151
|
Baker KA, Miller TD, Marino FE, Hartmann TE. The exercise-induced inflammatory response in inflammatory bowel disease: A systematic review and meta-analysis. PLoS One 2022; 17:e0262534. [PMID: 35120159 PMCID: PMC8815877 DOI: 10.1371/journal.pone.0262534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This study investigated selected inflammatory responses to acute and chronic exercise in individuals with inflammatory bowel disease (IBD). METHODS A systematic review and meta-analysis was conducted on all relevant exercise-based intervention publications with IBD participants. The study included articles that utilised a broad range of acute and chronic exercise interventions, with inflammatory biomarkers measured and symptoms documented, both pre- and post-exercise for those with IBD. The search was limited to studies published in English, the use of human participants, and primary studies, with no restrictions on date of publication or participant's age. Articles were retrieved through the electronic databases: PubMed, SPORTDiscus, and Scopus. This study adhered to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. RESULTS Six inflammatory markers were included in the meta-analysis which consisted of five studies. Exercise interventions resulted in no significant difference in IL-6 (SMD = -0.09; 95% CI = -0.49, 0.30; P = 0.64), TNF-α (SMD = 0.08; 95% CI = -0.31, 0.48; P = 0.68), CRP (SMD = -0.04; 95% CI = -0.58, 0.50; P = 0.89), IL-17 (SMD = 0.15; 95% CI = -0.45, 0.76; P = 0.62), leukocytes (SMD = 0.40; 95% CI = -0.53, 1.33; P = 0.40) or lymphocytes (SMD = 0.32; 95% CI = -0.33, 0.97; P = 0.33), thus, indicating exercise may have no effect on inflammatory markers in IBD. Bowel symptoms improved following regular moderate exercise that incorporated stress management. CONCLUSION Heterogeneity among the identified literature may have led to exercise interventions being ineffective in reducing inflammation. Although the limited number of eligible studies may reduce the reliability of results, it emphasises the need for additional research in this domain. Importantly, no adverse symptomatic responses to exercise indicate that exercise is safe for IBD patients.
Collapse
Affiliation(s)
- Kelly A. Baker
- School of Allied Health, Exercise and Sport Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Timothy D. Miller
- School of Allied Health, Exercise and Sport Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Frank E. Marino
- School of Allied Health, Exercise and Sport Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Tegan E. Hartmann
- School of Allied Health, Exercise and Sport Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| |
Collapse
|
152
|
Tamburini B, La Manna MP, La Barbera L, Mohammadnezhad L, Badami GD, Shekarkar Azgomi M, Dieli F, Caccamo N. Immunity and Nutrition: The Right Balance in Inflammatory Bowel Disease. Cells 2022; 11:cells11030455. [PMID: 35159265 PMCID: PMC8834599 DOI: 10.3390/cells11030455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an increasingly urgent medical problem that strongly impairs quality of life for patients. A global rise in incidence has been observed over the last few decades, with the highest incidence rates recorded in North America and Europe. Still, an increased incidence has been reported in the last ten years in newly industrialized countries in Asia, including China and India, both with more than one billion inhabitants. These data underline that IBD is an urgent global health problem. In addition, it is estimated that between 20% and 30% of IBD patients will develop colorectal cancer (CRC) within their lifetime and CRC mortality is approximately 50% amongst IBD patients. Although the exact etiology of IBD is still being defined, it is thought to be due to a complex interaction between many factors, including defects in the innate and adaptive immune system; microbial dysbiosis, i.e., abnormal levels of, or abnormal response to, the gastrointestinal microbiome; a genetic predisposition; and several environmental factors. At present, however, it is not fully understood which of these factors are the initiators of inflammation and which are compounders. The purpose of this review is to analyze the complex balance that exists between these elements to maintain intestinal homeostasis and prevent IBD or limit adverse effects on people’s health.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
- Correspondence:
| | - Lidia La Barbera
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Piazza delle Cliniche, 2, 90110 Palermo, Italy;
| | - Leila Mohammadnezhad
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
153
|
Reduced Colonic Mucosal Injury in 2,3,7,8-Tetrachlorodibenzo- p-Dioxin Poly ADP-Ribose Polymerase (TIPARP/PARP7)-Deficient Mice. Int J Mol Sci 2022; 23:ijms23020920. [PMID: 35055106 PMCID: PMC8779828 DOI: 10.3390/ijms23020920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Poly-ADP-ribose polymerases (PARPs) are important regulators of the immune system, including TCDD-inducible poly-ADP-ribose polymerase (TIPARP), also known as poly-ADP-ribose polymerase 7 (PARP7). PARP7 negatively regulates aryl hydrocarbon receptor (AHR) and type I interferon (IFN-I) signaling, both of which have been implicated in intestinal homeostasis and immunity. Since the loss of PARP7 expression increases AHR and IFN-I signaling, we used a murine dextran sulfate sodium (DSS)-induced colitis model to investigate the effect of PARP7 loss on DSS-induced intestinal inflammation. DSS-exposed Parp7−/− mice had less body weight loss, lower disease index scores, and reduced expression of several inflammation genes, including interleukin IL-6, C-x-c motif chemokine ligand 1 (Cxcl1), and lipocalin-2, when compared with wild-type mice. However, no significant difference was observed between genotypes in the colonic expression of the AHR target gene cytochrome P450 1A1 (Cyp1a1). Moreover, no significant differences in microbial composition were observed between the genotypes. Our findings demonstrate that the absence of PARP7 protein results in an impaired immune response to colonic inflammation and suggests that PARP7 may participate in the recruitment of immune cells to the inflammation site, which may be due to its role in IFN-I signaling rather than AHR signaling.
Collapse
|
154
|
Sun Q, Du M, Kang Y, Zhu MJ. Prebiotic effects of goji berry in protection against inflammatory bowel disease. Crit Rev Food Sci Nutr 2022:1-25. [PMID: 34991393 DOI: 10.1080/10408398.2021.2015680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of inflammatory bowel disease (IBD) is increasing, which is concerning because IBD is a known risk factor for the development of colorectal cancer. Emerging evidence highlights environmental factors, particularly dietary factors and gut microbiota dysbiosis, as pivotal inducers of IBD onset. Goji berry, an ancient tonic food and a nutraceutical supplement, contains a range of phytochemicals such as polysaccharides, carotenoids, and polyphenols. Among these phytochemicals, L. barbarum polysaccharides (LBPs) are the most important functional constituents, which have protective effects against oxidative stress, inflammation, and neurodegeneration. Recently, the beneficial effects of goji berry and associated LBPs consumption were linked to prebiotic effects, which can prevent dysbiosis associated with IBD. This review assessed pertinent literature on the protective effects of goji berry against IBD focusing on the gut microbiota and their metabolites in mediating the observed beneficial effects.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, Washington, USA
| | - Yifei Kang
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
155
|
Yener S, Akbulut KG, Karakuş R, Erdoğan D, Acartürk F. Development of melatonin loaded pectin nanoparticles for the treatment of inflammatory bowel disease: In vitro and in vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
156
|
Naganuma M, Watanabe K, Motoya S, Ogata H, Matsui T, Suzuki Y, Ursos L, Sakamoto S, Shikamura M, Hori T, Fernandez J, Watanabe M, Hibi T, Kanai T. Potential benefits of immunomodulator use with vedolizumab for maintenance of remission in ulcerative colitis. J Gastroenterol Hepatol 2022; 37:81-88. [PMID: 34409654 PMCID: PMC9293068 DOI: 10.1111/jgh.15667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/25/2021] [Accepted: 08/14/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM This study aimed to determine the efficacy and safety of vedolizumab treatment with or without concomitant immunomodulator use in Japanese patients with moderate-to-severe ulcerative colitis. METHODS Among enrolled patients in a phase 3 study conducted in Japan (clinicaltrials.gov, NCT02039505), data from patients allocated to 300-mg intravenous vedolizumab for induction and maintenance phases were used for this exploratory analysis. Efficacy endpoints were clinical response, clinical remission, and mucosal healing at week 10 and clinical remission and mucosal healing at week 60, and disease worsening and treatment failure during the maintenance phase. RESULTS At week 10, the differences in clinical response, clinical remission, and mucosal healing rates between the subgroups (those with concomitant immunomodulator use minus those without) were 0.7 (95% confidence interval: -14.3, 15.7), 3.3 (95% confidence interval: -8.5, 15.2), and 1.8 (95% confidence interval: -13.0, 16.5), respectively. At week 60, the differences in clinical remission and mucosal healing between the subgroups with and without concomitant immunomodulator use were 26.1 (95% confidence interval: -3.5, 55.6) and 29.9 (95% confidence interval: 1.4, 58.4), respectively. The proportions of patients without treatment failure at day 330 of the maintenance phase were 90.7% with concomitant immunomodulator use and 73.7% without. No marked differences in incidence of infections were observed between subgroups. CONCLUSIONS This study suggested the possibility that concomitant immunomodulator use may be beneficial to maintain the clinical efficacy of vedolizumab.
Collapse
Affiliation(s)
- Makoto Naganuma
- Division of Gastroenterology and Hepatology, Department of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Kenji Watanabe
- Department of Intestinal Inflammation ResearchHyogo College of MedicineNishinomiyaJapan
| | - Satoshi Motoya
- IBD CenterHokkaido Prefectural Welfare Federation of Agricultural Cooperative, Sapporo‐Kosei General HospitalSapporoJapan
| | - Haruhiko Ogata
- Endoscopic CenterKeio University School of MedicineTokyoJapan
| | - Toshiyuki Matsui
- Department of GastroenterologyFukuoka University Chikushi HospitalChikushinoJapan
| | - Yasuo Suzuki
- Department of Internal MedicineToho University Medical Center Sakura HospitalSakuraJapan
| | - Lyann Ursos
- US MedicalTakeda Pharmaceuticals USA, Inc.DeerfieldIllinoisUSA
| | - Shigeru Sakamoto
- Japan Medical OfficeTakeda Pharmaceutical Company LimitedTokyoJapan
| | - Mitsuhiro Shikamura
- Takeda Development Center JapanTakeda Pharmaceutical Company LimitedOsakaJapan
| | - Tetsuharu Hori
- Takeda Development Center JapanTakeda Pharmaceutical Company LimitedOsakaJapan
| | | | - Mamoru Watanabe
- Advanced Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Toshifumi Hibi
- Center for Advanced Inflammatory Bowel Disease Research and TreatmentKitasato University Kitasato Institute HospitalTokyoJapan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal MedicineKeio University School of MedicineTokyoJapan
| |
Collapse
|
157
|
Geesala R, Lin YM, Zhang K, Shi XZ. Targeting Mechano-Transcription Process as Therapeutic Intervention in Gastrointestinal Disorders. Front Pharmacol 2021; 12:809350. [PMID: 34992543 PMCID: PMC8724579 DOI: 10.3389/fphar.2021.809350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Mechano-transcription is a process whereby mechanical stress alters gene expression. The gastrointestinal (GI) tract is composed of a series of hollow organs, often encountered by transient or persistent mechanical stress. Recent studies have revealed that persistent mechanical stress is present in obstructive, functional, and inflammatory disorders and alters gene transcription in these conditions. Mechano-transcription of inflammatory molecules, pain mediators, pro-fibrotic and growth factors has been shown to play a key role in the development of motility dysfunction, visceral hypersensitivity, inflammation, and fibrosis in the gut. In particular, mechanical stress-induced cyclooxygenase-2 (COX-2) and certain pro-inflammatory mediators in gut smooth muscle cells are responsible for motility dysfunction and inflammatory process. Mechano-transcription of pain mediators such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) may lead to visceral hypersensitivity. Emerging evidence suggests that mechanical stress in the gut also leads to up-regulation of certain proliferative and pro-fibrotic mediators such as connective tissue growth factor (CTGF) and osteopontin (OPN), which may contribute to fibrostenotic Crohn's disease. In this review, we will discuss the pathophysiological significance of mechanical stress-induced expression of pro-inflammatory molecules, pain mediators, pro-fibrotic and growth factors in obstructive, inflammatory, and functional bowel disorders. We will also evaluate potential therapeutic targets of mechano-transcription process for the management of these disorders.
