151
|
Du X, Jiang X, Ye Y, Guo B, Wang W, Ding J, Xie G. Next generation sequencing for the investigation of an outbreak of Salmonella Schwarzengrund in Nanjing, China. Int J Biol Macromol 2017; 107:393-396. [PMID: 28888545 DOI: 10.1016/j.ijbiomac.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Salmonella Schwarzengrund is most frequently isolated from poultry meat and can cause human infections. S. Schwarzengrund was isolated from diarrheal patients in a food poisoning event in Nanjing, China. METHODS Three strains isolated from patients were microbiologically confirmed as S. Schwarzengrund. Salmonella strains from spiced donkey meat were also confirmed as S. Schwarzengrund. Epidemiology investigation showed evidence of a correlation between the consumption of spiced donkey meat and those cases. Pulsed field gel electrophoresis, antibiotic susceptibility test and next generation sequencing (NGS) were employed to investigate this food poisoning event. RESULTS The 3 strains isolated from patients and the strain isolated from the spiced donkey meat showed same results in PFGE, antibiotic susceptibility test and no SNPs were observed between these 4 strains in NGS analysis. DISCUSSION NGS data could be used in the confirmation of an outbreak and in the tracing of contamination. However, this standard of defining an outbreak with NGS remained a challenge in practice. And the NGS data should be used in combination with other data in epidemiological investigation.
Collapse
Affiliation(s)
- Xuefei Du
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, China
| | - Xiao Jiang
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, China
| | - Yanhua Ye
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, China
| | - Baofu Guo
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, China
| | - Wei Wang
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, China
| | - Jie Ding
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, China
| | - Guoxiang Xie
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, China.
| |
Collapse
|
152
|
Gerlach RG, Walter S, McClelland M, Schmidt C, Steglich M, Prager R, Bender JK, Fuchs S, Schoerner C, Rabsch W, Lang W, Jantsch J. Comparative whole genome analysis of three consecutive Salmonella diarizonae isolates. Int J Med Microbiol 2017; 307:542-551. [PMID: 28939438 DOI: 10.1016/j.ijmm.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/03/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022] Open
Abstract
Infections of very young children or immunocompromised people with Salmonella of higher subspecies are a well-known phenomenon often associated with contact to cold-blooded animals. We describe the molecular characterization of three S. enterica subsp. diarizonae strains, isolated consecutively over a period of several months from a hospital patient suffering from diarrhea and sepsis with fatal outcome. With the initial isolate the first complete genome sequence of a member of subsp. diarizonae is provided and based on this reference we revealed the genomic differences between the three isolates by use of next-generation sequencing and confirmed by phenotypical tests. Genome comparisons revealed mutations within gpt, hfq and purK in the first isolate as a sign of clonal variation rather than host-directed evolution. Furthermore, our work demonstrates that S. enterica subsp. diarizonae possess, besides a conserved set of known Salmonella Pathogenicity Islands, a variable portfolio of additional genomic islands of unknown function.
Collapse
Affiliation(s)
- Roman G Gerlach
- Project Group 5, Robert Koch Institute, Wernigerode, Germany.
| | - Steffi Walter
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | | | - Matthias Steglich
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Rita Prager
- National Reference Centre for Salmonella and other Enteric Bacterial Pathogens and Division of Enteropathogenic Bacteria and Legionella, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer K Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Stephan Fuchs
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Christoph Schoerner
- Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Rabsch
- National Reference Centre for Salmonella and other Enteric Bacterial Pathogens and Division of Enteropathogenic Bacteria and Legionella, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen and Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| |
Collapse
|
153
|
MacKenzie KD, Palmer MB, Köster WL, White AP. Examining the Link between Biofilm Formation and the Ability of Pathogenic Salmonella Strains to Colonize Multiple Host Species. Front Vet Sci 2017; 4:138. [PMID: 29159172 PMCID: PMC5581909 DOI: 10.3389/fvets.2017.00138] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Salmonella are important pathogens worldwide and a predominant number of human infections are zoonotic in nature. The ability of strains to form biofilms, which is a multicellular behavior characterized by the aggregation of cells, is predicted to be a conserved strategy for increased persistence and survival. It may also contribute to the increasing number of infections caused by ingestion of contaminated fruits and vegetables. There is a correlation between biofilm formation and the ability of strains to colonize and replicate within the intestines of multiple host species. These strains predominantly cause localized gastroenteritis infections in humans. In contrast, there are salmonellae that cause systemic, disseminated infections in a select few host species; these “invasive” strains have a narrowed host range, and most are unable to form biofilms. This includes host-restricted Salmonella serovar Typhi, which are only able to infect humans, and atypical gastroenteritis strains associated with the opportunistic infection of immunocompromised patients. From the perspective of transmission, biofilm formation is advantageous for ensuring pathogen survival in the environment. However, from an infection point of view, biofilm formation may be an anti-virulence trait. We do not know if the capacity to form biofilms prevents a strain from accessing the systemic compartments within the host or if loss of the biofilm phenotype reflects a change in a strain’s interaction with the host. In this review, we examine the connections between biofilm formation, Salmonella disease states, degrees of host adaptation, and how this might relate to different transmission patterns. A better understanding of the dynamic lifecycle of Salmonella will allow us to reduce the burden of livestock and human infections caused by these important pathogens.
Collapse
Affiliation(s)
- Keith D MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Melissa B Palmer
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang L Köster
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
154
|
Odetoyin BW, Labar AS, Lamikanra A, Aboderin AO, Okeke IN. Classes 1 and 2 integrons in faecal Escherichia coli strains isolated from mother-child pairs in Nigeria. PLoS One 2017; 12:e0183383. [PMID: 28829804 PMCID: PMC5568733 DOI: 10.1371/journal.pone.0183383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 08/03/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antimicrobial resistance among enteric bacteria in Africa is increasingly mediated by integrons on horizontally acquired genetic elements. There have been recent reports of such elements in invasive pathogens across Africa, but very little is known about the faecal reservoir of integron-borne genes. METHODS AND FINDINGS We screened 1098 faecal Escherichia coli isolates from 134 mother-child pairs for integron cassettes by PCR using primers that anneal to the 5' and 3' conserved ends of the cassette regions and for plasmid replicons. Genetic relatedness of isolates was determined by flagellin and multi-locus sequence typing. Integron cassettes were amplified in 410 (37.5%) isolates and were significantly associated with resistance to trimethoprim and multiple resistance. Ten cassette combinations were found in class 1 and two in class 2 integrons. The most common class 1 cassette configurations were single aadA1 (23.4%), dfrA7 (18.3%) and dfrA5 (14.4%). Class 2 cassette configurations were all either dfrA1-satI-aadA1 (n = 31, 7.6%) or dfrA1-satI (n = 13, 3.2%). A dfr cassette was detected in 294 (31.1%) of trimethoprim resistant strains and an aadA cassette in 242 (23%) of streptomycin resistant strains. Strains bearing integrons carried a wide range of plasmid replicons of which FIB/Y (n = 169; 41.2%) was the most frequently detected. Nine isolates from five different individuals carried the dfrA17-aadA5-bearing ST69 clonal group A (CGA). The same integron cassette combination was identified from multiple distinct isolates within the same host and between four mother-child pairs. CONCLUSIONS Integrons are important determinants of resistance in faecal E. coli. Plasmids in integron-containing strains may contribute to dispersing resistance genes. There is a need for improved surveillance for resistance and its mechanisms of dissemination and persistence and mobility of resistance genes in the community and clinical settings.
Collapse
Affiliation(s)
- Babatunde W. Odetoyin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
- * E-mail:
| | - Amy S. Labar
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Adebayo Lamikanra
- Department of Pharmaceutics, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Aaron O. Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Iruka N. Okeke
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
- Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
155
|
Role of sapA and yfgA in Susceptibility to Antibody-Mediated Complement-Dependent Killing and Virulence of Salmonella enterica Serovar Typhimurium. Infect Immun 2017; 85:IAI.00419-17. [PMID: 28674031 PMCID: PMC5563563 DOI: 10.1128/iai.00419-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/18/2023] Open
Abstract
The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a high burden of invasive disease among African infants and HIV-infected adults. It is characterized by genome degradation (loss of coding capacity) and has increased resistance to antibody-dependent complement-mediated killing compared with enterocolitis-causing strains of S. Typhimurium. Vaccination is an attractive disease-prevention strategy, and leading candidates focus on the induction of bactericidal antibodies. Antibody-resistant strains arising through further gene deletion could compromise such a strategy. Exposing a saturating transposon insertion mutant library of S. Typhimurium to immune serum identified a repertoire of S. Typhimurium genes that, when interrupted, result in increased resistance to serum killing. These genes included several involved in bacterial envelope biogenesis, protein translocation, and metabolism. We generated defined mutant derivatives using S. Typhimurium SL1344 as the host. Based on their initial levels of enhanced resistance to killing, yfgA and sapA mutants were selected for further characterization. The S. Typhimurium yfgA mutant lost the characteristic Salmonella rod-shaped appearance, exhibited increased sensitivity to osmotic and detergent stress, lacked very long lipopolysaccharide, was unable to invade enterocytes, and demonstrated decreased ability to infect mice. In contrast, the S. Typhimurium sapA mutants had similar sensitivity to osmotic and detergent stress and lipopolysaccharide profile and an increased ability to infect enterocytes compared with the wild type, but it had no increased ability to cause in vivo infection. These findings indicate that increased resistance to antibody-dependent complement-mediated killing secondary to genetic deletion is not necessarily accompanied by increased virulence and suggest the presence of different mechanisms of antibody resistance.
Collapse
|
156
|
Ramachandran G, Panda A, Higginson EE, Ateh E, Lipsky MM, Sen S, Matson CA, Permala-Booth J, DeTolla LJ, Tennant SM. Virulence of invasive Salmonella Typhimurium ST313 in animal models of infection. PLoS Negl Trop Dis 2017; 11:e0005697. [PMID: 28783750 PMCID: PMC5559095 DOI: 10.1371/journal.pntd.0005697] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/16/2017] [Accepted: 06/09/2017] [Indexed: 11/18/2022] Open
Abstract
Salmonella Typhimurium sequence type (ST) 313 produces septicemia in infants in sub-Saharan Africa. Although there are known genetic and phenotypic differences between ST313 strains and gastroenteritis-associated ST19 strains, conflicting data about the in vivo virulence of ST313 strains have been reported. To resolve these differences, we tested clinical Salmonella Typhimurium ST313 and ST19 strains in murine and rhesus macaque infection models. The 50% lethal dose (LD50) was determined for three Salmonella Typhimurium ST19 and ST313 strains in mice. For dissemination studies, bacterial burden in organs was determined at various time-points post-challenge. Indian rhesus macaques were infected with one ST19 and one ST313 strain. Animals were monitored for clinical signs and bacterial burden and pathology were determined. The LD50 values for ST19 and ST313 infected mice were not significantly different. However, ST313-infected BALB/c mice had significantly higher bacterial numbers in blood at 24 h than ST19-infected mice. ST19-infected rhesus macaques exhibited moderate-to-severe diarrhea while ST313-infected monkeys showed no-to-mild diarrhea. ST19-infected monkeys had higher bacterial burden and increased inflammation in tissues. Our data suggest that Salmonella Typhimurium ST313 invasiveness may be investigated using mice. The non-human primate results are consistent with clinical data, suggesting that ST313 strains do not cause diarrhea.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Aruna Panda
- Department of Pathology, Program of Comparative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ellen E. Higginson
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Eugene Ateh
- Department of Pathology, Program of Comparative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michael M. Lipsky
- Department of Pathology, Program of Comparative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sunil Sen
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Courtney A. Matson
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jasnehta Permala-Booth
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Louis J. DeTolla
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, Program of Comparative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
157
|
The invasome of Salmonella Dublin as revealed by whole genome sequencing. BMC Infect Dis 2017; 17:544. [PMID: 28778189 PMCID: PMC5544996 DOI: 10.1186/s12879-017-2628-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Background Salmonella enterica serovar Dublin is a zoonotic infection that can be transmitted from cattle to humans through consumption of contaminated milk and milk products. Outbreaks of human infections by S. Dublin have been reported in several countries including high-income countries. A high proportion of S. Dublin cases in humans are associated with invasive disease and systemic illness. The genetic basis of virulence in S. Dublin is not well characterized. Methods Whole genome sequencing was applied to a set of clinical invasive and non-invasive S. Dublin isolates from different countries in order to characterize the putative genetic determinants involved in the virulence and invasiveness of S. Dublin in humans. Results We identified several virulence factors that form the bacterial invasome and may contribute to increasing bacterial virulence and pathogenicity including mainly Gifsy-2 prophage, two different type 6 secretion systems (T6SSs) harbored by Salmonella pathogenicity islands; SPI-6 and SPI-19 respectively and virulence genes; ggt and PagN. Although Vi antigen and the virulence plasmid have been reported previously to contribute to the virulence of S. Dublin we did not detect them in all invasive isolates indicating that they are not the main virulence determinants in S. Dublin. Conclusion Several virulence factors within the genome of S. Dublin might contribute to the ability of S. Dublin to invade humans’ blood but there were no genomic markers that differentiate invasive from non-invasive isolates suggesting that host immune response play a crucial role in the clinical outcome of S. Dublin infection. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2628-x) contains supplementary material, which is available to authorized users.
