151
|
Regulation of neutrophils in type 2 immune responses. Curr Opin Immunol 2018; 54:115-122. [PMID: 30015087 DOI: 10.1016/j.coi.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023]
Abstract
Type 2 immune responses contribute to the resistance to helminths and toxins as well as several physiological processes. Although they usually do not participate in type 2 immune responses, neutrophils have been shown in mice to enhance the anti-helminth response, but they also contribute to increased target tissue damage. Increased pathology and morbidity is also observed in type 2 immune-mediated disorders, such as allergic asthma, when neutrophils become a predominant subset of the infiltrate. How neutrophil recruitment is regulated during type 2 immune responses is now starting to become clear, with recent data showing that signaling via the prototypic type 2 cytokine interleukin-4 receptor mediates direct and indirect inhibitory actions on neutrophils in mice and humans.
Collapse
|
152
|
Gao JL, Yim E, Siwicki M, Yang A, Liu Q, Azani A, Owusu-Ansah A, McDermott DH, Murphy PM. Cxcr4-haploinsufficient bone marrow transplantation corrects leukopenia in an unconditioned WHIM syndrome model. J Clin Invest 2018; 128:3312-3318. [PMID: 29715199 DOI: 10.1172/jci120375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
For gene therapy of gain-of-function autosomal dominant diseases, either correcting or deleting the disease allele is potentially curative. To test whether there may be an advantage of one approach over the other for WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome - a primary immunodeficiency disorder caused by gain-of-function autosomal dominant mutations in chemokine receptor CXCR4 - we performed competitive transplantation experiments using both lethally irradiated WT (Cxcr4+/+) and unconditioned WHIM (Cxcr4+/w) recipient mice. In both models, hematopoietic reconstitution was markedly superior using BM cells from donors hemizygous for Cxcr4 (Cxcr4+/o) compared with BM cells from Cxcr4+/+ donors. Remarkably, only approximately 6% Cxcr4+/o hematopoietic stem cell (HSC) chimerism after transplantation in unconditioned Cxcr4+/w recipient BM supported more than 70% long-term donor myeloid chimerism in blood and corrected myeloid cell deficiency in blood. Donor Cxcr4+/o HSCs differentiated normally and did not undergo exhaustion as late as 465 days after transplantation. Thus, disease allele deletion resulting in Cxcr4 haploinsufficiency was superior to disease allele repair in a mouse model of gene therapy for WHIM syndrome, allowing correction of leukopenia without recipient conditioning.
Collapse
|
153
|
Kallen ME, Dulau-Florea A, Wang W, Calvo KR. Acquired and germline predisposition to bone marrow failure: Diagnostic features and clinical implications. Semin Hematol 2018; 56:69-82. [PMID: 30573048 DOI: 10.1053/j.seminhematol.2018.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
Bone marrow failure and related syndromes are rare disorders characterized by ineffective bone marrow hematopoiesis and peripheral cytopenias. Although many are associated with characteristic clinical features, recent advances have shown a more complicated picture with a spectrum of broad and overlapping phenotypes and imperfect genotype-phenotype correlations. Distinguishing acquired from inherited forms of marrow failure can be challenging, but is of crucial importance given differences in the risk of disease progression to myelodysplastic syndrome, acute myeloid leukemia, and other malignancies, as well as the potential to genetically screen relatives and select the appropriate donor if hematopoietic stem cell transplantation becomes necessary. Flow cytometry patterns in combination with morphology, cytogenetics, and history can help differentiate several diagnostic marrow failure and/or insufficiency entities and guide genetic testing. Herein we review several overlapping acquired marrow failure entities including aplastic anemia, hypoplastic myelodysplasia, and large granular lymphocyte disorders; and several bone marrow disorders with germline predisposition, including GATA2 deficiency, CTLA4 haploinsufficiency, dyskeratosis congenita and/or telomeropathies, Fanconi anemia, Shwachman-Diamond syndrome, congenital amegakaryocytic thrombocytopenia, severe congenital neutropenia, and Diamond-Blackfan anemia with a focus on advances related to pathophysiology, diagnosis, and management.
Collapse
Affiliation(s)
- Michael E Kallen
- National Cancer Institute, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Alina Dulau-Florea
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Weixin Wang
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA.
| |
Collapse
|
154
|
Oprea TI, Bologa CG, Brunak S, Campbell A, Gan GN, Gaulton A, Gomez SM, Guha R, Hersey A, Holmes J, Jadhav A, Jensen LJ, Johnson GL, Karlson A, Leach AR, Ma’ayan A, Malovannaya A, Mani S, Mathias SL, McManus MT, Meehan TF, von Mering C, Muthas D, Nguyen DT, Overington JP, Papadatos G, Qin J, Reich C, Roth BL, Schürer SC, Simeonov A, Sklar LA, Southall N, Tomita S, Tudose I, Ursu O, Vidovic D, Waller A, Westergaard D, Yang JJ, Zahoránszky-Köhalmi G. Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov 2018; 17:317-332. [PMID: 29472638 PMCID: PMC6339563 DOI: 10.1038/nrd.2018.14] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Tudor I. Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
- UNM Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristian G. Bologa
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Anna Gaulton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Shawn M. Gomez
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Anne Hersey
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jayme Holmes
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anneli Karlson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Present addresses: SciBite Limited, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew R. Leach
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Avi Ma’ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Subramani Mani
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Stephen L. Mathias
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Terrence F. Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Daniel Muthas
- Respiratory, Inflammation and Autoimmunity Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - John P. Overington
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Medicines Discovery Catapult, Alderley Edge, UK
| | - George Papadatos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- GlaxoSmithKline, Stevenage, UK
| | - Jun Qin
- Baylor College of Medicine, Houston, TX, USA
| | | | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Larry A. Sklar
- UNM Comprehensive Cancer Center, Albuquerque, NM, USA
- Center for Molecular Discovery, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Susumu Tomita
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ilinca Tudose
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Google Germany GmbH, München, Germany
| | - Oleg Ursu
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Dušica Vidovic
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anna Waller
- Center for Molecular Discovery, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeremy J. Yang
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Gergely Zahoránszky-Köhalmi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
- NIH-NCATS, Rockville, MD, USA
| |
Collapse
|
155
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 886] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
156
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
157
|
Peng D, Cao B, Zhou YJ, Long YQ. The chemical diversity and structure-based evolution of non-peptide CXCR4 antagonists with diverse therapeutic potential. Eur J Med Chem 2018; 149:148-169. [PMID: 29500940 DOI: 10.1016/j.ejmech.2018.02.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
The CXC chemokine receptor 4 (CXCR4) is a highly reserved G-protein coupled 7-transmembrane (TM) chemokine receptor which consists of 352 amino acids. CXCR4 has only one endogenous chemokine ligand of CXCL12, besides several other natural nonchemokine ligands such as extracellular ubiquitin and noncognate ligand of MIF. CXCR4 strongly binds to CXCL12 and the resulting CXCLl2/CXCR4 axis is the molecular basis of their various biological functions, which include: (1) mediating immune and inflammatory response; (2) regulation of hematopoietic stem cell migration and homing; (3) an essential co-receptor for HIV entry into host cells; (4) participation in the process of embryonic development; (5) malignant tumor invasion and metastasis; (6) myocardial infarction, ischemic stroke and acute kidney injury. Correspondingly, CXCR4 antagonists find potential therapeutic applications in HIV infection, as well as hematopoietic stem cell migration, inflammation, immune-related diseases, tumor and ischemic diseases. Recently, great achievements have been made and a number of non-peptide CXCR4 antagonists with diversity scaffolds have been discovered. In this review, the discovery of small molecule CXCR4 antagonists focused on the structures, activities, evolution and development of representative CXCR4 antagonists is comprehensively described. The central role of CXCR4 in diverse cellular signaling pathways and its involvement in several diseases progressions are discussed as well.