Collapse
|
158
|
Kiasat A, Granström AL, Stenberg E, Gustafsson UO, Marsk R. The risk of inflammatory bowel disease after bariatric surgery. Surg Obes Relat Dis 2021; 18:343-350. [PMID: 35012883 DOI: 10.1016/j.soard.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The association between bariatric surgery and new onset of inflammatory bowel disease has so far only been sparsely studied and with conflicting results. OBJECTIVES To investigate the association between bariatric surgery and inflammatory bowel disease in a large population-based cohort. SETTING Nationwide in Sweden. METHODS This population-based retrospective cohort study included Swedish individuals registered in the Scandinavian Obesity Surgery Registry who underwent primary Roux-en-Y gastric bypass or sleeve gastrectomy during 2007-2018. Ten control individuals from the general population were matched according to age, sex, and region of residence at time of exposure. The study population was followed until 2019 with regard to the development of inflammatory bowel disease. Cox proportional hazards models were used to compare disease-free survival time between subgroups and control individuals for each outcome. RESULTS The final cohort consisted of 64,188 exposed individuals with a total follow-up of 346,860 person-years and 634,530 controls with total follow-up of 3,444,186 person-years. Individuals who underwent Roux-en-Y-gastric bypass had an increased risk of later development of Crohn's disease (hazard ratio [HR] 1.8, 95% CI 1.5-2.2) and unclassified inflammatory bowel disease (HR 2.7, 95% CI 2.0-3.7) but not ulcerative colitis (HR .9, 95% CI .8-1.1) compared with control individuals, whereas individuals who underwent sleeve gastrectomy had an increased risk of ulcerative colitis (HR 1.8, 95% CI 1.1-3.1) but not Crohn's disease (HR .8, 95% CI .3-2.1) and unclassified inflammatory bowel disease (HR 2.5, 95% CI .8-7.8). CONCLUSIONS Roux-en-Y gastric bypass was associated with increased risk of Crohn's disease and unclassified inflammatory bowel disease, whereas sleeve gastrectomy was associated with increased risk of ulcerative colitis only.
Collapse
Affiliation(s)
- Ali Kiasat
- Department of Surgery, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Anna Löf Granström
- Department of Surgery, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Erik Stenberg
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ulf O Gustafsson
- Department of Surgery, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Richard Marsk
- Department of Surgery, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
159
|
Role of microRNAs in the Pathophysiology of Ulcerative Colitis. IMMUNO 2021. [DOI: 10.3390/immuno1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is an intractable disorder characterized by a chronic inflammation of the colon. Studies have identified UC as a multifactorial disorder affected by both genetic and environmental factors; however, the precise mechanism remains unclear. Recent advances in the field of microRNA (miRNA) research have identified an association between this small non-coding RNA in the pathophysiology of UC and altered miRNA expression profiles in patients with UC. Nevertheless, the roles of individual miRNAs are uncertain due to heterogeneity in both research samples and clinical backgrounds. In this review, we focus on miRNA expression in colonic mucosa where inflammation occurs in UC and discuss the potential roles of individual miRNAs in disease development, outlining the pathophysiology of UC.
Collapse
|
160
|
Batool Z, Hu G, Xinyue H, Wu Y, Fu X, Cai Z, Huang X, Ma M. A comprehensive review on functional properties of preserved eggs as an excellent food ingredient with anti-inflammatory and anti-cancer aspects. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
161
|
Goodman WA, Basavarajappa SC, Liu AR, Rodriguez FDS, Mathes T, Ramakrishnan P. Sam68 contributes to intestinal inflammation in experimental and human colitis. Cell Mol Life Sci 2021; 78:7635-7648. [PMID: 34693458 PMCID: PMC8817240 DOI: 10.1007/s00018-021-03976-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022]
Abstract
Sam68 is an RNA-binding protein with an adaptor role in signal transduction. Our previous work identified critical proinflammatory and apoptotic functions for Sam68, downstream of the TNF/TNFR1 and TLR2/3/4 pathways. Recent studies have shown elevated Sam68 in inflamed tissues from rheumatoid arthritis and ulcerative colitis (UC) patients, suggesting that Sam68 contributes to chronic inflammatory diseases. Here, we hypothesized that deletion of Sam68 is protective against experimental colitis in vivo, via reductions in TNF-associated inflammatory signaling. We used Sam68 knockout (KO) mice to study the role of Sam68 in experimental colitis, including its contributions to TNF-induced inflammatory gene expression in three-dimensional intestinal organoid cultures. We also studied the expression of Sam68 and inflammatory genes in colon tissues of UC patients. Sam68 KO mice treated with an acute course of DSS exhibited significantly less weight loss and histopathological inflammation compared to wild-type controls, suggesting that Sam68 contributes to experimental colitis. Bone marrow transplants showed no pathologic role for hematopoietic cell-specific Sam68, suggesting that non-hematopoietic Sam68 drives intestinal inflammation. Gene expression analyses showed that Sam68 deficiency reduced the expression of proinflammatory genes in colon tissues from DSS-treated mice, as well as TNF-treated three-dimensional colonic organoids. We also found that inflammatory genes, such as TNF, CCR2, CSF2, IL33 and CXCL10, as well as Sam68 protein, were upregulated in inflamed colon tissues of UC patients. This report identifies Sam68 as an important inflammatory driver in response to intestinal epithelial damage, suggesting that targeting Sam68 may hold promise to treat UC patients.
Collapse
Affiliation(s)
- Wendy A Goodman
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Shrikanth C Basavarajappa
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Angela R Liu
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Franklin D Staback Rodriguez
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Tailor Mathes
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
162
|
Abstract
Inflammatory bowel disease (IBD) describes a heterogenous group of diseases characterized by chronic inflammation of the intestinal tract. The IBD subtypes, Crohn's disease, ulcerative colitis, and IBD-Unspecified, each have characteristic features, but heterogeneity remains even among the subtypes. There has been an explosion of new knowledge on the possible pathogenesis of IBD over the last 2 decades mirroring innovation and refinement in technology, particularly the generation of large scale - "-omic" data. This knowledge has fostered a veritable renaissance of novel diagnostics, prognostics, and therapeutics, with patients with IBD seeing hope bloom in the increasingly large armamentarium of IBD therapies. However, while there are increased numbers of therapies and more pathways being targeted, the number of medications for IBD is still finite and the efficacy has reached a plateau. Precision medicine (PM) is much needed to rationally select and optimize IBD therapies in the new reality of wider but still limited choice with a concurrent, increasingly fine resolution on the significance and utility of clinical, genetic, microbial, and proteomic characteristics that define individual patients. PM is a rapidly changing art, but this review will strive to detail the current state and future directions of PM in pediatric IBD.
Collapse
|
163
|
Sharma S, Singh A, Sharma S, Kant A, Sevda S, Taherzadeh MJ, Garlapati VK. Functional foods as a formulation ingredients in beverages: technological advancements and constraints. Bioengineered 2021; 12:11055-11075. [PMID: 34783642 PMCID: PMC8810194 DOI: 10.1080/21655979.2021.2005992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
As a consequence of expanded science and technical research, the market perception of consumers has shifted from standard traditional to valuable foods, which are furthermore nutritional as well as healthier in today's world. This food concept, precisely referred to as functional, focuses on including probiotics, which enhance immune system activity, cognitive response, and overall health. This review primarily focuses on functional foods as functional additives in beverages and other food items that can regulate the human immune system and avert any possibility of contracting the infection. Many safety concerns must be resolved during their administration. Functional foods must have an adequate amount of specific probiotic strain(s) during their use and storage, as good viability is needed for optimum functionality of the probiotic. Thus, when developing novel functional food-based formulations, choosing a strain with strong technological properties is crucial. The present review focused on probiotics as an active ingredient in different beverage formulations and the exerting mechanism of action and fate of probiotics in the human body. Moreover, a comprehensive overview of the regulative and safety issues of probiotics-based foods and beverages formulations.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Astha Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Swati Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Anil Kant
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | | | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
164
|
Kondo A, Ma S, Lee MYY, Ortiz V, Traum D, Schug J, Wilkins B, Terry NA, Lee H, Kaestner KH. Highly Multiplexed Image Analysis of Intestinal Tissue Sections in Patients With Inflammatory Bowel Disease. Gastroenterology 2021; 161:1940-1952. [PMID: 34529988 PMCID: PMC8606000 DOI: 10.1053/j.gastro.2021.08.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Significant progress has been made since the first report of inflammatory bowel disease (IBD) in 1859, after decades of research that have contributed to the understanding of the genetic and environmental factors involved in IBD pathogenesis. Today, a range of treatments is available for directed therapy, mostly targeting the overactive immune response. However, the mechanisms by which the immune system contributes to disease pathogenesis and progression are not fully understood. One challenge hindering IBD research is the heterogeneous nature of the disease and the lack of understanding of how immune cells interact with one another in the gut mucosa. Introduction of a technology that enables expansive characterization of the inflammatory environment of human IBD tissues may address this gap in knowledge. METHODS We used the imaging mass cytometry platform to perform highly multiplex image analysis of IBD and healthy deidentified intestine sections (6 Crohn's disease compared to 6 control ileum; 6 ulcerative colitis compared to 6 control colon). The acquired images were graded for inflammation severity by analysis of adjacent H&E tissue sections. We assigned more than 300,000 cells to unique cell types and performed analyses of tissue integrity, epithelial activity, and immune cell composition. RESULTS The intestinal epithelia of patients with IBD exhibited increased proliferation rates and expression of HLA-DR compared to control tissues, and both features were positively correlated with the severity of inflammation. The neighborhood analysis determined enrichment of regulatory T cell interactions with CD68+ macrophages, CD4+ T cells, and plasma cells in both forms of IBD, whereas activated lysozyme C+ macrophages were preferred regulatory T cell neighbors in Crohn's disease but not ulcerative colitis. CONCLUSIONS Altogether, our study shows the power of imaging mass cytometry and its ability to both quantify immune cell types and characterize their spatial interactions within the inflammatory environment by a single analysis platform.
