151
|
Chiang MC, Chen HM, Lee YH, Chang HH, Wu YC, Soong BW, Chen CM, Wu YR, Liu CS, Niu DM, Wu JY, Chen YT, Chern Y. Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Hum Mol Genet 2007; 16:483-98. [PMID: 17213233 DOI: 10.1093/hmg/ddl481] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. Using two mouse models of HD, we demonstrate that the urea cycle deficiency characterized by hyperammonemia, high blood citrulline and suppression of urea cycle enzymes is a prominent feature of HD. The resultant ammonia toxicity might exacerbate the neurological deficits of HD. Suppression of C/EBPalpha, a crucial transcription factor for the transcription of urea cycle enzymes, appears to mediate the urea cycle deficiency in HD. We found that in the presence of mutant Htt, C/EBPalpha loses its ability to interact with an important cofactor (CREB-binding protein). Moreover, mutant Htt recruited C/EBPalpha into aggregates, as well as suppressed expression of the C/EBPalpha gene. Consumption of protein-restricted diets not only led to the restoration of C/EBPalpha's activity, and repair of the urea cycle deficiency and hyperammonemia, but also ameliorated the formation of Htt aggregates, the motor deterioration, the suppression of striatal brain-derived neurotrophic factor and the normalization of three protein chaperones (Hsp27, Hsp70 and Hsp90). Treatments aimed at repairing the urea cycle deficiency may provide a new strategy for dealing with HD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Ravikumar B, Rubinsztein DC. Role of autophagy in the clearance of mutant huntingtin: A step towards therapy? Mol Aspects Med 2006; 27:520-7. [PMID: 16973207 DOI: 10.1016/j.mam.2006.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Macroautophagy (henceforth referred to simply as autophagy) is a bulk degradation process involved in the clearance of long-lived proteins, protein complexes and organelles. A portion of the cytosol, with its contents to be degraded, is enclosed by double-membrane structures called autophagosomes/autophagic vacuoles, which ultimately fuse with lysosomes where their contents are degraded. In this review, we will describe how induction of autophagy is protective against toxic intracytosolic aggregate-prone proteins that cause a range of neurodegenerative diseases. Autophagy is a key clearance pathway involved in the removal of such proteins, including mutant huntingtin (that causes Huntington's disease), mutant ataxin-3 (that causes spinocerebellar ataxia type 3), forms of tau that cause tauopathies, and forms of alpha-synuclein that cause familial Parkinson's disease. Induction of autophagy enhances the clearance of both soluble and aggregated forms of such proteins, and protects against toxicity of a range of these mutations in cell and animal models. Interestingly, the aggregates formed by mutant huntingtin sequester and inactivate the mammalian target of rapamycin (mTOR), a key negative regulator of autophagy. This results in induction of autophagy in cells with these aggregates.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | |
Collapse
|
153
|
Wang LH, Qin ZH. Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies. Acta Pharmacol Sin 2006; 27:1287-302. [PMID: 17007735 DOI: 10.1111/j.1745-7254.2006.00410.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, which is caused by an abnormal expansion of Cytosine Adenine Guanine (CAG) trinucleotide repeat in the gene making huntingtin (Htt). Despite intensive research efforts devoted to investigate molecular mechanisms of pathogenesis, effective therapy for this devastating disease is still not available at present. The development of various animal models of HD has offered alternative approaches in the study of HD molecular pathology. Many HD models, including chemical-induced models and genetic models, mimic some aspects of HD symptoms and pathology. To date, however, there is no ideal model which replicates all of the essential features of neuropathology and progressive motor and cognitive impairments of human HD. As a result, our understanding of molecular mechanisms of pathogenesis in HD is still limited. A new model is needed in order to uncover the pathogenesis and to develop novel therapies for HD. In this review we discussed usefulness and limitations of various animal and cellular models of HD in uncovering molecular mechanisms of pathogenesis and developing novel therapies for HD.
Collapse
Affiliation(s)
- Lin-hui Wang
- Department of Physiology, Soochow University School of Medicine, Suzhou 215123, China
| | | |
Collapse
|
154
|
Cosby N, Haak-Frendscho M. Fourth Annual Promega Neurosciences Symposium: Genetic and Environmental Interactions in Neurodegeneration Los Angeles, CA, USA November 7, 1998. CNS DRUG REVIEWS 2006. [DOI: 10.1111/j.1527-3458.1999.tb00090.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
155
|
Li W, Serpell LC, Carter WJ, Rubinsztein DC, Huntington JA. Expression and Characterization of Full-length Human Huntingtin, an Elongated HEAT Repeat Protein. J Biol Chem 2006; 281:15916-22. [PMID: 16595690 DOI: 10.1074/jbc.m511007200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease is an inherited neurodegenerative disorder that is caused by expanded CAG trinucleotide repeats, resulting in a polyglutamine stretch of >37 on the N terminus of the protein huntingtin (htt). htt is a large (347 kDa), ubiquitously expressed protein. The precise functions of htt are not clear, but its importance is underscored by the embryonic lethal phenotype in htt knock-out mice. Despite the fact that the htt gene was cloned 13 years ago, little is known about the properties of the full-length protein. Here we report the expression and preliminary characterization of recombinant full-length wild-type human htt. Our results support a model of htt composed entirely of HEAT repeats that stack to form an elongated superhelix.
Collapse
Affiliation(s)
- Wei Li
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
156
|
Siwach P, Pophaly SD, Ganesh S. Genomic and Evolutionary Insights into Genes Encoding Proteins with Single Amino Acid Repeats. Mol Biol Evol 2006; 23:1357-69. [PMID: 16618963 DOI: 10.1093/molbev/msk022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations causing expansion of amino acid repeats are responsible for 19 hereditary disorders. Repeats in several other proteins also show length variations. These observations prompted us to identify single amino acid repeat-containing proteins (SARPs) in humans and to understand their functional and evolutionary significance. We identified 8812 SARPs containing 17 146 repeat domains, each harboring 4 or more residues. In all, 5% of SARPs (471) showed repeat length variations, and nearly 84% of them (394) have repeats of 10 residues or less. We find that SARPs are involved in functions that require formation of multiprotein complexes. Nearly 78% (6859) of the SARPs did not find a paralogue in the human proteome, and such proteins are considered as orphan SARPs. Orphan SARPs show longer repeat stretches, longer peptide length, and lower expression levels as compared with SARPs belonging to protein family. Because the intensity of gene expression is known to relate inversely with the rate of protein sequence evolution, our results suggest that the orphan SARPs evolve faster than the familial forms and therefore are under a weaker selection pressure. We also find that while GC-rich codons are favored for coding the repeat tracts of SARPs, specific codons and not nucleotide motifs per se are selected, suggesting functional constraints placed on the usage of codons. One of the constraints could be the mRNA stability as clustering of rare codons is known to destabilize the transcripts and rare codons are not favored for coding repeat tracts. Genes encoding polymorphic SARPs show preferential localization toward the telomeric segments. Further, the sex-specific recombination rates of the chromosomal locus strongly correlate with the parental gender that influence the repeat instability in disorder caused by dynamic mutation. Therefore, instability associated with repeats might be driven by processes that are specific to sperm or oocyte development, and the recombination frequency might play a positive role in this process.
Collapse
Affiliation(s)
- Pratibha Siwach
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | | |
Collapse
|
157
|
Bates GP, Mangiarini L, Davies SW. Transgenic mice in the study of polyglutamine repeat expansion diseases. Brain Pathol 2006; 8:699-714. [PMID: 9804379 PMCID: PMC8098430 DOI: 10.1111/j.1750-3639.1998.tb00196.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
An increasing number of neurodegenerative diseases, including Huntington's disease (HD), have been found to be caused by a CAG/polyglutamine expansion. We have generated a mouse model of HD by the introduction of exon 1 of the human HD gene carrying highly expanded CAG repeats into the mouse germ line. These mice develop a progressive neurological phenotype. Neuronal intranuclear inclusions (NII) that are immunoreactive for huntingtin and ubiquitin have been found in the brains of symptomatic mice. In vitro analysis indicates that the inclusions are formed through self aggregation via the polyglutamine repeat into amyloid-like fibrils composed of a cross beta-sheet structure that has been termed a polar zipper. Analysis of patient material and other transgenic lines has now shown NII to be a common feature of all of these diseases. In the transgenic models, inclusions are present prior to the onset of symptoms suggesting a causal relationship. In contrast, neurodegeneration occurs after the onset of the phenotype indicating that the symptoms are caused by a neuronal dysfunction rather than a primary cell death.