Collapse
Affiliation(s)
- Dian Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Bin Cao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying-Jun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ya-Qiu Long
- College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou 215123, China.
| |
Collapse
|
158
|
Murphy PM, Heusinkveld L. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine 2018; 109:2-10. [PMID: 29398278 DOI: 10.1016/j.cyto.2017.12.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Chemokines are named and best known for their chemotactic cytokine activity in the hematopoietic system; however, their importance extends far beyond leukocytes, cell movement and immunoregulation. CXCL12, the most protean of chemokines, regulates development in multiple systems, including the hematopoietic, cardiovascular and nervous systems, and regulates diverse cell functions, including differentiation, distribution, activation, immune synapse formation, effector function, proliferation and survival in the immune system alone. The broad importance of CXCL12 is revealed by the complex lethal developmental phenotypes in mice lacking either Cxcl12 or either one of its two known 7-transmembrane domain receptors Cxcr4 and Ackr3, as well as by gain-of-function mutations in human CXCR4, which cause WHIM syndrome, a multisystem and combined immunodeficiency disease and the only Mendelian condition caused by a chemokine system mutation. In addition, wild type CXCR4 is important in the pathogenesis of HIV/AIDS and cancer. Thus, CXCL12 and its receptors CXCR4 and ACKR3 provide extraordinary examples of multisystem multitasking in the chemokine system in both health and disease.
Collapse
Affiliation(s)
- Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Lauren Heusinkveld
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
159
|
Human Cytomegalovirus UL111A and US27 Gene Products Enhance the CXCL12/CXCR4 Signaling Axis via Distinct Mechanisms. J Virol 2018; 92:JVI.01981-17. [PMID: 29237840 DOI: 10.1128/jvi.01981-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 01/19/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes lifelong infection in the host. Virus persistence is aided by extensive manipulation of the host immune system, particularly cytokine and chemokine signaling pathways. The HCMV UL111A gene encodes cmvIL-10, an ortholog of human interleukin-10 that has many immunomodulatory effects. We found that cmvIL-10 increased signaling outcomes from human CXCR4, a chemokine receptor with essential roles in hematopoiesis and immune cell trafficking, in response to its natural ligand CXCL12. Calcium flux and chemotaxis to CXCL12 were significantly greater in the presence of cmvIL-10 in monocytes, epithelial cells, and fibroblasts that express CXCR4. cmvIL-10 effects on CXCL12/CXCR4 signaling required the IL-10 receptor and Stat3 activation. Heightened signaling occurred both in HCMV-infected cells and in uninfected bystander cells, suggesting that cmvIL-10 may broadly influence chemokine networks by paracrine signaling during infection. Moreover, CXCL12/CXCR4 signaling was amplified in HCMV-infected cells compared to mock-infected cells even in the absence of cmvIL-10. Enhanced CXCL12/CXCR4 outcomes were associated with expression of the virally encoded chemokine receptor US27, and CXCL12/CXCR4 activation was reduced in cells infected with a deletion mutant lacking US27 (TB40/E-mCherry-US27Δ). US27 effects were Stat3 independent but required close proximity to CXCR4 in cell membranes of either HCMV-infected or US27-transfected cells. Thus, HCMV encodes two proteins, cmvIL-10 and US27, that exhibit distinct mechanisms for enhancing CXCR4 signaling. Either individually or in combination, cmvIL-10 and US27 may enable HCMV to exquisitely manipulate CXCR4 signaling to alter host immune responses and modify cell trafficking patterns during infection.IMPORTANCE The human chemokine system plays a central role in host defense, as evidenced by the many strategies devised by viruses for manipulating it. Human cytomegalovirus (HCMV) is widespread in the human population, but infection rarely causes disease except in immunocompromised hosts. We found that two different HCMV proteins, cmvIL-10 and US27, act through distinct mechanisms to upregulate the signaling activity of a cellular chemokine receptor, CXCR4. cmvIL-10 is a secreted viral cytokine that affects CXCR4 signaling in both infected and uninfected cells, while US27 is a component of the virus particle and impacts CXCR4 activity only in infected cells. Both cmvIL-10 and US27 promote increased intracellular calcium signaling and cell migration in response to chemokine CXCL12 binding to CXCR4. Our results demonstrate that HCMV exerts fine control over the CXCL12/CXCR4 pathway, which could lead to enhanced virus dissemination, altered immune cell trafficking, and serious health implications for HCMV patients.
Collapse
|
160
|
Affiliation(s)
- Carlo Dufour
- Haematology Unit. I.R.C.C.S. G. Gaslini Children's Hospital, Genova, Italy. The Scientific Working Group on Granulocytes and Monocyte disorders of the EHA
| | - Maurizio Miano
- Haematology Unit. I.R.C.C.S. G. Gaslini Children's Hospital, Genova, Italy
| | - Francesca Fioredda
- Haematology Unit. I.R.C.C.S. G. Gaslini Children's Hospital, Genova, Italy. The Scientific Working Group on Granulocytes and Monocyte disorders of the EHA
| |
Collapse
|
161
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
162
|
Teixidó J, Martínez-Moreno M, Díaz-Martínez M, Sevilla-Movilla S. The good and bad faces of the CXCR4 chemokine receptor. Int J Biochem Cell Biol 2017; 95:121-131. [PMID: 29288743 DOI: 10.1016/j.biocel.2017.12.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 11/18/2022]
Abstract
Chemokines are chemotactic cytokines that promote cell migration and activation under homeostatic and inflammatory conditions. Chemokines bind to seven transmembrane-spanning receptors that are coupled to heterotrimeric guanine nucleotide-binding (G) proteins, which are the responsible for intracellularly transmitting the activating signals for cell migration. Hematopoiesis, vascular development, lymphoid organ morphogenesis, cardiogenesis and neural differentiation are amongst the processes involving chemokine function. In addition, immune cell trafficking from bone marrow to blood circulation, and from blood and lymph to lymphoid and inflamed tissues, is tightly regulated by chemokines both under physiological conditions and also in autoimmune diseases. Furthermore, chemokine binding to their receptors stimulate trafficking to and positioning of cancer cells into target tissues and organs during tumour dissemination. The CXCL12 chemokine (also known as stromal-cell derived factor-1α, SDF-1α) plays key roles in hematopoiesis and lymphoid tissue architecture, in cardiogenesis, vascular formation and neurogenesis, as well as in the trafficking of solid and hematological cancer cell types. CXCL12 binds to the CXCR4 receptor, a multi-facetted molecule which tightly mirrors CXCL12 functions in homeostasis and disease. This review addresses the important roles of the CXCR4-CXCL12 axis in homeostasis, specially focusing in hematopoiesis, as well as it provides a picture of CXCR4 as mediator of cancer cell spreading, and a view of the available CXCR4 antagonists in different cancer types.
