadva.2021.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
The integrative study that included experimentation and mathematical modeling was carried out to analyze dynamic aspects of transient Ca2+ signaling induced by brief pulses of GPCR agonists in mesenchymal stromal cells from the human adipose tissue (AD-MSCs). The experimental findings argued for IP3/Ca2+-regulated Ca2+ release via IP3 receptors (IP3Rs) as a key mechanism mediating agonist-dependent Ca2+ transients. The consistent signaling circuit was proposed to formalize coupling of agonist binding to Ca2+ mobilization for mathematical modeling. The model properly simulated the basic phenomenology of agonist transduction in AD-MSCs, which mostly produced single Ca2+ spikes upon brief stimulation. The spike-like responses were almost invariantly shaped at different agonist doses above a threshold, while response lag markedly decreased with stimulus strength. In AD-MSCs, agonists and IP3 uncaging elicited similar Ca2+ transients but IP3 pulses released Ca2+ without pronounced delay. This suggested that IP3 production was rate-limiting in agonist transduction. In a subpopulation of AD-MSCs, brief agonist pulses elicited Ca2+ bursts crowned by damped oscillations. With properly adjusted parameters of IP3R inhibition by cytosolic Ca2+, the model reproduced such oscillatory Ca2+ responses as well. GEM-GECO1 and R-CEPIA1er, the genetically encoded sensors of cytosolic and reticular Ca2+, respectively, were co-expressed in HEK-293 cells that also responded to agonists in an "all-or-nothing" manner. The experimentally observed Ca2+ signals triggered by ACh in both compartments were properly simulated with the suggested signaling circuit. Thus, the performed modeling of the transduction process provides sufficient theoretical basis for deeper interpretation of experimental findings on agonist-induced Ca2+ signaling in AD-MSCs.
Collapse
|
172
|
Maneshi MM, Toth AB, Ishii T, Hori K, Tsujikawa S, Shum AK, Shrestha N, Yamashita M, Miller RJ, Radulovic J, Swanson GT, Prakriya M. Orai1 Channels Are Essential for Amplification of Glutamate-Evoked Ca 2+ Signals in Dendritic Spines to Regulate Working and Associative Memory. Cell Rep 2020; 33:108464. [PMID: 33264616 PMCID: PMC7832685 DOI: 10.1016/j.celrep.2020.108464] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Store-operated Orai1 calcium channels function as highly Ca2+-selective ion channels and are broadly expressed in many tissues including the central nervous system, but their contributions to cognitive processing are largely unknown. Here, we report that many measures of synaptic, cellular, and behavioral models of learning are markedly attenuated in mice lacking Orai1 in forebrain excitatory neurons. Results with focal glutamate uncaging in hippocampal neurons support an essential role of Orai1 channels in amplifying NMDA-receptor-induced dendritic Ca2+ transients that drive activity-dependent spine morphogenesis and long-term potentiation at Schaffer collateral-CA1 synapses. Consistent with these signaling roles, mice lacking Orai1 in pyramidal neurons (but not interneurons) exhibit striking deficits in working and associative memory tasks. These findings identify Orai1 channels as essential regulators of dendritic spine Ca2+ signaling, synaptic plasticity, and cognition.
Collapse
Affiliation(s)
- Mohammad Mehdi Maneshi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anna B Toth
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Toshiyuki Ishii
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Hori
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew K Shum
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nisha Shrestha
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jelena Radulovic
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
173
|
Seegren PV, Downs TK, Stremska ME, Harper LR, Cao R, Olson RJ, Upchurch CM, Doyle CA, Kennedy J, Stipes EL, Leitinger N, Periasamy A, Desai BN. Mitochondrial Ca 2+ Signaling Is an Electrometabolic Switch to Fuel Phagosome Killing. Cell Rep 2020; 33:108411. [PMID: 33238121 PMCID: PMC7793167 DOI: 10.1016/j.celrep.2020.108411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/30/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Phagocytes reallocate metabolic resources to kill engulfed pathogens, but the intracellular signals that rapidly switch the immunometabolic program necessary to fuel microbial killing are not understood. We report that macrophages use a fast two-step Ca2+ relay to meet the bioenergetic demands of phagosomal killing. Upon detection of a fungal pathogen, macrophages rapidly elevate cytosolic Ca2+ (phase 1), and by concurrently activating the mitochondrial Ca2+ (mCa2+) uniporter (MCU), they trigger a rapid influx of Ca2+ into the mitochondria (phase 2). mCa2+ signaling reprograms mitochondrial metabolism, at least in part, through the activation of pyruvate dehydrogenase (PDH). Deprived of mCa2+ signaling, Mcu−/− macrophages are deficient in phagosomal reactive oxygen species (ROS) production and defective at killing fungi. Mice lacking MCU in their myeloid cells are highly susceptible to disseminated candidiasis. In essence, this study reveals an elegant design principle that MCU-dependent Ca2+ signaling is an electrometabolic switch to fuel phagosome killing. The signaling mechanisms that rapidly reallocate metabolic resources to meet the bioenergetic demands of microbial killing are not understood. Seegren et al. show that mitochondrial Ca2+ signaling serves as a fast electrometabolic switch to fuel microbial killing by phagocytes. This study identifies the mitochondrial Ca2+ channel MCU as a critical component of cell-intrinsic antimicrobial responses.