Collapse
Affiliation(s)
- G P Bates
- Division of Medical and Molecular Genetics, UMDS, Guy's Hospital, London, UK.
| | | | | |
Collapse
|
158
|
Marchut AJ, Hall CK. Side-chain interactions determine amyloid formation by model polyglutamine peptides in molecular dynamics simulations. Biophys J 2006; 90:4574-84. [PMID: 16565057 PMCID: PMC1471860 DOI: 10.1529/biophysj.105.079269] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pathological manifestation of nine hereditary neurodegenerative diseases is the presence within the brain of aggregates of disease-specific proteins that contain polyglutamine tracts longer than a critical length. To improve our understanding of the processes by which polyglutamine-containing proteins misfold and aggregate, we have conducted molecular dynamics simulations of the aggregation of model polyglutamine peptides. This work was accomplished by extending the PRIME model to polyglutamine. PRIME is an off-lattice, unbiased, intermediate-resolution protein model based on an amino acid representation of between three and seven united atoms, depending on the residue being modeled. The effects of hydrophobicity on the system are studied by varying the strength of the hydrophobic interaction from 12.5% to 5% of the hydrogen-bonding interaction strength. In our simulations, we observe the spontaneous formation of aggregates and annular structures that are made up of beta-sheets starting from random configurations of random coils. This result was interesting because tubular protofibrils were recently found in experiments on polyglutamine aggregation and because of Perutz's prediction that polyglutamine would form water-filled nanotubes.
Collapse
Affiliation(s)
- Alexander J Marchut
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | | |
Collapse
|
159
|
Underwood BR, Broadhurst D, Dunn WB, Ellis DI, Michell AW, Vacher C, Mosedale DE, Kell DB, Barker RA, Grainger DJ, Rubinsztein DC. Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. ACTA ACUST UNITED AC 2006; 129:877-86. [PMID: 16464959 DOI: 10.1093/brain/awl027] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There has been considerable progress recently towards developing therapeutic strategies for Huntington's disease (HD), with several compounds showing beneficial effects in transgenic mouse models. However, human trials in HD are difficult, costly and time-consuming due to the slow disease course, insidious onset and patient-to-patient variability. Identification of molecular biomarkers associated with disease progression will aid the development of effective therapies by allowing further validation of animal models and by providing hopefully more sensitive measures of disease progression. Here, we apply metabolic profiling by gas chromatography-time-of-flight-mass spectrometry to serum samples from human HD patients and a transgenic mouse model in a hypothesis-generating search for disease biomarkers. We observed clear differences in metabolic profiles between transgenic mice and wild-type littermates, with a trend for similar differences in human patients and control subjects. Thus, the metabolites responsible for distinguishing transgenic mice also comprised a metabolic signature tentatively associated with the human disease. The candidate biomarkers composing this HD-associated metabolic signature in mouse and humans are indicative of a change to a pro-catabolic phenotype in early HD preceding symptom onset, with changes in various markers of fatty acid breakdown (including glycerol and malonate) and also in certain aliphatic amino acids. Our data raise the prospect of a robust molecular definition of progression of HD prior to symptom onset, and if validated in a genuinely prospective fashion these biomarker trajectories could facilitate the development of useful therapies for this disease.
Collapse
Affiliation(s)
- Benjamin R Underwood
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Shehadeh J, Fernandes HB, Zeron Mullins MM, Graham RK, Leavitt BR, Hayden MR, Raymond LA. Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiol Dis 2006; 21:392-403. [PMID: 16165367 DOI: 10.1016/j.nbd.2005.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/25/2005] [Accepted: 08/01/2005] [Indexed: 11/24/2022] Open
Abstract
Huntington disease (HD), caused by expansion >35 of a polyglutamine tract in huntingtin, results in degeneration of striatal medium spiny neurons (MSNs). Previous studies demonstrated mitochondrial dysfunction, altered intracellular calcium release, and enhanced NMDAR-mediated current and apoptosis in cellular and mouse models of HD. Here, we exposed cultured MSNs from YAC transgenic mice, expressing full-length human huntingtin with 18, 72, or 128 repeats, to a variety of apoptosis-inducing compounds that inhibit mitochondrial function or increase intracellular calcium, and assessed apoptosis 24 h later. All compounds produced a polyglutamine length-dependent increase in apoptosis, but NMDA produced the largest potentiation in apoptosis of YAC72 and YAC128 versus YAC18 MSNs. Moreover, reduction of NMDAR-mediated current and calcium influx in YAC72 MSNs to levels seen in wild-type reduced NMDAR-mediated apoptosis proportionately to wild-type levels. Our results suggest that increased NMDAR signaling plays a major role in enhanced excitotoxic MSN death in this HD mouse model.
Collapse
Affiliation(s)
- Jacqueline Shehadeh
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
Huntington's disease is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this fatal disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin. Numerous mouse models have been generated that constitute invaluable tools to examine the pathogenesis of the disease and to develop and evaluate novel therapies. Among those models, knock-in mice provide a genetically precise reproduction of the human condition. The slow progression and early development of behavioral, pathological, cellular, and molecular abnormalities in knock-in mice make these animals valuable to understand the early pathological events triggered by the mutation. This review describes the different knock-in models generated, the insight gained from them, and their value in the development and testing of prospective treatments of the disease.
Collapse
|
162
|
Li JY, Popovic N, Brundin P. The use of the R6 transgenic mouse models of Huntington's disease in attempts to develop novel therapeutic strategies. NeuroRx 2006; 2:447-64. [PMID: 16389308 PMCID: PMC1144488 DOI: 10.1602/neurorx.2.3.447] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder. Since identification of the disease-causing gene in 1993, a number of genetically modified animal models of HD have been generated. The first transgenic mouse models, R6/1 and R6/2 lines, were established 8 years ago. The R6/2 mice have been the best characterized and the most widely used model to study pathogenesis of HD and therapeutic interventions. In the present review, we especially focus on the characteristics of R6 transgenic mouse models and, in greater detail, describe the different therapeutic strategies that have been tested in these mice. We also, at the end, critically assess the relevance of the HD mouse models compared with the human disease and discuss how they can be best used in the future.
Collapse
Affiliation(s)
- Jia Yi Li
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund, Sweden.
| | | | | |
Collapse
|
163
|
Leavitt BR, van Raamsdonk JM, Shehadeh J, Fernandes H, Murphy Z, Graham RK, Wellington CL, Raymond LA, Hayden MR. Wild-type huntingtin protects neurons from excitotoxicity. J Neurochem 2006; 96:1121-9. [PMID: 16417581 DOI: 10.1111/j.1471-4159.2005.03605.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huntingtin is a caspase substrate, and loss of normal huntingtin function resulting from caspase-mediated proteolysis may play a role in the pathogenesis of Huntington disease. Here we tested the hypothesis that increasing huntingtin levels protect striatal neurons from NMDA receptor-mediated excitotoxicity. Cultured striatal neurons from yeast artificial chromosome (YAC)18 transgenic mice over-expressing full-length wild-type huntingtin were dramatically protected from apoptosis and caspase-3 activation compared with cultured striatal neurons from non-transgenic FVB/N littermates and YAC72 mice expressing mutant human huntingtin. NMDA receptor activation induced by intrastriatal injection of quinolinic acid initiated a form of apoptotic neurodegeneration within the striatum of mice that was associated with caspase-3 cleavage of huntingtin in neurons and astrocytes, decreased levels of full-length huntingtin, and the generation of a specific N-terminal caspase cleavage product of huntingtin. In vivo, over-expression of wild-type huntingtin in YAC18 transgenic mice conferred significant protection against NMDA receptor-mediated apoptotic neurodegeneration. These data provide in vitro and in vivo evidence that huntingtin may regulate the balance between neuronal survival and death following acute excitotoxic stress, and that the levels of huntingtin may modulate neuronal sensitivity to excitotoxic neurodegeneration. We suggest that further study of huntingtin's anti-apoptotic function will contribute to our understanding of the pathogenesis of Huntingdon's disease and provide insights into the selective vulnerability of striatal neurons to excitotoxic cell death.