Collapse
Affiliation(s)
- Joaquin Teixidó
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain.
| | - Mónica Martínez-Moreno
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Marta Díaz-Martínez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Silvia Sevilla-Movilla
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
163
|
Azcutia V, Parkos CA, Brazil JC. Role of negative regulation of immune signaling pathways in neutrophil function. J Leukoc Biol 2017; 103:10.1002/JLB.3MIR0917-374R. [PMID: 29345376 PMCID: PMC6203665 DOI: 10.1002/jlb.3mir0917-374r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/26/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) play a critical role in host defense against infection and in the resolution of inflammation. However, immune responses mediated by PMN must be tightly regulated to facilitate elimination of invading pathogens without inducing detrimental inflammation and host tissue damage. Specific engagement of cell surface immunoreceptors by a diverse range of extracellular signals regulates PMN effector functions through differential activation of intracellular signaling cascades. Although mechanisms of PMN activation mediated via cell signaling pathways have been well described, less is known about negative regulation of PMN function by immune signaling cascades. Here, we provide an overview of immunoreceptor-mediated negative regulation of key PMN effector functions including maturation, migration, phagocytosis, reactive oxygen species release, degranulation, apoptosis, and NET formation. Increased understanding of mechanisms of suppression of PMN effector functions may point to possible future therapeutic targets for the amelioration of PMN-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jennifer C. Brazil
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
164
|
Corey SJ, Oyarbide U. New monogenic disorders identify more pathways to neutropenia: from the clinic to next-generation sequencing. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:172-180. [PMID: 29222253 PMCID: PMC5912212 DOI: 10.1182/asheducation-2017.1.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neutrophils are the most common type of leukocyte in human circulating blood and constitute one of the chief mediators for innate immunity. Defined as a reduction from a normal distribution of values, neutropenia results from a number of congenital and acquired conditions. Neutropenia may be insignificant, temporary, or associated with a chronic condition with or without a vulnerability to life-threatening infections. As an inherited bone marrow failure syndrome, neutropenia may be associated with transformation to myeloid malignancy. Recognition of an inherited bone marrow failure syndrome may be delayed into adulthood. The list of monogenic neutropenia disorders is growing, heterogeneous, and bewildering. Furthermore, greater knowledge of immune-mediated and drug-related causes makes the diagnosis and management of neutropenia challenging. Recognition of syndromic presentations and especially the introduction of next-generation sequencing are improving the accuracy and expediency of diagnosis as well as their clinical management. Furthermore, identification of monogenic neutropenia disorders is shedding light on the molecular mechanisms of granulopoiesis and myeloid malignancies.
Collapse
Affiliation(s)
- Seth J Corey
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Usua Oyarbide
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
165
|
How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood 2017; 130:2491-2498. [DOI: 10.1182/blood-2017-02-708552] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a genetic disease characterized by neutropenia, lymphopenia, susceptibility to infections, and myelokathexis, which describes degenerative changes of mature neutrophils and hyperplasia of bone marrow myeloid cells. Some patients present with hypogammaglobulinemia and/or refractory warts of skin and genitalia. Congenital cardiac defects constitute uncommon manifestations of the disease. The disorder, which is inherited as an autosomal dominant trait, is caused by heterozygous mutations of the chemokine receptor CXCR4. These mutations lead to an increased sensitivity of neutrophils and lymphocytes to the unique ligand CXCL12 and to an increased accumulation of mature neutrophils in the bone marrow. Despite greatly improved knowledge of the disease, therapeutic choices are insufficient to prevent some of the disease outcomes, such as development of bronchiectasis, anogenital dysplasia, or invasive cancer. The available therapeutic measures aimed at preventing the risk for infection in WHIM patients are discussed. We critically evaluate the diagnostic criteria of WHIM syndrome, particularly when WHIM syndrome should be suspected in patients with congenital neutropenia and lymphopenia despite the absence of hypogammaglobulinemia and/or warts. Finally, we discuss recent results of trials evaluating plerixafor, a selective antagonist of CXCR4, as a mechanism-oriented strategy for treatment of WHIM patients.
Collapse
|
166
|
Haukioja A, Tervahartiala T, Sorsa T, Syrjänen S. Persistent Oral Human Papillomavirus (HPV) Infection is Associated with Low Salivary Levels of Matrix Metalloproteinase 8 (MMP-8). J Clin Virol 2017; 97:4-9. [DOI: 10.1016/j.jcv.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/04/2017] [Accepted: 10/20/2017] [Indexed: 02/02/2023]
|
167
|
Mechanisms of Sustained Neutrophilia in Patient WHIM-09, Cured of WHIM Syndrome by Chromothripsis. J Clin Immunol 2017; 38:77-87. [PMID: 29177911 DOI: 10.1007/s10875-017-0457-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
WHIM-09 is the first patient described with WHIM syndrome, an autosomal dominant form of neutropenia related to bone marrow retention of neutrophils. Originally diagnosed incorrectly with autoimmune neutropenia, the patient underwent splenectomy at age 9, but the absolute neutrophil count (ANC) did not rise. Subsequently, she was spontaneously cured by chromothripsis (chromosome shattering), which deleted the disease allele CXCR4 R334X , and 163 other genes, on chromosome 2 in a single hematopoietic stem cell (HSC). Chromothriptic CXCR4 +/o HSCs replaced CXCR4 +/R334X WHIM HSCs, and the ANC rose to a new sustained and benign baseline ~ 2-3-fold above normal that had remained unexplained. Here, we show that splenectomized Cxcr4 +/o mice had sustained and benign neutrophilia, phenocopying neutrophilia in WHIM-09. In addition, WHIM-09's granulocyte-macrophage precursor cells possessed increased granulocyte colony-forming activity ex vivo. Thus, WHIM-09's neutrophilia may be multifactorial, involving neutrophil-extrinsic factors (splenectomy), as well as CXCR4 haploinsufficiency-dependent neutrophil-intrinsic factors (increased myeloid precursor cell differentiation). The strong bone marrow retention signal for neutrophils conferred by the WHIM mutation may have prevented neutrophilia after splenectomy until the mutation was deleted by chromothripsis.