Collapse
Affiliation(s)
- Ayano Kondo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siyuan Ma
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Y. Y. Lee
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivian Ortiz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Department of Gastroenterology and Hepatology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia PA
| | - Daniel Traum
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Schug
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Wilkins
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Hongzhe Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus H. Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
165
|
Sun P, Su L, Zhu H, Li X, Guo Y, Du X, Zhang L, Qin C. Gut Microbiota Regulation and Their Implication in the Development of Neurodegenerative Disease. Microorganisms 2021; 9:microorganisms9112281. [PMID: 34835406 PMCID: PMC8621510 DOI: 10.3390/microorganisms9112281] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, human gut microbiota have become one of the most promising areas of microorganism research; meanwhile, the inter-relation between the gut microbiota and various human diseases is a primary focus. As is demonstrated by the accumulating evidence, the gastrointestinal tract and central nervous system interact through the gut–brain axis, which includes neuronal, immune-mediated and metabolite-mediated pathways. Additionally, recent progress from both preclinical and clinical studies indicated that gut microbiota play a pivotal role in gut–brain interactions, whereas the imbalance of the gut microbiota composition may be associated with the pathogenesis of neurological diseases (particularly neurodegenerative diseases), the underlying mechanism of which is insufficiently studied. This review aims to highlight the relationship between gut microbiota and neurodegenerative diseases, and to contribute to our understanding of the function of gut microbiota in neurodegeneration, as well as their relevant mechanisms. Furthermore, we also discuss the current application and future prospects of microbiota-associated therapy, including probiotics and fecal microbiota transplantation (FMT), potentially shedding new light on the research of neurodegeneration.
Collapse
Affiliation(s)
- Peilin Sun
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Hua Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Yaxi Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xiaopeng Du
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
- Correspondence: ; Tel.: +86-10-8777-8141
| |
Collapse
|
166
|
Lauxmann MA, Vazquez DS, Schilbert HM, Neubauer PR, Lammers KM, Dodero VI. From celiac disease to coccidia infection and vice-versa: The polyQ peptide CXCR3-interaction axis. Bioessays 2021; 43:e2100101. [PMID: 34705290 DOI: 10.1002/bies.202100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/04/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
Zonulin is a physiological modulator of intercellular tight junctions, which upregulation is involved in several diseases like celiac disease (CeD). The polyQ gliadin fragment binds to the CXCR3 chemokine receptor that activates zonulin upregulation, leading to increased intestinal permeability in humans. Here, we report a general hypothesis based on the structural connection between the polyQ sequence of the immunogenic CeD protein, gliadin, and enteric coccidian parasites proteins. Firstly, a novel interaction pathway between the parasites and the host is described based on the structural similarities between polyQ gliadin fragments and the parasite proteins. Secondly, a potential connection between coccidial infections as a novel environmental trigger of CeD is hypothesized. Therefore, this report represents a promising breakthrough for coccidian research and points out the potential role of coccidian parasites as a novel trigger of CeD that might define a preventive strategy for gluten-related disorders in general. Also see the video abstract here: https://youtu.be/oMaQasStcFI.
Collapse
Affiliation(s)
- Martin A Lauxmann
- Institute for Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Germany.,Department of Nephrology, Campus Clinic Brandenburg, Brandenburg Medical School (MHB) Theodor Fontane, Germany
| | - Diego S Vazquez
- Grupo de Biología Estructural y Biotecnología (GBEyB-IMBICE), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Hanna M Schilbert
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, Bielefeld, Germany.,Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Pia R Neubauer
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, Bielefeld, Germany
| | | | - Veronica I Dodero
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, Bielefeld, Germany
| |
Collapse
|
167
|
Hammad A, Elshaer M, Tang X. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8997-9015. [PMID: 34814332 DOI: 10.3934/mbe.2021443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Biomarker discovery is critical to improve CRC diagnosis, however, machine learning offers a new platform to study the etiology of CRC for this purpose. Therefore, the current study aimed to perform an integrated bioinformatics and machine learning analyses to explore novel biomarkers for CRC prognosis. In this study, we acquired gene expression microarray data from Gene Expression Omnibus (GEO) database. The microarray expressions GSE103512 dataset was downloaded and integrated. Subsequently, differentially expressed genes (DEGs) were identified and functionally analyzed via Gene Ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG). Furthermore, protein protein interaction (PPI) network analysis was conducted using the STRING database and Cytoscape software to identify hub genes; however, the hub genes were subjected to Support Vector Machine (SVM), Receiver operating characteristic curve (ROC) and survival analyses to explore their diagnostic values. Meanwhile, TCGA transcriptomics data in Gene Expression Profiling Interactive Analysis (GEPIA) database and the pathology data presented by in the human protein atlas (HPA) database were used to verify our transcriptomic analyses. A total of 105 DEGs were identified in this study. Functional enrichment analysis showed that these genes were significantly enriched in biological processes related to cancer progression. Thereafter, PPI network explored a total of 10 significant hub genes. The ROC curve was used to predict the potential application of biomarkers in CRC diagnosis, with an area under ROC curve (AUC) of these genes exceeding 0.92 suggesting that this risk classifier can discriminate between CRC patients and normal controls. Moreover, the prognostic values of these hub genes were confirmed by survival analyses using different CRC patient cohorts. Our results demonstrated that these 10 differentially expressed hub genes could be used as potential biomarkers for CRC diagnosis.
Collapse
Affiliation(s)
- Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
168
|
Cao Y, Gao J, Zhang L, Qin N, Zhu B, Xia X. Jellyfish skin polysaccharides enhance intestinal barrier function and modulate the gut microbiota in mice with DSS-induced colitis. Food Funct 2021; 12:10121-10135. [PMID: 34528649 DOI: 10.1039/d1fo02001c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Jellyfish skin polysaccharides (JSP) were isolated from Rhopilema esculentum Kishinouye and contained 55.11% polysaccharides and 2.26% uronic acid. To examine the anti-inflammatory, antioxidant and immunomodulatory activities of JSP in vivo, C57BL/6 mice were induced to develop ulcerative colitis by dextran sulfate sodium (DSS) and the roles of dietary JSP supplementation in modulating colitis were explored. JSP supplementation reduced the symptoms of colitis in mice, increased colon length, protected goblet cells, and improved intestinal epithelial integrity and permeability. JSP modulated oxidative stress and inflammatory responses, which was demonstrated by reduced MPO activity, NO level, and levels of pro-inflammatory cytokines including TNF-α, IL-1β and IL-6 in mice. JSP suppressed NF-κB signaling pathways as evidenced by lower levels of phosphorylated p65 and IKB. Moreover, JSP supplementation enhanced the expression of tight junction proteins and mucins, and modulated the composition of the gut microbiota and the production of short-chain fatty acids. Taken together, these results reveal the anti-inflammatory effect of dietary JSP in vivo, suggesting the potential of JSP as a nutritional supplement or adjunct strategy in preventing or ameliorating colitis.
Collapse
Affiliation(s)
- Yu Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jingzhu Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Lihua Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Ningbo Qin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
169
|
Dharmasiri S, Garrido-Martin EM, Harris RJ, Bateman AC, Collins JE, Cummings JRF, Sanchez-Elsner T. Human Intestinal Macrophages Are Involved in the Pathology of Both Ulcerative Colitis and Crohn Disease. Inflamm Bowel Dis 2021; 27:1641-1652. [PMID: 33570153 PMCID: PMC8522792 DOI: 10.1093/ibd/izab029] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intestinal macrophages are key immune cells in the maintenance of intestinal immune homeostasis and have a role in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms by which macrophages exert a pathological influence in both ulcerative colitis (UC) and Crohn disease (CD) are not yet well understood. METHODS We purified intestinal macrophages from gastrointestinal mucosal biopsies (patients with UC, patients with CD, and healthy donors) and analyzed their transcriptome by RNA sequencing and bioinformatics, confirming results with quantitative polymerase chain reaction and immunohistochemistry. RESULTS Compared with those of healthy donors, intestinal macrophages in patients with UC and with CD showed cellular reprograming of 1287 and 840 dysregulated genes, respectively (false discovery rate ≤ 0.1). The UC and CD intestinal macrophages showed an activated M1 inflammatory phenotype and the downregulation of genes engaged in drug/xenobiotic metabolism. Only macrophages from CD showed, concomitant to an M1 phenotype, a significant enrichment in the expression of M2 and fibrotic and granuloma-related genes. For the first time, we showed (and validated by quantitative polymerase chain reaction and immunohistochemistry) that intestinal macrophages in patients with IBD present both M1 and M2 features, as recently described for tumor-associated macrophages, that affect key pathways for IBD pathology, represented by key markers such as MMP12 (fibrosis), CXCL9 (T-cell attraction), and CD40 (T-cell activation). CONCLUSIONS Our data support the therapeutic targeting of macrophages to maintain remission in IBD but also indicate that a shift toward an M2 program-as proposed by some reports-may not limit the recruitment and activation of T cells because M2 features do not preclude M1 activation in patients with UC or CD and could exacerbate M2-related CD-specific features such as fibrosis and the formation of granulomas.
Collapse
Affiliation(s)
- Suranga Dharmasiri
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
- University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Eva M Garrido-Martin
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
- H12O-CNIO Lung Cancer Clinical Research Unit, Fundación Investigación Hospital 12 Octubre i+12/CNIO/CIBERONC. Avda Córdoba s/n, Madrid, Spain
| | - Richard J Harris
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
- University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Adrian C Bateman
- University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Jane E Collins
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
| | - J R Fraser Cummings
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
- University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
| |
Collapse
|
170
|
Yan T, Luo Y, Xia Y, Hamada K, Wang Q, Yan N, Krausz KW, Ward JM, Hao H, Wang P, Gonzalez FJ. St. John's Wort alleviates dextran sodium sulfate-induced colitis through pregnane X receptor-dependent NFκB antagonism. FASEB J 2021; 35:e21968. [PMID: 34644426 PMCID: PMC10167919 DOI: 10.1096/fj.202001098r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
St. John's wort (SJW), from traditional herbs, activates the pregnane X receptor (PXR), a potential drug target for treating inflammatory bowel disease (IBD). However, how SJW alleviates dextran sodium sulfate (DSS)-induced experimental IBD by activating PXR is unknown. To test this, PXR-humanized, wild-type (WT) and Pxr-null mice, primary intestinal organoids cultures, and the luciferase reporter gene assays were employed. In vivo, a diet supplemented with SJW was found to activate intestinal PXR both in WT and PXR-humanized mice, but not in Pxr-null mice. SJW prevented DSS-induced IBD in PXR-humanized and WT mice, but not in Pxr-null mice. In vitro, hyperforin, a major component of SJW, activated PXR and suppressed tumor necrosis factor (TNF)α-induced nuclear factor (NF) κB translocation in primary intestinal organoids from PXR-humanized mice, but not Pxr-null mice. Luciferase reporter gene assays showed that hyperforin dose-dependently alleviated TNFα-induced NFκB transactivation by activating human PXR in Caco2 cells. Furthermore, SJW therapeutically attenuated DSS-induced IBD in PXR-humanized mice. These data indicate the therapeutic potential of SJW in alleviating DSS-induced IBD in vivo, and TNFα-induced NFκB activation in vitro, dependent on PXR activation, which may have clinical implications for using SJW as a herbal drug anti-IBD treatment.