Collapse
Affiliation(s)
- Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, British Colombia Research Institute for Children's and Women's Health, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that generally begins in middle age with abnormalities of movement, cognition, personality, and mood. Neuronal loss is most marked among the medium-sized projection neurons of the dorsal striatum. HD is an autosomal dominant genetic disorder caused by a CAG expansion in exon 1 of the HD gene, encoding an expanded polyglutamine (polyQ) tract near the N-terminus of the protein huntingtin. Despite identification of the gene mutation more than a decade ago, the normal function of this ubiquitously expressed protein is still under investigation and the mechanisms underlying selective neurodegeneration in HD remain poorly understood. Detailed postmortem analyses of brains of HD patients have provided important clues, and HD transgenic and knock-in mouse models have facilitated investigations into potential pathogenic mechanisms. Subcellular fractionation and immunolocalization studies suggest a role for huntingtin in organelle transport, protein trafficking, and regulation of energy metabolism. Consistent with this, evidence from vertebrate and invertebrate models of HD indicates that expression of the polyQ-expanded form of huntingtin results in early impairment of axonal transport and mitochondrial function. As well, alteration in activity of the N-methyl-d-aspartate (NMDA) type glutamate receptor, which has been implicated as a main mediator of excitotoxic neuronal death, especially in the striatum, is an early effect of mutant huntingtin. Proteolysis and nuclear localization of huntingtin also occur relatively early, while formation of ubiquitinated aggregates of huntingtin and transcriptional dysregulation occur as late effects of the gene mutation. Although each of these processes may contribute to neuronal loss in HD, here we review the data to support a strong role for NMDA receptor (NMDAR)-mediated excitotoxicity and mitochondrial dysfunction in conferring selective neuronal vulnerability in HD.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Psychiatry, Division of Neuroscience, Brain Research Centre University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | |
Collapse
|
165
|
Cong SY, Pepers BA, Roos RAC, van Ommen GJB, Dorsman JC. Small N-terminal mutant huntingtin fragments, but not wild type, are mainly present in monomeric form: Implications for pathogenesis. Exp Neurol 2005; 199:257-64. [PMID: 16380118 DOI: 10.1016/j.expneurol.2005.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 11/29/2022]
Abstract
N-terminal fragments of huntingtin containing an expanded polyglutamine stretch play an important role in the molecular pathogenesis of Huntington's disease. Their ultimate accumulation in insoluble protein aggregates constitutes an important pathological hallmark of Huntington's disease. We report on systematic biochemical comparison studies of soluble wild type and mutant N-terminal huntingtin fragments. The results show that soluble wild type exon 1 fragments are predominantly present in higher molecular weight complexes with a molecular size of approximately 300 kDa, while their mutant counterparts are mainly present in their monomeric form. In contrast, longer N-terminal fragments corresponding to peptides produced by caspase cleavage do not display these differential properties. These findings suggest that especially an increased amount of monomeric form of small N-terminal mutant huntingtin fragments may facilitate aberrant interactions both with itself via the polyglutamine stretch and with other proteins and thereby contribute to molecular pathogenesis.
Collapse
Affiliation(s)
- Shu-Yan Cong
- CBG-Center of Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
166
|
Hoffner G, Island ML, Djian P. Purification of neuronal inclusions of patients with Huntington's disease reveals a broad range of N-terminal fragments of expanded huntingtin and insoluble polymers. J Neurochem 2005; 95:125-36. [PMID: 16181417 DOI: 10.1111/j.1471-4159.2005.03348.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Huntington's disease resulting from huntingtin containing an expanded polyglutamine is associated with aggregates largely confined to neuronal inclusions, and with neuronal death. Inclusions are thought to originate from discrete N-terminal fragments of expanded huntingtin produced by specific endopeptidases. We have now purified the neuronal inclusions of Huntington's disease brain. When incubated in concentrated formic acid, purified inclusions release a polymer, an oligomer and a broad range of N-terminal fragments of expanded huntingtin. The fragments and the polymeric forms are linked to each other by non-covalent bonds as they are both released by formic acid, whereas the polymeric forms themselves are presumably stabilized by covalent bonds, as they are resistant to formic acid. We also demonstrate the presence in affected areas of the brain but not in unaffected areas of a broad range of soluble N-terminal fragments of expanded huntingtin not yet associated with the inclusions and which are likely to be the precursors of the inclusions. Fragmentation of expanded huntingtin in Huntington's disease must result from the operation of multiple proteolytic activities with little specificity and not from that of a specific endopeptidase; subsequent aggregation of the fragments by covalent and non-covalent bonds leads to the formation of the inclusions.
Collapse
Affiliation(s)
- Guylaine Hoffner
- UPR 2228 CNRS, Institut Interdisciplinaire des Sciences du Vivant, Université René Descartes, Paris, France
| | | | | |
Collapse
|
167
|
Sawa A, Nagata E, Sutcliffe S, Dulloor P, Cascio MB, Ozeki Y, Roy S, Ross CA, Snyder SH. Huntingtin is cleaved by caspases in the cytoplasm and translocated to the nucleus via perinuclear sites in Huntington's disease patient lymphoblasts. Neurobiol Dis 2005; 20:267-74. [PMID: 15890517 DOI: 10.1016/j.nbd.2005.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 01/26/2005] [Accepted: 02/04/2005] [Indexed: 11/28/2022] Open
Abstract
Accumulation of mutant Huntingtin (Htt), especially the N-terminal-cleaved Htt, participates in the pathophysiology of Huntington's disease (HD). It is difficult to elucidate temporal properties of the translocation of "endogenous" Htt using autopsy HD patient brains. Thus, we examined the cell biology of "endogenous" Htt cleavage and nuclear translocation in cultured lymphoblasts of HD patients and controls. Apoptotic stimulation of lymphoblasts elicits caspase-dependent cleavage and selective nuclear translocation of N-terminal portions of Htt. Discrete clusters of the N-terminal Htt accumulate at unique perinuclear sites prior to nuclear translocation. Our findings suggest that caspase cleavage of Htt is cytoplasmic and precedes sorting to specific perinuclear sites followed by nuclear translocation in HD patient tissue.
Collapse
Affiliation(s)
- Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Stoka V, Chen SF, Turk V, Bredesen DE. Developmental shift in the apostat: comparison of neurones and astrocytes. FEBS Lett 2005; 579:6147-50. [PMID: 16242128 PMCID: PMC1847358 DOI: 10.1016/j.febslet.2005.09.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 09/26/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
The intrinsic pathway of apoptosis was investigated in cell-free extracts of neurones and astrocytes at various stages of maturation. Neuronal extracts were activated 65-fold after 3 days, 9-fold after 7 days, and were not activated after 10 days in culture. In contrast, astrocyte extracts were activated to a similar extent at all stages, up to 60 days in culture. The co-incubation of neuronal and astrocyte extracts followed by addition of cytochrome c/2'-deoxyadenosine 5'-triphosphate led to a 40-fold activation, suggesting that the development-associated neuronal shift does not involve the appearance of a dominant inhibitor, but rather downregulation of some key component(s) involved in caspase activation.
Collapse
Affiliation(s)
- Veronika Stoka
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Sylvia F. Chen
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Vito Turk
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Dale E. Bredesen
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
- University of California – San Francisco, San Francisco, CA, USA
- *Corresponding author. Fax: +1 415 209 2230. E-mail address: (D.E. Bredesen)
| |
Collapse
|
169
|
Tsai HF, Lin SJ, Li C, Hsieh M. Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Biochem Biophys Res Commun 2005; 334:1279-86. [PMID: 16039988 DOI: 10.1016/j.bbrc.2005.06.207] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/28/2005] [Indexed: 11/29/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is caused by an expansion of unstable CAG repeats within the coding region of the novel gene, ataxin-7, on chromosome 3. This disease is also associated with an accumulation of abnormal proteins, including expanded polyglutamine-containing proteins, molecular chaperones, and the ubiquitin-proteasome system. In this study, two SCA7 lymphoblastoid cell lines (LCLs) with 100 and 41 polyglutamine repeats were utilized to examine the effects of polyglutamine expansion on heat shock proteins. Interestingly, under basal conditions, Western blot and immunocytochemical analysis showed a significant decrease of Hsp27 and Hsp70 protein expression in cells containing expanded ataxin-7, as compared with that of the normal LCL. On the other hand, the protein levels of Hsp60 and Hsp90 were not significantly altered in the mutant LCLs. Results from semi-quantitative RT-PCR indicated that the differences in Hsp70 protein levels were due to transcriptional defects while the reduction of Hsp27 in the mutant cells was not caused by transcriptional defects. Our results further demonstrated that despite of defective protein expression of Hsp27 and Hsp70, a normal heat shock response was observed in lymphoblastoid cells expressing mutant ataxin-7. Taken together, our results indicated that expanded ataxin-7 that leads to neurodegeneration significantly impaired the expression of Hsp27 and Hsp70 protein, which may be, at least in part, responsible for the toxicity of mutant ataxin-7 proteins and ultimately resulted in an increase of stress-induced cell death.