Collapse
|
168
|
Varettoni M, Zibellini S, Defrancesco I, Ferretti VV, Rizzo E, Malcovati L, Gallì A, Porta MGD, Boveri E, Arcaini L, Candido C, Paulli M, Cazzola M. Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance. Haematologica 2017; 102:2077-2085. [PMID: 28983055 PMCID: PMC5709107 DOI: 10.3324/haematol.2017.172718] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/28/2017] [Indexed: 12/30/2022] Open
Abstract
We analyzed MYD88 and CXCR4 mutation status of 260 patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance using allele-specific real time quantitative polymerase chain reaction and Sanger sequencing, respectively. A subgroup of 119 patients was further studied with next-generation sequencing of 11 target genes (MYD88, CXCR4, ARID1A, KMT2D, NOTCH2, TP53, PRDM1, CD79B, TRAF3, MYBBP1A, and TNFAIP3). MYD88 (L265P) was found at diagnosis in 91% of patients with Waldenström macroglobulinemia and in 60% of patients with IgM monoclonal gammopathy of undetermined significance using allele-specific polymerase chain reaction analysis. MYD88 mutations other than the classical L265P (V217F, S219C and M232T) were found in four cases by next-generation sequencing. Waldenström macroglobulinemia patients with wild-type MYD88 had a distinct clinical phenotype characterized by less bone marrow infiltration (P=0.01) and more frequent extramedullary involvement (P=0.001) compared to patients with mutated MYD88. Patients with wild-type MYD88 did not show additional mutations in the other target genes. CXCR4 mutations were found by Sanger sequencing in 22% of patients with Waldenström macroglobulinemia. With next-generation sequencing, a CXCR4 mutation was detected in 23% of patients with Waldenström macroglobulinemia and 9% of those with IgM monoclonal gammopathy of undetermined significance. Asymptomatic Waldenström macroglobulinemia patients harboring a CXCR4 mutation had a shorter treatment-free survival (51 months) than that of patients with wild-type CXCR4 (median not reached) (P=0.007). Analysis of variant allele frequencies indicated that CXCR4 mutations were present in the dominant clone in the majority of cases. Recurrent somatic mutations of KMT2D were found in 24% of patients with Waldenström macroglobulinemia and 5% of patients with IgM monoclonal gammopathy of undetermined significance and were primarily subclonal.
Collapse
Affiliation(s)
- Marzia Varettoni
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Zibellini
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Irene Defrancesco
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Luca Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Anna Gallì
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Emanuela Boveri
- Anatomic Pathology Section, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Arcaini
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Chiara Candido
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Paulli
- Anatomic Pathology Section, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Cazzola
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
169
|
de Wit RH, Heukers R, Brink HJ, Arsova A, Maussang D, Cutolo P, Strubbe B, Vischer HF, Bachelerie F, Smit MJ. CXCR4-Specific Nanobodies as Potential Therapeutics for WHIM syndrome. J Pharmacol Exp Ther 2017; 363:35-44. [PMID: 28768817 DOI: 10.1124/jpet.117.242735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
WHIM syndrome is a rare congenital immunodeficiency disease, named after its main clinical manifestations: warts, hypogammaglobulinemia, infections, and myelokathexis, which refers to abnormal accumulation of mature neutrophils in the bone marrow. The disease is primarily caused by C-terminal truncation mutations of the chemokine receptor CXCR4, giving these CXCR4-WHIM mutants a gain of function in response to their ligand CXCL12. Considering the broad functions of CXCR4 in maintaining leukocyte homeostasis, patients are panleukopenic and display altered immune responses, likely as a consequence of impairment in the differentiation and trafficking of leukocytes. Treatment of WHIM patients currently consists of symptom relief, leading to unsatisfactory clinical responses. As an alternative and potentially more effective approach, we tested the potency and efficacy of CXCR4-specific nanobodies on inhibiting CXCR4-WHIM mutants. Nanobodies are therapeutic proteins based on the smallest functional fragments of heavy chain antibodies. They combine the advantages of small-molecule drugs and antibody-based therapeutics due to their relative small size, high stability, and high affinity. We compared the potential of monovalent and bivalent CXCR4-specific nanobodies to inhibit CXCL12-induced CXCR4-WHIM-mediated signaling with the small-molecule clinical candidate AMD3100. The CXCR4-targeting nanobodies displace CXCL12 binding and bind CXCR4-wild type and CXCR4-WHIM (R334X/S338X) mutants and with (sub-) nanomolar affinities. The nanobodies' epitope was mapped to extracellular loop 2 of CXCR4, overlapping with the binding site of CXCL12. Monovalent, and in particular bivalent, nanobodies were more potent than AMD3100 in reducing CXCL12-mediated G protein activation. In addition, CXCR4-WHIM-dependent calcium flux and wound healing of human papillomavirus-immortalized cell lines in response to CXCL12 was effectively inhibited by the nanobodies. Based on these in vitro results, we conclude that CXCR4 nanobodies hold significant potential as alternative therapeutics for CXCR4-associated diseases such as WHIM syndrome.
Collapse
Affiliation(s)
- Raymond H de Wit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Hendrik J Brink
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Angela Arsova
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - David Maussang
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Pasquale Cutolo
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Beatrijs Strubbe
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Françoise Bachelerie
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| |
Collapse
|
170
|
Heusinkveld LE, Yim E, Yang A, Azani AB, Liu Q, Gao JL, McDermott DH, Murphy PM. Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency. Expert Opin Orphan Drugs 2017; 5:813-825. [PMID: 29057173 DOI: 10.1080/21678707.2017.1375403] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
21 INTRODUCTION WHIM syndrome is a rare combined primary immunodeficiency disorder caused by autosomal dominant gain-of-function mutations in the chemokine receptor CXCR4. It is the only Mendelian condition known to be caused by mutation of a chemokine or chemokine receptor. As such, it provides a scientific opportunity to understand chemokine-dependent immunoregulation in humans and a medical opportunity to develop mechanism-based treatment and cure strategies. 22 AREAS COVERED This review covers the clinical features, genetics, immunopathogenesis and clinical management of WHIM syndrome. Clinical trials of targeted therapeutic agents and potential cure strategies are also included. 23 EXPERT OPINION WHIM syndrome may be particularly amenable to mechanism-based therapeutics for three reasons: 1) CXCR4 has been validated as the molecular target in the disease by Mendelian genetics; 2) the biochemical abnormality is excessive CXCR4 signaling; and 3) antagonists selective for CXCR4 have been developed. Plerixafor is FDA-approved for hematopoietic stem cell (HSC) mobilization and has shown preliminary safety and efficacy in phase I clinical trials in WHIM syndrome. Gene editing may represent a viable cure strategy, since chromothriptic deletion of the disease allele in HSCs resulted in clinical cure of a patient and because CXCR4 haploinsufficiency enhances engraftment of transplanted HSCs in mice.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Erin Yim
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander Yang
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ari B Azani
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Qian Liu
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David H McDermott
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Philip M Murphy
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
171
|
Roselli G, Martini E, Lougaris V, Badolato R, Viola A, Kallikourdis M. CXCL12 Mediates Aberrant Costimulation of B Lymphocytes in Warts, Hypogammaglobulinemia, Infections, Myelokathexis Immunodeficiency. Front Immunol 2017; 8:1068. [PMID: 28928741 PMCID: PMC5591327 DOI: 10.3389/fimmu.2017.01068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
The Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is an immunodeficiency caused by mutations in chemokine receptor CXCR4. WHIM patient adaptive immunity defects remain largely unexplained. We have previously shown that WHIM-mutant T cells form unstable immunological synapses, affecting T cell activation. Here, we show that, in WHIM patients and WHIM CXCR4 knock-in mice, B cells are more apoptosis prone. Intriguingly, WHIM-mutant B cells were also characterized by spontaneous activation. Searching for a mechanistic explanation for these observations, we uncovered a novel costimulatory effect of CXCL12, the CXCR4 ligand, on WHIM-mutant but not wild-type B cells. The WHIM CXCR4-mediated costimulation led to increased B-cell activation, possibly involving mTOR, albeit without concurrently promoting survival. A reduction in antigenic load during immunization in the mouse was able to circumvent the adaptive immunity defects. These results suggest that WHIM-mutant CXCR4 may lead to spontaneous aberrant B-cell activation, via CXCL12-mediated costimulation, impairing B-cell survival and thus possibly contributing to the WHIM syndrome defects in adaptive immunity.