Collapse
Affiliation(s)
- Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yangliu Xia
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keisuke Hamada
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qiong Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nana Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jerrold M Ward
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
171
|
Evangelinellis MM, Souza RF, Mendes CE, Castelucci P. Effects of a P2X7 receptor antagonist on myenteric neurons in the distal colon of an experimental rat model of ulcerative colitis. Histochem Cell Biol 2021; 157:65-81. [PMID: 34626216 DOI: 10.1007/s00418-021-02039-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic diseases of the gastrointestinal tract that include ulcerative colitis and Crohn's disease and affect enteric neurons. Research has shown that Brilliant Blue G (BBG), a P2X7 receptor antagonist, restores enteric neurons following ischemia and reperfusion. This study aimed to evaluate the effect of BBG on myenteric neurons of the distal colon in an experimental rat model of ulcerative colitis. Colitis was induced by injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the large intestine. BBG was administered 1 h after colitis induction and for five consecutive days thereafter. Distal colons were collected 24 h or 7 days after TNBS injection. The animals were divided into 24-h and 7-day sham (vehicle injection rather than colitis induction), 24-h colitis, 24-h BBG, 7-day colitis and 7-day BBG groups. The disease activity index (DAI), neuronal density and profile of neuronal nitric oxide synthase (nNOS)-, choline acetyltransferase (ChAT)- and P2X7 receptor-immunoreactive enteric neurons were analyzed, and histological analysis was performed. The results showed recovery of the DAI and histological tissue integrity in the BBG groups compared to those in the colitis groups. In addition, the numbers of neurons positive for nNOS, ChAT and the P2X7 receptor per area were decreased in the colitis groups, and these measures were recovered in the BBG groups. Neuronal size was increased in the colitis groups and restored in the BBG groups. In conclusion, BBG is effective in improving experimental ulcerative colitis, and the P2X7 receptor may be a therapeutic target.
Collapse
Affiliation(s)
- Mariá Munhoz Evangelinellis
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr Orlando Marques de Paiva, 87, São Paulo, CEP 05508-270, Brazil
| | - Roberta Figueiroa Souza
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Cristina Eusébio Mendes
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
172
|
Akıncılar SC, Wu L, NG QF, Chua JYH, Unal B, Noda T, Chor WHJ, Ikawa M, Tergaonkar V. NAIL: an evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFκB in colitis. Gut 2021; 70:1857-1871. [PMID: 33239342 PMCID: PMC8458091 DOI: 10.1136/gutjnl-2020-322980] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE NFκB is the key modulator in inflammatory disorders. However, the key regulators that activate, fine-tune or shut off NFκB activity in inflammatory conditions are poorly understood. In this study, we aim to investigate the roles that NFκB-specific long non-coding RNAs (lncRNAs) play in regulating inflammatory networks. DESIGN Using the first genetic-screen to identify NFκB-specific lncRNAs, we performed RNA-seq from the p65-/- and Ikkβ-/- mouse embryonic fibroblasts and report the identification of an evolutionary conserved lncRNA designated mNAIL (mice) or hNAIL (human). hNAIL is upregulated in human inflammatory disorders, including UC. We generated mNAILΔNFκB mice, wherein deletion of two NFκB sites in the proximal promoter of mNAIL abolishes its induction, to study its function in colitis. RESULTS NAIL regulates inflammation via sequestering and inactivating Wip1, a known negative regulator of proinflammatory p38 kinase and NFκB subunit p65. Wip1 inactivation leads to coordinated activation of p38 and covalent modifications of NFκB, essential for its genome-wide occupancy on specific targets. NAIL enables an orchestrated response for p38 and NFκB coactivation that leads to differentiation of precursor cells into immature myeloid cells in bone marrow, recruitment of macrophages to inflamed area and expression of inflammatory genes in colitis. CONCLUSION NAIL directly regulates initiation and progression of colitis and its expression is highly correlated with NFκB activity which makes it a perfect candidate to serve as a biomarker and a therapeutic target for IBD and other inflammation-associated diseases.
Collapse
Affiliation(s)
- Semih Can Akıncılar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Lele Wu
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Qin Feng NG
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Joelle Yi Heng Chua
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Bilal Unal
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Wei Hong Jeff Chor
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore .,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
173
|
Yu Y, Zheng C, Lu X, Deng C, Xu Q, Guo W, Wu Q, Wang Q, Liu C, Huang X, Song J. GB1a Ameliorates Ulcerative Colitis via Regulation of the NF-κB and Nrf2 Signaling Pathways in an Experimental Model. Front Med (Lausanne) 2021; 8:654867. [PMID: 34557497 PMCID: PMC8452853 DOI: 10.3389/fmed.2021.654867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease. The intake of African Garcinia Kola nuts has been reported as a therapy for diarrhea and dysentery in the African population. However, the mechanism of action through which Garcinia Kola nuts act to ameliorates UC remains unknown. GB1a is the main active component of Garcinia Kola nuts. In this study, we explored the therapeutic effects and underlying mechanism of GB1a on dextran sodium sulfate (DSS)-induced UC. Human Colonic Epithelial Cells (HCoEpic) were challenged with TNF-α to test the effects of GB1a in protecting against oxidative stress and inflammation in vitro. Our data showed that GB1a significantly attenuated DSS-induced colonic inflammatory injury manifested as reversed loss of body weight and disease activity index (DAI) scores in UC mice. We also showed that GB1a improved the permeability of the intestinal epithelium by modulating the expression of tight junction proteins (ZO-1, Occludin). Mechanistically, GB1a may activate the Nrf2 antioxidant signaling pathway and suppress the nuclear translocation of NF-κB in reduced oxidative stress and expression of inflammatory genes induced by TNF-α in HCoEpic cells. Our study suggests that GB1a alleviates inflammation, oxidative stress and the permeability of the colonic epithelial mucosa in UC mice via the repression of NF-κB and activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congmin Zheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu Lu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingye Wu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital and The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
174
|
Machine Learning Modeling from Omics Data as Prospective Tool for Improvement of Inflammatory Bowel Disease Diagnosis and Clinical Classifications. Genes (Basel) 2021; 12:genes12091438. [PMID: 34573420 PMCID: PMC8466305 DOI: 10.3390/genes12091438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Research of inflammatory bowel disease (IBD) has identified numerous molecular players involved in the disease development. Even so, the understanding of IBD is incomplete, while disease treatment is still far from the precision medicine. Reliable diagnostic and prognostic biomarkers in IBD are limited which may reduce efficient therapeutic outcomes. High-throughput technologies and artificial intelligence emerged as powerful tools in search of unrevealed molecular patterns that could give important insights into IBD pathogenesis and help to address unmet clinical needs. Machine learning, a subtype of artificial intelligence, uses complex mathematical algorithms to learn from existing data in order to predict future outcomes. The scientific community has been increasingly employing machine learning for the prediction of IBD outcomes from comprehensive patient data-clinical records, genomic, transcriptomic, proteomic, metagenomic, and other IBD relevant omics data. This review aims to present fundamental principles behind machine learning modeling and its current application in IBD research with the focus on studies that explored genomic and transcriptomic data. We described different strategies used for dealing with omics data and outlined the best-performing methods. Before being translated into clinical settings, the developed machine learning models should be tested in independent prospective studies as well as randomized controlled trials.
Collapse
|
175
|
Chamorro N, Montero DA, Gallardo P, Farfán M, Contreras M, De la Fuente M, Dubois K, Hermoso MA, Quera R, Pizarro-Guajardo M, Paredes-Sabja D, Ginard D, Rosselló-Móra R, Vidal R. Landscapes and bacterial signatures of mucosa-associated intestinal microbiota in Chilean and Spanish patients with inflammatory bowel disease. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:223-238. [PMID: 34527721 PMCID: PMC8404152 DOI: 10.15698/mic2021.09.760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases (IBDs), which include ulcerative colitis (UC) and Crohn's disease (CD), cause chronic inflammation of the gut, affecting millions of people worldwide. IBDs have been frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is generally characterized by an increase in abundance of Proteobacteria such as Escherichia coli, and a decrease in abundance of Firmicutes such as Faecalibacterium prausnitzii (an indicator of a healthy colonic microbiota). The mechanisms behind the development of IBDs and dysbiosis are incompletely understood. Using samples from colonic biopsies, we studied the mucosa-associated intestinal microbiota in Chilean and Spanish patients with IBD. In agreement with previous studies, microbiome comparison between IBD patients and non-IBD controls indicated that dysbiosis in these patients is characterized by an increase of pro-inflammatory bacteria (mostly Proteobacteria) and a decrease of commensal beneficial bacteria (mostly Firmicutes). Notably, bacteria typically residing on the mucosa of healthy individuals were mostly obligate anaerobes, whereas in the inflamed mucosa an increase of facultative anaerobe and aerobic bacteria was observed. We also identify potential co-occurring and mutually exclusive interactions between bacteria associated with the healthy and inflamed mucosa, which appear to be determined by the oxygen availability and the type of respiration. Finally, we identified a panel of bacterial biomarkers that allow the discrimination between eubiosis from dysbiosis with a high diagnostic performance (96% accurately), which could be used for the development of non-invasive diagnostic methods. Thus, this study is a step forward towards understanding the landscapes and alterations of mucosa-associated intestinal microbiota in patients with IBDs.
Collapse
Affiliation(s)
- Nayaret Chamorro
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - David A. Montero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Pablo Gallardo
- Facultad de Medicina, Departamento de Pediatría y Cirugía Infantil, Campus Oriente-Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Chile
| | - Mauricio Farfán
- Facultad de Medicina, Departamento de Pediatría y Cirugía Infantil, Campus Oriente-Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Chile
| | - Mauricio Contreras
- Facultad de Ciencias Básicas, Departamento de Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Marjorie De la Fuente
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Karen Dubois
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Marcela A. Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Rodrigo Quera
- Programa Enfermedad Inflamatoria Intestinal. Servicio de Gastroenterología, Clínica Las Condes, Santiago, Chile
- Gastroenterología, Clínica Universidad de Los Andes, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Daniel Ginard
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Diversity, IMEDEA (CSIC-UIB), 07190 Esporles, Illes Balears, Spain
| | - Roberto Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Chile
| |
Collapse
|
176
|
Plevris N, Fulforth J, Lyons M, Siakavellas SI, Jenkinson PW, Chuah CS, Lucaciu L, Pattenden RJ, Arnott ID, Jones GR, Lees CW. Normalization of Fecal Calprotectin Within 12 Months of Diagnosis Is Associated With Reduced Risk of Disease Progression in Patients With Crohn's Disease. Clin Gastroenterol Hepatol 2021; 19:1835-1844.e6. [PMID: 32798706 DOI: 10.1016/j.cgh.2020.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/08/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The level of fecal calprotectin (FC) correlates with endoscopic evidence of inflammation in Crohn's disease (CD). A treat-to-target algorithm for patients with CD, that incorporates FC, outperforms a treatment strategy based on symptoms alone in the induction of mucosal healing at 12 months. We investigated whether normalization of FC within 12 months of diagnosis of CD is associated with a reduction in disease progression. METHODS We performed a retrospective cohort study at a tertiary IBD centre in the United Kingdom. We identified all incident cases of CD diagnosed from 2005 through 2017. Patients with a FC measurement ≥250 μg/g at diagnosis who also had at least 1 follow-up FC measurement within the first 12 months of diagnosis and >12 months of follow up were included. The last FC measurement within 12 months of diagnosis was used to determine normalization (cut-off <250 μg/g). The primary endpoint was time to first disease progression (composite of progression in Montreal disease behavior B1 to B2/3, B2 to B3, or new perianal disease; CD-related surgery; or CD-related hospitalization). Cox proportional hazards regression analysis was used to determine independent factors associated with time to first disease progression. RESULTS A total of 375 patients out of 1389 incident cases were included, with a median follow up of 5.3 years (interquartile range, 3.1-7.4 years). Normalization of FC within 12 months of diagnosis was confirmed in 43.5% of patients. Patients with normalized levels of FC had a significantly lower risk of composite disease progression (hazard ratio [HR], 0.36; 95% CI, 0.24-0.53; P < .001). They also had a lower risk of reaching any of the separate progression endpoints (progression in Montreal behavior or new perianal disease HR, 0.22; 95% CI, 0.11-0.45; P < .001; hospitalization HR, 0.33; 95% CI, 0.21-0.53; P <.001; surgery HR, 0.39; 95% CI, 0.19-0.78; P = .008) CONCLUSIONS: Normalization of FC within 12 months of diagnosis is associated with a reduced risk of progression of CD.