Collapse
|
158
|
Tsang AKL, Lee HH, Yiu SM, Lau SKP, Woo PCY. Failure of phylogeny inferred from multilocus sequence typing to represent bacterial phylogeny. Sci Rep 2017; 7:4536. [PMID: 28674428 PMCID: PMC5495804 DOI: 10.1038/s41598-017-04707-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
Although multilocus sequence typing (MLST) is highly discriminatory and useful for outbreak investigations and epidemiological surveillance, it has always been controversial whether clustering and phylogeny inferred from the MLST gene loci can represent the real phylogeny of bacterial strains. In this study, we compare the phylogenetic trees constructed using three approaches, (1) concatenated blocks of homologous sequence shared between the bacterial genomes, (2) genome single-nucleotide polymorphisms (SNP) profile and (3) concatenated nucleotide sequences of gene loci in the corresponding MLST schemes, for 10 bacterial species with >30 complete genome sequences available. Major differences in strain clustering at more than one position were observed between the phylogeny inferred using genome/SNP data and MLST for all 10 bacterial species. Shimodaira-Hasegawa test revealed significant difference between the topologies of the genome and MLST trees for nine of the 10 bacterial species, and significant difference between the topologies of the SNP and MLST trees were present for all 10 bacterial species. Matching Clusters and R-F Clusters metrics showed that the distances between the genome/SNP and MLST trees were larger than those between the SNP and genome trees. Phylogeny inferred from MLST failed to represent genome phylogeny with the same bacterial species.
Collapse
Affiliation(s)
- Alan K L Tsang
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hwei Huih Lee
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Siu-Ming Yiu
- Department of Computer Science, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
159
|
Abstract
Invasive nontyphoidal Salmonella (NTS) infections in Africa cause an enormous burden of illness. These infections are often devastating, with mortality estimated at 20%, even with appropriate antimicrobial therapy. Two major groups-young children and HIV-infected adults-suffer the great majority of these infections. In children, younger age itself, as well as malaria, malnutrition, and HIV infection, are prominent risk factors. In adults, HIV infection is by far the most important risk factor. The most common serotypes in invasive infections are Salmonella enterica serotypes Typhimurium and Enteritidis. In recent years, a specific strain of Salmonella Typhimurium, multilocus sequence type 313, has caused epidemics of invasive disease. Little is known about risk factors for exposure to NTS, making the design of rational interventions to decrease exposure difficult. Antimicrobial therapy is critically important for treatment of invasive NTS infections. Thus, the emergence and spread of resistance to agents commonly used for treatment of invasive NTS infection, now including third-generation cephalosporins, is an ominous development. Already, many invasive NTS infections are essentially untreatable in many health care facilities in sub-Saharan Africa. Several candidate vaccines are in early development and, if safe and effective, could be promising. Interventions to prevent exposure to NTS (e.g., improved sanitation), to prevent the occurrence of disease if exposure does occur (e.g., vaccination, malaria control), and to prevent severe disease and death in those who become ill (e.g., preserving antimicrobial effectiveness) are all important in reducing the toll of invasive NTS disease in sub-Saharan Africa.
Collapse
|
160
|
An R, Alshalchi S, Breimhurst P, Munoz-Aguayo J, Flores-Figueroa C, Vidovic S. Strong influence of livestock environments on the emergence and dissemination of distinct multidrug-resistant phenotypes among the population of non-typhoidal Salmonella. PLoS One 2017; 12:e0179005. [PMID: 28591163 PMCID: PMC5462443 DOI: 10.1371/journal.pone.0179005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/22/2017] [Indexed: 11/18/2022] Open
Abstract
The problem of emergence and dissemination of multidrug resistance, especially among Gram-negative bacteria, has reached alarming levels. This increases the need to develop surveillance methods that more effectively and accurately provide information about the emergence and spread of multidrug-resistant organisms. In this study, using a well-defined population of non-typhoidal Salmonella (NTS) isolates associated with avian, bovine and porcine hosts, we found that the livestock environments had a specific (P < 0.005) and profound (P < 0.005) effect on the evolution of multidrug-resistant phenotypes among population of NTS isolates. The MDR pattern containing penicillins, tetracyclines and macrolides and the evolving counterparts (i.e., penicillins, tetracyclines and macrolides + other antibiotic classes) were significantly (P < 0.005) associated with NTS isolates of porcine origin. Similarly, MDR patterns containing folate pathway inhibitors, macrolides and aminocyclitol or containing penicillins, cephalosporins, tetracyclines, phenicols and macrolides were significantly associated with avian (P < 0.005) and bovine (P < 0.005) NTS isolates, respectively. Furthermore, STRUCTURE, an evolutionary analysis, clearly showed that the host origin (i.e., livestock environment), and not the genetic background of different NTS serovars, was the most determinative factor for acquisition and spread of MDR phenotypes. In addition, we described a novel non-synonymous mutation, located outside of the QRDR at position 864 of GyrA, that was likely associated with fluoroquinolone resistance.
Collapse
Affiliation(s)
- Ran An
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, United States of America
| | - Sahar Alshalchi
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, United States of America
| | - Peter Breimhurst
- College of Biological Sciences, University of Minnesota, Minneapolis, United States of America
| | - Jeannette Munoz-Aguayo
- Mid-Central Research and Outreach Center, University of Minnesota, Willmar, United States of America
| | - Christian Flores-Figueroa
- Mid-Central Research and Outreach Center, University of Minnesota, Willmar, United States of America
| | - Sinisa Vidovic
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, United States of America
- * E-mail:
| |
Collapse
|
161
|
Fadil M, Fikri-Benbrahim K, Rachiq S, Ihssane B, Lebrazi S, Chraibi M, Haloui T, Farah A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur J Pharm Biopharm 2017; 126:211-220. [PMID: 28583590 DOI: 10.1016/j.ejpb.2017.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/30/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022]
Abstract
To increase the sensibility of Salmonella typhimurium strain, a mixture of Thymus vulgaris L. (T. vulgaris L.), Rosmarinus officinalis L. (R. officinalis L.) and Myrtus communis L. (M. communis L.) essential oils (EOs) was used in combined treatment by experimental design methodology (mixture design). The chemical composition of EOs was firstly identified by GC and GC/MS and their antibacterial activity was evaluated. The results of this first step have shown that thymol and borneol were the major compounds in T. vulgaris and M. communis L. EOs, respectively, while 1,8-cineole and α-pinene were found as major compounds in R. officinalis L. The same results have shown a strong antibacterial activity of T. vulgaris L. EO followed by an important power of M. communis L. EO against a moderate activity of R. officinalis L. EO. Besides, 1/20 (v/v) was the concentration giving a strain response classified as sensitive. From this concentration, the mixture design was performed and analyzed. The optimization of mixtures antibacterial activities has highlighted the synergistic effect between T. vulgaris L. and M. communis L. essential oils. A formulation comprising 55% of T. vulgaris L. and 45% of M. communis L. essential oils, respectively, can be considered for the increase of Salmonella typhimurium sensibility.
Collapse
Affiliation(s)
- Mouhcine Fadil
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques Sidi Mohamed Ben Abdellah University, Fez, Morocco; Laboratory of Functional Ecology and Environment, Faculty of Sciences and Techniques Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Saad Rachiq
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Techniques Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Bouchaib Ihssane
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sara Lebrazi
- Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Marwa Chraibi
- Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Taoufik Haloui
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Techniques Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
162
|
Everall I, Nogueira CL, Bryant JM, Sánchez-Busó L, Chimara E, Duarte RDS, Ramos JP, Lima KVB, Lopes ML, Palaci M, Kipnis A, Monego F, Floto RA, Parkhill J, Leão SC, Harris SR. Genomic epidemiology of a national outbreak of post-surgical Mycobacterium abscessus wound infections in Brazil. Microb Genom 2017; 3:e000111. [PMID: 28884021 PMCID: PMC5562415 DOI: 10.1099/mgen.0.000111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/28/2017] [Indexed: 11/18/2022] Open
Abstract
An epidemic of post-surgical wound infections, caused by a non-tuberculous mycobacterium, has been on-going in Brazil. It has been unclear whether one or multiple lineages are responsible and whether their wide geographical distribution across Brazil is due to spread from a single point source or is the result of human-mediated transmission. 188 isolates, collected from nine Brazilian states, were whole genome sequenced and analysed using phylogenetic and comparative genomic approaches. The isolates from Brazil formed a single clade, which was estimated to have emerged in 2003. We observed temporal and geographic structure within the lineage that enabled us to infer the movement of sub-lineages across Brazil. The genome size of the Brazilian lineage was reduced relative to most strains in the three subspecies of Mycobacterium abscessus and contained a novel plasmid, pMAB02, in addition to the previously described pMAB01 plasmid. One lineage, which emerged just prior to the initial outbreak, is responsible for the epidemic of post-surgical wound infections in Brazil. Phylogenetic analysis indicates that multiple transmission events led to its spread. The presence of a novel plasmid and the reduced genome size suggest that the lineage has undergone adaptation to the surgical niche.
Collapse
Affiliation(s)
- Izzy Everall
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Christiane Lourenço Nogueira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Josephine M Bryant
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Erica Chimara
- Núcleo de Tuberculose e Micobacterioses, Instituto Adolfo Lutz Av. Dr. Arnaldo, 666 9o andar São Paulo, SP, Brazil
| | - Rafael da Silva Duarte
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | - Maria Luíza Lopes
- Bacteriology and Mycology Section, Instituto Evandro Chagas, Para, Brazil
| | - Moises Palaci
- Nucleo de Doencas Infecciosas, Universidade Federal do Espirito Santo, Brazil
| | - Andre Kipnis
- Departamento de Microbiologia, Universidade Federal de Goiás, Brazil
| | - Fernanda Monego
- Departamento de Medicina Veterinária, Universidade Federal do Paraná, Brazil
| | - R. Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | | |
Collapse
|
163
|
Furuse Y, Oshitani H. Global Transmission Dynamics of Measles in the Measles Elimination Era. Viruses 2017; 9:v9040082. [PMID: 28420160 PMCID: PMC5408688 DOI: 10.3390/v9040082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/26/2017] [Accepted: 04/11/2017] [Indexed: 11/30/2022] Open
Abstract
Although there have been many epidemiological reports of the inter-country transmission of measles, systematic analysis of the global transmission dynamics of the measles virus (MV) is limited. In this study, we applied phylogeographic analysis to characterize the global transmission dynamics of the MV using large-scale genetic sequence data (obtained for 7456 sequences) from 115 countries between 1954 and 2015. These analyses reveal the spatial and temporal characteristics of global transmission of the virus, especially in Australia, China, India, Japan, the UK, and the USA in the period since 1990. The transmission is frequently observed, not only within the same region but also among distant and frequently visited areas. Frequencies of export from measles-endemic countries, such as China, India, and Japan are high but decreasing, while the frequencies from countries where measles is no longer endemic, such as Australia, the UK, and the USA, are low but slightly increasing. The world is heading toward measles eradication, but the disease is still transmitted regionally and globally. Our analysis reveals that countries wherein measles is endemic and those having eliminated the disease (apart from occasional outbreaks) both remain a source of global transmission in this measles elimination era. It is therefore crucial to maintain vigilance in efforts to monitor and eradicate measles globally.