Collapse
Affiliation(s)
- Giuliana Roselli
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elisa Martini
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Vassilios Lougaris
- Department of Pediatrics, Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Pediatrics, Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Brescia, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| |
Collapse
|
172
|
Tosato G. Ephrin ligands and Eph receptors contribution to hematopoiesis. Cell Mol Life Sci 2017; 74:3377-3394. [PMID: 28589441 PMCID: PMC11107787 DOI: 10.1007/s00018-017-2566-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells reside predominantly in the bone marrow. They supply billions of mature blood cells every day during life through maturation into multilineage progenitors and self-renewal. Newly produced mature cells serve to replenish the pool of circulating blood cells at the end of their life-span. These mature blood cells and a few hematopoietic progenitors normally exit the bone marrow through the sinusoidal vessels, a specialized venous vascular system that spreads throughout the bone marrow. Many signals regulate the coordinated mobilization of hematopoietic cells from the bone marrow to the circulation. In this review, we present recent advances on hematopoiesis and hematopoietic cell mobilization with a focus on the role of Ephrin ligands and their Eph receptors. These constitute a large family of transmembrane ligands and receptors that play critical roles in development and postnatally. New insights point to distinct roles of ephrin and Eph in different aspects of hematopoiesis.
Collapse
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 4124, Bethesda, MD, 20892, USA.
| |
Collapse
|
173
|
Minami H, Nagaharu K, Nakamori Y, Ohishi K, Shimojo N, Kageyama Y, Matsumoto T, Sugimoto Y, Tawara I, Masuya M, Miwa H, Katayama N. CXCL12-CXCR4 Axis Is Required for Contact-Mediated Human B Lymphoid and Plasmacytoid Dendritic Cell Differentiation but Not T Lymphoid Generation. THE JOURNAL OF IMMUNOLOGY 2017; 199:2343-2355. [PMID: 28842468 DOI: 10.4049/jimmunol.1700054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
We investigated the involvement of CXCL12-CXCR4 interactions in human lymphohematopoiesis by coculture with telomerized human stromal cells. CXCR4 expression was low in CD34+CD38-CD45RA-CD10-CD7-CD19- immature hematopoietic stem/precursor cells (HSPCs) but higher in CD34+CD38-CD45RA+CD10+CD7+/-CD19- early lymphoid precursors and even higher in CD34+CD38+CD45RA+CD10+CD7-CD19+ pro-B cells. Inhibition of the effect of stromal cell-produced CXCL12 by an anti-CXCR4-blocking Ab suppressed the generation of CD45RA+CD10-CD7+CD19- early T lymphoid precursors (ETPs) and CD45RA+CD10+CD7-CD19+/- B lymphoid precursors on stromal cells, but it did not affect the generation of ETPs in conditioned medium of stromal cell cultures. Replating assays showed that contact with stromal cells was critical for HSPC-derived CD45RA+CD10+CD7-CD19- B lineage-biased precursors to differentiate into CD19+ pro-B cells, which was suppressed by the anti-CXCR4 Ab. Conversely, HSPC-derived ETPs possessed T and B lymphoid and monocytic differentiation potential; stromal cell contact was not required for their growth but rather promoted B lymphoid differentiation. The anti-CXCR4 Ab did not affect the growth of ETPs in conditioned medium, but it suppressed their B lymphoid differentiation on stromal cells. CD14-CD11c-HLA-DR+CD123highCD303+ plasmacytoid dendritic cells developed from HSPCs and ETPs exclusively in contact with stromal cells, which was suppressed by the anti-CXCR4 Ab. These data indicate that CXCL12 plays an essential role in stromal cell contact-mediated B lymphoid and plasmacytoid dendritic cell differentiation from immature hematopoietic and early T lymphoid precursors with a multilineage differentiation potential, but it does not participate in contact-independent generation of early T lymphoid precursors.
Collapse
Affiliation(s)
- Hirohito Minami
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshiki Nakamori
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kohshi Ohishi
- Blood Transfusion Service, Mie University Hospital, Tsu, Mie 514-8507, Japan; and
| | - Naoshi Shimojo
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuki Kageyama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takeshi Matsumoto
- Blood Transfusion Service, Mie University Hospital, Tsu, Mie 514-8507, Japan; and
| | - Yuka Sugimoto
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroshi Miwa
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
174
|
Abstract
The maintenance of monocytes, macrophages, and dendritic cells (DCs) involves manifold pathways of ontogeny and homeostasis that have been the subject of intense study in recent years. The concept of a peripheral mononuclear phagocyte system continually renewed by blood-borne monocytes has been modified to include specialized DC pathways of development that do not involve monocytes, and longevity through self-renewal of tissue macrophages. The study of development remains difficult owing to the plasticity of phenotypes and misconceptions about the fundamental structure of hematopoiesis. However, greater clarity has been achieved in distinguishing inflammatory monocyte-derived DCs from DCs arising in the steady state, and new concepts of conjoined lymphomyeloid hematopoiesis more easily accommodate the shared lymphoid and myeloid phenotypes of some DCs. Cross-species comparisons have also yielded coherent systems of nomenclature for all mammalian monocytes, macrophages, and DCs. Finally, the clear relationships between ontogeny and functional specialization offer information about the regulation of immune responses and provide new tools for the therapeutic manipulation of myeloid mononuclear cells in medicine.
Collapse
|
175
|
Mukaida N, Tanabe Y, Baba T. Chemokines as a Conductor of Bone Marrow Microenvironment in Chronic Myeloid Leukemia. Int J Mol Sci 2017; 18:1824. [PMID: 28829353 PMCID: PMC5578209 DOI: 10.3390/ijms18081824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/19/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022] Open
Abstract
All blood lineage cells are generated from hematopoietic stem cells (HSCs), which reside in bone marrow after birth. HSCs self-renew, proliferate, and differentiate into mature progeny under the control of local microenvironments including hematopoietic niche, which can deliver regulatory signals in the form of bound or secreted molecules and from physical cues such as oxygen tension and shear stress. Among these mediators, accumulating evidence indicates the potential involvement of several chemokines, particularly CXCL12, in the interaction between HSCs and bone marrow microenvironments. Fusion between breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog (ABL)-1 gene gives rise to BCR-ABL protein with a constitutive tyrosine kinase activity and transforms HSCs and/or hematopoietic progenitor cells (HPCs) into disease-propagating leukemia stem cells (LSCs) in chronic myeloid leukemia (CML). LSCs can self-renew, proliferate, and differentiate under the influence of the signals delivered by bone marrow microenvironments including niche, as HSCs can. Thus, the interaction with bone marrow microenvironments is indispensable for the initiation, maintenance, and progression of CML. Moreover, the crosstalk between LSCs and bone marrow microenvironments can contribute to some instances of therapeutic resistance. Furthermore, evidence is accumulating to indicate the important roles of bone marrow microenvironment-derived chemokines. Hence, we will herein discuss the roles of chemokines in CML with a focus on bone marrow microenvironments.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Chemokines/metabolism
- Hematopoiesis/genetics
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Protein Binding
- Receptors, Chemokine/metabolism
- Signal Transduction
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Ishikawa, Kanazawa 920-1192, Japan.
| | - Yamato Tanabe
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Ishikawa, Kanazawa 920-1192, Japan.