Collapse
Affiliation(s)
- Nikolas Plevris
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, United Kingdom.
| | - James Fulforth
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Mathew Lyons
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, United Kingdom
| | | | | | - Cher S Chuah
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Laura Lucaciu
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Rebecca J Pattenden
- Department of Biochemistry, Western General Hospital, Edinburgh, United Kingdom
| | - Ian D Arnott
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Gareth-Rhys Jones
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Charlie W Lees
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, United Kingdom; Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital Campus, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
177
|
Hyun CK. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22179139. [PMID: 34502047 PMCID: PMC8430512 DOI: 10.3390/ijms22179139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite considerable epidemiological evidence indicating comorbidity between metabolic disorders, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis, as well as common pathophysiological features shared by these two categories of diseases, the relationship between their pathogenesis at molecular levels are not well described. Intestinal barrier dysfunction is a characteristic pathological feature of IBD, which also plays causal roles in the pathogenesis of chronic inflammatory metabolic disorders. Increased intestinal permeability is associated with a pro-inflammatory response of the intestinal immune system, possibly leading to the development of both diseases. In addition, dysregulated interactions between the gut microbiota and the host immunity have been found to contribute to immune-mediated disorders including the two diseases. In connection with disrupted gut microbial composition, alterations in gut microbiota-derived metabolites have also been shown to be closely related to the pathogeneses of both diseases. Focusing on these prominent pathophysiological features observed in both metabolic disorders and IBD, this review highlights and summarizes the molecular risk factors that may link between the pathogeneses of the two diseases, which is aimed at providing a comprehensive understanding of molecular mechanisms underlying their comorbidity.
Collapse
Affiliation(s)
- Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| |
Collapse
|
178
|
Tumor Necrosis Factor Alpha Effects on the Porcine Intestinal Epithelial Barrier Include Enhanced Expression of TNF Receptor 1. Int J Mol Sci 2021; 22:ijms22168746. [PMID: 34445450 PMCID: PMC8395858 DOI: 10.3390/ijms22168746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) has been shown to impair the intestinal barrier, inducing and maintaining inflammatory states of the intestine. The aim of the current study was to analyze functional, molecular and regulatory effects of TNFα in a newly established non-transformed jejunal enterocyte model, namely IPEC-J2 monolayers. Incubation with 1000 U/mL TNFα induced a marked decrease in transepithelial electrical resistance (TEER), and an increase in permeability for the paracellular flux marker [3H]-D-mannitol compared to controls. Immunoblots revealed a significant decrease in tight junction (TJ) proteins occludin, claudin-1 and claudin-3. Moreover, a dose-dependent increase in the TNF receptor (TNFR)-1 was detected, explaining the exponential nature of pro-inflammatory effects, while TNFR-2 remained unchanged. Recovery experiments revealed reversible effects after the removal of the cytokine, excluding apoptosis as a reason for the observed changes. Furthermore, TNFα signaling could be inhibited by the specific myosin light chain kinase (MLCK) blocker ML-7. Results of confocal laser scanning immunofluorescence microscopy were in accordance with all quantitative changes. This study explains the self-enhancing effects of TNFα mediated by MLCK, leading to a differential regulation of TJ proteins resulting in barrier impairment in the intestinal epithelium.
Collapse
|
179
|
Passeri L, Marta F, Bassi V, Gregori S. Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. Int J Mol Sci 2021; 22:8415. [PMID: 34445143 PMCID: PMC8395087 DOI: 10.3390/ijms22168415] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) dictate the outcomes of tissue-specific immune responses. In the context of autoimmune diseases, DCs instruct T cells to respond to antigens (Ags), including self-Ags, leading to organ damage, or to becoming regulatory T cells (Tregs) promoting and perpetuating immune tolerance. DCs can acquire tolerogenic properties in vitro and in vivo in response to several stimuli, a feature that opens the possibility to generate or to target DCs to restore tolerance in autoimmune settings. We present an overview of the different subsets of human DCs and of the regulatory mechanisms associated with tolerogenic (tol)DC functions. We review the role of DCs in the induction of tissue-specific autoimmunity and the current approaches exploiting tolDC-based therapies or targeting DCs in vivo for the treatment of autoimmune diseases. Finally, we discuss limitations and propose future investigations for improving the knowledge on tolDCs for future clinical assessment to revert and prevent autoimmunity. The continuous expansion of tolDC research areas will lead to improving the understanding of the role that DCs play in the development and treatment of autoimmunity.
Collapse
Affiliation(s)
- Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Fortunato Marta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| | - Virginia Bassi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| |
Collapse
|
180
|
Bhattarai A, Kowalczyk W, Tran TN. A literature review on large intestinal hyperelastic constitutive modeling. Clin Biomech (Bristol, Avon) 2021; 88:105445. [PMID: 34416632 DOI: 10.1016/j.clinbiomech.2021.105445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Impacts, traumas and strokes are spontaneously life-threatening, but chronic symptoms strangle patient every day. Colorectal tissue mechanics in such chronic situations not only regulates the physio-psychological well-being of the patient, but also confirms the level of comfort and post-operative clinical outcomes. Numerous uniaxial and multiaxial tensile experiments on healthy and affected samples have evidenced significant differences in tissue mechanical behavior and strong colorectal anisotropy across each layer in thickness direction and along the length. Furthermore, this study reviewed various forms of passive constitutive models for the highly fibrous colorectal tissue ranging from the simplest linearly elastic and the conventional isotropic hyperelastic to the most sophisticated second harmonic generation image based anisotropic mathematical formulation. Under large deformation, the isotropic description of tissue mechanics is unequivocally ineffective which demands a microstructural based tissue definition. Therefore, the information collected in this review paper would present the current state-of-the-art in colorectal biomechanics and profoundly serve as updated computational resources to develop a sophisticated characterization of colorectal tissues.
Collapse
Affiliation(s)
- Aroj Bhattarai
- Department of Orthopaedic Surgery, University of Saarland, Germany
| | | | - Thanh Ngoc Tran
- Department of Orthopaedic Surgery, University of Saarland, Germany.
| |
Collapse
|
181
|
McGillis L, Bronte-Tinkew DM, Dang F, Capurro M, Prashar A, Ricciuto A, Greenfield L, Lozano-Ruf A, Siddiqui I, Hsieh A, Church P, Walters T, Roth DE, Griffiths A, Philpott D, Jones NL. Vitamin D deficiency enhances expression of autophagy-regulating miR-142-3p in mouse and "involved" IBD patient intestinal tissues. Am J Physiol Gastrointest Liver Physiol 2021; 321:G171-G184. [PMID: 34159811 DOI: 10.1152/ajpgi.00398.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vitamin D deficiency is an environmental factor involved in the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms surrounding its role remain unclear. Previous studies conducted in an intestinal epithelial-specific vitamin D receptor (VDR) knockout model suggest that a lack of vitamin D signaling causes a reduction in intestinal autophagy. A potential link between vitamin D deficiency and dysregulated autophagy is microRNA (miR)-142-3p, which suppresses autophagy. In this study, we found that wild-type C57BL/6 mice fed a vitamin D-deficient diet for 5 wk had increased miR-142-3p expression in ileal tissues compared with mice that were fed a matched control diet. Interestingly, there was no difference in expression of key autophagy markers ATG16L1 and LC3II in the ileum whole tissue. However, Paneth cells of vitamin D-deficient mice were morphologically abnormal and had an accumulation of the autophagy adaptor protein p62, which was not present in the total crypt epithelium. These findings suggest that Paneth cells exhibit early markers of autophagy dysregulation within the intestinal epithelium in response to vitamin D deficiency and enhanced miR-142-3p expression. Finally, we demonstrated that treatment-naïve IBD patients with low levels of vitamin D have an increase in miR-142-3p expression in colonic tissues procured from "involved" areas of the disease. Taken together, our findings demonstrate that insufficient vitamin D levels alter expression of autophagy-regulating miR-142-3p in intestinal tissues of mice and patients with IBD, providing insight into the mechanisms by which vitamin D deficiency modulates IBD pathogenesis.NEW & NOTEWORTHY Vitamin D deficiency has a role in IBD pathogenesis, and although the mechanisms surrounding its role remain unclear, it has been suggested that autophagy dysregulation is involved. Here, we show increased ileal expression of autophagy-suppressing miR-142-3p in mice that were fed a vitamin D-deficient diet and in "involved" colonic biopsies from pediatric IBD patients with low vitamin D. miR-142-3p serves as a potential mechanism mediating vitamin D deficiency and reduced autophagy.
Collapse
Affiliation(s)
- Laurel McGillis
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dana M Bronte-Tinkew
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances Dang
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Capurro
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Akriti Prashar
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Ricciuto
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Greenfield
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ana Lozano-Ruf
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iram Siddiqui
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Adam Hsieh
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Peter Church
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Walters
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel E Roth
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Paediatric Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne Griffiths
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Dana Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nicola L Jones
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
182
|
Thomas C, Minty M, Vinel A, Canceill T, Loubières P, Burcelin R, Kaddech M, Blasco-Baque V, Laurencin-Dalicieux S. Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics (Basel) 2021; 11:1376. [PMID: 34441309 PMCID: PMC8391932 DOI: 10.3390/diagnostics11081376] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is host to a complex and diverse microbiota community which plays an important role in health and disease. Major oral infections, i.e., caries and periodontal diseases, are both responsible for and induced by oral microbiota dysbiosis. This dysbiosis is known to have an impact on other chronic systemic diseases, whether triggering or aggravating them, making the oral microbiota a novel target in diagnosing, following, and treating systemic diseases. In this review, we summarize the major roles that oral microbiota can play in systemic disease development and aggravation and also how novel tools can help investigate this complex ecosystem. Finally, we describe new therapeutic approaches based on oral bacterial recolonization or host modulation therapies. Collaboration in diagnosis and treatment between oral specialists and general health specialists is of key importance in bridging oral and systemic health and disease and improving patients' wellbeing.