Collapse
Affiliation(s)
- Philip V Seegren
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; Carter Immunology Center, University of Virginia, 345 Crispell r. MR-6, Charlottesville, VA 22908, USA
| | - Taylor K Downs
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; Carter Immunology Center, University of Virginia, 345 Crispell r. MR-6, Charlottesville, VA 22908, USA
| | - Marta E Stremska
- Carter Immunology Center, University of Virginia, 345 Crispell r. MR-6, Charlottesville, VA 22908, USA; Microbiology, Immunology, and Cancer Biology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Logan R Harper
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Ruofan Cao
- The W.M. Keck Center for Cellular Imaging, University of Virginia, Physical and Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, VA 22904, USA; Departments of Biology, University of Virginia, Physical and Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, VA 22904, USA
| | - Rachel J Olson
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Clint M Upchurch
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; Carter Immunology Center, University of Virginia, 345 Crispell r. MR-6, Charlottesville, VA 22908, USA
| | - Catherine A Doyle
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; Carter Immunology Center, University of Virginia, 345 Crispell r. MR-6, Charlottesville, VA 22908, USA
| | - Joel Kennedy
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Eric L Stipes
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Norbert Leitinger
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; Carter Immunology Center, University of Virginia, 345 Crispell r. MR-6, Charlottesville, VA 22908, USA
| | - Ammasi Periasamy
- The W.M. Keck Center for Cellular Imaging, University of Virginia, Physical and Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, VA 22904, USA; Departments of Biology, University of Virginia, Physical and Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, VA 22904, USA
| | - Bimal N Desai
- Pharmacology Department, University of Virginia, Pinn Hall, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; Carter Immunology Center, University of Virginia, 345 Crispell r. MR-6, Charlottesville, VA 22908, USA.
| |
Collapse
|
174
|
Harada T, Sada R, Osugi Y, Matsumoto S, Matsuda T, Hayashi-Nishino M, Nagai T, Harada A, Kikuchi A. Palmitoylated CKAP4 regulates mitochondrial functions through an interaction with VDAC2 at ER-mitochondria contact sites. J Cell Sci 2020; 133:jcs249045. [PMID: 33067255 DOI: 10.1242/jcs.249045] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is a palmitoylated type II transmembrane protein localized to the endoplasmic reticulum (ER). Here, we found that knockout (KO) of CKAP4 in HeLaS3 cells induces the alteration of mitochondrial structures and increases the number of ER-mitochondria contact sites. To understand the involvement of CKAP4 in mitochondrial functions, the binding proteins of CKAP4 were explored, enabling identification of the mitochondrial porin voltage-dependent anion-selective channel protein 2 (VDAC2), which is localized to the outer mitochondrial membrane. Palmitoylation at Cys100 of CKAP4 was required for the binding between CKAP4 and VDAC2. In CKAP4 KO cells, the binding of inositol trisphosphate receptor (IP3R) and VDAC2 was enhanced, the intramitochondrial Ca2+ concentration increased and the mitochondrial membrane potential decreased. In addition, CKAP4 KO decreased the oxidative consumption rate, in vitro cancer cell proliferation under low-glucose conditions and in vivo xenograft tumor formation. The phenotypes were not rescued by expression of a palmitoylation-deficient CKAP4 mutant. These results suggest that CKAP4 plays a role in maintaining mitochondrial functions through the binding to VDAC2 at ER-mitochondria contact sites and that palmitoylation is required for this novel function of CKAP4.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Takeshi Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Ryota Sada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Yoshito Osugi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, 8-1 Mihogaoka, Osaka 567-0047, Japan
| | - Mitsuko Hayashi-Nishino
- Department of Biomolecular Science and Regulation and Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, 8-1 Mihogaoka, Osaka 567-0047, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, 8-1 Mihogaoka, Osaka 567-0047, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
175
|
Roberts RE, Vervliet T, Bultynck G, Parys JB, Hallett MB. EPIC3, a novel Ca 2+ indicator located at the cell cortex and in microridges, detects high Ca 2+ subdomains during Ca 2+ influx and phagocytosis. Cell Calcium 2020; 92:102291. [PMID: 33099169 DOI: 10.1016/j.ceca.2020.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 11/15/2022]
Abstract
The construction of a low affinity Ca2+-probe that locates to the cell cortex and cell surface wrinkles, is described called. EPIC3 (ezrin-protein indicator of Ca2+). The novel probe is a fusion of CEPIA3 with ezrin, and is used in combination with a Ca2+-insensitive probe, ezrin-mCherry, both of which locate at the cell cortex. EPIC3 was used to monitor the effect of Ca2+ influx on intra-wrinkle Ca2+ in the macrophage cell line, RAW 264.7. During experimentally-induced Ca2+influx, EPIC3 reported Ca2+ concentrations at the cell cortex in the region of 30-50 μM, with peak locations towards the tips of wrinkles reaching 80 μM. These concentrations were associated with cleavage of ezrin (a substrate for the Ca2+ activated protease calpain-1) and released the C-terminal fluors. The cortical Ca2+ levels, restricted to near the site of phagocytic cup formation and pseudopodia extension during phagocytosis also reached high levels (50-80 μM) during phagocytosis. As phagocytosis was completed, hotspots of Ca2+ near the phagosome were also observed.
Collapse
Affiliation(s)
- Rhiannon E Roberts
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| | - Tim Vervliet
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Maurice B Hallett
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK.