Collapse
Affiliation(s)
- Yuki Furuse
- Tohoku University Graduate School of Medicine, 980-8575 Sendai, Japan.
| | - Hitoshi Oshitani
- Tohoku University Graduate School of Medicine, 980-8575 Sendai, Japan.
| |
Collapse
|
164
|
Baliban SM, Yang M, Ramachandran G, Curtis B, Shridhar S, Laufer RS, Wang JY, Van Druff J, Higginson EE, Hegerle N, Varney KM, Galen JE, Tennant SM, Lees A, MacKerell AD, Levine MM, Simon R. Development of a glycoconjugate vaccine to prevent invasive Salmonella Typhimurium infections in sub-Saharan Africa. PLoS Negl Trop Dis 2017; 11:e0005493. [PMID: 28388624 PMCID: PMC5397072 DOI: 10.1371/journal.pntd.0005493] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 04/19/2017] [Accepted: 03/15/2017] [Indexed: 11/21/2022] Open
Abstract
Invasive infections associated with non-typhoidal Salmonella (NTS) serovars Enteritidis (SE), Typhimurium (STm) and monophasic variant 1,4,[5],12:i:- are a major health problem in infants and young children in sub-Saharan Africa, and currently, there are no approved human NTS vaccines. NTS O-polysaccharides and flagellin proteins are protective antigens in animal models of invasive NTS infection. Conjugates of SE core and O-polysaccharide (COPS) chemically linked to SE flagellin have enhanced the anti-COPS immune response and protected mice against fatal challenge with a Malian SE blood isolate. We report herein the development of a STm glycoconjugate vaccine comprised of STm COPS conjugated to the homologous serovar phase 1 flagellin protein (FliC) with assessment of the role of COPS O-acetyls for functional immunity. Sun-type COPS conjugates linked through the polysaccharide reducing end to FliC were more immunogenic and protective in mice challenged with a Malian STm blood isolate than multipoint lattice conjugates (>95% vaccine efficacy [VE] versus 30-43% VE). Immunization with de-O-acetylated STm-COPS conjugated to CRM197 provided significant but reduced protection against STm challenge compared to mice immunized with native STm-COPS:CRM197 (63-74% VE versus 100% VE). Although OPS O-acetyls were highly immunogenic, post-vaccination sera that contained various O-acetyl epitope-specific antibody profiles displayed similar in vitro bactericidal activity when equivalent titers of anti-COPS IgG were assayed. In-silico molecular modeling further indicated that STm OPS forms a single dominant conformation, irrespective of O-acetylation, in which O-acetyls extend outward and are highly solvent exposed. These preclinical results establish important quality attributes for an STm vaccine that could be co-formulated with an SE-COPS:FliC glycoconjugate as a bivalent NTS vaccine for use in sub-Saharan Africa.
Collapse
Affiliation(s)
- Scott M. Baliban
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Mingjun Yang
- University of Maryland Computer-Aided Drug Design Center and Department of Pharmaceutical Sciences, School of Pharmacy, Baltimore, MD, United States of America
| | - Girish Ramachandran
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Brittany Curtis
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Surekha Shridhar
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Rachel S. Laufer
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Jin Y. Wang
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - John Van Druff
- Fina Biosolutions, Rockville, MD, United States of America
| | - Ellen E. Higginson
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Nicolas Hegerle
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kristen M. Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - James E. Galen
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Andrew Lees
- Fina Biosolutions, Rockville, MD, United States of America
| | - Alexander D. MacKerell
- University of Maryland Computer-Aided Drug Design Center and Department of Pharmaceutical Sciences, School of Pharmacy, Baltimore, MD, United States of America
| | - Myron M. Levine
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Raphael Simon
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
165
|
Keddy KH, Takuva S, Musekiwa A, Puren AJ, Sooka A, Karstaedt A, Klugman KP, Angulo FJ. An association between decreasing incidence of invasive non-typhoidal salmonellosis and increased use of antiretroviral therapy, Gauteng Province, South Africa, 2003-2013. PLoS One 2017; 12:e0173091. [PMID: 28264046 PMCID: PMC5338796 DOI: 10.1371/journal.pone.0173091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/15/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND HIV-infected persons are at increased risk of opportunistic infections, including invasive nontyphoidal Salmonella (iNTS) infections; antiretroviral therapy (ART) reduces this risk. We explored changing iNTS incidence associated with increasing ART availability in South Africa. METHODS Laboratory-based surveillance for iNTS was conducted in Gauteng Province, South Africa, with verification using the National Health Laboratory Service's Central Data Warehouse (CDW), between 2003 and 2013. Isolates were serotyped at the Centre for Enteric Diseases. CDW data on patient numbers obtaining HIV viral load measurements provided estimates of numbers of HIV-infected patients receiving ART. A Poisson regression model was used to measure the changing incidence of iNTS infection from 2003 to 2013. The correlation between the incidence of iNTS and ART use from 2004 to 2013 was determined using Pearson's correlation coefficient. RESULTS From 2003-2013, the incidence of iNTS per 100,000 population per year decreased from 5.0 to 2.2 (p < .001). From 2004 to 2013, the incidence per 100,000 population of HIV viral load testing increased from 75.2 to 3,620.3 (p < .001). The most common serotypes causing invasive disease were Salmonella enterica serovar Typhimurium (Salmonella Typhimurium), and Salmonella Enteritidis: 2,469 (55.4%) and 1,156 (25.9%) of 4,459 isolates serotyped, respectively. A strong negative correlation was observed between decreasing iNTS incidence and increasing ART use from 2004 to 2013 (r = -0.94, p < .001). Similarly, decreasing incidence of invasive Salmonella Typhimurium infection correlated with increasing ART use (r = -0.93, p < .001). Incidence of invasive Salmonella Enteritidis infection increased, however (r = 0.95, p < .001). Between 2003 and 2004, fewer adult men than women presented with iNTS (male-to-female rate ratio 0.73 and 0.89, respectively). This was reversed from 2005 through 2013 (ranging from 1.07 in 2005 to 1.44 in 2013). Adult men accessed ART less (male-to-female rate ratio ranging from 0.61 [2004] to 0.67 [2013]). CONCLUSIONS The incidence of iNTS infections including Salmonella Typhimurium decreased significantly in Gauteng Province in association with increased ART utilization. Adult men accessed ART programs less than women, translating into increasing iNTS incidence in this group. Monitoring iNTS incidence may assist in monitoring the ART program. Increasing incidence of invasive Salmonella Enteritidis infections needs further elucidation.
Collapse
Affiliation(s)
- Karen H. Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Simbarashe Takuva
- CARTA Africa, Nairobi, Kenya
- Centre for HIV, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Alfred Musekiwa
- International Emerging Infections Program, South Africa Global Disease Detection Centre, Centers for Disease Control and Prevention, Pretoria, South Africa
| | - Adrian J. Puren
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Arvinda Sooka
- Centre for Enteric Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Alan Karstaedt
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medicine, Chris Hani Baragwanath Hospital, Johannesburg, South Africa
| | - Keith P. Klugman
- Bill and Melinda Gates Foundation, Seattle, WA, United States of America
| | - Frederick J. Angulo
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
166
|
Fiorino F, Rondini S, Micoli F, Lanzilao L, Alfini R, Mancini F, MacLennan CA, Medaglini D. Immunogenicity of a Bivalent Adjuvanted Glycoconjugate Vaccine against Salmonella Typhimurium and Salmonella Enteritidis. Front Immunol 2017; 8:168. [PMID: 28289411 PMCID: PMC5326758 DOI: 10.3389/fimmu.2017.00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/02/2017] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica serovars Typhimurium and Enteritidis are the predominant causes of invasive non-typhoidal Salmonella (iNTS) disease. Considering the co-endemicity of S. Typhimurium and S. Enteritidis, a bivalent vaccine formulation against both pathogens is necessary for protection against iNTS disease, thus investigation of glycoconjugate combination is required. In the present work, we investigated the immune responses induced by S. Typhimurium and S. Enteritidis monovalent and bivalent glycoconjugate vaccines adjuvanted with aluminum hydroxide (alum) only or in combination with cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG). Humoral and cellular, systemic and local, immune responses were characterized in two different mouse strains. All conjugate vaccines elicited high levels of serum IgG against the respective O-antigens (OAg) with bactericidal activity. The bivalent conjugate vaccine induced systemic production of antibodies against both S. Typhimurium and S. Enteritidis OAg. The presence of alum or alum + CpG adjuvants in vaccine formulations significantly increased the serum antigen-specific antibody production. The alum + CpG bivalent vaccine formulation triggered the highest systemic anti-OAg antibodies and also a significant increase of anti-OAg IgG in intestinal washes and fecal samples, with a positive correlation with serum levels. These data demonstrate the ability of monovalent and bivalent conjugate vaccines against S. Typhimurium and S. Enteritidis to induce systemic and local immune responses in different mouse strains, and highlight the suitability of a bivalent glycoconjugate formulation, especially when adjuvanted with alum + CpG, as a promising candidate vaccine against iNTS disease.
Collapse
Affiliation(s)
- Fabio Fiorino
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena , Siena , Italy
| | - Simona Rondini
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Luisa Lanzilao
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford , UK
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena , Siena , Italy
| |
Collapse
|
167
|
Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, Aertsen A, Feasey NA, Hinton JCD. Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1. Front Microbiol 2017; 8:235. [PMID: 28280485 PMCID: PMC5322425 DOI: 10.3389/fmicb.2017.00235] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 01/30/2023] Open
Abstract
In the past 30 years, Salmonella bloodstream infections have become a significant health problem in sub-Saharan Africa and are responsible for the deaths of an estimated 390,000 people each year. The disease is predominantly caused by a recently described sequence type of Salmonella Typhimurium: ST313, which has a distinctive set of prophage sequences. We have thoroughly characterized the ST313-associated prophages both genetically and experimentally. ST313 representative strain D23580 contains five full-length prophages: BTP1, Gifsy-2D23580, ST64BD23580, Gifsy-1D23580, and BTP5. We show that common S. Typhimurium prophages Gifsy-2, Gifsy-1, and ST64B are inactivated in ST313 by mutations. Prophage BTP1 was found to be a functional novel phage, and the first isolate of the proposed new species "Salmonella virus BTP1", belonging to the P22virus genus. Surprisingly, ∼109 BTP1 virus particles per ml were detected in the supernatant of non-induced, stationary-phase cultures of strain D23580, representing the highest spontaneously induced phage titer so far reported for a bacterial prophage. High spontaneous induction is shown to be an intrinsic property of prophage BTP1, and indicates the phage-mediated lysis of around 0.2% of the lysogenic population. The fact that BTP1 is highly conserved in ST313 poses interesting questions about the potential fitness costs and benefits of novel prophages in epidemic S. Typhimurium ST313.
Collapse
Affiliation(s)
- Siân V Owen
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Angela Makumi
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Disa L Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University Uppsala, Sweden
| | - Melita A Gordon
- Institute of Infection and Global Health, University of LiverpoolLiverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research ProgrammeBlantyre, Malawi
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | | | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| |
Collapse
|
168
|
Bornstein K, Hungerford L, Hartley D, Sorkin JD, Tapia MD, Sow SO, Onwuchekwa U, Simon R, Tennant SM, Levine MM. Modeling the Potential for Vaccination to Diminish the Burden of Invasive Non-typhoidal Salmonella Disease in Young Children in Mali, West Africa. PLoS Negl Trop Dis 2017; 11:e0005283. [PMID: 28182657 PMCID: PMC5300129 DOI: 10.1371/journal.pntd.0005283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022] Open
Abstract
Background In sub-Saharan Africa, systematic surveillance of young children with suspected invasive bacterial disease (e.g., septicemia, meningitis) has revealed non-typhoidal Salmonella (NTS) to be a major pathogen exhibiting high case fatality (~20%). Where infant vaccination against Haemophilus influenzae type b (Hib) and Streptococcus pneumoniae has been introduced to prevent invasive disease caused by these pathogens, as in Bamako, Mali, their burden has decreased markedly. In parallel, NTS has become the predominant invasive bacterial pathogen in children aged <5 years. While NTS is believed to be acquired orally via contaminated food/water, epidemiologic studies have failed to identify the reservoir of infection or vehicles of transmission. This has precluded targeting food chain interventions to diminish disease transmission but conversely has fostered the development of vaccines to prevent invasive NTS (iNTS) disease. We developed a mathematical model to estimate the potential impact of NTS vaccination programs in Bamako. Methodology/Principal Findings A Markov chain transmission model was developed utilizing age-specific Bamako demographic data and hospital surveillance data for iNTS disease in children aged <5 years and assuming vaccine coverage and efficacy similar to the existing, successfully implemented, Hib vaccine. Annual iNTS hospitalizations and deaths in children <5 years, with and without a Salmonella Enteritidis/Salmonella Typhimurium vaccine, were the model’s outcomes of interest. Per the model, high coverage/high efficacy iNTS vaccination programs would drastically diminish iNTS disease except among infants age <8 weeks. Conclusions/Significance The public health impact of NTS vaccination shifts as disease burden, vaccine coverage, and serovar distribution vary. Our model shows that implementing an iNTS vaccine through an analogous strategy to the Hib vaccination program in Bamako would markedly reduce cases and deaths due to iNTS among the pediatric population. The model can be adjusted for use elsewhere in Africa where NTS epidemiologic patterns, serovar prevalence, and immunization schedules differ from Bamako. A surveillance program at Gabriel Touré Hospital in Mali observed a high burden of invasive disease caused by non-typhoidal Salmonella (iNTS). This surveillance program was originally instituted to measure the amount of invasive disease (e.g., septicemia, meningitis) caused by two bacteria that invade the respiratory tract: Haemophilus influenzae type b (Hib) and Streptococcus pneumoniae (pneumococcus). While documenting the burden of these pathogens, the surveillance program also found that serotypes of iNTS, mainly Salmonella Typhimurium and Salmonella Enteritidis, were common causes of severe invasive disease. As the number of cases of Hib and pneumococcus markedly decreased following the introduction of relevant vaccines, the relative threat of iNTS increased. Little is known about the reservoir of iNTS, whether it resides in humans, animals, or the environment, or how it is spread to susceptible children. Without this knowledge, it is not possible to employ certain disease control methods useful in interrupting the transmission of other pathogens. Therefore, vaccination remains the one promising control strategy for this disease. Our research modeled the potential effects of introducing an iNTS vaccine. The findings are of great importance to Mali and other developing countries where young children are at a high risk of developing iNTS disease.