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Ishikawa, Kanazawa 920-1192, Japan.
| |
Collapse
|
176
|
Leo PJ, Madeleine MM, Wang S, Schwartz SM, Newell F, Pettersson-Kymmer U, Hemminki K, Hallmans G, Tiews S, Steinberg W, Rader JS, Castro F, Safaeian M, Franco EL, Coutlée F, Ohlsson C, Cortes A, Marshall M, Mukhopadhyay P, Cremin K, Johnson LG, Garland S, Tabrizi SN, Wentzensen N, Sitas F, Little J, Cruickshank M, Frazer IH, Hildesheim A, Brown MA. Defining the genetic susceptibility to cervical neoplasia-A genome-wide association study. PLoS Genet 2017; 13:e1006866. [PMID: 28806749 PMCID: PMC5570502 DOI: 10.1371/journal.pgen.1006866] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 08/24/2017] [Accepted: 06/12/2017] [Indexed: 01/04/2023] Open
Abstract
A small percentage of women with cervical HPV infection progress to cervical neoplasia, and the risk factors determining progression are incompletely understood. We sought to define the genetic loci involved in cervical neoplasia and to assess its heritability using unbiased unrelated case/control statistical approaches. We demonstrated strong association of cervical neoplasia with risk and protective HLA haplotypes that are determined by the amino-acids carried at positions 13 and 71 in pocket 4 of HLA-DRB1 and position 156 in HLA-B. Furthermore, 36% (standard error 2.4%) of liability of HPV-associated cervical pre-cancer and cancer is determined by common genetic variants. Women in the highest 10% of genetic risk scores have approximately >7.1% risk, and those in the highest 5% have approximately >21.6% risk, of developing cervical neoplasia. Future studies should examine genetic risk prediction in assessing the risk of cervical neoplasia further, in combination with other screening methods. Around 1% of women with cervical human papillomavirus (HPV) infection progress to cervical cancer. Previous studies had indicated that a person’s genetic makeup could predispose to HPV-associated cervical cancer, and that some of the genes likely to be involved include the immune-related human leukocyte antigen (HLA) genes among the major histocompatibility complex (MHC). However, it has been difficult to determine which alleles might be associated with cervical pre-cancer or cancer due to the complex and high level of co-inheritance of MHC alleles. Here, we performed a genome-wide association study that assessed the correlation of genetic variants among those with cervical cancer and healthy controls. We show that host genetics is a major determinant of HPV-associated cervical cancer, with 36% of liability due to common genetic variants in the population, and identify both risk and protective HLA alleles. Our study was also sufficiently powerful to identify particular residue variants on a number of the immune-related proteins that provide risk or protection, providing further insight into the biological basis for cervical cancer development. Our findings could lay the foundation for screening for people at increased risk of developing cancer following HPV infection, and aid in the treatment and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Paul J. Leo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Margaret M. Madeleine
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sophia Wang
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Stephen M. Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Felicity Newell
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Ulrika Pettersson-Kymmer
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Lund, Sweden
| | - Goran Hallmans
- Nutritional Research, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Sven Tiews
- MHC Laboratory for Cytopathology, Dr.Steinberg GmbH, Soest, Germany
| | | | - Janet S. Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Felipe Castro
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mahboobeh Safaeian
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America
| | - Eduardo L. Franco
- Division of Cancer Epidemiology, McGill University, Montreal, QC, Canada
| | - François Coutlée
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Claes Ohlsson
- Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adrian Cortes
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Mhairi Marshall
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Pamela Mukhopadhyay
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Katie Cremin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Lisa G. Johnson
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Suzanne Garland
- Regional World Health Organisation Human Papillomavirus Laboratory Network, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville, Victoria, 3052, Australia
| | - Sepehr N. Tabrizi
- Department of Obstetrics and Gynaecology, University of Melbourne, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville, Victoria, 3052, Australia
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America
| | - Freddy Sitas
- Cancer Council NSW, Sydney, NSW, Australia
- Sydney School of Public Health, University of Sydney, Camperdown, NSW, Australia
- School of Public Health and Community Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Julian Little
- School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maggie Cruickshank
- Division of Medical Education, University of Aberdeen, Aberdeen, Scotland
| | - Ian H. Frazer
- Faculty of Medicine and Biomedical Sciences, University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America
| | - Matthew A. Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
- * E-mail:
| |
Collapse
|
177
|
Tsou LK, Huang YH, Song JS, Ke YY, Huang JK, Shia KS. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev 2017; 38:1188-1234. [PMID: 28768055 DOI: 10.1002/med.21464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
Abstract
CXCR4 antagonists (e.g., PlerixaforTM ) have been successfully validated as stem cell mobilizers for peripheral blood stem cell transplantation. Applications of the CXCR4 antagonists have heralded the era of cell-based therapy and opened a potential therapeutic horizon for many unmet medical needs such as kidney injury, ischemic stroke, cancer, and myocardial infarction. In this review, we first introduce the central role of CXCR4 in diverse cellular signaling pathways and discuss its involvement in several disease progressions. We then highlight the molecular design and optimization strategies for targeting CXCR4 from a large number of case studies, concluding that polyamines are the preferred CXCR4-binding ligands compared to other structural options, presumably by mimicking the highly positively charged natural ligand CXCL12. These results could be further justified with computer-aided docking into the CXCR4 crystal structure wherein both major and minor subpockets of the binding cavity are considered functionally important. Finally, from the clinical point of view, CXCR4 antagonists could mobilize hematopoietic stem/progenitor cells with long-term repopulating capacity to the peripheral blood, promising to replace surgically obtained bone marrow cells as a preferred source for stem cell transplantation.