| |
Collapse
|
176
|
Atakpa-Adaji P, Thillaiappan NB, Taylor CW. IP3 receptors and their intimate liaisons. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
177
|
Zhou X, Mehta S, Zhang J. Genetically Encodable Fluorescent and Bioluminescent Biosensors Light Up Signaling Networks. Trends Biochem Sci 2020; 45:889-905. [PMID: 32660810 PMCID: PMC7502535 DOI: 10.1016/j.tibs.2020.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Cell signaling networks are intricately regulated in time and space to determine the responses and fates of cells to different cues. Genetically encodable fluorescent and bioluminescent biosensors enable the direct visualization of these spatiotemporal signaling dynamics within the native biological context, and have therefore become powerful molecular tools whose unique benefits are being used to address challenging biological questions. We first review the basis of biosensor design and remark on recent technologies that are accelerating biosensor development. We then discuss a few of the latest advances in the development and application of genetically encodable fluorescent and bioluminescent biosensors that have led to scientific or technological breakthroughs.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
178
|
Okubo Y. Astrocytic Ca2+ signaling mediated by the endoplasmic reticulum in health and disease. J Pharmacol Sci 2020; 144:83-88. [DOI: 10.1016/j.jphs.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
|
179
|
Bugay V, Wallace DJ, Wang B, Salinas I, Chapparo AP, Smith HR, Dube PH, Brooks EG, Berg KA, Brenner R. Bis-Quinolinium Cyclophane Blockers of SK Potassium Channels Are Antagonists of M3 Muscarinic Acetylcholine Receptors. Front Pharmacol 2020; 11:552211. [PMID: 33041794 PMCID: PMC7525093 DOI: 10.3389/fphar.2020.552211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
Dequalinium is used as an antimicrobial compound for oral health and other microbial infections. Derivatives of dequalinium, the bis-quinolinium cyclophanes UCL 1684 and UCL 1848, are high affinity SK potassium channel antagonists. Here we investigated these compounds as M3 muscarinic receptor (mACHR) antagonists. We used the R-CEPIAer endoplasmic reticulum calcium reporter to functionally assay for Gq-coupled receptor signaling, and investigated the bis-quinolinium cyclophanes as antagonists of M3 mACHR activation in transfected CHO cells. Given mACHR roles in airway smooth muscle (ASM) contractility, we also tested the ability of UCL 1684 to relax ASM. We find that these compounds antagonized M3 mACHRs with an IC50 of 0.27 μM for dequalinium chloride, 1.5 μM for UCL 1684 and 1.0 μM for UCL 1848. UCL 1684 also antagonized M1 (IC50 0.12 μM) and M5 (IC50 0.52 μM) mACHR responses. UCL 1684 was determined to be a competitive antagonist at M3 receptors as it increased the EC50 for carbachol without a reduction in the maximum response. The Ki for UCL1684 determined from competition binding experiments was 909 nM. UCL 1684 reduced carbachol-evoked ASM contractions (>90%, IC50 0.43 μM), and calcium mobilization in rodent and human lung ASM cells. We conclude that dequalinium and bis-quinolinium cyclophanes antagonized M3 mACHR activation at sub- to low micromolar concentrations, with UCL 1684 acting as an ASM relaxant. Caution should be taken when using these compounds to block SK potassium channels, as inhibition of mACHRs may be a side-effect if excessive concentrations are used.
Collapse
Affiliation(s)
- Vladislav Bugay
- Cell and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| | - Derek J Wallace
- Intensive Care Unit, Methodist Hospital Texsan, San Antonio, TX, United States
| | - Bin Wang
- Cell and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| | - Irving Salinas
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | | | - Hudson Ryan Smith
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, United States
| | - Peter Herbert Dube
- Microbiology, Immunology & Molecular Genetics, UT Health San Antonio, San Antonio, TX, United States
| | - Edward G Brooks
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX, United States.,Microbiology, Immunology & Molecular Genetics, UT Health San Antonio, San Antonio, TX, United States
| | - Kelly Ann Berg
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, United States
| | - Robert Brenner
- Cell and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
180
|
Dimerization of SERCA2a Enhances Transport Rate and Improves Energetic Efficiency in Living Cells. Biophys J 2020; 119:1456-1465. [PMID: 32946770 DOI: 10.1016/j.bpj.2020.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022] Open
Abstract
The type 2a sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA2a) plays a key role in intracellular Ca2+ regulation in the heart. We have previously shown evidence of stable homodimers of SERCA2a in heterologous cells and cardiomyocytes. However, the functional significance of the pump dimerization remains unclear. Here, we analyzed how SERCA2a dimerization affects ER Ca2+ transport. Fluorescence resonance energy transfer experiments in HEK293 cells transfected with fluorescently labeled SERCA2a revealed increasing dimerization of Ca2+ pumps with increasing expression level. This concentration-dependent dimerization provided means of comparison of the functional characteristics of monomeric and dimeric pumps. SERCA-mediated Ca2+ uptake was measured with the ER-targeted Ca2+ sensor R-CEPIA1er in cells cotransfected with SERCA2a and ryanodine receptor. For each individual cell, the maximal ER Ca2+ uptake rate and the maximal Ca2+ load, together with the pump expression level, were analyzed. This analysis revealed that the ER Ca2+ uptake rate increased as a function of SERCA2a expression, with a particularly steep, nonlinear increase at high expression levels. Interestingly, the maximal ER Ca2+ load also increased with an increase in the pump expression level, suggesting improved catalytic efficiency of the dimeric species. Reciprocally, thapsigargin inhibition of a fraction of the population of SERCA2a reduced not only the maximal ER Ca2+ uptake rate but also the maximal Ca2+ load. These data suggest that SERCA2a dimerization regulates Ca2+ transport by improving both the SERCA2a turnover rate and catalytic efficacy. Analysis of ER Ca2+ uptake in cells cotransfected with human wild-type SERCA2a (SERCA2aWT) and SERCA2a mutants with different catalytic activity revealed that an intact catalytic cycle in both protomers is required for enhancing the efficacy of Ca2+ transport by a dimer. The data are consistent with the hypothesis of functional coupling of two SERCA2a protomers in a dimer that reduces the energy barrier of rate-limiting steps of the catalytic cycle of Ca2+ transport.