Collapse
Affiliation(s)
- Kristin Bornstein
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Laura Hungerford
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - David Hartley
- James M. Anderson Center for Health Systems Excellence, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - John D. Sorkin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Baltimore VA Medical Center GRECC (Geriatric Research, Education, and Clinical Center), Baltimore Maryland
| | - Milagritos D. Tapia
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Samba O. Sow
- Centre pour le Développement des Vaccins, Mali (CVD-Mali), Bamako, Mali, Africa
| | - Uma Onwuchekwa
- Centre pour le Développement des Vaccins, Mali (CVD-Mali), Bamako, Mali, Africa
| | - Raphael Simon
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Myron M. Levine
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
169
|
Uche IV, MacLennan CA, Saul A. A Systematic Review of the Incidence, Risk Factors and Case Fatality Rates of Invasive Nontyphoidal Salmonella (iNTS) Disease in Africa (1966 to 2014). PLoS Negl Trop Dis 2017; 11:e0005118. [PMID: 28056035 PMCID: PMC5215826 DOI: 10.1371/journal.pntd.0005118] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/19/2016] [Indexed: 11/19/2022] Open
Abstract
This study systematically reviews the literature on the occurrence, incidence and case fatality rate (CFR) of invasive nontyphoidal Salmonella (iNTS) disease in Africa from 1966 to 2014. Data on the burden of iNTS disease in Africa are sparse and generally have not been aggregated, making it difficult to describe the epidemiology that is needed to inform the development and implementation of effective prevention and control policies. This study involved a comprehensive search of PubMed and Embase databases. It documents the geographical spread of iNTS disease over time in Africa, and describes its reported incidence, risk factors and CFR. We found that Nontyphoidal Salmonella (NTS) have been reported as a cause of bacteraemia in 33 out of 54 African countries, spanning the five geographical regions of Africa, and especially in sub-Saharan Africa since 1966. Our review indicates that NTS have been responsible for up to 39% of community acquired blood stream infections in sub-Saharan Africa with an average CFR of 19%. Salmonella Typhimurium and Enteritidis are the major serovars implicated and together have been responsible for 91%% of the cases of iNTS disease, (where serotype was determined), reported in Africa. The study confirms that iNTS disease is more prevalent amongst Human Immunodeficiency Virus (HIV)-infected individuals, infants, and young children with malaria, anaemia and malnutrition. In conclusion, iNTS disease is a substantial cause of community-acquired bacteraemia in Africa. Given the high morbidity and mortality of iNTS disease in Africa, it is important to develop effective prevention and control strategies including vaccination.
Collapse
Affiliation(s)
| | | | - Allan Saul
- Novartis Vaccines Institute for Global Health, Siena, Italy
| |
Collapse
|
170
|
Fu S, Octavia S, Wang Q, Tanaka MM, Tay CY, Sintchenko V, Lan R. Evolution of Variable Number Tandem Repeats and Its Relationship with Genomic Diversity in Salmonella Typhimurium. Front Microbiol 2016; 7:2002. [PMID: 28082952 PMCID: PMC5183578 DOI: 10.3389/fmicb.2016.02002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is the most common Salmonella serovar causing human infections in Australia and many other countries. A total of 12,112 S. Typhimurium isolates from New South Wales were analyzed by multi-locus variable number of tandem repeat (VNTR) analysis (MLVA) using five VNTRs from 2007 to 2014. We found that mid ranges of repeat units of 8–14 in VNTR locus STTR5, 6–13 in STTR6, and 9–12 in STTR10 were always predominant in the population (>50%). In vitro passaging experiments using MLVA type carrying extreme length alleles found that the majority of long length alleles mutated to short ones and short length alleles mutated to longer ones. Both data suggest directional mutability of VNTRs toward mid-range repeats. Sequencing of 28 isolates from a newly emerged MLVA type and its five single locus variants revealed that single nucleotide variation between isolates with up to two MLVA differences ranged from 0 to 12 single nucleotide polymorphisms (SNPs). However, there was no relationship between SNP and VNTR differences. A population genetic model of the joint distribution of VNTRs and SNPs variations was used to estimate the mutation rates of the two markers, yielding a ratio of 1 VNTR change to 6.9 SNP changes. When only one VNTR repeat difference was considered, the majority of pairwise SNP difference between isolates were 4 SNPs or fewer. Based on this observation and our previous findings of SNP differences of outbreak isolates, we suggest that investigation of S. Typhimurium community outbreaks should include cases of 1 repeat difference to increase sensitivity. This study offers new insights into the short-term VNTR evolution of S. Typhimurium and its application for epidemiological typing.
Collapse
Affiliation(s)
- Songzhe Fu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia Perth, WA, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead HospitalSydney, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of SydneySydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| |
Collapse
|
171
|
Petrovska L, Mather AE, AbuOun M, Branchu P, Harris SR, Connor T, Hopkins KL, Underwood A, Lettini AA, Page A, Bagnall M, Wain J, Parkhill J, Dougan G, Davies R, Kingsley RA. Microevolution of Monophasic Salmonella Typhimurium during Epidemic, United Kingdom, 2005-2010. Emerg Infect Dis 2016; 22:617-24. [PMID: 26982594 PMCID: PMC4806966 DOI: 10.3201/eid2204.150531] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microevolution resulted in considerable genotypic variation. Microevolution associated with emergence and expansion of new epidemic clones of
bacterial pathogens holds the key to epidemiologic success. To determine
microevolution associated with monophasic Salmonella Typhimurium
during an epidemic, we performed comparative whole-genome sequencing and phylogenomic
analysis of isolates from the United Kingdom and Italy during 2005–2012. These
isolates formed a single clade distinct from recent monophasic epidemic clones
previously described from North America and Spain. The UK monophasic epidemic clones
showed a novel genomic island encoding resistance to heavy metals and a composite
transposon encoding antimicrobial drug resistance genes not present in other
Salmonella Typhimurium isolates, which may have contributed to
epidemiologic success. A remarkable amount of genotypic variation accumulated during
clonal expansion that occurred during the epidemic, including multiple independent
acquisitions of a novel prophage carrying the sopE gene and multiple
deletion events affecting the phase II flagellin locus. This high level of
microevolution may affect antigenicity, pathogenicity, and transmission.
Collapse
|
172
|
Ranjbar R, Naghoni A, Afshar D, Nikkhahi F, Mohammadi M. Rapid Molecular Approach for Simultaneous Detection of Salmonella spp., Shigella spp., and Vibrio cholera. Osong Public Health Res Perspect 2016; 7:373-377. [PMID: 28053842 PMCID: PMC5194224 DOI: 10.1016/j.phrp.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Gastrointestinal tract infection is still one of the serious public health problems in many geographic areas and is endemic in most countries including Iran. Early detection of the gastrointestinal tract pathogens can be extremely important. The aim of the current study was to apply a shortened time-multiplex polymerase chain reaction (PCR) for rapid and simultaneous detection of Salmonella spp., Shigella spp., and Vibrio cholera. METHODS The standard and clinical strains of Salmonella spp., Shigella spp., and V. cholerae were used in the assay. Multiplex PCR was performed and optimized based on amplification of invA, putative integrase, and ompW genes for detecting Salmonella spp., Shigella spp., and V. cholerae, respectively. The specificity of the assay was evaluated by testing 12 different bacterial species. RESULTS Only Salmonella spp., Shigella spp., and V. cholerae strains had positive results when subjected to the assay using multiplex PCR. The assay showed a high sensitivity, and no amplification products were observed in multiplex PCR with any of the other microorganisms. CONCLUSION Our study indicated that the invA, putative integrase, and ompW-based multiplex PCR assay appears to be an efficient method for rapid and simultaneous detection of Salmonella spp., Shigella spp., and V. cholerae.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Corresponding author.
| | - Ali Naghoni
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud Afshar
- Department of Microbiology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhad Nikkhahi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mohammadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
173
|
Galen JE, Buskirk AD, Tennant SM, Pasetti MF. Live Attenuated Human Salmonella Vaccine Candidates: Tracking the Pathogen in Natural Infection and Stimulation of Host Immunity. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0010-2016. [PMID: 27809955 PMCID: PMC5119766 DOI: 10.1128/ecosalplus.esp-0010-2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 04/08/2023]
Abstract
Salmonellosis, caused by members of the genus Salmonella, is responsible for considerable global morbidity and mortality in both animals and humans. In this review, we will discuss the pathogenesis of Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium, focusing on human Salmonella infections. We will trace the path of Salmonella through the body, including host entry sites, tissues and organs affected, and mechanisms involved in both pathogenesis and stimulation of host immunity. Careful consideration of the natural progression of disease provides an important context in which attenuated live oral vaccines can be rationally designed and developed. With this in mind, we will describe a series of attenuated live oral vaccines that have been successfully tested in clinical trials and demonstrated to be both safe and highly immunogenic. The attenuation strategies summarized in this review offer important insights into further development of attenuated vaccines against other Salmonella for which live oral candidates are currently unavailable.
Collapse
Affiliation(s)
- James E. Galen
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201
| | - Amanda D. Buskirk
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Infectious Diseases and Tropical Pediatrics, Department of Pediatrics, University of Maryland School of Medicine, Baltimore MD 21201
| | - Sharon M. Tennant
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201
| | - Marcela F. Pasetti
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Infectious Diseases and Tropical Pediatrics, Department of Pediatrics, University of Maryland School of Medicine, Baltimore MD 21201
| |
Collapse
|
174
|
Okeke IN. Laboratory systems as an antibacterial resistance containment tool in Africa. Afr J Lab Med 2016; 5:497. [PMID: 28879140 PMCID: PMC5433813 DOI: 10.4102/ajlm.v5i3.497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/05/2016] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION As crucial as clinical laboratories are to preventing, identifying and managing resistance problems, laboratory scientists are among the most overlooked stakeholders. This review outlines the contributions that diagnostic laboratory systems should make toward all five of the World Health Organization's 2015 strategic objectives for antimicrobial resistance containment. LABORATORY SYSTEMS IN RESISTANCE CONTAINMENT Antimicrobial susceptibility testing and surveillance are central to antibacterial resistance management and control and need to be implemented more commonly and closer to sick patients. However, the scope of tests that promote judicious antimicrobial use extend beyond susceptibility testing. Laboratory tests for pathogens or their associated biomarkers confirm or rule out specific causes of signs and symptoms associated with infection. Laboratory systems also provide critical support to infection control programmes. All of these functions promote rational antimicrobial use and contain the spread of resistance. Routine laboratory data supports the development of vaccines and other technologies that could ease the pressure placed by antimicrobials. Laboratories are also a rich source of information for health professionals, policymakers and the general public about the urgency of the resistance problem and progress in containing it. CONCLUSION Laboratory systems are integral to antimicrobial resistance containment and contributions from African laboratories to addressing resistance need to be enhanced.