Collapse
Affiliation(s)
- Hui-Fang Tsai
- School of Medical Technology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | |
Collapse
|
170
|
Tanaka Y, Igarashi S, Nakamura M, Gafni J, Torcassi C, Schilling G, Crippen D, Wood JD, Sawa A, Jenkins NA, Copeland NG, Borchelt DR, Ross CA, Ellerby LM. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin. Neurobiol Dis 2005; 21:381-91. [PMID: 16150600 DOI: 10.1016/j.nbd.2005.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/19/2005] [Accepted: 07/27/2005] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized behaviorally by chorea, incoordination, and shortened lifespan and neuropathologically by huntingtin inclusions and neuronal degeneration. In order to facilitate studies of pathogenesis and therapeutics, we have generated a new inducible mouse model of HD expressing full-length huntingtin (Htt) using a tetracycline-regulated promoter. In double transgenic mice Htt was expressed widely in the brain under the control of the tet-transactivator (tTA) driven by the prion promoter PrP (in the absence of doxycycline). Mice expressing full-length mutant Htt, but not full-length normal Htt, displayed a progressive behavioral phenotype, consisting of slowed and irregular voluntary movements, gait ataxia, tremor and jerky movements, incoordination, and weight loss, with a shortened lifespan. Neuropathology included prominent intranuclear inclusions in cortex and striatum as well as cytoplasmic aggregates. This phenotype is very similar to the phenotypes of previous transgenic mice expressing N-terminal fragments of mutant Htt. The current HD-transgenic mice had nuclear accumulation of Htt, particularly an approximately 60-kDa fragment, which appears to represent an N-terminal cleavage product. This fragment is smaller than calpain or caspase-derived cleavage products of Htt, but it is comparable to a product, termed cp-A, which accumulates in nuclei of cells in a previously described cell model. This new mouse model may be useful in the future for pathogenic and preclinical therapeutic studies related to HD. The data suggest that proteolytic processing could be a part of the pathogenesis of HD, potentially representing an attractive therapeutic target.
Collapse
Affiliation(s)
- Yuji Tanaka
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Swayne LA, Chen L, Hameed S, Barr W, Charlesworth E, Colicos MA, Zamponi GW, Braun JEA. Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels. Mol Cell Neurosci 2005; 30:339-51. [PMID: 16162412 DOI: 10.1016/j.mcn.2005.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 06/20/2005] [Accepted: 07/28/2005] [Indexed: 11/19/2022] Open
Abstract
We have identified a novel interaction between huntingtin (htt) and N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis. Htt is a widely expressed 350-kDa cytosolic protein bearing an N-terminal polyglutamine tract. Htt is proteolytically cleaved by calpains and caspases and the resultant htt N-terminal fragments have been proposed to be biologically active; however, the cellular function of htt and/or the htt fragments remains enigmatic. We show that N-terminal fragments of htt (consisting of exon1) and full-length htt associate with the synaptic protein interaction (synprint) region of the N-type calcium channel. Given that synprint has previously been shown to bind syntaxin 1A and that this association elicits inhibition of N-type calcium channels, we tested whether htt(exon1) affects the modulation of these channels. Our data indicate that htt(exon1) enhances calcium influx by blocking syntaxin 1A inhibition of N-type calcium channels and attributes a key role for htt N-terminal fragments in the fine tuning of neurotransmission.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
Huntington's disease (HD) is a fatal autosomal-dominant disorder involving progressive motor, cognitive and psychiatric symptoms. HD is one of a large family of neurodegenerative diseases caused by a trinucleotide (CAG) repeat mutation, encoding an expanded tract of glutamines in the disease protein. HD was one of the first neurological disorders for which accurate transgenic models were created, allowing mechanisms of pathogenesis to be explored at molecular, cellular and behavioural levels. In the last decade, the understanding of molecular and cellular changes which occur in HD prior to onset of symptoms, and at early and late stages of disease progression, has been greatly expanded. A wide range of potential molecular targets for therapeutic intervention have been identified, associated with a variety of cellular processes including gene transcription, protein trafficking, protein degradation, protein-protein interactions, glutamatergic synaptic transmission, presynaptic signalling, postsynaptic signalling, synaptic plasticity, dopaminergic and neurotrophic modulation of synaptic function, experience-dependent neurogenesis, mitochondrial function and oxidative metabolism. Presymptomatic testing for the HD gene mutation necessitates future development of novel therapeutics aimed at delaying onset of symptoms, as well as slowing or reversing disease progression.
Collapse
Affiliation(s)
- Anthony J Hannan
- Howard Florey Institute, National Neuroscience Facility, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
173
|
Slow EJ, Graham RK, Osmand AP, Devon RS, Lu G, Deng Y, Pearson J, Vaid K, Bissada N, Wetzel R, Leavitt BR, Hayden MR. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci U S A 2005; 102:11402-7. [PMID: 16076956 PMCID: PMC1183566 DOI: 10.1073/pnas.0503634102] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have serendipitously established a mouse that expresses an N-terminal human huntingtin (htt) fragment with an expanded polyglutamine repeat (approximately 120) under the control of the endogenous human promoter (shortstop). Frequent and widespread htt inclusions occur early in shortstop mice. Despite these inclusions, shortstop mice display no clinical evidence of neuronal dysfunction and no neuronal degeneration as determined by brain weight, striatal volume, and striatal neuronal count. These results indicate that htt inclusions are not pathogenic in vivo. In contrast, the full-length yeast artificial chromosome (YAC) 128 model with the identical polyglutamine length and same level of transgenic protein expression as the shortstop demonstrates significant neuronal dysfunction and loss. In contrast to the YAC128 mouse, which demonstrates enhanced susceptibility to excitotoxic death, the shortstop mouse is protected from excitotoxicity, providing in vivo evidence suggesting that neurodegeneration in Huntington disease is mediated by excitotoxic mechanisms.
Collapse
Affiliation(s)
- Elizabeth J Slow
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Mukai H, Isagawa T, Goyama E, Tanaka S, Bence NF, Tamura A, Ono Y, Kopito RR. Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc Natl Acad Sci U S A 2005; 102:10887-92. [PMID: 16040812 PMCID: PMC1182404 DOI: 10.1073/pnas.0409283102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease is a progressive neurodegenerative disorder caused by a polyglutamine repeat expansion in the first exon of the huntingtin (Htt) protein. N-terminal Htt peptides with polyglutamine tracts in the pathological range (51-122 glutamines) form high-molecular-weight protein aggregates with fibrillar morphology in vitro, and they form discrete inclusion bodies in a cell-culture model. However, in some studies, formation of discrete Htt inclusions does not correlate well with cell death. We coexpressed N-terminal Htt fragments containing 91 glutamines fused to different affinity tags in HEK293 cells, and we isolated small aggregates by double sequential-affinity chromatography to assure the isolation of multimeric molecules. Transmission electron microscopy and atomic force microscopy revealed the isolated aggregates as globules or clusters of globules 4-50 nm in diameter without any detectable fibrillar species. Because small nonfibrillar oligomers, not mature fibrils, recently have been suggested to be the principal cytotoxic species in neurodegenerative disease, these Htt globular aggregates formed in cells may represent the pathogenic form of mutant Htt.