Collapse
|
181
|
Structural basis for diamide modulation of ryanodine receptor. Nat Chem Biol 2020; 16:1246-1254. [DOI: 10.1038/s41589-020-0627-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
|
182
|
TMBIM6/BI-1 contributes to cancer progression through assembly with mTORC2 and AKT activation. Nat Commun 2020; 11:4012. [PMID: 32782388 PMCID: PMC7419509 DOI: 10.1038/s41467-020-17802-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/16/2020] [Indexed: 01/09/2023] Open
Abstract
Transmembrane B cell lymphoma 2-associated X protein inhibitor motif-containing (TMBIM) 6, a Ca2+ channel-like protein, is highly up-regulated in several cancer types. Here, we show that TMBIM6 is closely associated with survival in patients with cervical, breast, lung, and prostate cancer. TMBIM6 deletion or knockdown suppresses primary tumor growth. Further, mTORC2 activation is up-regulated by TMBIM6 and stimulates glycolysis, protein synthesis, and the expression of lipid synthesis genes and glycosylated proteins. Moreover, ER-leaky Ca2+ from TMBIM6, a unique characteristic, is shown to affect mTORC2 assembly and its association with ribosomes. In addition, we identify that the BIA compound, a potentialTMBIM6 antagonist, prevents TMBIM6 binding to mTORC2, decreases mTORC2 activity, and also regulates TMBIM6-leaky Ca2+, further suppressing tumor formation and progression in cancer xenograft models. This previously unknown signaling cascade in which mTORC2 activity is enhanced via the interaction with TMBIM6 provides potential therapeutic targets for various malignancies. TMBIM6, a member of the transmembrane BI-1 motif-containing family of proteins, is overexpressed in many cancer types. Here, the authors show that TMBIM6 regulates AKT activation through mTORC2 assembly and ribosome association and identify an antagonist of TMBIM6 with anti-tumor properties.
Collapse
|
183
|
Oliva MK, Pérez-Moreno JJ, O’Shaughnessy J, Wardill TJ, O’Kane CJ. Endoplasmic Reticulum Lumenal Indicators in Drosophila Reveal Effects of HSP-Related Mutations on Endoplasmic Reticulum Calcium Dynamics. Front Neurosci 2020; 14:816. [PMID: 32903680 PMCID: PMC7438849 DOI: 10.3389/fnins.2020.00816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/10/2020] [Indexed: 12/02/2022] Open
Abstract
Genes for endoplasmic reticulum (ER)-shaping proteins are among the most commonly mutated in hereditary spastic paraplegia (HSP). Mutation of these genes in model organisms can lead to disruption of the ER network. To investigate how the physiological roles of the ER might be affected by such disruption, we developed tools to interrogate its Ca2+ signaling function. We generated GAL4-driven Ca2+ sensors targeted to the ER lumen, to record ER Ca2+ fluxes in identified Drosophila neurons. Using GAL4 lines specific for Type Ib or Type Is larval motor neurons, we compared the responses of different lumenal indicators to electrical stimulation, in axons and presynaptic terminals. The most effective sensor, ER-GCaMP6-210, had a Ca2+ affinity close to the expected ER lumenal concentration. Repetitive nerve stimulation generally showed a transient increase of lumenal Ca2+ in both the axon and presynaptic terminals. Mutants lacking neuronal reticulon and REEP proteins, homologs of human HSP proteins, showed a larger ER lumenal evoked response compared to wild type; we propose mechanisms by which this phenotype could lead to neuronal dysfunction or degeneration. Our lines are useful additions to a Drosophila Ca2+ imaging toolkit, to explore the physiological roles of ER, and its pathophysiological roles in HSP and in axon degeneration more broadly.
Collapse
Affiliation(s)
- Megan K. Oliva
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Trevor J. Wardill
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
184
|
Ion Channels as Therapeutic Targets for Viral Infections: Further Discoveries and Future Perspectives. Viruses 2020; 12:v12080844. [PMID: 32756358 PMCID: PMC7472218 DOI: 10.3390/v12080844] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels play key roles in almost all facets of cellular physiology and have emerged as key host cell factors for a multitude of viral infections. A catalogue of ion channel-blocking drugs have been shown to possess antiviral activity, some of which are in widespread human usage for ion channel-related diseases, highlighting new potential for drug repurposing. The emergence of ion channel–virus interactions has also revealed the intriguing possibility that channelopathies may explain some commonly observed virus induced pathologies. This field is rapidly evolving and an up-to-date summary of new discoveries can inform future perspectives. We herein discuss the role of ion channels during viral lifecycles, describe the recently identified ion channel drugs that can inhibit viral infections, and highlight the potential contribution of ion channels to virus-mediated disease.
Collapse
|
185
|
Iyer KA, Hu Y, Nayak AR, Kurebayashi N, Murayama T, Samsó M. Structural mechanism of two gain-of-function cardiac and skeletal RyR mutations at an equivalent site by cryo-EM. SCIENCE ADVANCES 2020; 6:eabb2964. [PMID: 32832689 PMCID: PMC7439390 DOI: 10.1126/sciadv.abb2964] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/10/2020] [Indexed: 05/16/2023]
Abstract
Mutations in ryanodine receptors (RyRs), intracellular Ca2+ channels, are associated with deadly disorders. Despite abundant functional studies, the molecular mechanism of RyR malfunction remains elusive. We studied two single-point mutations at an equivalent site in the skeletal (RyR1 R164C) and cardiac (RyR2 R176Q) isoforms using ryanodine binding, Ca2+ imaging, and cryo-electron microscopy (cryo-EM) of the full-length protein. Loss of the positive charge had greater effect on the skeletal isoform, mediated via distortion of a salt bridge network, a molecular latch inducing rotation of a cytoplasmic domain, and partial progression to open-state traits of the large cytoplasmic assembly accompanied by alteration of the Ca2+ binding site, which concur with the major "hyperactive" feature of the mutated channel. Our cryo-EM studies demonstrated the allosteric effect of a mutation situated ~85 Å away from the pore and identified an isoform-specific structural effect.