Collapse
Affiliation(s)
- Iruka N Okeke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
175
|
Genomic Analysis of Salmonella enterica Serovar Typhimurium from Wild Passerines in England and Wales. Appl Environ Microbiol 2016; 82:6728-6735. [PMID: 27613688 DOI: 10.1128/aem.01660-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/02/2016] [Indexed: 11/20/2022] Open
Abstract
Passerine salmonellosis is a well-recognized disease of birds in the order Passeriformes, which includes common songbirds such as finches and sparrows, caused by infection with Salmonella enterica serovar Typhimurium. Previous research has suggested that some subtypes of S Typhimurium-definitive phage types (DTs) 40, 56 variant, and 160-are host adapted to passerines and that these birds may represent a reservoir of infection for humans and other animals. Here, we have used the whole-genome sequences of 11 isolates from British passerines, five isolates of similar DTs from humans and a domestic cat, and previously published S Typhimurium genomes that include similar DTs from other hosts to investigate the phylogenetic relatedness of passerine salmonellae to other S Typhimurium isolates and investigate possible genetic features of the distinct disease pathogenesis of S Typhimurium in passerines. Our results demonstrate that the 11 passerine isolates and 13 other isolates, including those from nonpasserine hosts, were genetically closely related, with a median pairwise single nucleotide polymorphism (SNP) difference of 130 SNPs. These 24 isolates did not carry antimicrobial resistance genetic determinants or the S Typhimurium virulence plasmid. Although our study does not provide evidence of Salmonella transmission from passerines to other hosts, our results are consistent with the hypothesis that wild birds represent a potential reservoir of these Salmonella subtypes, and thus, sensible personal hygiene precautions should be taken when feeding or handling garden birds. IMPORTANCE Passerine salmonellosis, caused by certain definitive phage types (DTs) of Salmonella Typhimurium, has been documented as a cause of wild passerine mortality since the 1950s in many countries, often in the vicinity of garden bird feeding stations. To gain better insight into its epidemiology and host-pathogen interactions, we sequenced the genomes of a collection of 11 isolates from wild passerine salmonellosis in England and Wales. Phylogenetic analysis showed these passerine isolates to be closely related to each other and to form a clade that is distinct from other strains of S Typhimurium, which included a multidrug-resistant isolate from invasive nontyphoidal Salmonella disease that shares the same phage type as several of the passerine isolates. Closely related to wild passerine isolates and within the same clade were four S Typhimurium isolates from humans as well as isolates from horses, poultry, cattle, an unspecified wild bird, and a domestic cat and dog with similar DTs and/or multilocus sequence types. This suggests the potential for cross-species transmission, and the genome sequences provide a valuable resource to investigate passerine salmonellosis further.
Collapse
|
176
|
Abstract
BACKGROUND Typhoid fever remains an important disease in Africa, associated with outbreaks and the emerging multidrug resistant Salmonella enterica serotype Typhi (Salmonella Typhi) haplotype, H58. This study describes the incidence of, and factors associated with mortality due to, typhoid fever in South Africa, where HIV prevalence is high. METHODS AND FINDINGS Nationwide active laboratory-based surveillance for culture-confirmed typhoid fever was undertaken from 2003-2013. At selected institutions, additional clinical data from patients were collected including age, sex, HIV status, disease severity and outcome. HIV prevalence among typhoid fever patients was compared to national HIV seroprevalence estimates. The national reference laboratory tested Salmonella Typhi isolates for antimicrobial susceptibility and haplotype. Unadjusted and adjusted logistic regression analyses were conducted determining factors associated with typhoid fever mortality. We identified 855 typhoid fever cases: annual incidence ranged from 0.11 to 0.39 per 100,000 population. Additional clinical data were available for 369 (46.8%) cases presenting to the selected sites. Among typhoid fever patients with known HIV status, 19.3% (29/150) were HIV-infected. In adult females, HIV prevalence in typhoid fever patients was 43.2% (19/44) versus 15.7% national HIV seroprevalence (P < .001); in adult males, 16.3% (7/43) versus 12.3% national HIV seroprevalence (P = .2). H58 represented 11.9% (22/185) of Salmonella Typhi isolates tested. Increased mortality was associated with HIV infection (AOR 10.7; 95% CI 2.3-50.3) and disease severity (AOR 9.8; 95% CI 1.6-60.0) on multivariate analysis. CONCLUSIONS Typhoid fever incidence in South Africa was largely unchanged from 2003-2013. Typhoid fever mortality was associated disease severity. HIV infection may be a contributing factor. Interventions mandate improved health care access, including to HIV management programmes as well as patient education. Further studies are necessary to clarify relationships between HIV infection and typhoid fever in adults.
Collapse
|
177
|
Lokken KL, Walker GT, Tsolis RM. Disseminated infections with antibiotic-resistant non-typhoidal Salmonella strains: contributions of host and pathogen factors. Pathog Dis 2016; 74:ftw103. [PMID: 27765795 DOI: 10.1093/femspd/ftw103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 11/14/2022] Open
Abstract
Non-typhoidal Salmonella enterica serovars (NTS) are generally associated with gastroenteritis; however, the very young and elderly, as well as individuals with compromised immunity, are at risk of developing disseminated infection that can manifest as bacteremia or focal infections at systemic sites. Disseminated NTS infections can be fatal and are responsible for over 600 000 deaths annually. Most of these deaths are in sub-Saharan Africa, where multidrug-resistant NTS clones are currently circulating in a population with a high proportion of individuals that are susceptible to disseminated disease. This review considers how genome degradation observed in African NTS isolates has resulted in phenotypic differences in traits related to environmental persistence and host-pathogen interactions. Further, it discusses host mechanisms promoting susceptibility to invasive infection with NTS in individuals with immunocompromising conditions. We conclude that mechanistic knowledge of how risk factors compromise immunity to disseminated NTS infection will be important for the design of interventions to protect against systemic disease.
Collapse
Affiliation(s)
- Kristen L Lokken
- Medical Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Gregory T Walker
- Medical Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Renée M Tsolis
- Medical Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
178
|
Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X, Wigley P, Barquist L, Langridge GC, Feltwell T, Harris SR, Mather AE, Fookes M, Aslett M, Msefula C, Kariuki S, Maclennan CA, Onsare RS, Weill FX, Le Hello S, Smith AM, McClelland M, Desai P, Parry CM, Cheesbrough J, French N, Campos J, Chabalgoity JA, Betancor L, Hopkins KL, Nair S, Humphrey TJ, Lunguya O, Cogan TA, Tapia MD, Sow SO, Tennant SM, Bornstein K, Levine MM, Lacharme-Lora L, Everett DB, Kingsley RA, Parkhill J, Heyderman RS, Dougan G, Gordon MA, Thomson NR. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat Genet 2016; 48:1211-1217. [PMID: 27548315 PMCID: PMC5047355 DOI: 10.1038/ng.3644] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 07/15/2016] [Indexed: 11/15/2022]
Abstract
An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.
Collapse
Affiliation(s)
- Nicholas A Feasey
- Liverpool School of Tropical Medicine, Liverpool, UK
- Wellcome Trust Sanger Institute, Cambridge, UK
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Karen H Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Timothy J Dallman
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, UK
| | - Jan Jacobs
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, University of Leuven, Belgium
| | - Xiangyu Deng
- Center for Food Safety, Department of Food Science and Technology, University of Georgia
- Centers for Disease Control and Prevention, Atlanta, USA
| | - Paul Wigley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | - Chisomo Msefula
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- University of Malawi, The College of Medicine, Blantyre, Malawi
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Calman A Maclennan
- Wellcome Trust Sanger Institute, Cambridge, UK
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert S Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Christopher M Parry
- Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - John Cheesbrough
- Department of Epidemiology and Population Health, University of Liverpool, Liverpool, UK
| | - Neil French
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Josefina Campos
- Enteropathogen Division, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Carlos G. Malbran Institute, Buenos Aires, Argentina
| | - Jose A Chabalgoity
- Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Uruguay
| | - Laura Betancor
- Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Uruguay
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, Colindale, UK
| | - Satheesh Nair
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, UK
| | | | - Octavie Lunguya
- National Institute of Biomedical Research, Kinshasa, the Democratic Republic of the Congo
- University Hospital of Kinshasa, Kinshasa, the Democratic Republic of the Congo
| | - Tristan A Cogan
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Milagritos D Tapia
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samba O Sow
- Centre pour le Développement des Vaccins, Bamako, Mali
| | - Sharon M Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kristin Bornstein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lizeth Lacharme-Lora
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Dean B Everett
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Robert A Kingsley
- Wellcome Trust Sanger Institute, Cambridge, UK
- Institute of Food Research, Colney, Norwich, UK
| | | | - Robert S Heyderman
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Division of Infection and Immunity, University College London, London, UK
| | | | - Melita A Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Cambridge, UK
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
179
|
Phillips A, Sotomayor C, Wang Q, Holmes N, Furlong C, Ward K, Howard P, Octavia S, Lan R, Sintchenko V. Whole genome sequencing of Salmonella Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014. BMC Microbiol 2016; 16:211. [PMID: 27629541 PMCID: PMC5024487 DOI: 10.1186/s12866-016-0831-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 09/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Salmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially greater discriminatory power to support infectious disease surveillance. Methods We performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of case and environmental isolates were sequenced using HiSeq (Illumina) and the genetic distance between them was assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context. Results The WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to outbreak cases may represent an unidentified common food source that may warrant further public health follow up. Previously unrecognised mini-clusters were detected. Conclusions WGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our findings support the translation of WGS into public health laboratory surveillance of salmonellosis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0831-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anastasia Phillips
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.
| | - Cristina Sotomayor
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,NSW Enteric Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West, Sydney, NSW, Australia
| | - Nadine Holmes
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Catriona Furlong
- OzFood Net, Communicable Disease Branch, Health Protection, NSW Ministry of Health, Sydney, NSW, Australia
| | - Kate Ward
- OzFood Net, Communicable Disease Branch, Health Protection, NSW Ministry of Health, Sydney, NSW, Australia
| | - Peter Howard
- NSW Enteric Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,NSW Enteric Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West, Sydney, NSW, Australia
| |
Collapse
|
180
|
What's in a Name? Species-Wide Whole-Genome Sequencing Resolves Invasive and Noninvasive Lineages of Salmonella enterica Serotype Paratyphi B. mBio 2016; 7:mBio.00527-16. [PMID: 27555304 PMCID: PMC4999539 DOI: 10.1128/mbio.00527-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For 100 years, it has been obvious that Salmonella enterica strains sharing the serotype with the formula 1,4,[5],12:b:1,2—now known as Paratyphi B—can cause diseases ranging from serious systemic infections to self-limiting gastroenteritis. Despite considerable predicted diversity between strains carrying the common Paratyphi B serotype, there remain few methods that subdivide the group into groups that are congruent with their disease phenotypes. Paratyphi B therefore represents one of the canonical examples in Salmonella where serotyping combined with classical microbiological tests fails to provide clinically informative information. Here, we use genomics to provide the first high-resolution view of this serotype, placing it into a wider genomic context of the Salmonella enterica species. These analyses reveal why it has been impossible to subdivide this serotype based upon phenotypic and limited molecular approaches. By examining the genomic data in detail, we are able to identify common features that correlate with strains of clinical importance. The results presented here provide new diagnostic targets, as well as posing important new questions about the basis for the invasive disease phenotype observed in a subset of strains. Salmonella enterica strains carrying the serotype Paratyphi B have long been known to possess Jekyll and Hyde characteristics; some cause gastroenteritis, while others cause serious invasive disease. Understanding what makes up the population of strains carrying this serotype, as well as the source of their invasive disease, is a 100-year-old puzzle that we address here using genomics. Our analysis provides the first high-resolution view of this serotype, placing strains carrying serotype Paratyphi B into the wider genomic context of the Salmonella enterica species. This work reveals a history of disease dating back to the middle ages, caused by a group of distinct lineages with various abilities to cause invasive disease. By quantifying the key genomic differences between the invasive and noninvasive populations, we are able to identify key virulence-related targets that can form the basis of simple, rapid, point-of-care tests.