Collapse
Affiliation(s)
- Charlotte Thomas
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Matthieu Minty
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Alexia Vinel
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Thibault Canceill
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR CNRS 5085, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), Université Paul Sabatier, 35 Chemin des Maraichers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubières
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Remy Burcelin
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Myriam Kaddech
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Vincent Blasco-Baque
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Sara Laurencin-Dalicieux
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations de Toulouse (CERPOP), Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| |
Collapse
|
183
|
Jian Y, Zhang D, Liu M, Wang Y, Xu ZX. The Impact of Gut Microbiota on Radiation-Induced Enteritis. Front Cell Infect Microbiol 2021; 11:586392. [PMID: 34395308 PMCID: PMC8358303 DOI: 10.3389/fcimb.2021.586392] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is an important treatment for abdominal tumors. A critical side effect for this therapy is enteritis. In this review, we aim to summarize recent findings in radiation enteritis, in particular the role of gut microbiota dysbiosis in the development and therapy of the disease. Gut microbiota dysbiosis plays an important role in the occurrence of various diseases, such as radiation enteritis. Abdominal radiation results in changes in the composition of microbiota and reduces its diversity, which is mainly reflected in the decrease of Lactobacillus spp. and Bifidobacterium spp. and increase of Escherichia coli and Staphylococcus spp. Gut microbiota dysbiosis aggravates radiation enteritis, weakens intestinal epithelial barrier function, and promotes inflammatory factor expression. Pathogenic Escherichia coli induce the rearrangement and redistribution of claudin-1, occludin, and ZO-1 in tight junctions, a critical component in intestinal epithelial barrier. In view of the role that microbiome plays in radiation enteritis, we believe that intestinal flora could be a potential biomarker for the disease. Correction of microbiome by application of probiotics, fecal microbiota transplantation (FMT), and antibiotics could be an effective method for the prevention and treatment of radiation-induced enteritis.
Collapse
Affiliation(s)
- Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.,School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
184
|
Gryglewski A, Richter P, Szczepanik M. Changes in γδT Cells in Peripheral Blood of Patients with Ulcerative Colitis Exacerbations. Arch Immunol Ther Exp (Warsz) 2021; 69:18. [PMID: 34287711 PMCID: PMC8295081 DOI: 10.1007/s00005-021-00620-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
The role of γδT cells in ulcerative colitis (UC) is well confirmed in experimental animals and demonstrated in many clinical observations. Recent investigations have indicated that UC is associated with several forms of immune imbalance, such as an imbalance between effector T cells and regulatory T cells. However, little is known about the cellular aspect of clinical colitis exacerbations. We observed 140 patients with histologically confirmed UC over the course of 8 years. We investigated the percentage of γδT and αβT cells in peripheral blood of patients and also the expression of various surface markers (CD25, CD54, CD62L). Patients were assembled into stable colitis and exacerbated colitis groups. The percentage of γδT and αβT cells was evaluated by Ortho Cytorone Absolute flow cytometer. In patients with exacerbated colitis we observed a decrease of γδT cells in peripheral blood and an increased ratio of αβT/γδT. Additionally, we found that exacerbation results in a significant increase of percentage of γδTCD25, γδTCD54 and γδTCD62L lymphocytes in peripheral blood when compared to patients with stable colitis. Exacerbation of ulcerative colitis results in a decreased percentage of γδT cells in peripheral blood with increase of CD25, CD54 and CD62L expressing γδT cells. This may represent the effect of cell activation and migration, similar to that observed after the surgical trauma. We hope that this observation may help to predict exacerbations in colitis patients.
Collapse
Affiliation(s)
- Andrzej Gryglewski
- Department of Anatomy and Department of General Surgery, Gastroenterology, Oncology and Transplantology, Jagiellonian University Medical College, Kraków, Poland.
| | - Piotr Richter
- Department of General Surgery, Gastroenterology, Oncology and Transplantology, Jagiellonian University Medical College, Kraków, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
185
|
Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate Lymphoid Cells in Intestinal Homeostasis and Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms22147618. [PMID: 34299236 PMCID: PMC8307624 DOI: 10.3390/ijms22147618] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous state of chronic intestinal inflammation of unknown cause encompassing Crohn’s disease (CD) and ulcerative colitis (UC). IBD has been linked to genetic and environmental factors, microbiota dysbiosis, exacerbated innate and adaptive immunity and epithelial intestinal barrier dysfunction. IBD is classically associated with gut accumulation of proinflammatory Th1 and Th17 cells accompanied by insufficient Treg numbers and Tr1 immune suppression. Inflammatory T cells guide innate cells to perpetuate a constant hypersensitivity to microbial antigens, tissue injury and chronic intestinal inflammation. Recent studies of intestinal mucosal homeostasis and IBD suggest involvement of innate lymphoid cells (ILCs). These lymphoid-origin cells are innate counterparts of T cells but lack the antigen receptors expressed on B and T cells. ILCs play important roles in the first line of antimicrobial defense and contribute to organ development, tissue protection and regeneration, and mucosal homeostasis by maintaining the balance between antipathogen immunity and commensal tolerance. Intestinal homeostasis requires strict regulation of the quantity and activity of local ILC subpopulations. Recent studies demonstrated that changes to ILCs during IBD contribute to disease development. A better understanding of ILC behavior in gastrointestinal homeostasis and inflammation will provide valuable insights into new approaches to IBD treatment. This review summarizes recent research into ILCs in intestinal homeostasis and the latest advances in the understanding of the role of ILCs in IBD, with particular emphasis on the interaction between microbiota and ILC populations and functions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Claudia Mingorance
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
186
|
Listeria monocytogenes Meningitis After Treatment With Infliximab in an 8-Year-Old Pediatric Patient With Crohn's Disease. ACG Case Rep J 2021; 8:e00624. [PMID: 34258304 PMCID: PMC8270588 DOI: 10.14309/crj.0000000000000624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Anti-tumor necrosis factor-alpha agents are used for the treatment of inflammatory bowel disease. Central nervous system infections are rare adverse effects of these medications, and to the best of our knowledge, there are only 2 case reports from the pediatric patient population. We report a case of an 8-year-old patient with Crohn's disease who developed Listeria meningitis while on infliximab.
Collapse
|
187
|
Luo L, Qing L, Yao C, Liu D, Li Y, Li T, Feng P. Efficacy and safety of hyperbaric oxygen therapy for moderate-to-severe ulcerative colitis: a protocol for a systematic review and meta-analysis. BMJ Open 2021; 11:e047543. [PMID: 34183344 PMCID: PMC8240565 DOI: 10.1136/bmjopen-2020-047543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Ulcerative colitis (UC) is a type of inflammatory bowel disease, and 62% of patients with UC felt that it is difficult for them to live a normal life. Furthermore, some researches have shown that about 15% of patients with UC undergo at least one extreme clinical course in their lifetime, and 10%-30% of patients with UC oblige colectomy. Although many investigations have demonstrated that HBO2 has a beneficial impact on UC treatment, a systematic review and meta-analysis are unavailable. Therefore, a meta-analysis is essential to assess the efficacy and safety of HBO2 in treating UC. METHODS AND ANALYSIS A systematic search plan will be performed in the following seven databases with a restriction of time from inception to September 2020 to filter the eligible studies: PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure, Chinese Scientific Journal Database (VIP) and Chinese Biomedical Database WanFang. Other related resources will be also searched. Two independent reviewers will choose eligible researches and extract data. The risk of bias will be evaluated based on Cochrane Collaboration's Risk of Bias tool and Newcastle-Ottawa Scale. Eventually, a systematic review and meta-analysis will be performed via the Review Manager V.5.3 statistical software and STATA V.14.0 software. ETHICS AND DISSEMINATION This study will not involve the individual patient and any ethical problems since its outcomes are based on published data. Therefore, no ethical review and approval are required. We plan to publish the study in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42020210244.
Collapse
Affiliation(s)
- Lihong Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lei Qing
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Chengjiao Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dongying Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yilin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Tinglin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Peimin Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
188
|
Tarhini AA, Joshi I, Garner F. Sargramostim and immune checkpoint inhibitors: combinatorial therapeutic studies in metastatic melanoma. Immunotherapy 2021; 13:1011-1029. [PMID: 34157863 DOI: 10.2217/imt-2021-0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of immune checkpoint inhibitors in patients with metastatic melanoma generates clinical benefit, including improved survival. Yet disease resistance and immune-related adverse events persist as unmet needs. Sargramostim, a yeast-derived recombinant human GM-CSF, has shown clinical activity against diverse solid tumors, including metastatic melanoma. Here we review the use of sargramostim for treatment of advanced melanoma. Potential sargramostim applications in melanoma draw on the unique ability of GM-CSF to link innate and adaptive immune responses. We review preclinical and translational data describing the mechanism of action of sargramostim and synergy with immune checkpoint inhibitors to enhance efficacy and reduce treatment-related toxicity.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Cutaneous Oncology & Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Ila Joshi
- Pre-Clinical & Translational Research & Development, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| | - Fiona Garner
- Immuno-Oncology Clinical Development & Translational Medicine, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| |
Collapse
|
189
|
Van den Berghe N, Verstockt B, Gils A, Sabino J, Ferrante M, Vermeire S, Declerck P, Thomas D. Tissue Exposure does not Explain Non-Response in Ulcerative Colitis Patients with Adequate Serum Vedolizumab Concentrations. J Crohns Colitis 2021; 15:988-993. [PMID: 33245363 DOI: 10.1093/ecco-jcc/jjaa239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Some patients with ulcerative colitis [UC] do not respond to vedolizumab treatment despite adequate drug exposure in serum. This study aimed to investigate vedolizumab in tissue and questioned whether insufficient tissue exposure could explain non-response in UC patients with adequate serum vedolizumab concentrations. METHODS A paired serum sample and colonic mucosal biopsy was collected from 40 UC patients [20 endoscopic responders, 20 non-responders] at week 14 of vedolizumab treatment. Vedolizumab, soluble [s]-mucosal addressin cell adhesion molecule-1 [MAdCAM-1], s-vascular cell adhesion molecule-1 [VCAM-1] and s-intercellular adhesion molecule-1 [ICAM-1] were measured in serum and/or tissue. Endoscopic response was defined as Mayo endoscopic sub-score ≤1. RESULTS A significant positive correlation was observed between vedolizumab serum and colonic tissue concentrations [ρ = 0.84, p < 0.0001], regardless of the macroscopic inflammatory state of the tissue. Vedolizumab tissue concentrations were lower in non-responders than in responders [0.07 vs 0.11 µg/mg, p = 0.04]. In the subgroup of patients with adequate vedolizumab serum concentrations [>14.6 µg/mL], tissue vedolizumab was not significantly different between responders and non-responders [0.15 vs 0.13 µg/mg; p = 0.92]. Serum sMAdCAM-1 concentrations, but not serum sICAM-1 or sVCAM-1 concentrations, were significantly higher in responders than in non-responders with adequate vedolizumab serum concentrations [1.04 vs 0.83 ng/mL, p = 0.03]. CONCLUSIONS Vedolizumab concentrations in colonic mucosal tissue of UC patients reflect the concentration in serum regardless of the macroscopic inflammatory state of the tissue. Our data show that insufficient tissue exposure does not explain non-response in UC patients with adequate serum vedolizumab concentrations.