Collapse
Affiliation(s)
- Kavita A. Iyer
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yifan Hu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ashok R. Nayak
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
186
|
Larramona-Arcas R, González-Arias C, Perea G, Gutiérrez A, Vitorica J, García-Barrera T, Gómez-Ariza JL, Pascua-Maestro R, Ganfornina MD, Kara E, Hudry E, Martinez-Vicente M, Vila M, Galea E, Masgrau R. Sex-dependent calcium hyperactivity due to lysosomal-related dysfunction in astrocytes from APOE4 versus APOE3 gene targeted replacement mice. Mol Neurodegener 2020; 15:35. [PMID: 32517777 PMCID: PMC7285605 DOI: 10.1186/s13024-020-00382-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The apolipoprotein E (APOE) gene exists in three isoforms in humans: APOE2, APOE3 and APOE4. APOE4 causes structural and functional alterations in normal brains, and is the strongest genetic risk factor of the sporadic form of Alzheimer's disease (LOAD). Research on APOE4 has mainly focused on the neuronal damage caused by defective cholesterol transport and exacerbated amyloid-β and Tau pathology. The impact of APOE4 on non-neuronal cell functions has been overlooked. Astrocytes, the main producers of ApoE in the healthy brain, are building blocks of neural circuits, and Ca2+ signaling is the basis of their excitability. Because APOE4 modifies membrane-lipid composition, and lipids regulate Ca2+ channels, we determined whether APOE4 dysregulates Ca2+signaling in astrocytes. METHODS Ca2+ signals were recorded in astrocytes in hippocampal slices from APOE3 and APOE4 gene targeted replacement male and female mice using Ca2+ imaging. Mechanistic analyses were performed in immortalized astrocytes. Ca2+ fluxes were examined with pharmacological tools and Ca2+ probes. APOE3 and APOE4 expression was manipulated with GFP-APOE vectors and APOE siRNA. Lipidomics of lysosomal and whole-membranes were also performed. RESULTS We found potentiation of ATP-elicited Ca2+responses in APOE4 versus APOE3 astrocytes in male, but not female, mice. The immortalized astrocytes modeled the male response, and showed that Ca2+ hyperactivity associated with APOE4 is caused by dysregulation of Ca2+ handling in lysosomal-enriched acidic stores, and is reversed by the expression of APOE3, but not of APOE4, pointing to loss of function due to APOE4 malfunction. Moreover, immortalized APOE4 astrocytes are refractory to control of Ca2+ fluxes by extracellular lipids, and present distinct lipid composition in lysosomal and plasma membranes. CONCLUSIONS Immortalized APOE4 versus APOE3 astrocytes present: increased Ca2+ excitability due to lysosome dysregulation, altered membrane lipidomes and intracellular cholesterol distribution, and impaired modulation of Ca2+ responses upon changes in extracellular lipids. Ca2+ hyperactivity associated with APOE4 is found in astrocytes from male, but not female, targeted replacement mice. The study suggests that, independently of Aβ and Tau pathologies, altered astrocyte excitability might contribute to neural-circuit hyperactivity depending on APOE allele, sex and lipids, and supports lysosome-targeted therapies to rescue APOE4 phenotypes in LOAD.
Collapse
Affiliation(s)
- Raquel Larramona-Arcas
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
| | - Candela González-Arias
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - Gertrudis Perea
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - Antonia Gutiérrez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigación Biomedica de Málaga (IBIMA), Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - Tamara García-Barrera
- Departamento de Química, Facultad de Ciencias Experimentales, Campus de El Carmen, Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21007 Huelva, Spain
| | - José Luis Gómez-Ariza
- Departamento de Química, Facultad de Ciencias Experimentales, Campus de El Carmen, Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21007 Huelva, Spain
| | - Raquel Pascua-Maestro
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 43007 Valladolid, Spain
| | - María Dolores Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 43007 Valladolid, Spain
| | - Eleanna Kara
- Alzheimer’s Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
- Present Address: Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Eloise Hudry
- Alzheimer’s Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Marta Martinez-Vicente
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Miquel Vila
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia Spain
| | - Elena Galea
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia Spain
| | - Roser Masgrau
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
| |
Collapse
|
187
|
Kwak C, Shin S, Park JS, Jung M, Nhung TTM, Kang MG, Lee C, Kwon TH, Park SK, Mun JY, Kim JS, Rhee HW. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proc Natl Acad Sci U S A 2020; 117:12109-12120. [PMID: 32414919 PMCID: PMC7275737 DOI: 10.1073/pnas.1916584117] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitochondria-associated membrane (MAM) has emerged as a cellular signaling hub regulating various cellular processes. However, its molecular components remain unclear owing to lack of reliable methods to purify the intact MAM proteome in a physiological context. Here, we introduce Contact-ID, a split-pair system of BioID with strong activity, for identification of the MAM proteome in live cells. Contact-ID specifically labeled proteins proximal to the contact sites of the endoplasmic reticulum (ER) and mitochondria, and thereby identified 115 MAM-specific proteins. The identified MAM proteins were largely annotated with the outer mitochondrial membrane (OMM) and ER membrane proteins with MAM-related functions: e.g., FKBP8, an OMM protein, facilitated MAM formation and local calcium transport at the MAM. Furthermore, the definitive identification of biotinylation sites revealed membrane topologies of 85 integral membrane proteins. Contact-ID revealed regulatory proteins for MAM formation and could be reliably utilized to profile the proteome at any organelle-membrane contact sites in live cells.