Collapse
Affiliation(s)
- Hideyuki Mukai
- Biosignal Research Center and Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Miller TW, Zhou C, Gines S, MacDonald ME, Mazarakis ND, Bates GP, Huston JS, Messer A. A human single-chain Fv intrabody preferentially targets amino-terminal Huntingtin's fragments in striatal models of Huntington's disease. Neurobiol Dis 2005; 19:47-56. [PMID: 15837560 DOI: 10.1016/j.nbd.2004.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/29/2004] [Accepted: 11/09/2004] [Indexed: 12/01/2022] Open
Abstract
Amino-terminal fragments of huntingtin (htt) appear to result from proteolytic processing of the full-length protein in Huntington's disease (HD), and fragments containing pathological expansions of polyglutamine elicit toxicity in model systems. Such fragments are sequestered into insoluble aggregates, which may initially serve a cellular protective mechanism, while soluble fragments and/or oligomers may be a more acute toxic species. Agents which enhance mutant htt clearance have shown therapeutic potential in animal models of HD. Here, we present the first evidence of an htt-specific single-chain Fv intrabody (C4) that selectively targets the soluble fraction of amino-terminal htt fragments. Our findings suggest that the C4 intrabody binds weakly, but does not alter the levels of endogenous, full-length htt. C4 appears to decrease the steady-state levels of amino-terminal htt fragments by binding to non-aggregated, but not aggregated, htt species. Intrabodies may be used as potential curative agents, and as drug discovery tools, for HD and other misfolded protein disorders.
Collapse
Affiliation(s)
- Todd W Miller
- Division of Genetic Disorders Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, University at Albany, NY 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Disorders of the mitochondrial respiratory chain. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
177
|
Protein misfolding and cellular defense mechanisms in neurodegenerative diseases. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
178
|
Takahashi T, Nozaki K, Tsuji S, Nishizawa M, Onodera O. Polyglutamine represses cAMP-responsive-element-mediated transcription without aggregate formation. Neuroreport 2005; 16:295-9. [PMID: 15706239 DOI: 10.1097/00001756-200502280-00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcriptional dysregulation, particularly cAMP-responsive-element-mediated transcriptional repression, has been implicated in expanded polyglutamine diseases. However, it has not been clarified whether this transcriptional repression is a cause or result of neurodegeneration. Furthermore, the association between aggregates of expanded polyglutamine stretches and transcriptional repression is not clear. We established isogenic cell lines with polyglutamine stretches, which also expressed d2EGFP under the control of cAMP-responsive elements. In this system, the polyglutamine stretch repressed cAMP-responsive-element-mediated transcription without the formation of macroscopic expanded polyglutamine aggregates. Furthermore, aggregate formation did not have an adverse effect on the repression of transcriptional activity. The results demonstrated that the repression of cAMP-responsive-element-mediated transcription is an early event caused by a soluble form of polyglutamine stretch.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- Department of Neurology, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Niigata University, Japan
| | | | | | | | | |
Collapse
|
179
|
Abstract
Huntington's disease (HD) is an inherited autosomal dominant, neurodegenerative disease that is caused by a gain of function mutation characterized by the expansion of a CAG trinucleotide repeat in exon 1 of the huntingtin (htt) gene. Since hairpin small interference RNA (shRNA) technology allows inhibition of specific gene expression in vitro and in vivo, vector-mediated expression of an shRNA directed to htt mRNA could form the basis of a new treatment modality for HD. By initial plasmid transfection of 293 cells, we identified one exon 1-targeted shRNA, which efficiently inhibited expression of an htt exon 1-GFP fusion protein and the endogenous htt gene. A replication-deficient adenovirus (Ad) vector Adie-1-1 was constructed to express this shRNA from the U6 promoter. In A549 cells expressing exon 1 of htt with an expanded CAG allele, Adie- 1-1 efficiently prevented htt exon 1 expression and htt aggregate formation. In addition, in different neuronal and nonneuronal cell lines, Adie-1-1 efficiently inhibited the expression of endogenous htt. Together, this data indicates the delineation of an shRNA strategy that may become the basis for treatment of HD.
Collapse
Affiliation(s)
- Bin Huang
- Division of Gene Therapy, University of Ulm, D-89081 Ulm, Germany
| | | |
Collapse
|
180
|
Gu X, Li C, Wei W, Lo V, Gong S, Li SH, Iwasato T, Itohara S, Li XJ, Mody I, Heintz N, Yang XW. Pathological Cell-Cell Interactions Elicited by a Neuropathogenic Form of Mutant Huntingtin Contribute to Cortical Pathogenesis in HD Mice. Neuron 2005; 46:433-44. [PMID: 15882643 DOI: 10.1016/j.neuron.2005.03.025] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 02/24/2005] [Accepted: 03/31/2005] [Indexed: 02/04/2023]
Abstract
Expanded polyglutamine (polyQ) proteins in Huntington's disease (HD) as well as other polyQ disorders are known to elicit a variety of intracellular toxicities, but it remains unclear whether polyQ proteins can elicit pathological cell-cell interactions which are critical to disease pathogenesis. To test this possibility, we have created conditional HD mice expressing a neuropathogenic form of mutant huntingtin (mhtt-exon1) in discrete neuronal populations. We show that mhtt aggregation is a cell-autonomous process. However, progressive motor deficits and cortical neuropathology are only observed when mhtt expression is in multiple neuronal types, including cortical interneurons, but not when mhtt expression is restricted to cortical pyramidal neurons. We further demonstrate an early deficit in cortical inhibition, suggesting that pathological interactions between interneurons and pyramidal neurons may contribute to the cortical manifestation of HD. Our study provides genetic evidence that pathological cell-cell interactions elicited by neuropathogenic forms of mhtt can critically contribute to cortical pathogenesis in a HD mouse model.
Collapse
Affiliation(s)
- Xiaofeng Gu
- Center for Neurobehavioral Genetics, Neuropsychiatric Institute, Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
The accumulation of misfolded proteins (e.g. mutant or damaged proteins) triggers cellular stress responses that protect cells against the toxic buildup of such proteins. However, prolonged stress due to the buildup of these toxic proteins induces specific death pathways. Dissecting these pathways should be valuable in understanding the pathogenesis of, and ultimately in designing therapy for, neurodegenerative diseases that feature misfolded proteins.
Collapse
Affiliation(s)
- Rammohan V Rao
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, California 94945-1400, USA.
| | | |
Collapse
|
182
|
Gokhale KC, Newnam GP, Sherman MY, Chernoff YO. Modulation of prion-dependent polyglutamine aggregation and toxicity by chaperone proteins in the yeast model. J Biol Chem 2005; 280:22809-18. [PMID: 15824100 DOI: 10.1074/jbc.m500390200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In yeast, aggregation and toxicity of the expanded polyglutamine fragment of human huntingtin strictly depend on the presence of the endogenous self-perpetuating aggregated proteins (prions), which contain glutamine/asparagine-rich domains. Some chaperones of the Hsp100/70/40 complex, modulating propagation of yeast prions, were also reported to influence polyglutamine aggregation in yeast, but it was not clear whether they do it directly or via affecting prions. Our data show that although some chaperone alterations indeed act on polyglutamines via curing endogenous prions, other alterations decrease size and ameliorate toxicity of polyglutamine aggregates without affecting prion propagation. Therefore, the role of yeast chaperones in polyglutamine aggregation and toxicity is not restricted only to their effects on the endogenous prions. Moreover, chaperone interactions with prion and polyglutamine aggregates appear to be of a highly specific nature. One and the same chaperone alteration, substitution A503V in the middle region of the chaperone Hsp104, exhibited opposite effects on one of the endogenous prions ([PSI(+)], the prion form of Sup35) and on polyglutamines, increasing aggregate size and toxicity in the former case and decreasing them in the latter case. On the other hand, different members of a single chaperone family exhibited opposite effects on one and the same type of aggregates: excess of the Hsp40 chaperone Ydj1 increased polyglutamine aggregate size and toxicity, whereas excess of the other Hsp40 chaperone, Sis1, decreased them. As many stress-defense proteins are conserved between yeast and mammals, these data shed light on possible mechanisms modulating polyglutamine aggregation and toxicity in mammalian cells.