Collapse
Affiliation(s)
- Nathalie Van den Berghe
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Ann Gils
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - João Sabino
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Debby Thomas
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
190
|
Emami NK, Dalloul RA. Centennial Review: Recent developments in host-pathogen interactions during necrotic enteritis in poultry. Poult Sci 2021; 100:101330. [PMID: 34280643 PMCID: PMC8318987 DOI: 10.1016/j.psj.2021.101330] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Necrotic enteritis (NE) is a significant enteric disease in commercial poultry with considerable economic effect on profitability manifested by an estimated $6 billion in annual losses to the global industry. NE presents a unique challenge, being a complex enteric disease that often leads to either clinical (acute) or subclinical (chronic) form. The latter typically results in poor performance (reduced feed intake, weight gain and eventually higher feed conversion ratio [FCR]) with low mortality rates, and represents the greatest economic impact on poultry production. The use of antibiotic growth promoters (AGPs) has been an effective tool in protecting birds from enteric diseases by maintaining enteric health and modifying gut microbiota, thus improving broilers’ production efficiency and overall health. The removal of AGPs presented the poultry industry with several challenges, including reduced bird health and immunity as well as questioning the safety of poultry products. Consequently, research on antibiotic alternatives that can support gut health was intensified. Probiotics, prebiotics, essential oils, and organic acids were among various additives that have been tested for their efficacy against NE with some being effective but not to the level of AGPs. The focus of this review is on the relationship between NE pathogenesis, microbiome, and host immune responses, along with references to recent reviews addressing production aspects of NE. With a comprehensive understanding of these dynamic changes, new and programmed strategies could be developed to make use of the current products more effectively or build a stepping stone toward the development of a new generation of supplements.
Collapse
Affiliation(s)
- Nima K Emami
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
191
|
Pemmasani G, Elgendy I, Mamas MA, Leighton JA, Aronow WS, Tremaine WJ. Epidemiology and Clinical Outcomes of Patients With Inflammatory Bowel Disease Presenting With Acute Coronary Syndrome. Inflamm Bowel Dis 2021; 27:1017-1025. [PMID: 32978941 DOI: 10.1093/ibd/izaa237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is associated with an increased acute coronary syndrome (ACS) risk. Data are limited regarding the epidemiology and outcomes of ACS in patients with IBD. METHODS A retrospective cohort analysis of patients with IBD admitted for ACS in the U.S. Healthcare Cost and Utilization Project National Inpatient Sample for 2005 to 2015 was conducted. We analyzed trends in IBD-ACS admissions and mortality, differences in risk profiles, management strategies, and in-hospital mortality between IBD-ACS and non-IBD ACS and between ulcerative colitis (UC) and Crohn disease (CD). RESULTS We studied 6,872,415 non-IBD ACS and 24,220 IBD-ACS hospitalizations (53% with CD). During the study period, the number of hospitalizations for IBD-ACS increased, particularly those related to CD. Compared with non-IBD ACS, patients with IBD-ACS had a lower prevalence of cardiovascular risk factors and similar rates of coronary angiography and revascularization. The in-hospital mortality rate was lower with IBD-ACS (3.9%) compared with non-IBD ACS (5.3%; odds ratio, 0.81; 95% confidence interval, 0.69-0.96; P = 0.011) and was stable between 2005 and 2015. Risk factors, ACS management strategies, and mortality were similar between CD and UC. Coagulopathy, weight loss, and gastrointestinal bleeding were more frequent in IBD-ACS and were strong independent predictors of mortality. CONCLUSIONS Hospitalizations for ACS in patients with IBD increased in recent years but death rates were stable. The ACS-related risk profiles and mortality were modestly favorable with IBD-ACS than with non-IBD ACS and were similar between CD and UC. Complications more frequently associated with IBD were strongly associated with mortality. These findings indicate that aggressive management of IBD and ACS comorbidities is required to improve outcomes.
Collapse
Affiliation(s)
| | - Islam Elgendy
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Keele University, Stoke-on-Trent, UK.,Royal Stoke University Hospital, Stoke-on-Trent, UK
| | | | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| | - William J Tremaine
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
192
|
Lopez LR, Barlogio CJ, Broberg CA, Wang J, Arthur JC. A nadA Mutation Confers Nicotinic Acid Auxotrophy in Pro-carcinogenic Intestinal Escherichia coli NC101. Front Microbiol 2021; 12:670005. [PMID: 34149655 PMCID: PMC8207962 DOI: 10.3389/fmicb.2021.670005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) and inflammation-associated colorectal cancer (CRC) are linked to blooms of adherent-invasive Escherichia coli (AIEC) in the intestinal microbiota. AIEC are functionally defined by their ability to adhere/invade epithelial cells and survive/replicate within macrophages. Changes in micronutrient availability can alter AIEC physiology and interactions with host cells. Thus, culturing AIEC for mechanistic investigations often involves precise nutrient formulation. We observed that the pro-inflammatory and pro-carcinogenic AIEC strain NC101 failed to grow in minimal media (MM). We hypothesized that NC101 was unable to synthesize a vital micronutrient normally found in the host gut. Through nutrient supplementation studies, we identified that NC101 is a nicotinic acid (NA) auxotroph. NA auxotrophy was not observed in the other non-toxigenic E. coli or AIEC strains we tested. Sequencing revealed NC101 has a missense mutation in nadA, a gene encoding quinolinate synthase A that is important for de novo nicotinamide adenine dinucleotide (NAD) biosynthesis. Correcting the identified nadA point mutation restored NC101 prototrophy without impacting AIEC function, including motility and AIEC-defining survival in macrophages. Our findings, along with the generation of a prototrophic NC101 strain, will greatly enhance the ability to perform in vitro functional studies that are needed for mechanistic investigations on the role of intestinal E. coli in digestive disease.
Collapse
Affiliation(s)
- Lacey R Lopez
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cassandra J Barlogio
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Christopher A Broberg
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy Wang
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Janelle C Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Center for Gastrointestinal Biology and Disease, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
193
|
Alshehri D, Saadah O, Mosli M, Edris S, Alhindi R, Bahieldin A. Dysbiosis of gut microbiota in inflammatory bowel disease: Current therapies and potential for microbiota-modulating therapeutic approaches. Bosn J Basic Med Sci 2021; 21:270-283. [PMID: 33052081 PMCID: PMC8112554 DOI: 10.17305/bjbms.2020.5016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of evidence reinforcing the unique connections between the host microbiome, health, and diseases. Due to the extreme importance of the symbiotic relationship between the intestinal microbiome and the host, it is not surprising that any alteration in the gut microbiota would result in various diseases, including inflammatory bowel disease (IBD), Crohn's disease, (CD) and ulcerative colitis (UC). IBD is a chronic, relapsing-remitting condition that is associated with significant morbidity, mortality, compromised quality of life, and costly medical care. Dysbiosis is believed to exacerbate the progression of IBD. One of the currently used treatments for IBD are anti-tumor necrosis factor (TNF) drugs, representing a biologic therapy that is reported to have an impact on the gut microbiota composition. The efficacy of anti-TNF agents is hindered by the possibility of non-response, which occurs in 10-20% of treated patients, and secondary loss of response, which occurs in up to 30% of treated patients. This underscores the need for novel therapies and studies that evaluate the role of the gut microbiota in these conditions. The success of any therapeutic strategy for IBD depends on our understanding of the interactions that occur between the gut microbiota and the host. In this review, the health and disease IBD-associated microbiota patterns will be discussed, in addition to the effect of currently used therapies for IBD on the gut microbiota composition, as well as new therapeutic approaches that can be used to overcome the current treatment constraints.
Collapse
Affiliation(s)
- Dikhnah Alshehri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biology, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | - Omar Saadah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Inflammatory Bowel Disease Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Mosli
- Inflammatory Bowel Disease Research Group, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt; Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rashad Alhindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
194
|
Chang TE, Luo JC, Yang UC, Huang YH, Hou MC, Lee FY. Fecal microbiota profile in patients with inflammatory bowel disease in Taiwan. J Chin Med Assoc 2021; 84:580-587. [PMID: 33871395 DOI: 10.1097/jcma.0000000000000532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with complicated interaction between immune, gut microbiota, and environmental factors in a genetically vulnerable host. Dysbiosis is often seen in patients with IBD. We aimed to investigate the fecal microbiota in patients with IBD and compared them with a control group in Taiwan. METHODS In this cross-sectional study, we investigated fecal microbiota in 20 patients with IBD and 48 healthy controls. Fecal samples from both IBD patients and controls were analyzed by the next-generation sequencing method and relevant software. RESULTS The IBD group showed lower bacterial richness and diversity compared with the control group. The principal coordinate analysis also revealed the significant structural differences between the IBD group and the control group. These findings were consistent whether the analysis was based on an operational taxonomic unit or amplicon sequence variant. However, no significant difference was found when comparing the composition of fecal microbiota between ulcerative colitis (UC) and Crohn's disease (CD). Further analysis showed that Lactobacillus, Enterococcus, and Bifidobacterium were dominant in the IBD group, whereas Faecalibacterium and Subdoligranulum were dominant in the control group at the genus level. When comparing UC, CD, and control group, Lactobacillus, Bifidobacterium, and Enterococcus were identified as dominant genera in the UC group. Fusobacterium and Escherichia_Shigella were dominant in the CD group. CONCLUSION Compared with the healthy control, the IBD group showed dysbiosis with a significant decrease in both richness and diversity of gut microbiota.
Collapse
Affiliation(s)
- Tien-En Chang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Endoscopic Center for Diagnosis and Therapy, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Jiing-Chyuan Luo
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
- Keelung Hospital, Ministry of Health Welfare, Keelung, Taiwan, ROC
| | - Ueng-Cheng Yang
- National Yang Ming Chiao Tung University, School of Medicine, Institute of Biomedical Informatics, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
195
|
Daskalaki MG, Axarlis K, Aspevik T, Orfanakis M, Kolliniati O, Lapi I, Tzardi M, Dermitzaki E, Venihaki M, Kousoulaki K, Tsatsanis C. Fish Sidestream-Derived Protein Hydrolysates Suppress DSS-Induced Colitis by Modulating Intestinal Inflammation in Mice. Mar Drugs 2021; 19:312. [PMID: 34071180 PMCID: PMC8228426 DOI: 10.3390/md19060312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease is characterized by extensive intestinal inflammation, and therapies against the disease target suppression of the inflammatory cascade. Nutrition has been closely linked to the development and suppression of inflammatory bowel disease, which to a large extent is attributed to the complex immunomodulatory properties of nutrients. Diets containing fish have been suggested to promote health and suppress inflammatory diseases. Even though most of the health-promoting properties of fish-derived nutrients are attributed to fish oil, the potential health-promoting properties of fish protein have not been investigated. Fish sidestreams contain large amounts of proteins, currently unexploited, with potential anti-inflammatory properties, and may possess additional benefits through bioactive peptides and free amino acids. In this project, we utilized fish protein hydrolysates, based on mackerel and salmon heads and backbones, as well as flounder skin collagen. Mice fed with a diet supplemented with different fish sidestream-derived protein hydrolysates (5% w/w) were exposed to the model of DSS-induced colitis. The results show that dietary supplements containing protein hydrolysates from salmon heads suppressed chemically-induced colitis development as determined by colon length and pro-inflammatory cytokine production. To evaluate colitis severity, we measured the expression of different pro-inflammatory cytokines and chemokines and found that the same supplement suppressed the pro-inflammatory cytokines IL-6 and TNFα and the chemokines Cxcl1 and Ccl3. We also assessed the levels of the anti-inflammatory cytokines IL-10 and Tgfb and found that selected protein hydrolysates induced their expression. Our findings demonstrate that protein hydrolysates derived from fish sidestreams possess anti-inflammatory properties in the model of DSS-induced colitis, providing a novel underexplored source of health-promoting dietary supplements.