Collapse
Affiliation(s)
- Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | | | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Jing-Kai Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| |
Collapse
|
178
|
Notarangelo LD, Fleisher TA. Targeted strategies directed at the molecular defect: Toward precision medicine for select primary immunodeficiency disorders. J Allergy Clin Immunol 2017; 139:715-723. [PMID: 28270363 DOI: 10.1016/j.jaci.2017.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Primary immunodeficiency disorders (PIDs) represent a range of genetically determined diseases that typically have increased susceptibility to infections and in many cases also have evidence of immune dysregulation that often presents as autoimmunity. Most recently, the concept of gain-of-function mutations associated with PIDs has become well recognized and adds a new dimension to the understanding of this group of disorders, moving beyond the more commonly seen loss-of-function mutations. The rapidly expanding genetic defects that have been identified in patients with previously uncharacterized PIDs has opened up the potential for targeted therapy directed at the specific disease-causing abnormality. This has been driven by linking PID-specific genetic defects to the associated unique abnormalities in cellular signaling pathways amenable to directed therapies. These include agents that either block overactive or enhance underresponsive cellular pathways. Selected primary immunodeficiencies were chosen, the genetic defects of which have been recently characterized and are amenable to targeted therapy, as a reflection of the power of precision medicine.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
179
|
Cao XX, Meng Q, Cai H, Mao YY, Duan MH, Zhu TN, Zhang W, Han B, Zhuang JL, Cai HC, Chen M, Feng J, Han X, Zhang Y, Yang C, Zhang L, Zhou DB, Li J. [Evaluation of clinical characteristics, MYD88(L265P) mutation, CXCR4(WHIM) mutation and prognosis in Waldenström macroglobulinemia: A single center retrospective study of 93 patients]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:494-498. [PMID: 28655092 PMCID: PMC7342974 DOI: 10.3760/cma.j.issn.0253-2727.2017.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 11/05/2022]
Abstract
Objective: To evaluate the clinical characteristics, MYD88(L265P) mutation, CXCR4(W)HIM mutation and prognosis in patients with Waldenström macroglobulinemia (WM). Methods: The clinical characteristics, International Prognostic Scoring System for symptomatic WM (WPSS) , and overall survival (OS) were retrospectively assayed in 93 patients with newly diagnosed WM at Peking Union Medical College Hospital during January 2000 to August 2016. The MYD88(L265P) mutation and CXCR4(W)HIM mutation were tested among 34 patients. Results: The median age of the 93 patients was 64 years (range, 33-85 years) with a male-to-female ratio of 2.44. According to WPSS, we included 16 (17.2%) low-risk, 44 (47.3%) intermediate-risk and 33 (35.5%) high-risk patients. Eight patients had secondary amyloidosis. With a median follow-up of 44 (1-201) months, the median OS was 84 months. Cox regression multifactor analysis showed WPSS risk group (HR=2.342, 95% CI 1.111-4.950, P=0.025) , whether patients had secondary amyloidosis (HR=5.538, 95% CI 1.958-15.662, P=0.001) and whether patients received new drugs (HR=3.392, 95% CI 1.531-7.513, P=0.003) were independent factors associated with OS. We have investigated the presence of the MYD88(L265P) and CXCR4(WHIM) mutation in 34 patients and found that MYD88(L265P) mutation was occurred in 32 patients (94.1%) and CXCR4(WHIM) mutation was occurred in 8 patients (23.5%). Seven of 8 patients who harbored CXCR4(WHIM)-mutated also exhibited the MYD88(L)265P mutation. Patients with MYD88(L265P)CXCR4(WHIM) vs MYD88(L265P)CXCR4(WT) presented with more severe anemia, lower platelet level, higher M protein level and more hyper-viscosity syndrome. Conclusion: WPSS risk group, whether patients had secondary amyloidosis or received new drugs are independent factors for OS in WM. MYD88(L265P) and CXCR4(WHIM) mutation, the most common somatic variants in WM, often occur together and impact the clinical presentation.
Collapse
Affiliation(s)
- X X Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Hirano Y, Aziz M, Wang P. Role of reverse transendothelial migration of neutrophils in inflammation. Biol Chem 2017; 397:497-506. [PMID: 26872312 DOI: 10.1515/hsz-2015-0309] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
Transmigration of neutrophils through vascular endothelial walls into the inflamed tissues is a critical defense mechanism of innate immune system against infection and injury caused by sepsis, trauma, ischemia-reperfusion, and other acute or chronic inflammatory diseases. However, their excessive infiltration and uncontrolled activation may lead to the destruction of normal tissue architecture and unrestrained inflammation. Transendothelial migration (TEM) in a luminal-to-abluminal direction is widely known as the final step of neutrophil migration cascade into the inflamed tissues. Recent studies have shown that neutrophils not necessarily move from the vascular lumen to the extravascular tissues in a one way direction; they also proceed in an opposite direction, known as reverse transendothelial migration (rTEM) to get back into the vascular lumen again. This novel paradigm of neutrophil round trip is currently on the spotlight due to its possible interaction with immune system. Current review highlighting the growing demand of this newly identified neutrophil migratory event will not only rewrite the disease pathophysiology, but also help scientists design novel therapeutic strategy leading to the remission of inflammatory diseases in which controlling exaggerated neutrophil infiltration is a major challenge.
Collapse
|
181
|
Using nanoBRET and CRISPR/Cas9 to monitor proximity to a genome-edited protein in real-time. Sci Rep 2017; 7:3187. [PMID: 28600500 PMCID: PMC5466623 DOI: 10.1038/s41598-017-03486-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) has been a vital tool for understanding G protein-coupled receptor (GPCR) function. It has been used to investigate GPCR-protein and/or -ligand interactions as well as GPCR oligomerisation. However the utility of BRET is limited by the requirement that the fusion proteins, and in particular the donor, need to be exogenously expressed. To address this, we have used CRISPR/Cas9-mediated homology-directed repair to generate protein-Nanoluciferase (Nluc) fusions under endogenous promotion, thus allowing investigation of proximity between the genome-edited protein and an exogenously expressed protein by BRET. Here we report BRET monitoring of GPCR-mediated β-arrestin2 recruitment and internalisation where the donor luciferase was under endogenous promotion, in live cells and in real time. We have investigated the utility of CRISPR/Cas9 genome editing to create genome-edited fusion proteins that can be used as BRET donors and propose that this strategy can be used to overcome the need for exogenous donor expression.
Collapse
|
182
|
Abstract
Severe congenital neutropenias are a heterogeneous group of rare haematological diseases characterized by impaired maturation of neutrophil granulocytes. Patients with severe congenital neutropenia are prone to recurrent, often life-threatening infections beginning in their first months of life. The most frequent pathogenic defects are autosomal dominant mutations in ELANE, which encodes neutrophil elastase, and autosomal recessive mutations in HAX1, whose product contributes to the activation of the granulocyte colony-stimulating factor (G-CSF) signalling pathway. The pathophysiological mechanisms of these conditions are the object of extensive research and are not fully understood. Furthermore, severe congenital neutropenias may predispose to myelodysplastic syndromes or acute myeloid leukaemia. Molecular events in the malignant progression include acquired mutations in CSF3R (encoding G-CSF receptor) and subsequently in other leukaemia-associated genes (such as RUNX1) in a majority of patients. Diagnosis is based on clinical manifestations, blood neutrophil count, bone marrow examination and genetic and immunological analyses. Daily subcutaneous G-CSF administration is the treatment of choice and leads to a substantial increase in blood neutrophil count, reduction of infections and drastic improvement of quality of life. Haematopoietic stem cell transplantation is the alternative treatment. Regular clinical assessments (including yearly bone marrow examinations) to monitor treatment course and detect chromosomal abnormalities (for example, monosomy 7 and trisomy 21) as well as somatic pre-leukaemic mutations are recommended.