Collapse
Affiliation(s)
- Kavita C Gokhale
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, USA
| | | | | | | |
Collapse
|
183
|
Alberch J, Canals JM, Pérez-Navarro E. Therapeutic strategies in Huntington’s disease. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.4.449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
184
|
Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, Wu YC, Sun CN, Chien CL, Lin YS, Wang SC, Tung YY, Chang C, Chern Y. CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model. J Neurochem 2005; 93:310-20. [PMID: 15816854 DOI: 10.1111/j.1471-4159.2005.03029.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in exon 1 of the Huntingtin (Htt) gene. We show herein that in an HD transgenic mouse model (R6/2), daily administration of CGS21680 (CGS), an A(2A) adenosine receptor (A(2A)-R)-selective agonist, delayed the progressive deterioration of motor performance and prevented a reduction in brain weight. 3D-microMRI analysis revealed that CGS reversed the enlarged ventricle-to-brain ratio of R6/2 mice, with particular improvements in the left and right ventricles. (1)H-MRS showed that CGS significantly reduced the increased choline levels in the striatum. Immunohistochemical analyses further demonstrated that CGS reduced the size of ubiquitin-positive neuronal intranuclear inclusions (NIIs) in the striatum of R6/2 mice and ameliorated mutant Htt aggregation in a striatal progenitor cell line overexpressing mutant Htt with expanded polyQ. Moreover, chronic CGS treatment normalized the elevated blood glucose levels and reduced the overactivation of a major metabolic sensor [5'AMP-activated protein kinase (AMPK)] in the striatum of R6/2 mice. Since AMPK is a master switch for energy metabolism, modulation of energy dysfunction caused by the mutant Htt might contribute to the beneficial effects of CGS. Collectively, CGS is a potential drug candidate for the treatment of HD.
Collapse
Affiliation(s)
- Szu-Yi Chou
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Woulfe J, Gray D, Prichett-Pejic W, Munoz DG, Chretien M. Intranuclear Rodlets in the Substantia Nigra: Interactions with Marinesco Bodies, Ubiquitin, and Promyelocytic Leukemia Protein. J Neuropathol Exp Neurol 2004; 63:1200-7. [PMID: 15581187 DOI: 10.1093/jnen/63.11.1200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is growing appreciation that the nucleus is organized into an array of discrete structural domains, each subserving a specific function. These functional nuclear bodies are to be distinguished from pathological intranuclear inclusions which have been described in a variety of neurodegenerative diseases. Marinesco bodies (MBs) are eosinophilic ubiquitinated intranuclear inclusions found in pigmented neurons of the human substantia nigra and locus coeruleus. Traditionally considered non-pathological entities, more recent studies have indicated that MBs are associated with the age-associated degenerative changes in the substantia nigra and striatal loss of dopaminergic terminals. In the present morphological study of the human substantia nigra, we demonstrate colocalization, contiguity, and focally shared immunoreactivity between MBs and neuronal intranuclear rodlets (INRs). The latter nuclear structures of uncertain function are markedly decreased in the cortex of Alzheimer's disease, but not dementia with Lewy bodies. In addition, we demonstrate an interaction between INRs and promyelocytic leukemia (PML) protein, the signature protein of PML nuclear bodies. These results suggest that structures which subserve the functional compartmentalization of the neuronal nucleus may be relevant to elucidating cellular mechanisms of age-related motor dysfunction.
Collapse
Affiliation(s)
- John Woulfe
- The Ottawa Hospital, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
186
|
Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, Hook V, Singaraja R, Krajewski S, Goldsmith PC, Ellerby HM, Hayden MR, Bredesen DE, Ellerby LM. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ 2004; 11:424-38. [PMID: 14713958 DOI: 10.1038/sj.cdd.4401358] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder resulting in selective neuronal loss and dysfunction in the striatum and cortex. The molecular pathways leading to the selectivity of neuronal cell death in HD are poorly understood. Proteolytic processing of full-length mutant huntingtin (Htt) and subsequent events may play an important role in the selective neuronal cell death found in this disease. Despite the identification of Htt as a substrate for caspases, it is not known which caspase(s) cleaves Htt in vivo or whether regional expression of caspases contribute to selective neuronal cells loss. Here, we evaluate whether specific caspases are involved in cell death induced by mutant Htt and if this correlates with our recent finding that Htt is cleaved in vivo at the caspase consensus site 552. We find that caspase-2 cleaves Htt selectively at amino acid 552. Further, Htt recruits caspase-2 into an apoptosome-like complex. Binding of caspase-2 to Htt is polyglutamine repeat-length dependent, and therefore may serve as a critical initiation step in HD cell death. This hypothesis is supported by the requirement of caspase-2 for the death of mouse primary striatal cells derived from HD transgenic mice expressing full-length Htt (YAC72). Expression of catalytically inactive (dominant-negative) forms of caspase-2, caspase-7, and to some extent caspase-6, reduced the cell death of YAC72 primary striatal cells, while the catalytically inactive forms of caspase-3, -8, and -9 did not. Histological analysis of post-mortem human brain tissue and YAC72 mice revealed activation of caspases and enhanced caspase-2 immunoreactivity in medium spiny neurons of the striatum and the cortical projection neurons when compared to controls. Further, upregulation of caspase-2 correlates directly with decreased levels of brain-derived neurotrophic factor in the cortex and striatum of 3-month YAC72 transgenic mice and therefore suggests that these changes are early events in HD pathogenesis. These data support the involvement of caspase-2 in the selective neuronal cell death associated with HD in the striatum and cortex.
Collapse
Affiliation(s)
- E Hermel
- The Buck Institute for Age Research, Novato, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 2004; 11:372-80. [PMID: 14765132 DOI: 10.1038/sj.cdd.4401378] [Citation(s) in RCA: 728] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The endoplasmic reticulum (ER) regulates protein synthesis, protein folding and trafficking, cellular responses to stress and intracellular calcium (Ca(2+)) levels. Alterations in Ca(2+) homeostasis and accumulation of misfolded proteins in the ER cause ER stress that ultimately leads to apoptosis. Prolonged ER stress is linked to the pathogenesis of several different neurodegenerative disorders. Apoptosis is a form of cell death that involves the concerted action of a number of intracellular signaling pathways including members of the caspase family of cysteine proteases. The two main apoptotic pathways, the death receptor ('extrinsic') and mitochondrial ('intrinsic') pathways, are activated by caspase-8 and -9, respectively, both of which are found in the cytoplasm. Recent studies point to the ER as a third subcellular compartment implicated in apoptotic execution. Here, we review evidence for the contribution of various cellular molecules that contribute to ER stress and subsequent cellular death. It is hoped that dissection of the molecular components and pathways that alter ER structure and function and ultimately promote cellular death will provide a framework for understanding degenerative disorders that feature misfolded proteins.
Collapse
Affiliation(s)
- R V Rao
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | |
Collapse
|
188
|
Aiken CT, Tobin AJ, Schweitzer ES. A cell-based screen for drugs to treat Huntington's disease. Neurobiol Dis 2004; 16:546-55. [PMID: 15262266 DOI: 10.1016/j.nbd.2004.04.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 03/17/2004] [Accepted: 04/01/2004] [Indexed: 11/25/2022] Open
Abstract
We have developed a medium-throughput cell-based assay to screen drugs for Huntington's disease (HD). The assay measures the ability of drugs to protect cultured neuronal (PC12) cells from death caused by an expanded polyglutamine (poly Q) form of huntingtin exon 1. Using this assay, we have blindly screened a library of 1040 compounds compiled by the NINDS: the NIH Custom Collection (NCC). Each compound was tested at five concentrations for its ability to protect cells against huntingtin-induced cell death as well as for its toxicity. Of the compounds tested, 18 prevented cell death completely, and 51 partially. Some of these also exhibited toxicity at higher doses. The majority of drugs (81%) were ineffective. Caspase inhibitors and cannabinoids showed reproducible protection in our assay. We believe these compounds, and others in our hit list, are appealing candidates for further investigation. Additionally, this assay is amenable to scaling up to screen additional compounds for treating Huntington's disease.