Collapse
Affiliation(s)
- Chulhwan Kwak
- Department of Chemistry, Seoul National University, 08826 Seoul, Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, 08826 Seoul, Korea
| | - Jong-Seok Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, 41062 Daegu, Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, 08826 Seoul, Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Chaiheon Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, 41062 Daegu, Korea;
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea;
- School of Biological Sciences, Seoul National University, 08826 Seoul, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, 08826 Seoul, Korea;
- School of Biological Sciences, Seoul National University, 08826 Seoul, Korea
| |
Collapse
|
188
|
Hamilton S, Terentyeva R, Martin B, Perger F, Li J, Stepanov A, Bonilla IM, Knollmann BC, Radwański PB, Györke S, Belevych AE, Terentyev D. Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Res Cardiol 2020; 115:38. [PMID: 32444920 PMCID: PMC7244455 DOI: 10.1007/s00395-020-0797-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
Cardiac disease is associated with deleterious emission of mitochondrial reactive oxygen species (mito-ROS), as well as enhanced oxidation and activity of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor (RyR2). The transfer of Ca2+ from the SR via RyR2 to mitochondria is thought to play a key role in matching increased metabolic demand during stress. In this study, we investigated whether augmented RyR2 activity results in self-imposed exacerbation of SR Ca2+ leak, via altered SR-mitochondrial Ca2+ transfer and elevated mito-ROS emission. Fluorescent indicators and spatially restricted genetic ROS probes revealed that both pharmacologically and genetically enhanced RyR2 activity, in ventricular myocytes from rats and catecholaminergic polymorphic ventricular tachycardia (CPVT) mice, respectively, resulted in increased ROS emission under β-adrenergic stimulation. Expression of mitochondrial Ca2+ probe mtRCamp1h revealed diminished net mitochondrial [Ca2+] with enhanced SR Ca2+ leak, accompanied by depolarization of the mitochondrial matrix. While this may serve as a protective mechanism to prevent mitochondrial Ca2+ overload, protection is not complete and enhanced mito-ROS emission resulted in oxidation of RyR2, further amplifying proarrhythmic SR Ca2+ release. Importantly, the effects of augmented RyR2 activity could be attenuated by mitochondrial ROS scavenging, and experiments with dominant-negative paralogs of the mitochondrial Ca2+ uniporter (MCU) supported the hypothesis that SR-mitochondria Ca2+ transfer is essential for the increase in mito-ROS. We conclude that in a process whereby leak begets leak, augmented RyR2 activity modulates mitochondrial Ca2+ handling, promoting mito-ROS emission and driving further channel activity in a proarrhythmic feedback cycle in the diseased heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Radmila Terentyeva
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Martin
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Fruzsina Perger
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiaoni Li
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrei Stepanov
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Laboratory of Cell Pathology, Institute RAS, Saint Petersburg, Russia
| | - Ingrid M Bonilla
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Przemyslaw B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Sandor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Andriy E Belevych
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
189
|
Noble M, Lin QT, Sirko C, Houpt JA, Novello MJ, Stathopulos PB. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. Int J Mol Sci 2020; 21:E3642. [PMID: 32455637 PMCID: PMC7279490 DOI: 10.3390/ijms21103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Jacob A. Houpt
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada;
| | - Matthew J. Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| |
Collapse
|
190
|
Vais H, Wang M, Mallilankaraman K, Payne R, McKennan C, Lock JT, Spruce LA, Fiest C, Chan MYL, Parker I, Seeholzer SH, Foskett JK, Mak DOD. ER-luminal [Ca 2+] regulation of InsP 3 receptor gating mediated by an ER-luminal peripheral Ca 2+-binding protein. eLife 2020; 9:e53531. [PMID: 32420875 PMCID: PMC7259957 DOI: 10.7554/elife.53531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Modulating cytoplasmic Ca2+ concentration ([Ca2+]i) by endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+-release channels is a universal signaling pathway that regulates numerous cell-physiological processes. Whereas much is known regarding regulation of InsP3R activity by cytoplasmic ligands and processes, its regulation by ER-luminal Ca2+ concentration ([Ca2+]ER) is poorly understood and controversial. We discovered that the InsP3R is regulated by a peripheral membrane-associated ER-luminal protein that strongly inhibits the channel in the presence of high, physiological [Ca2+]ER. The widely-expressed Ca2+-binding protein annexin A1 (ANXA1) is present in the nuclear envelope lumen and, through interaction with a luminal region of the channel, can modify high-[Ca2+]ER inhibition of InsP3R activity. Genetic knockdown of ANXA1 expression enhanced global and local elementary InsP3-mediated Ca2+ signaling events. Thus, [Ca2+]ER is a major regulator of InsP3R channel activity and InsP3R-mediated [Ca2+]i signaling in cells by controlling an interaction of the channel with a peripheral membrane-associated Ca2+-binding protein, likely ANXA1.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Min Wang
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Karthik Mallilankaraman
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Riley Payne
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Chris McKennan
- Department of Statistics, University of PittsburghPittsburghUnited States
| | - Jeffrey T Lock
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - Lynn A Spruce
- Proteomics Core Facility, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Carly Fiest
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew Yan-lok Chan
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ian Parker
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
- Department of Physiology and Biophysics, University of CaliforniaIrvineUnited States
| | - Steven H Seeholzer
- Proteomics Core Facility, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
191
|
Kaul Z, Mookherjee D, Das S, Chatterjee D, Chakrabarti S, Chakrabarti O. Loss of tumor susceptibility gene 101 (TSG101) perturbs endoplasmic reticulum structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118741. [PMID: 32422153 DOI: 10.1016/j.bbamcr.2020.118741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA..
| | - Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
192
|
Tang S, Deng X, Jiang J, Kirberger M, Yang JJ. Design of Calcium-Binding Proteins to Sense Calcium. Molecules 2020; 25:molecules25092148. [PMID: 32375353 PMCID: PMC7248937 DOI: 10.3390/molecules25092148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023] Open
Abstract
Calcium controls numerous biological processes by interacting with different classes of calcium binding proteins (CaBP’s), with different affinities, metal selectivities, kinetics, and calcium dependent conformational changes. Due to the diverse coordination chemistry of calcium, and complexity associated with protein folding and binding cooperativity, the rational design of CaBP’s was anticipated to present multiple challenges. In this paper we will first discuss applications of statistical analysis of calcium binding sites in proteins and subsequent development of algorithms to predict and identify calcium binding proteins. Next, we report efforts to identify key determinants for calcium binding affinity, cooperativity and calcium dependent conformational changes using grafting and protein design. Finally, we report recent advances in designing protein calcium sensors to capture calcium dynamics in various cellular environments.