Collapse
|
181
|
Invasive Non-typhoidal Salmonella Infections in Asia: Clinical Observations, Disease Outcome and Dominant Serovars from an Infectious Disease Hospital in Vietnam. PLoS Negl Trop Dis 2016; 10:e0004857. [PMID: 27513951 PMCID: PMC4981332 DOI: 10.1371/journal.pntd.0004857] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/28/2016] [Indexed: 11/19/2022] Open
Abstract
Invasive non-typhoidal Salmonella (iNTS) infections are now a well-described cause of morbidity and mortality in children and HIV-infected adults in sub-Saharan Africa. In contrast, the epidemiology and clinical manifestations of iNTS disease in Asia are not well documented. We retrospectively identified >100 cases of iNTS infections in an infectious disease hospital in Southern Vietnam between 2008 and 2013. Clinical records were accessed to evaluate demographic and clinical factors associated with iNTS infection and to identify risk factors associated with death. Multi-locus sequence typing and antimicrobial susceptibility testing was performed on all organisms. Of 102 iNTS patients, 71% were HIV-infected, >90% were adults, 71% were male and 33% reported intravenous drug use. Twenty-six/92 (28%) patients with a known outcome died; HIV infection was significantly associated with death (p = 0.039). S. Enteritidis (Sequence Types (ST)11) (48%, 43/89) and S. Typhimurium (ST19, 34 and 1544) (26%, 23/89) were the most commonly identified serovars; S. Typhimurium was significantly more common in HIV-infected individuals (p = 0.003). Isolates from HIV-infected patients were more likely to exhibit reduced susceptibility against trimethoprim-sulfamethoxazole than HIV-negative patients (p = 0.037). We conclude that iNTS disease is a severe infection in Vietnam with a high mortality rate. As in sub-Saharan Africa, HIV infection was a risk factor for death, with the majority of the burden in this population found in HIV-infected adult men. Invasive non-typhoidal Salmonella (iNTS) infections occur when Salmonella bacteria, which normally cause diarrhea, enter the bloodstream and spread through the body. Invasive NTS infections have become a common cause of infection and death in children with malaria and adults with HIV in sub-Saharan Africa. However, it is unknown whether iNTS is as common or as severe outside sub-Saharan Africa. We evaluated over 100 iNTS cases from an infectious disease hospital in southern Vietnam admitted between 2008–2013. We used hospital records to determine the clinical features of iNTS disease and to identify risk factors associated with death and performed typing of the isolated organisms. The majority of patients were HIV positive (72/102, 71%), >90% of patients were adults, 71% were male and 33% reported intravenous drug use. The mortality rate of iNTS patients was 28% (26/92), and HIV infection was a significant risk factor for fatal outcome (p = 0.039). The serovars most commonly identified were S. Enteritidis and S. Typhimurium; S. Typhimurium was found more frequently in HIV-positive individuals (p = 0.003). We report that iNTS disease is a severe infection in Vietnam with a high mortality rate. Similar to sub-Saharan Africa, HIV infection was a strong risk factor for death.
Collapse
|
182
|
Wheeler NE, Barquist L, Kingsley RA, Gardner PP. A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes. Bioinformatics 2016; 32:3566-3574. [PMID: 27503221 PMCID: PMC5181535 DOI: 10.1093/bioinformatics/btw518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 02/04/2023] Open
Abstract
Motivation: Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predicting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. Results: We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica. We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. Availability and Implementation: A program implementing DBS for pairwise genome comparisons is freely available at: https://github.com/UCanCompBio/deltaBS. Contact:nicole.wheeler@pg.canterbury.ac.nz or lars.barquist@uni-wuerzburg.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nicole E Wheeler
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Robert A Kingsley
- Institute of Food Research, Norwich Research Park, Norwich, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Paul P Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Bio-protection Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
183
|
Kariuki S, Onsare RS. Epidemiology and Genomics of Invasive Nontyphoidal Salmonella Infections in Kenya. Clin Infect Dis 2016; 61 Suppl 4:S317-24. [PMID: 26449947 DOI: 10.1093/cid/civ711] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In Kenya, invasive nontyphoidal Salmonella (iNTS) disease causes severe bacteremic illness among adults with human immunodeficiency virus (HIV) and especially among children <5 years of age coinfected with HIV or malaria, or who are compromised by sickle cell disease or severe malnutrition. The incidence of iNTS disease in children ranges from 166 to 568 cases per 100,000 persons per year. METHODS We review the epidemiology of iNTS disease and genomics of strains causing invasive illness in Kenya. We analyzed a total of 192 NTS isolates (114 Typhimurium, 78 Enteritidis) from blood and stools from pediatric admissions in 2005-2013. Testing for antimicrobial susceptibility to commonly used drugs and whole-genome sequencing were performed to assess prevalence and genetic relatedness of multidrug-resistant iNTS strains, respectively. RESULTS A majority (88/114 [77%]) of Salmonella Typhimurium and 30% (24/79) of Salmonella Enteritidis isolates tested were found to be multidrug resistant, whereas a dominant Salmonella Typhimurium pathotype, ST313, was primarily associated with invasive disease and febrile illness. Analysis of the ST313 isolates has identified genome degradation, compared with the ST19 genotype that typically causes diarrhea in humans, especially in industrialized countries, adapting a more host-restricted lifestyle typical of Salmonella Typhi infections. CONCLUSIONS From 2012, we have observed an emergence of ceftriaxone-resistant strains also showing reduced susceptibility to fluoroquinolones. As most cases present with nonspecific febrile illness with no laboratory-confirmed etiology, empiric treatment of iNTS disease is a major challenge in Kenya. Multidrug resistance, including to ceftriaxone, will pose further difficulty in management of iNTS disease in endemic areas.
Collapse
Affiliation(s)
- Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi
| | - Robert S Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi
| |
Collapse
|
184
|
Keddy KH, Sooka A, Musekiwa A, Smith AM, Ismail H, Tau NP, Crowther-Gibson P, Angulo FJ, Klugman KP. Clinical and Microbiological Features of Salmonella Meningitis in a South African Population, 2003-2013. Clin Infect Dis 2016; 61 Suppl 4:S272-82. [PMID: 26449942 DOI: 10.1093/cid/civ685] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The clinical and microbiological characteristics of nontyphoidal Salmonella (NTS) meningitis in South Africa, where human immunodeficiency virus (HIV) prevalence is high (approximately 15% in persons ≥15 years of age), were reviewed. METHODS From 2003 through 2013, 278 cases were identified through national laboratory-based surveillance. Clinical information (age, sex, outcome, Glasgow Coma Scale [GCS], and HIV status) was ascertained at selected sites. Isolates were serotyped; susceptibility testing and multilocus sequence typing on Salmonella enterica serovar Typhimurium isolates was performed. Multivariable logistic regression was used to determine factors associated with mortality outcome, using Stata software, version 13. RESULTS Where age was ascertained, 139 of 256 (54.3%) patients were <15 years. Males represented 151 of 267 (56.6%). Mortality outcome was recorded for 112 of 146 (76.7%) enhanced surveillance patients; 53 of 112 (47.3%) died. Death was associated with GCS ≤13 (adjusted odds ratio [OR], 18.7; 95% confidence interval [CI], 3.0-118.5; P = .002) on multivariable analysis. Where data were available, all 45 patients aged >15 years were HIV infected, compared with 24 of 46 (52.2%) patients aged <5 years. Neonates were less likely to be HIV infected than infants aged 2-12 months (OR, 4.8; 95% CI, 1.1-21.1; P = .039).Salmonella Typhimurium represented 106 of 238 (44.5%) serotyped isolates: 65 of 95 (68.4%) were ST313 vs ST19, respectively, and significantly associated with HIV-infected patients (P = .03) and multidrug resistance (OR, 6.6; 95% CI, 2.5-17.2; P < .001). CONCLUSIONS NTS meningitis in South Africa is highly associated with HIV in adults, with neonates (irrespective of HIV status), and with Salmonella Typhimurium ST313. GCS is the best predictor of mortality: early diagnosis and treatment are critical. Focused prevention requires further studies to understand the sources and transmission routes.
Collapse
Affiliation(s)
- Karen H Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Arvinda Sooka
- Centre for Enteric Diseases, National Institute for Communicable Diseases
| | - Alfred Musekiwa
- International Emerging Infections Programme, South Africa Global Disease Detection Centre, Centers for Disease Control and Prevention, Pretoria
| | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Husna Ismail
- Centre for Enteric Diseases, National Institute for Communicable Diseases
| | - Nomsa P Tau
- Centre for Enteric Diseases, National Institute for Communicable Diseases
| | - Penny Crowther-Gibson
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Frederick J Angulo
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention
| | - Keith P Klugman
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg Hubert Department of Global Health, Rollins School of Public Health, and Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, Georgia
| | | |
Collapse
|
185
|
Mather AE, Vaughan TG, French NP. Molecular Approaches to Understanding Transmission and Source Attribution in Nontyphoidal Salmonella and Their Application in Africa. Clin Infect Dis 2016; 61 Suppl 4:S259-65. [PMID: 26449940 DOI: 10.1093/cid/civ727] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nontyphoidal Salmonella (NTS) is a frequent cause of diarrhea around the world, yet in many African countries it is more commonly associated with invasive bacterial disease. Various source attribution models have been developed that utilize microbial subtyping data to assign cases of human NTS infection to different animal populations and foods of animal origin. Advances in molecular microbial subtyping approaches, in particular whole-genome sequencing, provide higher resolution data with which to investigate these sources. In this review, we provide updates on the source attribution models developed for Salmonella, and examine the application of whole-genome sequencing data combined with evolutionary modeling to investigate the putative sources and transmission pathways of NTS, with a focus on the epidemiology of NTS in Africa. This is essential information to decide where, what, and how control strategies might be applied most effectively.
Collapse
Affiliation(s)
- Alison E Mather
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - Timothy G Vaughan
- Department of Computer Science, University of Auckland Allan Wilson Centre for Molecular Ecology and Evolution
| | - Nigel P French
- mEpiLab, Infectious Disease Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
186
|
Oneko M, Kariuki S, Muturi-Kioi V, Otieno K, Otieno VO, Williamson JM, Folster J, Parsons MB, Slutsker L, Mahon BE, Hamel MJ. Emergence of Community-Acquired, Multidrug-Resistant Invasive Nontyphoidal Salmonella Disease in Rural Western Kenya, 2009-2013. Clin Infect Dis 2016; 61 Suppl 4:S310-6. [PMID: 26449946 DOI: 10.1093/cid/civ674] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Nontyphoidal Salmonella (NTS), mainly serotypes Typhimurium and Enteritidis, cause invasive infections with high mortality in children in sub-Saharan Africa. Multidrug resistance is common, and resistance to third-generation cephalosporins has emerged. METHODS We reviewed clinical features, outcomes, and antimicrobial resistance patterns in invasive NTS infections among children aged 6 weeks to 5 years participating in malaria vaccine studies in an area of high malaria and human immunodeficiency virus (HIV) transmission in Siaya, western Kenya. Blood culture was performed in hospitalized children and pediatric outpatients with prolonged fever. RESULTS From July 2009 to December 2013, 1696 children aged 6 weeks to 17 months were enrolled into vaccine trials and followed for up to 53 months. We obtained 1692 blood cultures from 847 children. Of 134 bacterial pathogens isolated, 102 (76.1%) were Salmonella serogroup B or D. Invasive NTS disease occurred in 94 (5.5%) children, with an incidence of 1870, 4134, and 6510 episodes per 100 000 person-years overall, in infants, and in HIV-infected children, respectively. Malaria infection within the past 2 weeks occurred in 18.8% (3/16) of invasive NTS episodes in HIV-infected and 66.2% (53/80) in HIV-uninfected children. Case fatality rate was 3.1%. Salmonella group B resistant to ceftriaxone emerged in 2009 and 2010 (6.2% [2/32 isolates]), rising to 56.5% (13/23 isolates) in 2012 and 2013. CONCLUSIONS Incidence of invasive NTS disease was high in this area of high malaria and HIV transmission, especially in HIV-infected children. Rapidly emerging resistance against ceftriaxone requires urgent reevaluation of antibiotic recommendations and primary prevention of exposure to Salmonella.