Collapse
Affiliation(s)
- Charity T Aiken
- Departments of Physiological Science and Neurology, Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
189
|
Mazzola JL, Sirover MA. Subcellular analysis of aberrant protein structure in age-related neurodegenerative disorders. J Neurosci Methods 2004; 137:241-6. [PMID: 15262067 DOI: 10.1016/j.jneumeth.2004.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 02/25/2004] [Accepted: 02/25/2004] [Indexed: 11/17/2022]
Abstract
Subcellular interactions of neurodegenerative disease proteins may provide a basic molecular mechanism underlying neuronal disorders. Each protein may also exhibit activities related to normal cell structure and function. It may be necessary to develop methodologies to distinguish between normal and abnormal intracellular interactions of such proteins in human cells. The latter would result in distinct perturbations in cell function depending both on the specific protein or nucleic acid interactions as well as its subcellular localization. Individual neurodegenerative disorders may be characterized by distinct alterations in subcellular neuronal protein structure and function. We developed as a basic experimental paradigm a novel human cell system to identify and examine such abnormal neuronal protein structures. The basic rationale is that neurodegenerative protein interactions would result in the formation of intracellular high molecular weight (HMW) complexes in cells from afflicted individuals. Following cell fractionation these unique structures could be detected by gradient sedimentation coupled with immunoblot analysis. They would not be observed in age matched control normal human cells. We now report that this procedure has been successfully used to determine a unique subcellular alteration of beta-amyloid precursor protein (beta-APP) structure in Alzheimer's disease (AD) cells. The latter was not observed in normal cells. Similar structural alterations were observed for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein known to bind to beta-APP in vitro. The utility of this model system to interrelate aberrant protein interactions of neurodegenerative disease proteins and their subcellular localization is considered.
Collapse
Affiliation(s)
- Jennifer L Mazzola
- Scientific Connexions, 105 Terry Drive, Suite 118, Newtown, PA 18940, USA
| | | |
Collapse
|
190
|
Rousseau E, Dehay B, Ben-Haïem L, Trottier Y, Morange M, Bertolotti A. Targeting expression of expanded polyglutamine proteins to the endoplasmic reticulum or mitochondria prevents their aggregation. Proc Natl Acad Sci U S A 2004; 101:9648-53. [PMID: 15210964 PMCID: PMC470729 DOI: 10.1073/pnas.0403015101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aggregation of misfolded proteins is a characteristic of several neurodegenerative diseases. The huntingtin amino-terminal fragment with extended polyglutamine repeat forms aggregates closely associated with chaperones both in the cytoplasm and the nucleus. Because each cellular compartment contains distinct chaperones and because the molecular mechanisms controlling polyglutamine aggregation are largely unknown, we decided to investigate the influence of different cellular environments on the aggregation of this pathological protein. Here, we show that aggregation of a protein containing a polyglutamine stretch of pathological length is abolished when its expression is targeted to the endoplasmic reticulum. Once retrogradely transported outside the endoplasmic reticulum, the aggregation-prone polyglutamine-containing protein recovers its ability to aggregate. When expressed in the mitochondria, a protein containing 73 glutamines is entirely soluble, whereas the nucleocytosolic equivalent has an extremely high tendency to aggregate. Our data imply that polyglutamine aggregation is a property restricted to the nucleocytosolic compartment and suggest the existence of compartment-specific cofactors promoting or preventing aggregation of pathological proteins.
Collapse
Affiliation(s)
- Erwann Rousseau
- Laboratoire de Génétique Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8541, Ecole Normale Supérieure, 46 Rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
191
|
Schilling G, Savonenko AV, Klevytska A, Morton JL, Tucker SM, Poirier M, Gale A, Chan N, Gonzales V, Slunt HH, Coonfield ML, Jenkins NA, Copeland NG, Ross CA, Borchelt DR. Nuclear-targeting of mutant huntingtin fragments produces Huntington's disease-like phenotypes in transgenic mice. Hum Mol Genet 2004; 13:1599-610. [PMID: 15190011 DOI: 10.1093/hmg/ddh175] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Huntington's disease (HD) results from the expansion of a glutamine repeat near the N-terminus of huntingtin (htt). At post-mortem, neurons in the central nervous system of patients have been found to accumulate N-terminal fragments of mutant htt in nuclear and cytoplasmic inclusions. This pathology has been reproduced in transgenic mice expressing the first 171 amino acids of htt with 82 glutamines along with losses of motoric function, hypoactivity and abbreviated life-span. The relative contributions of nuclear versus cytoplasmic mutant htt to the pathogenesis of disease have not been clarified. To examine whether pathogenic processes in the nucleus disproportionately contribute to disease features in vivo, we fused a nuclear localization signal (NLS) derived from atrophin-1 to the N-terminus of an N171-82Q construct. Two lines of mice (lines 8A and 61) that were identified expressed NLS-N171-82Q at comparable levels and developed phenotypes identical to our previously described HD-N171-82Q mice. Western blot and immunohistochemical analyses revealed that NLS-N171-82Q fragments accumulate in nuclear, but not cytoplasmic, compartments. These data suggest that disruption of nuclear processes may account for many of the disease phenotypes displayed in the mouse models generated by expressing mutant N-terminal fragments of htt.
Collapse
Affiliation(s)
- Gabriele Schilling
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Kaytor MD, Wilkinson KD, Warren ST. Modulating huntingtin half-life alters polyglutamine-dependent aggregate formation and cell toxicity. J Neurochem 2004; 89:962-73. [PMID: 15140195 DOI: 10.1111/j.1471-4159.2004.02376.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A common finding among the expanded polyglutamine disorders is intracellular protein aggregates. Although the precise role of these aggregates in the disease process is unclear, they are generally ubiquitinated, implicating the ubiquitin-proteasome pathway in neuronal degeneration. To investigate the mechanism of aggregate formation, we have developed a cell culture model to express huntingtin designed to have an altered degradation rate through the ubiquitin-dependent N-end rule pathway. We fused the first 171 amino acids of huntingtin, containing either a pathogenic or normal polyglutamine tract, to the enhanced green fluorescent protein (EGFP). The half-life of soluble huntingtin-EGFP was dependent on the degradation signal and the polyglutamine tract length. However, once huntingtin-EGFP with a pathogenic tract had aggregated, the protein was extremely stable. Huntingtin-EGFP with a pathogenic glutamine tract and a shorter half-life displayed a delayed onset of aggregate formation and was more toxic to transfected cells. These data suggest that rapid clearance through the ubiquitin-proteasome pathway slows aggregate formation, yet increases cellular toxicity. Polyglutamine-induced neurotoxicity may therefore be triggered by non-aggregated protein, and aggregate formation itself may be a cellular defense mechanism.
Collapse
Affiliation(s)
- Michael D Kaytor
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
193
|
Zainelli GM, Ross CA, Troncoso JC, Fitzgerald JK, Muma NA. Calmodulin regulates transglutaminase 2 cross-linking of huntingtin. J Neurosci 2004; 24:1954-61. [PMID: 14985437 PMCID: PMC6730388 DOI: 10.1523/jneurosci.4424-03.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Striatal and cortical intranuclear inclusions and cytoplasmic aggregates of mutant huntingtin are prominent neuropathological hallmarks of Huntington's disease (HD). We demonstrated previously that transglutaminase 2 cross-links mutant huntingtin in cells in culture and demonstrated the presence of transglutaminase-catalyzed cross-links in the HD cortex that colocalize with transglutaminase 2 and huntingtin. Because calmodulin regulates transglutaminase activity in erythrocytes, platelets, and the gizzard, we hypothesized that calmodulin increases cross-linking of huntingtin in the HD brain. We found that calmodulin colocalizes at the confocal level with transglutaminase 2 and with huntingtin in HD intranuclear inclusions. Calmodulin coimmunoprecipitates with transglutaminase 2 and huntingtin in cells transfected with myc-tagged N-terminal huntingtin fragments containing 148 polyglutamine repeats (htt-N63-148Q-myc) and transglutaminase 2 but not in cells transfected with myc-tagged N-terminal huntingtin fragments containing 18 polyglutamine repeats. Our previous studies demonstrated that transfection with both htt-N63-148Q-myc and transglutaminase 2 resulted in cross-linking of mutant huntingtin protein fragments and the formation of insoluble high-molecular-weight aggregates of huntingtin protein fragments. Transfection with transglutaminase 2 and htt-N63-148Q-myc followed by treatment of cells with N-(6-aminohexyl)-1-naphthalenesulfonamide, a calmodulin inhibitor, resulted in a decrease in cross-linked huntingtin. Inhibiting the interaction of calmodulin with transglutaminase and huntingtin protein could decrease cross-linking and diminish huntingtin aggregate formation in the HD brain.