Collapse
Affiliation(s)
- Maria G. Daskalaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (M.G.D.); (K.A.); (M.O.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Konstantinos Axarlis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (M.G.D.); (K.A.); (M.O.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Tone Aspevik
- Department of Nutrition and Feed Technology, Nofima AS, 5141 Bergen, Norway; (T.A.); (K.K.)
| | - Michail Orfanakis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (M.G.D.); (K.A.); (M.O.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Ourania Kolliniati
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (M.G.D.); (K.A.); (M.O.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Ioanna Lapi
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (M.G.D.); (K.A.); (M.O.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Maria Tzardi
- Laboratory of Pathology, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - Eirini Dermitzaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (M.G.D.); (K.A.); (M.O.); (O.K.); (I.L.); (E.D.); (M.V.)
| | - Maria Venihaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (M.G.D.); (K.A.); (M.O.); (O.K.); (I.L.); (E.D.); (M.V.)
| | - Katerina Kousoulaki
- Department of Nutrition and Feed Technology, Nofima AS, 5141 Bergen, Norway; (T.A.); (K.K.)
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, 70013 Heraklion, Greece; (M.G.D.); (K.A.); (M.O.); (O.K.); (I.L.); (E.D.); (M.V.)
- Institute of Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| |
Collapse
|
196
|
Devaprasad A, Radstake TRDJ, Pandit A. Integration of Immunome With Disease-Gene Network Reveals Common Cellular Mechanisms Between IMIDs and Drug Repurposing Strategies. Front Immunol 2021; 12:669400. [PMID: 34108969 PMCID: PMC8181425 DOI: 10.3389/fimmu.2021.669400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023] Open
Abstract
Objective Development and progression of immune-mediated inflammatory diseases (IMIDs) involve intricate dysregulation of the disease-associated genes (DAGs) and their expressing immune cells. Identifying the crucial disease-associated cells (DACs) in IMIDs has been challenging due to the underlying complex molecular mechanism. Methods Using transcriptome profiles of 40 different immune cells, unsupervised machine learning, and disease-gene networks, we constructed the Disease-gene IMmune cell Expression (DIME) network and identified top DACs and DAGs of 12 phenotypically different IMIDs. We compared the DIME networks of IMIDs to identify common pathways between them. We used the common pathways and publicly available drug-gene network to identify promising drug repurposing targets. Results We found CD4+Treg, CD4+Th1, and NK cells as top DACs in inflammatory arthritis such as ankylosing spondylitis (AS), psoriatic arthritis, and rheumatoid arthritis (RA); neutrophils, granulocytes, and BDCA1+CD14+ cells in systemic lupus erythematosus and systemic scleroderma; ILC2, CD4+Th1, CD4+Treg, and NK cells in the inflammatory bowel diseases (IBDs). We identified lymphoid cells (CD4+Th1, CD4+Treg, and NK) and their associated pathways to be important in HLA-B27 type diseases (psoriasis, AS, and IBDs) and in primary-joint-inflammation-based inflammatory arthritis (AS and RA). Based on the common cellular mechanisms, we identified lifitegrast as a potential drug repurposing candidate for Crohn's disease and other IMIDs. Conclusions Existing methods are inadequate in capturing the intricate involvement of the crucial genes and cell types essential to IMIDs. Our approach identified the key DACs, DAGs, common mechanisms between IMIDs, and proposed potential drug repurposing targets using the DIME network. To extend our method to other diseases, we built the DIME tool (https://bitbucket.org/systemsimmunology/dime/) to help scientists uncover the etiology of complex and rare diseases to further drug development by better-determining drug targets, thereby mitigating the risk of failure in late clinical development.
Collapse
Affiliation(s)
- Abhinandan Devaprasad
- Division Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Timothy R. D. J. Radstake
- Division Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Aridaman Pandit
- Division Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
197
|
Nakazawa M, Miyamae J, Okano M, Kanemoto H, Katakura F, Shiina T, Ohno K, Tsujimoto H, Moritomo T, Watari T. Dog leukocyte antigen (DLA) class II genotypes associated with chronic enteropathy in French bulldogs and miniature dachshunds. Vet Immunol Immunopathol 2021; 237:110271. [PMID: 34044267 DOI: 10.1016/j.vetimm.2021.110271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/01/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023]
Abstract
Canine chronic enteropathy (CE) is a group of immunogenetic disorders of unclear etiology characterized by chronic or recurrent gastrointestinal signs and inflammation. Diagnosis of CE subtypes by treatment response is a lengthy and challenging process, particularly in refractory cases of the disease. Given known association of dog leukocyte antigen (DLA) class II genotype and various immunogenetic disorders between and across breeds, this study was designed to examine the potential of determining susceptibility to refractory CE through identification of risk and protective genotypes in French bulldogs and miniature dachshunds-two popular dog breeds in Japan. Sequence-based genotyping of three DLA class II genes in 29 French bulldogs and 30 miniature dachshunds with refractory CE revealed a protective haplotype DLA-DRB1*002:01-DQA1*009:01-DQB1*001:01 against CE in French bulldogs (OR 0.09, 95 % CI 0.01-0.71, p = 0.0084). No statistical difference was noted between miniature dachshund cases and controls. These findings, largely disparate from a previous study on German shepherd dogs in the UK, were taken as possible indication of etiological differences in the refractory CE noted between and within breeds, and by extension, the potential of identifying such disease heterogeneity by DLA typing. The DLA-DQA1/DQB1 haplotype, protective against CE in our French bulldogs, has been reported as protective in various immune-mediated disorders such as Doberman hepatitis (Dyggve et al., 2011). Likewise, the DLA-DRB1*006:01 risk allele for Doberman hepatitis was noted in more French bulldogs with CE compared to controls, in line with reports on genotypes associated with both risk and protection being shared across various autoimmune diseases and breeds. These findings support an immunogenetic basis to the French bulldog-CE in our analysis, calling for further DLA studies working with larger samples and different breeds towards phenotypic clarification that may aid in early diagnosis, treatment, and prophylaxis through epigenetic approaches and breeding.
Collapse
Affiliation(s)
- Meg Nakazawa
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan
| | - Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Hideyuki Kanemoto
- DVMs Animal Medical Center Yokohama, 966-5 Kawamuko, Tsuzuki, Yokohama, Kanagawa, 224-0044, Japan; Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Toshihiro Watari
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
198
|
Abstract
In patients with inflammatory bowel disease (IBD), a treat-to-target treatment strategy requires tight monitoring of disease activity. Noninvasive biomarkers may help to monitor the intestinal disease activity. We demonstrated recently that peripheral microRNA (miR)-320a expression in mice follows the course of experimental colitis. The aim of this study was to evaluate the potential of miR-320a to monitor the disease activity in patients with IBD, to predict the course of disease, and to distinguish IBD from infectious colitis.
Collapse
|
199
|
Shirzad-Aski H, Besharat S, Kienesberger S, Sohrabi A, Roshandel G, Amiriani T, Norouzi A, Keshtkar A. Association Between Helicobacter pylori Colonization and Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J Clin Gastroenterol 2021; 55:380-392. [PMID: 32833699 DOI: 10.1097/mcg.0000000000001415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Various observational studies have examined a potential relationship between Helicobacter pylori colonization and inflammatory bowel diseases (IBDs); however, results are inconclusive. This systematic review evaluates articles reporting an association between human H. pylori colonization and IBD. METHODS A systematic search of studies was conducted to evaluate a possible relationship between H. pylori colonization and IBD. Seven databases and different types of gray literature were searched. After screening for relevant articles, selection and data extraction were done. After that, the data were analyzed, and pooled odds ratios (ORs) were calculated, using meta-analysis. Heterogeneity, sensitivity, and subgroups analyses were conducted. Funnel plots followed by Begg and Egger tests were done to assess the publication bias. RESULTS Among 58 studies, including 13,549 patients with IBD and 506,554 controls, the prevalence of H. pylori colonization was 22.74% and 36.30%, respectively. A significant negative association was observed between H. pylori colonization and IBD (pooled OR: 0.45, 95% confidence interval 0.39-0.53, P≤0.001). The random-effect model showed significant statistical heterogeneity in the included studies (I2=79%). No publication bias was observed. Among subgroups, ORs were notably different when the data were stratified by the age difference between patient and control group, and by study regions and/or continent. Finally, the meta-regression analysis showed significant results, in terms of the age difference and region variables. CONCLUSIONS In this meta-analysis, all statistical data support the theory that H. pylori has a protective role in IBD. However, more primary studies using proper methodology are needed to confirm this association.
Collapse
Affiliation(s)
| | - Sima Besharat
- Infectious Diseases Research Center
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz
- BioTechMed-Graz, Graz, Austria
| | - Ahmad Sohrabi
- Infectious Diseases Research Center
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan
| | - Alireza Norouzi
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan
| | - Aabbas Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
200
|
Blockade of TLRs-triggered macrophage activation by caffeic acid exerted protective effects on experimental ulcerative colitis. Cell Immunol 2021; 365:104364. [PMID: 33932876 DOI: 10.1016/j.cellimm.2021.104364] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis (UC) represents a relapsing and inflammatory bowel disease which is commonly linked with the communications between dysfunction of epithelium and mucosal immune responses. Though caffeic acid (CA) has numerous pharmacological capacities, whether CA demonstrates immunoregulation on the mucosal immune responses remains ill-defined. Herein, the present research demonstrated that CA could dramatically attenuate the mucosal inflammation, as evidenced by improving the disease severity, serum biochemical indexes, mucosal ulcerations, loss of epithelium and crypts, and secretion of inflammatory cytokines in the colonic homogenates and explants culture. Consistently, CA could interfere with the infiltration and function of mononuclear macrophages in the mucosa, MLNs, and spleens of UC. Furthermore, CA exerted direct suppressive effects on the activation of BMDMs upon the exposure of TLRs agonists in vitro. Taken together, CA could attenuate DSS-induced murine UC through interfering with the activation of macrophages, which might provide an alternative therapeutic option for UC.
Collapse
|