Collapse
Affiliation(s)
- Martina Oneko
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu
| | - Simon Kariuki
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu
| | | | - Kephas Otieno
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu
| | - Vincent O Otieno
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu
| | | | - Jason Folster
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Barbara E Mahon
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary J Hamel
- Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
187
|
Tapia MD, Tennant SM, Bornstein K, Onwuchekwa U, Tamboura B, Maiga A, Sylla MB, Sissoko S, Kourouma N, Toure A, Malle D, Livio S, Sow SO, Levine MM. Invasive Nontyphoidal Salmonella Infections Among Children in Mali, 2002-2014: Microbiological and Epidemiologic Features Guide Vaccine Development. Clin Infect Dis 2016; 61 Suppl 4:S332-8. [PMID: 26449949 DOI: 10.1093/cid/civ729] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In 2002, following establishment of a clinical microbiology laboratory in the government hospital that admits children with severe illnesses in Bamako, Mali, surveillance to identify pathogens causing invasive bacterial infections (septicemia, bacteremia, meningitis, etc) was initiated. METHODS Parents/guardians of children aged <16 years admitted to l'Hôpital Gabriel Touré with high fever or clinical syndromes compatible with focal invasive bacterial disease were asked for consent to culture their child's blood/body fluid. Standard bacteriologic techniques speciated isolates; Salmonella serovars were determined. RESULTS From July 2002 through June 2014, 687 nontyphoidal Salmonella (NTS) isolates were obtained from 667 children; 667 yielded a single serovar and 20 grew 2 Salmonella serovars, 1 being NTS. Four serovars accounted for 87% of the 687 NTS isolates, including Salmonella Enteritidis (n = 244 [35.5%]), Salmonella Typhimurium (n = 221 [32.2%]), I:4,[5],12:i:- (n = 42 [6.1%]), and Salmonella Dublin (n = 89 [13.0%]). Of 553 patients with invasive NTS from whom 1 of the 4 predominant serovars was isolated in pure culture, 448 (81.0%) were aged <5 years and case fatality was 20.3%; Salmonella Enteritidis case fatality (27.8%) was higher than for other serovars (P = .0009). NTS disease showed a seasonal peak following the rainy season and into the cool, dry season. Since 2010, Salmonella Enteritidis cases have risen and Salmonella Typhimurium fallen. CONCLUSIONS NTS has become the predominant invasive pathogen as Haemophilus influenzae type b and pneumococcal vaccine use in Mali has diminished invasive disease due to those pathogens. The age distribution and limited serovars involved make control of NTS disease by vaccines epidemiologically feasible, if products under development prove safe and efficacious.
Collapse
Affiliation(s)
| | | | - Kristin Bornstein
- Center for Vaccine Development Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection. Infect Immun 2016; 84:2131-2140. [PMID: 27185789 DOI: 10.1128/iai.00250-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023] Open
Abstract
Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen.
Collapse
|
189
|
A Salmonella Toxin Promotes Persister Formation through Acetylation of tRNA. Mol Cell 2016; 63:86-96. [PMID: 27264868 PMCID: PMC4942678 DOI: 10.1016/j.molcel.2016.05.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022]
Abstract
The recalcitrance of many bacterial infections to antibiotic treatment is thought to be due to the presence of persisters that are non-growing, antibiotic-insensitive cells. Eventually, persisters resume growth, accounting for relapses of infection. Salmonella is an important pathogen that causes disease through its ability to survive inside macrophages. After macrophage phagocytosis, a significant proportion of the Salmonella population forms non-growing persisters through the action of toxin-antitoxin modules. Here we reveal that one such toxin, TacT, is an acetyltransferase that blocks the primary amine group of amino acids on charged tRNA molecules, thereby inhibiting translation and promoting persister formation. Furthermore, we report the crystal structure of TacT and note unique structural features, including two positively charged surface patches that are essential for toxicity. Finally, we identify a detoxifying mechanism in Salmonella wherein peptidyl-tRNA hydrolase counteracts TacT-dependent growth arrest, explaining how bacterial persisters can resume growth. TacT promotes Salmonella persister formation by inhibiting translation TacT is an acetyltransferase with positively charged patches essential for toxicity TacT blocks the primary amine group of amino acids on charged tRNA molecules Salmonella detoxifies TacT-corrupted tRNAs, allowing bacterial growth to resume
Collapse
|
190
|
Gaskell KM, Feasey NA, Heyderman RS. Management of severe non-TB bacterial infection in HIV-infected adults. Expert Rev Anti Infect Ther 2016; 13:183-95. [PMID: 25578883 DOI: 10.1586/14787210.2015.995631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite widespread antiretroviral therapy use, severe bacterial infections (SBI) in HIV-infected adults continue to cause significant morbidity and mortality globally. Four main pathogens account for the majority of documented SBI: Streptococcus pneumoniae, non-typhoidal strains of Salmonella enterica, Escherichia coli and Staphylococcus aureus. The epidemiology of SBI is dynamic, both in developing countries where, despite dramatic successes in antiretroviral therapy, coverage is far from complete, and in settings in both resource-poor and resource-rich countries where antiretroviral therapy failure is becoming increasingly common. Throughout the world, this complexity is further compounded by rapidly emerging antimicrobial resistance, making management of SBI very challenging in these vulnerable patients. We review the causes and treatment of SBI in HIV-infected people and discuss future developments in this field.
Collapse
Affiliation(s)
- Katherine M Gaskell
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | | | | |
Collapse
|
191
|
Obaro SK, Iroh Tam PY. Preventing Infections in Sickle Cell Disease: The Unfinished Business. Pediatr Blood Cancer 2016; 63:781-5. [PMID: 26840500 DOI: 10.1002/pbc.25911] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 11/08/2022]
Abstract
While encapsulated bacterial agents, particularly Streptococcus pneumoniae, are recognized as important microbes that are associated with serious illness in hosts with sickle cell disease (SCD), multiple pathogens are implicated in infectious manifestations of SCD. Variations in clinical practice have been an obstacle to the universal implementation of infection preventive management through active, targeted vaccination of these individuals and routine usage of antibiotic prophylaxis. Paradoxically, in low-income settings, there is evidence that SCD also increases the risk for several other infections that warrant additional infection preventive measures. The infection preventive care among patients with SCD in developed countries does not easily translate to the adoption of these recommendations globally, which must take into account the local epidemiology of infections, available vaccines and population-specific vaccine efficacy, environment, health care behaviors, and cultural beliefs, as these are all factors that play a complex role in the manifestation of SCD and the prevention of infectious disease morbidity.
Collapse
Affiliation(s)
- Stephen K Obaro
- Department of pediatrics, Division of Pediatric Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.,International Foundation Against Infectious Diseases in Nigeria (IFAIN), Millennium Plaza, Central Business Area, Abuja, Nigeria.,Department of Pediatrics, University of Abuja Teaching Hospital, Gwagwalada, Nigeria
| | - P Y Iroh Tam
- Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
192
|
Chattaway MA, Aboderin AO, Fashae K, Okoro CK, Opintan JA, Okeke IN. Fluoroquinolone-Resistant Enteric Bacteria in Sub-Saharan Africa: Clones, Implications and Research Needs. Front Microbiol 2016; 7:558. [PMID: 27148238 PMCID: PMC4841292 DOI: 10.3389/fmicb.2016.00558] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
Fluoroquinolones came into widespread use in African countries in the early 2000s, after patents for the first generation of these drugs expired. By that time, quinolone antibacterial agents had been used intensively worldwide and resistant lineages of many bacterial species had evolved. We sought to understand which Gram negative enteric pandemic lineages have been reported from Africa, as well as the nature and transmission of any indigenous resistant clones. A systematic review of articles indexed in the Medline and AJOL literature databases was conducted. We report on the findings of 43 eligible studies documenting local or pandemic fluoroquinolone-resistant enteric clones in sub-Sahara African countries. Most reports are of invasive non-typhoidal Salmonella and Escherichia coli lineages and there have been three reports of cholera outbreaks caused by fluoroquinolone-resistant Vibrio cholerae O1. Fluoroquinolone-resistant clones have also been reported from commensals and animal isolates but there are few data for non-Enterobacteriaceae and almost none for difficult-to-culture Campylobacter spp. Fluoroquinolone-resistant lineages identified in African countries were universally resistant to multiple other classes of antibacterial agents. Although as many as 972 non-duplicate articles refer to fluoroquinolone resistance in enteric bacteria from Africa, most do not report on subtypes and therefore information on the epidemiology of fluoroquinolone-resistant clones is available from only a handful of countries in the subcontinent. When resistance is reported, resistance mechanisms and lineage information is rarely investigated. Insufficient attention has been given to molecular and sequence-based methods necessary for identifying and tracking resistant clones in Africa and more research is needed in this area.
Collapse
Affiliation(s)
- Marie A Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England London, UK
| | - Aaron O Aboderin
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University Ile-Ife, Nigeria
| | - Kayode Fashae
- Department of Microbiology, University of Ibadan Ibadan, Nigeria
| | | | - Japheth A Opintan
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana Accra, Ghana
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan Ibadan, Nigeria
| |
Collapse
|
193
|
Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104. Appl Environ Microbiol 2016; 82:2516-26. [PMID: 26944846 PMCID: PMC4959494 DOI: 10.1128/aem.03821-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/09/2016] [Indexed: 11/20/2022] Open
Abstract
It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections.
Collapse
|
194
|
Pérez-Vázquez M, Oteo J, García-Cobos S, Aracil B, Harris SR, Ortega A, Fontanals D, Hernández JM, Solís S, Campos J, Dougan G, Kingsley RA. Phylogeny, resistome and mobile genetic elements of emergent OXA-48 and OXA-245 Klebsiella pneumoniae clones circulating in Spain. J Antimicrob Chemother 2016; 71:887-96. [PMID: 26769896 PMCID: PMC4790626 DOI: 10.1093/jac/dkv458] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The global emergence of OXA-48-producing Klebsiella pneumoniae clones is a significant threat to public health. We used WGS and phylogenetic analysis of Spanish isolates to investigate the population structure of blaOXA-48-like-expressing K. pneumoniae ST11 and ST405 and to determine the distribution of resistance genes and plasmids encoding blaOXA-48-like carbapenemases. METHODS SNPs identified in whole-genome sequences were used to reconstruct phylogenetic trees, identify resistance determinants and de novo assemble the genomes of 105 blaOXA-48-like-expressing K. pneumoniae isolates. RESULTS Genome variation was generally lower in outbreak-associated isolates compared with those associated with sporadic infections. The relatively limited variation observed within the outbreak-associated isolates was on average 7-10 SNPs per outbreak. Of 24 isolates from suspected sporadic infections, 7 were very closely related to isolates causing hospital outbreaks and 17 were more diverse and therefore probably true sporadic cases. On average, 14 resistance genes were identified per isolate. The 17 ST405 isolates from sporadic cases of infection had four distinct resistance gene profiles, while the resistance gene profile differed in all ST11 isolates from sporadic cases. Sequence analysis of 94 IncL/M plasmids carrying blaOXA-48-like genes revealed an average of two SNP differences, indicating a conserved plasmid clade. CONCLUSIONS Whole-genome sequence analysis enabled the discrimination of outbreak and sporadic isolates. Significant inter-regional spread within Spain of highly related isolates was evident for both ST11 and ST405 K. pneumoniae. IncL/M plasmids carrying blaOXA-48-like carbapenemase genes were highly conserved geographically and across the outbreaks, sporadic cases and clones.
Collapse
Affiliation(s)
- María Pérez-Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jesús Oteo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Silvia García-Cobos
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Belén Aracil
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Simon R Harris
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Adriana Ortega
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Dionisia Fontanals
- Laboratorio de Microbiología, Hospital Parc Taulí, Sabadell, Barcelona, Spain
| | | | - Sonia Solís
- Servicio de Microbiología, Hospital de Guadalajara, Guadalajara, Spain
| | - José Campos
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Robert A Kingsley
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK The Institute of Food Research, Colney, Norwich, UK
| |
Collapse
|
195
|
Zukurov JP, do Nascimento-Brito S, Volpini AC, Oliveira GC, Janini LMR, Antoneli F. Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage. Algorithms Mol Biol 2016; 11:2. [PMID: 26973707 PMCID: PMC4788855 DOI: 10.1186/s13015-016-0064-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 02/25/2016] [Indexed: 12/16/2022] Open
Abstract
Background In this paper we propose a method and discuss its computational implementation as an integrated tool for the analysis of viral genetic diversity on data generated by high-throughput sequencing. The main motivation for this work is to better understand the genetic diversity of viruses with high rates of nucleotide substitution, as HIV-1 and Influenza. Most methods for viral diversity estimation proposed so far are intended to take benefit of the longer reads produced by some next-generation sequencing platforms in order to estimate a population of haplotypes which represent the diversity of the original population. The method proposed here is custom-made to take advantage of the very low error rate and extremely deep coverage per site, which are the main features of some neglected technologies that have not received much attention due to the short length of its reads, which precludes haplotype estimation. This approach allowed us to avoid some hard problems related to haplotype reconstruction (need of long reads, preliminary error filtering and assembly). Results We propose to measure genetic diversity of a viral population through a family of multinomial probability distributions indexed by the sites of the virus genome, each one representing the distribution of nucleic bases per site. Moreover, the implementation of the method focuses on two main optimization strategies: a read mapping/alignment procedure that aims at the recovery of the maximum possible number of short-reads; the inference of the multinomial parameters in a Bayesian framework with smoothed Dirichlet estimation. The Bayesian approach provides conditional probability distributions for the multinomial parameters allowing one to take into account the prior information of the control experiment and providing a natural way to separate signal from noise, since it automatically furnishes Bayesian confidence intervals and thus avoids the drawbacks of preliminary error filtering. Conclusions The methods described in this paper have been implemented as an integrated tool called Tanden (Tool for Analysis of Diversity in Viral Populations) and successfully tested on samples obtained from HIV-1 strain NL4-3 (group M, subtype B) cultivations on primary human cell cultures in many distinct viral propagation conditions. Tanden is written in C# (Microsoft), runs on the Windows operating system, and can be downloaded from: http://tanden.url.ph/.