Collapse
Affiliation(s)
- Shen Tang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Xiaonan Deng
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Jie Jiang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Michael Kirberger
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
- Correspondence: ; Tel.: +1-404-413-5520
| |
Collapse
|
193
|
Li J, Wang L, Chen Y, Yang Y, Liu J, Liu K, Lee YT, He N, Zhou Y, Wang Y. Visible light excited ratiometric-GECIs for long-term in-cellulo monitoring of calcium signals. Cell Calcium 2020; 87:102165. [DOI: 10.1016/j.ceca.2020.102165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
|
194
|
Shah S, Carver CM, Mullen P, Milne S, Lukacs V, Shapiro MS, Gamper N. Local Ca 2+ signals couple activation of TRPV1 and ANO1 sensory ion channels. Sci Signal 2020; 13:13/629/eaaw7963. [PMID: 32345727 DOI: 10.1126/scisignal.aaw7963] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ANO1 (TMEM16A) is a Ca2+-activated Cl- channel (CaCC) expressed in peripheral somatosensory neurons that are activated by painful (noxious) stimuli. These neurons also express the Ca2+-permeable channel and noxious heat sensor TRPV1, which can activate ANO1. Here, we revealed an intricate mechanism of TRPV1-ANO1 channel coupling in rat dorsal root ganglion (DRG) neurons. Simultaneous optical monitoring of CaCC activity and Ca2+ dynamics revealed that the TRPV1 ligand capsaicin activated CaCCs. However, depletion of endoplasmic reticulum (ER) Ca2+ stores reduced capsaicin-induced Ca2+ increases and CaCC activation, suggesting that ER Ca2+ release contributed to TRPV1-induced CaCC activation. ER store depletion by plasma membrane-localized TRPV1 channels was demonstrated with an ER-localized Ca2+ sensor in neurons exposed to a cell-impermeable TRPV1 ligand. Proximity ligation assays established that ANO1, TRPV1, and the IP3 receptor IP3R1 were often found in close proximity to each other. Stochastic optical reconstruction microscopy (STORM) confirmed the close association between all three channels in DRG neurons. Together, our data reveal the existence of ANO1-containing multichannel nanodomains in DRG neurons and suggest that coupling between TRPV1 and ANO1 requires ER Ca2+ release, which may be necessary to enhance ANO1 activation.
Collapse
Affiliation(s)
- Shihab Shah
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chase M Carver
- Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Pierce Mullen
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen Milne
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Viktor Lukacs
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark S Shapiro
- Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nikita Gamper
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK. .,Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| |
Collapse
|
195
|
Clement D, Goodridge JP, Grimm C, Patel S, Malmberg KJ. TRP Channels as Interior Designers: Remodeling the Endolysosomal Compartment in Natural Killer Cells. Front Immunol 2020; 11:753. [PMID: 32411146 PMCID: PMC7198808 DOI: 10.3389/fimmu.2020.00753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic lymphocytes, including natural killer (NK) cells and T cells are distinguished by their ability to eliminate target cells through release of secretory lysosomes. Conventional lysosomes and secretory lysosomes are part of the pleomorphic endolysosomal system and characterized by its highly dynamic nature. Several calcium-permeable TRP calcium channels play an essential role in endolysosomal calcium signaling to ensure proper function of these organelles. In NK cells, the expression of self MHC-specific inhibitory receptors dynamically tunes their secretory potential in a non-transcriptional, calcium-dependent manner. New insights suggest that TRPML1-mediated lysosomal calcium fluxes are tightly interconnected to NK cell functionality through modulation of granzyme B and perforin content of the secretory lysosome. Lysosomal TRP channels show a subset-specific expression pattern during NK differentiation, which is paralleled with gradually increased loading of effector molecules in secretory lysosomes. Methodological advances, including organellar patch-clamping, specific pharmacological modulators, and genetically-encoded calcium indicators open up new possibilities to investigate how TRP channels influence communication between intracellular organelles in immune cells. This review discusses our current understanding of lysosome biogenesis in NK cells with an emphasis on the TRP mucolipin family and the implications for NK cell functionality and cancer immunotherapy.
Collapse
Affiliation(s)
- Dennis Clement
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Oslo University Hospital, Institute for Cancer Research, Oslo, Norway
| | | | - Christian Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Karl-Johan Malmberg
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Oslo University Hospital, Institute for Cancer Research, Oslo, Norway
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
196
|
Yang X, Ma G, Zheng S, Qin X, Li X, Du L, Wang Y, Zhou Y, Li M. Optical Control of CRAC Channels Using Photoswitchable Azopyrazoles. J Am Chem Soc 2020; 142:9460-9470. [DOI: 10.1021/jacs.0c02949] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
197
|
Zhang Y, Wang J, Xing S, Li L, Zhao S, Zhu W, Liang K, Liu Y, Chen L. Mitochondria determine the sequential propagation of the calcium macrodomains revealed by the super-resolution calcium lantern imaging. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1543-1551. [PMID: 32279282 DOI: 10.1007/s11427-019-1659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/27/2020] [Indexed: 01/02/2023]
Abstract
Despite the wide application of super-resolution (SR) microscopy in biological studies of cells, the technology is rarely used to monitor functional changes in live cells. By combining fast spinning disc-confocal structured illumination microscopy (SD-SIM) with loading of cytosolic fluorescent Ca2+ indicators, we have developed an SR method for visualization of regional Ca2+ dynamics and related cellular organelle morphology and dynamics, termed SR calcium lantern imaging. In COS-7 cells stimulated with ATP, we have identified various calcium macrodomains characterized by different types of Ca2+ release from endoplasmic reticulum (ER) stores. Finally, we demonstrated various roles of mitochondria in mediating calcium signals from different sources; while mitochondria can globally potentiate the Ca2+ entry associated with store release, mitochondria also locally control Ca2+ release from the neighboring ER stores and assist in their refilling processes.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jianyong Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shijia Xing
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wenzhen Zhu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Kuo Liang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yanmei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.,Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 200062, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
| |
Collapse
|
198
|
Yuan L, Liu Q, Wang Z, Hou J, Xu P. EI24 tethers endoplasmic reticulum and mitochondria to regulate autophagy flux. Cell Mol Life Sci 2020; 77:1591-1606. [PMID: 31332481 PMCID: PMC11104867 DOI: 10.1007/s00018-019-03236-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
Etoposide-induced protein 2.4 (EI24), located on the endoplasmic reticulum (ER) membrane, has been proposed to be an essential autophagy protein. Specific ablation of EI24 in neuronal and liver tissues causes deficiency of autophagy flux. However, the molecular mechanism of the EI24-mediated autophagy process is still poorly understood. Like neurons and hepatic cells, pancreatic β cells are also secretory cells. Pancreatic β cells contain large amounts of ER and continuously synthesize and secrete insulin to maintain blood glucose homeostasis. Yet, the effect of EI24 on autophagy of pancreatic β cells has not been reported. Here, we show that the autophagy process is inhibited in EI24-deficient primary pancreatic β cells. Further mechanistic studies demonstrate that EI24 is enriched at the ER-mitochondria interface and that the C-terminal domain of EI24 is important for the integrity of the mitochondria-associated membrane (MAM) and autophagy flux. Overexpression of EI24, but not the EI24-ΔC mutant, can rescue MAM integrity and decrease the aggregation of p62 and LC3II in the EI24-deficient group. By mass spectrometry-based proteomics following immunoprecipitation, EI24 was found to interact with voltage-dependent anion channel 1 (VDAC1), inositol 1,4,5-trisphosphate receptor (IP3R), and the outer mitochondrial membrane chaperone GRP75. Knockout of EI24 impairs the interaction of IP3R with VDAC1, indicating that these proteins may form a quaternary complex to regulate MAM integrity and the autophagy process.