Collapse
Affiliation(s)
- Gina M Zainelli
- Department of Pharmacology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
194
|
Reiner A, Dragatsis I, Zeitlin S, Goldowitz D. Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol 2004; 28:259-76. [PMID: 14709789 DOI: 10.1385/mn:28:3:259] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 05/23/2003] [Indexed: 11/11/2022]
Abstract
While the role of the mutated Huntington's disease (HD) protein in the pathogenesis of HD has been the focus of intensive investigation, the normal protein has received less attention. Nonetheless, the wild-type HD protein appears to be essential for embryogenesis, since deletion of the HD gene in mice results in early embryonic lethality. This early lethality is due to a critical role the HD protein, called huntingtin (Htt), plays in extraembryonic membrane function, presumably in vesicular transport of nutrients. Studies of mutant mice expressing low levels of Htt and of chimeric mice generated by blastocyst injection of Hdh-/- embryonic stem cells show that wildtype Htt plays an important role later in development as well, specifically in forebrain formation. Moreover, various lines of study suggest that normal Htt is also critical for survival of neurons in the adult forebrain. The observation that Htt plays its key developmental and survival roles in those brain areas most affected in HD raises the possibility that a subtle loss of function on the part of the mutant protein or a sequestering of wild-type Htt by mutant Htt may contribute to HD pathogenesis. Regardless of whether this is so, the prosurvival role of Htt suggests that HD therapies that block production of both wild-type and mutant Htt may themselves be harmful.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee, The Health Science Center, Memphis, TN 38163.
| | | | | | | |
Collapse
|
195
|
Jakel RJ, Schneider BL, Svendsen CN. Using human neural stem cells to model neurological disease. Nat Rev Genet 2004; 5:136-44. [PMID: 14735124 DOI: 10.1038/nrg1268] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rebekah J Jakel
- Neuroscience Training Program, Waisman Center, University of Wisconsin-Madison Medical School, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
196
|
Gafni J, Hermel E, Young JE, Wellington CL, Hayden MR, Ellerby LM. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J Biol Chem 2004; 279:20211-20. [PMID: 14981075 DOI: 10.1074/jbc.m401267200] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine (polyQ) tract expansion near the N terminus of huntingtin (Htt). Proteolytic processing of mutant Htt and abnormal calcium signaling may play a critical role in disease progression and pathogenesis. Recent work indicates that calpains may participate in the increased and/or altered patterns of Htt proteolysis leading to the selective toxicity observed in HD striatum. Here, we identify two calpain cleavage sites in Htt and show that mutation of these sites renders the polyQ expanded Htt less susceptible to proteolysis and aggregation, resulting in decreased toxicity in an in vitro cell culture model. In addition, we found that calpain- and caspase-derived Htt fragments preferentially accumulate in the nucleus without the requirement of further cleavage into smaller fragments. Calpain family members, calpain-1, -5, -7, and -10, have increased levels or are activated in HD tissue culture and transgenic mouse models, suggesting they may play a key role in Htt proteolysis and disease pathology. Interestingly, calpain-1, -5, -7, and -10 localize to the cytoplasm and the nucleus, whereas the activated forms of calpain-7 and -10 are found only in the nucleus. These results support the role of calpain-derived Htt fragmentation in HD and suggest that aberrant activation of calpains may play a role in HD pathogenesis.
Collapse
Affiliation(s)
- Juliette Gafni
- The Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, California 94945, USA
| | | | | | | | | | | |
Collapse
|
197
|
Sugars KL, Brown R, Cook LJ, Swartz J, Rubinsztein DC. Decreased cAMP Response Element-mediated Transcription. J Biol Chem 2004; 279:4988-99. [PMID: 14627700 DOI: 10.1074/jbc.m310226200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is one of nine neurodegenerative diseases caused by an expanded polyglutamine (polyQ) tract within the disease protein. To characterize pathways induced early in HD, we have developed stable inducible PC12 cell lines expressing wild-type or mutant forms of huntingtin exon 1 fragments or the full-length huntingtin protein. Three cAMP response element-binding protein (CREB)-binding protein-dependent transcriptional pathways, regulated by cAMP response element (CRE), retinoic acid response element, and nuclear factor kappaB, show abnormalities in our exon 1 cell model. Of these, the CRE pathway shows the earliest disruption and is significantly down-regulated as early as 12 h following mutant htt transgene induction. This pathway is also the only one of the three that is similarly perturbed in our full-length HD model, where it is also down-regulated at an early time point, compatible with observations in HD brains. Reduced CRE-dependent transcription may contribute to polyQ disease pathogenesis because overexpression of transcriptionally active CREB, but not an inactive form of the protein, is able to protect against polyQ-induced cell death and reduce aggregation.
Collapse
Affiliation(s)
- Katharine L Sugars
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
198
|
van Dellen A, Hannan AJ. Genetic and environmental factors in the pathogenesis of Huntington's disease. Neurogenetics 2004; 5:9-17. [PMID: 14745585 DOI: 10.1007/s10048-003-0169-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2003] [Accepted: 11/25/2003] [Indexed: 02/04/2023]
Abstract
Huntington's disease is a fatal inherited disorder in which there is progressive neurodegeneration in specific brain areas, mainly the striatum and cerebral cortex, producing motor, cognitive, and psychiatric symptoms. The trinucleotide repeat mutation involved is common to many other brain diseases, which may therefore involve similar mechanisms of pathogenesis. We are beginning to understand how a CAG trinucleotide repeat expansion in the disease gene, encoding an expanded polyglutamine tract, induces neuronal dysfunction and symptomatology in Huntington's disease. Recent evidence that environmental factors modify the onset and progression of neurodegeneration has shed new light on Huntington's disease and other devastating brain diseases. This review focuses on genetic mediators, environmental modulators, and associated gene-environment interactions in the pathogenesis of Huntington's disease.
Collapse
Affiliation(s)
- Anton van Dellen
- University Laboratory of Physiology, University of Oxford, Parks Road, OX1 3PT, Oxford, UK.
| | | |
Collapse
|
199
|
Abstract
The gene for Huntington's disease was identified in 1993 as being a CAG repeat expansion in exon 1 of a gene now known as huntingtin on chromosome 4. Although many of the downstream effects of this mutant gene were identified in the subsequent years, a more detailed understanding of these events will be necessary in order to design specific interventions to interfere with the disease process and slow disease progression. In parallel, a number of groups have been investigating alternative approaches to treatment of Huntington's disease, including cell and tissue transplantation. As the brunt of cell dysfunction and loss is borne by the striatum, at least in the early to mid-stages of disease, the goal is to identify methods for replacing lost cells with fetal neuroblasts that can develop, integrate into the host circuitry and thereby restore lost function. Clinical studies in which primary fetal neuroblasts were transplanted into the brains of patients with advanced Parkinson's disease have demonstrated benefit when the transplant methodology closely follows the biological principles established in animal experiments. On the basis of demonstrated benefit following striatal cell transplantation in animal models of Huntington's disease, a small number of studies have now commenced in patients with Huntington's disease. To date, these clinical studies have demonstrated the feasibility and safety of transplantation in this condition, but it will require several more years yet before the efficacy of the procedure can be confidently established.
Collapse
Affiliation(s)
- Anne E Rosser
- School of Biosciences, Cardiff University, Cardiff, UK.
| | | |
Collapse
|
200
|
Abstract
To date, nine polyglutamine disorders have been characterised, including Huntington's disease (HD), spinobulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and spinocerebellar ataxias 1, 2, 3, 6, 7 and 17 (SCAs). Although knockout and transgenic mouse experiments suggest that a toxic gain of function is central to neuronal death in these diseases (with the probable exception of SCA6), the exact mechanisms of neurotoxicity remain contentious. A further conundrum is the characteristic distribution of neuronal damage in each disease, despite ubiquitous expression of the abnormal proteins. One mechanism that could possibly underlie the specific distribution of neuronal toxicity is proteolytic cleavage of the full-length expanded polyglutamine tract-containing proteins. There is evidence found in vitro or in vivo (or both) of proteolytic cleavage in HD, SBMA, DRPLA, and SCAs 2, 3, and 7. In HD, cleavage has been demonstrated to be regionally specific, occurring as a result of caspase activation. These diseases are also characterised by development of intraneuronal aggregates of the abnormal protein that co-localise with components of the ubiquitin-proteasome pathway. It remains unclear whether these aggregates are pathogenic or merely disease markers; however, at least in the case of ataxin-3, cleavage promotes aggregation. Inhibition of specific proteases constitutes a potential therapeutic approach in these diseases.
Collapse
Affiliation(s)
- V Tarlac
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, Australia
| | | |
Collapse
|