Collapse
|
196
|
Genomic Analysis of Salmonella enterica Serovar Typhimurium Characterizes Strain Diversity for Recent U.S. Salmonellosis Cases and Identifies Mutations Linked to Loss of Fitness under Nitrosative and Oxidative Stress. mBio 2016; 7:e00154. [PMID: 26956590 PMCID: PMC4810482 DOI: 10.1128/mbio.00154-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is one of the most common S. enterica serovars associated with U.S. foodborne outbreaks. S. Typhimurium bacteria isolated from humans exhibit wide-ranging virulence phenotypes in inbred mice, leading to speculation that some strains are more virulent in nature. However, it is unclear whether increased virulence in humans is related to organism characteristics or initial treatment failure due to antibiotic resistance. Strain diversity and genetic factors contributing to differential human pathogenicity remain poorly understood. We reconstructed phylogeny, resolved genetic population structure, determined gene content and nucleotide variants, and conducted targeted phenotyping assays for S. Typhimurium strains collected between 1946 and 2012 from humans and animals in the United States and abroad. Strains from recent U.S. salmonellosis cases were associated with five S. Typhimurium lineages distributed within three phylogenetic clades, which are not restricted by geography, year of acquisition, or host. Notably, two U.S. strains and four Mexican strains are more closely related to strains associated with human immunodeficiency virus (HIV)-infected individuals in sub-Saharan Africa than to other North American strains. Phenotyping studies linked variants specific to these strains in hmpA and katE to loss of fitness under nitrosative and oxidative stress, respectively. These results suggest that U.S. salmonellosis is caused by diverse S. Typhimurium strains circulating worldwide. One lineage has mutations in genes affecting fitness related to innate immune system strategies for fighting pathogens and may be adapting to immunocompromised humans by a reduction in virulence capability, possibly due to a lack of selection for its maintenance as a result of the worldwide HIV epidemic. Nontyphoidal Salmonella bacteria cause an estimated 1.2 million illnesses annually in the United States, 80 million globally, due to ingestion of contaminated food or water. Salmonella Typhimurium is one of the most common serovars associated with foodborne illness, causing self-limiting gastroenteritis and, in approximately 5% of infected patients, systemic infection. Although some S. Typhimurium strains are speculated to be more virulent than others, it is unknown how strain diversity and genetic factors contribute to differential human pathogenicity. Ours is the first study to examine the diversity of S. Typhimurium associated with recent cases of U.S. salmonellosis and to provide some initial correlation between observed genotypes and phenotypes. Definition of specific S. Typhimurium lineages based on such phenotype/genotype correlations may identify strains with greater capability of associating with specific food sources, allowing outbreaks to be more quickly identified. Additionally, defining simple correlates of pathogenesis may have predictive value for patient outcome.
Collapse
|
197
|
Schultz MB, Pham Thanh D, Tran Do Hoan N, Wick RR, Ingle DJ, Hawkey J, Edwards DJ, Kenyon JJ, Phu Huong Lan N, Campbell JI, Thwaites G, Thi Khanh Nhu N, Hall RM, Fournier-Level A, Baker S, Holt KE. Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward. Microb Genom 2016; 2:e000050. [PMID: 28348846 PMCID: PMC5320574 DOI: 10.1099/mgen.0.000050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022] Open
Abstract
We recently reported a dramatic increase in the prevalence of carbapenem-resistant Acinetobacter baumannii infections in the intensive care unit (ICU) of a Vietnamese hospital. This upsurge was associated with a specific oxa23-positive clone that was identified by multilocus VNTR analysis. Here, we used whole-genome sequence analysis to dissect the emergence of carbapenem-resistant A. baumannii causing ventilator-associated pneumonia (VAP) in the ICU during 2009–2012. To provide historical context and distinguish microevolution from strain introduction, we compared these genomes with those of A. baumannii asymptomatic carriage and VAP isolates from this same ICU collected during 2003–2007. We identified diverse lineages co-circulating over many years. Carbapenem resistance was associated with the presence of oxa23, oxa40, oxa58 and ndm1 genes in multiple lineages. The majority of resistant isolates were oxa23-positive global clone GC2; fine-scale phylogenomic analysis revealed five distinct GC2 sublineages within the ICU that had evolved locally via independent chromosomal insertions of oxa23 transposons. The increase in infections caused by carbapenem-resistant A. baumannii was associated with transposon-mediated transmission of a carbapenemase gene, rather than clonal expansion or spread of a carbapenemase-harbouring plasmid. Additionally, we found evidence of homologous recombination creating diversity within the local GC2 population, including several events resulting in replacement of the capsule locus. We identified likely donors of the imported capsule locus sequences amongst the A. baumannii isolated on the same ward, suggesting that diversification was largely facilitated via reassortment and sharing of genetic material within the localized A. baumannii population.
Collapse
Affiliation(s)
- Mark B Schultz
- 2Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia.,1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Duy Pham Thanh
- 3The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nhu Tran Do Hoan
- 3The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ryan R Wick
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.,2Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Danielle J Ingle
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.,2Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jane Hawkey
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.,2Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David J Edwards
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.,2Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Johanna J Kenyon
- 4School of Molecular Bioscience, University of Sydney, New South Wales, Australia.,5School of Biomedical Science, Queensland University of Technology, Queensland, Australia
| | - Nguyen Phu Huong Lan
- 3The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,6Centre for Tropical Medicine, Nuffield Department of Medicine, Oxford University, London, UK
| | - James I Campbell
- 3The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy Thwaites
- 3The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Khanh Nhu
- 3The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,6Centre for Tropical Medicine, Nuffield Department of Medicine, Oxford University, London, UK
| | - Ruth M Hall
- 4School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | - Stephen Baker
- 3The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,6Centre for Tropical Medicine, Nuffield Department of Medicine, Oxford University, London, UK
| | - Kathryn E Holt
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.,2Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
198
|
Loss of Multicellular Behavior in Epidemic African Nontyphoidal Salmonella enterica Serovar Typhimurium ST313 Strain D23580. mBio 2016; 7:e02265. [PMID: 26933058 PMCID: PMC4810497 DOI: 10.1128/mbio.02265-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Nontyphoidal Salmonella enterica serovar Typhimurium is a frequent cause of bloodstream infections in children and HIV-infected adults in sub-Saharan Africa. Most isolates from African patients with bacteremia belong to a single sequence type, ST313, which is genetically distinct from gastroenteritis-associated ST19 strains, such as 14028s and SL1344. Some studies suggest that the rapid spread of ST313 across sub-Saharan Africa has been facilitated by anthroponotic (person-to-person) transmission, eliminating the need for Salmonella survival outside the host. While these studies have not ruled out zoonotic or other means of transmission, the anthroponotic hypothesis is supported by evidence of extensive genomic decay, a hallmark of host adaptation, in the sequenced ST313 strain D23580. We have identified and demonstrated 2 loss-of-function mutations in D23580, not present in the ST19 strain 14028s, that impair multicellular stress resistance associated with survival outside the host. These mutations result in inactivation of the KatE stationary-phase catalase that protects high-density bacterial communities from oxidative stress and the BcsG cellulose biosynthetic enzyme required for the RDAR (red, dry, and rough) colonial phenotype. However, we found that like 14028s, D23580 is able to elicit an acute inflammatory response and cause enteritis in mice and rhesus macaque monkeys. Collectively, these observations suggest that African S. Typhimurium ST313 strain D23580 is becoming adapted to an anthroponotic mode of transmission while retaining the ability to infect and cause enteritis in multiple host species. IMPORTANCE The last 3 decades have witnessed an epidemic of invasive nontyphoidal Salmonella infections in sub-Saharan Africa. Genomic analysis and clinical observations suggest that the Salmonella strains responsible for these infections are evolving to become more typhoid-like with regard to patterns of transmission and virulence. This study shows that a prototypical African nontyphoidal Salmonella strain has lost traits required for environmental stress resistance, consistent with an adaptation to a human-to-human mode of transmission. However, in contrast to predictions, the strain remains capable of causing acute inflammation in the mammalian intestine. This suggests that the systemic clinical presentation of invasive nontyphoidal Salmonella infections in Africa reflects the immune status of infected hosts rather than intrinsic differences in the virulence of African Salmonella strains. Our study provides important new insights into the evolution of host adaptation in bacterial pathogens.
Collapse
|
199
|
Eibach D, Al-Emran HM, Dekker DM, Krumkamp R, Adu-Sarkodie Y, Cruz Espinoza LM, Ehmen C, Boahen K, Heisig P, Im J, Jaeger A, von Kalckreuth V, Pak GD, Panzner U, Park SE, Reinhardt A, Sarpong N, Schütt-Gerowitt H, Wierzba TF, Marks F, May J. The Emergence of Reduced Ciprofloxacin Susceptibility inSalmonella entericaCausing Bloodstream Infections in Rural Ghana. Clin Infect Dis 2016; 62 Suppl 1:S32-6. [DOI: 10.1093/cid/civ757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
200
|
Eguale T, Engidawork E, Gebreyes WA, Asrat D, Alemayehu H, Medhin G, Johnson RP, Gunn JS. Fecal prevalence, serotype distribution and antimicrobial resistance of Salmonellae in dairy cattle in central Ethiopia. BMC Microbiol 2016; 16:20. [PMID: 26879347 PMCID: PMC4754838 DOI: 10.1186/s12866-016-0638-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Salmonellae are major worldwide zoonotic pathogens infecting a wide range of vertebrate species including humans. Consumption of contaminated dairy products and contact with dairy cattle represent a common source of non-typhoidal Salmonella infection in humans. Despite a large number of small-scale dairy farms in Addis Ababa and its surrounding districts, little is known about the status of Salmonella in these farms. Results Salmonella was recovered from the feces of at least one animal in 7.6 % (10/132) of the dairy farms. Out of 1203 fecal samples examined, 30 were positive for Salmonella resulting in a weighted animal level prevalence of 2.3 %. Detection of diarrhea in an animal and in a farm was significantly associated with animal level (p = 0.012) and herd level (p < 0.001) prevalence of Salmonella. Animal level prevalence of Salmonella was significantly associated with age (p = 0.023) and study location; it was highest among those under 6 months of age and in farms from Adaa district and Addis Ababa (p < 0.001). Nine different serotypes were identified using standard serological agglutination tests. The most frequently recovered serotypes were Salmonella Typhimurium (23.3 %), S. Saintpaul (20 %), S. Kentucky (16.7 %) and S. Virchow (16.7 %). All isolates were resistant or intermediately resistant to at least one of the 18 drugs tested. Twenty-six (86.7 %), 19 (63.3 %), 18 (60 %), 16 (53.3 %) of the isolates were resistant to streptomycin, nitrofurantoin, sulfisoxazole and tetracycline , respectively. Resistance to 2 drugs was detected in 27 (90 %) of the isolates. Resistance to 3 or more drugs was detected in 21 (70 %) of the isolates, while resistance to 7 or more drugs was detected in 11 (36.7 %) of the isolates. The rate of occurrence of multi-drug resistance (MDR) in Salmonella strains isolated from dairy farms in Addis Ababa was significantly higher than those isolated from farms outside of Addis Ababa (p = 0.009). MDR was more common in S. Kentucky, S. Virchow and S. Saintpaul. Conclusion Isolation of Salmonella serotypes commonly known for causing human salmonellosis that are associated with an MDR phenotype in dairy farms in close proximity with human population is a major public health concern. These findings imply the need for a strict pathogen reduction strategy.
Collapse
Affiliation(s)
- Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Churchill Avenue, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Wondwossen A Gebreyes
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Rd., Columbus, OH, 43210, USA.
| | - Daniel Asrat
- Department of Microbiology, Immunology & Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Churchill Avenue, P.O. Box 9086, Addis Ababa, Ethiopia.
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Roger P Johnson
- Laboratory for Foodborne Zoonoses, 110 Stone Road West, Guelph, ON, N1G 3W4, Canada.
| | - John S Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Biomedical Research Tower, 460 West 12th, Columbus, OH, 43210-1214, USA.
| |
Collapse
|