Collapse
Affiliation(s)
- Lin Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhe Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Junjie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
199
|
Kim HK, Lee GH, Bhattarai KR, Lee MS, Back SH, Kim HR, Chae HJ. TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy through regulation of lysosomal calcium. Autophagy 2020; 17:761-778. [PMID: 32167007 PMCID: PMC8032251 DOI: 10.1080/15548627.2020.1732161] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lysosomal Ca2+ contributes to macroautophagy/autophagy, an intracellular process for the degradation of cytoplasmic material and organelles in the lysosomes to protect cells against stress responses. TMBIM6 (transmembrane BAX inhibitor motif containing 6) is a Ca2+ channel-like protein known to regulate ER stress response and apoptosis. In this study, we examined the as yet unknown role of TMBIM6 in regulating lysosomal Ca2+ levels. The Ca2+ efflux from the ER through TMBIM6 was found to increase the resting lysosomal Ca2+ level, in which ITPR-independent regulation of Ca2+ status was observed. Further, TMBIM6 regulated the local release of Ca2+ through lysosomal MCOLN1/TRPML1 channels under nutrient starvation or MTOR inhibition. The local Ca2+ efflux through MCOLN1 channels was found to activate PPP3/calcineurin, triggering TFEB (transcription factor EB) nuclear translocation, autophagy induction, and lysosome biogenesis. Upon genetic inactivation of TMBIM6, lysosomal Ca2+ and the associated TFEB nuclear translocation were decreased. Furthermore, autophagy flux was significantly enhanced in the liver or kidney from starved Tmbim6+/+ mice compared with that in the counter tmbim6-/- mice. Together, our observations indicated that under stress conditions, TMBIM6 increases lysosomal Ca2+ release, leading to PPP3/calcineurin-mediated TFEB activation and subsequently enhanced autophagy. Thus, TMBIM6, an ER membrane protein, is suggested to be a lysosomal Ca2+ modulator that coordinates with autophagy to alleviate metabolism stress.Abbreviations: AVs: autophagic vacuoles; CEPIA: calcium-measuring organelle-entrapped protein indicator; ER: endoplasmic reticulum; GPN: glycyl-L-phenylalanine-beta-naphthylamide; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; LAMP1: lysosomal associated membrane protein 1; MCOLN/TRPML: mucolipin; MEF: mouse embryonic fibroblast; ML-SA1: mucolipin synthetic agonist 1; MTORC1: mechanistic target of rapamycin kinase complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SQSTM1: sequestosome 1; TFEB: transcription factor EB; TKO: triple knockout; TMBIM6/BI-1: transmembrane BAX inhibitor motif containing 6.
Collapse
Affiliation(s)
- Hyun-Kyoung Kim
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
200
|
Rossi AM, Taylor CW. Reliable measurement of free Ca 2+ concentrations in the ER lumen using Mag-Fluo-4. Cell Calcium 2020; 87:102188. [PMID: 32179239 PMCID: PMC7181174 DOI: 10.1016/j.ceca.2020.102188] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Mag-Fluo-4 loaded into ER by incubation of cells with Mag-Fluo-4 AM reliably reports ER free [Ca2+]. However, the Ca2+ affinity of Mag-Fluo-4 determined in vitro appears too high to allow measurements of ER luminal [Ca2+]. We use an antibody (QAb) to quench the fluorescence of leaked indicator. Using QAb, we show that indicator within the ER has low affinity and sensitivity across a wide range of [Ca2+]. Incomplete de-esterification of compartmentalized indicator allows it to effectively report ER free [Ca2+].
Synthetic Ca2+ indicators are widely used to report changes in free [Ca2+], usually in the cytosol but also within organelles. Mag-Fluo-4, loaded into the endoplasmic reticulum (ER) by incubating cells with Mag-Fluo-4 AM, has been used to measure changes in free [Ca2+] within the ER, where the free [Ca2+] is estimated to be between 100 μM and 1 mM. Many results are consistent with Mag-Fluo-4 reliably reporting changes in free [Ca2+] within the ER, but the results are difficult to reconcile with the affinity of Mag-Fluo-4 for Ca2+ measured in vitro (KDCa ∼22 μM). Using an antibody to quench the fluorescence of indicator that leaked from the ER, we established that the affinity of Mag-Fluo-4 within the ER is much lower (KDCa ∼1 mM) than that measured in vitro. We show that partially de-esterified Mag-Fluo-4 has reduced affinity for Ca2+, suggesting that incomplete de-esterification of Mag-Fluo-4 AM within the ER provides indicators with affinities for Ca2+ that are both appropriate for the ER lumen and capable of reporting a wide range of free [Ca2+].
Collapse
Affiliation(s)
- Ana M Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|