Collapse
Affiliation(s)
- Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, University of Tübingen, Tübingen, Germany
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia Zeidler
- Department of Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Karl Welte
- University Children's Hospital, Department of General Pediatrics and Pediatric Hematology and Oncology, Hoppe-Seyler-Str. 1, Tübingen 72076, Germany
| |
Collapse
|
183
|
Freitas C, Wittner M, Nguyen J, Rondeau V, Biajoux V, Aknin ML, Gaudin F, Beaussant-Cohen S, Bertrand Y, Bellanné-Chantelot C, Donadieu J, Bachelerie F, Espéli M, Dalloul A, Louache F, Balabanian K. Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization. J Exp Med 2017; 214:2023-2040. [PMID: 28550161 PMCID: PMC5502422 DOI: 10.1084/jem.20160806] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/23/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022] Open
Abstract
The CXCL12/CXCR4 signaling exerts a dominant role in promoting hematopoietic stem and progenitor cell (HSPC) retention and quiescence in bone marrow. Gain-of-function CXCR4 mutations that affect homologous desensitization of the receptor have been reported in the WHIM Syndrome (WS), a rare immunodeficiency characterized by lymphopenia. The mechanisms underpinning this remain obscure. Using a mouse model with a naturally occurring WS-linked gain-of-function Cxcr4 mutation, we explored the possibility that the lymphopenia in WS arises from defects at the HSPC level. We reported that Cxcr4 desensitization is required for quiescence/cycling balance of murine short-term hematopoietic stem cells and their differentiation into multipotent and downstream lymphoid-biased progenitors. Alteration in Cxcr4 desensitization resulted in decrease of circulating HSPCs in five patients with WS. This was also evidenced in WS mice and mirrored by accumulation of HSPCs in the spleen, where we observed enhanced extramedullary hematopoiesis. Therefore, efficient Cxcr4 desensitization is critical for lymphoid differentiation of HSPCs, and its impairment is a key mechanism underpinning the lymphopenia observed in mice and likely in WS patients.
Collapse
Affiliation(s)
- Christelle Freitas
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Monika Wittner
- INSERM UMR_S1170, Institut Gustave Roussy, CNRS GDR 3697 MicroNiT, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Julie Nguyen
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Vincent Rondeau
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Vincent Biajoux
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Marie-Laure Aknin
- Institut Paris-Saclay d'Innovation Thérapeutique, UMS IPSIT-US31-UMS3679, Chatenay-Malabry, France
| | - Françoise Gaudin
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France.,Institut Paris-Saclay d'Innovation Thérapeutique, UMS IPSIT-US31-UMS3679, Chatenay-Malabry, France
| | - Sarah Beaussant-Cohen
- Service d'Hémato-Oncologie Pédiatrique, CHU Jean Minjoz, Université de Franche-Comté, Besançon, France
| | - Yves Bertrand
- Service d'Hémato-Oncologie Pédiatrique, Hospices Civils de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | | | - Jean Donadieu
- AP-HP, Registre Français des Neutropénies Chroniques Sévères, Centre de référence des Déficits Immunitaires Héréditaires, Service d'Hémato-Oncologie Pédiatrique, Hôpital Trousseau, Paris, France
| | - Françoise Bachelerie
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Marion Espéli
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Ali Dalloul
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Fawzia Louache
- INSERM UMR_S1170, Institut Gustave Roussy, CNRS GDR 3697 MicroNiT, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Karl Balabanian
- Inflammation Chemokines and Immunopathology, Institut National de la Santé et de la Recherche Medicale (INSERM), Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Clamart, France
| |
Collapse
|
184
|
Van Hout A, D'huys T, Oeyen M, Schols D, Van Loy T. Comparison of cell-based assays for the identification and evaluation of competitive CXCR4 inhibitors. PLoS One 2017; 12:e0176057. [PMID: 28410420 PMCID: PMC5391968 DOI: 10.1371/journal.pone.0176057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/04/2017] [Indexed: 11/17/2022] Open
Abstract
The chemokine receptor CXCR4 is activated by its unique chemokine ligand CXCL12 and regulates many physiological and developmental processes such as hematopoietic cell trafficking. CXCR4 is also one of the main co-receptors for human immunodeficiency virus (HIV) entry. Dysfunction of the CXCL12/CXCR4 axis contributes to several human pathologies, including cancer and inflammatory diseases. Consequently, inhibition of CXCR4 activation is recognized as an attractive target for therapeutic intervention. In this regard, numerous agents modifying CXCR4 activity have been evaluated in in vitro experimental studies and pre-clinical models. Here, we evaluated a CXCL12 competition binding assay for its potential as a valuable initial screen for functional and competitive CXCR4 inhibitors. In total, 11 structurally diverse compounds were included in a side-by-side comparison of in vitro CXCR4 cell-based assays, such as CXCL12 competition binding, CXCL12-induced calcium signaling, CXCR4 internalization, CXCL12-guided cell migration and CXCR4-specific HIV-1 replication experiments. Our data indicated that agents that inhibit CXCL12 binding, i.e. the anti-CXCR4 peptide analogs T22, T140 and TC14012 and the small molecule antagonists AMD3100, AMD3465, AMD11070 and IT1t showed inhibitory activity with consistent relative potencies in all further applied CXCR4-related assays. Accordingly, agents exerting no or very weak receptor binding (i.e., CTCE-9908, WZ811, Me6TREN and gambogic acid) showed no or very poor anti-CXCR4 inhibitory activity. Thus, CXCL12 competition binding studies were proven to be highly valuable as an initial screening assay and indicative for the pharmacological and functional profile of competitive CXCR4 antagonists, which will help the design of new potent CXCR4 inhibitors.
Collapse
Affiliation(s)
- Anneleen Van Hout
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Thomas D'huys
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Merel Oeyen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
185
|
Savage SA, Dufour C. Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. Semin Hematol 2017. [PMID: 28637614 DOI: 10.1053/j.seminhematol.2017.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The inherited marrow failure syndromes (IBMFS) are a heterogeneous group of diseases characterized by failure in the production of one or more blood lineage. The clinical manifestations of the IBMFS vary according to the type and number of blood cell lines involved, including different combinations of anemia, leukopenia, and thrombocytopenia. In some IBMFS, systemic non-hematologic manifestations, including congenital malformations, mucocutaneous abnormalities, developmental delay, and other medical complications, may be present. Fanconi anemia (FA), caused by germline pathogenic variants in the DNA repair genes comprising the FA/BRCA pathway is associated with congenital anomalies, bone marrow failure, and increased risk of myelodysplastic syndrome (MDS), acute myelogenous leukemia (AML), and solid tumors. Dyskeratosis congenita (DC) is a telomere biology disorder (TBD) caused by aberrations in key telomere biology genes. In addition to mucocutaneous manifestations, patients with DC are at increased risk of marrow failure, MDS, AML, pulmonary fibrosis, and other complications. Ribosomal biology defects are the primary causes of Diamond Blackfan anemia (DBA) and Shwachman Diamond syndrome (SDS). In addition to pure red blood cell aplasia, DBA is associated with elevated risk of solid tumors, AML, and MDS. Patients with SDS have pancreatic insufficiency, neutropenia, as well as MDS and AML risks. Patients with severe congenital neutropenia (SCN), caused by pathogenic variants in genes essential in myeloid development, have profound neutropenia and high risk of MDS and AML. Herein we review the genetic causes, clinical features, diagnostic modalities, predisposition to malignancies with focus on leukemogenic markers whenever available, and approaches to treatments of the classical IBMFS: FA, DC, SDS, DBA, and SCN.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Carlo Dufour
- Haematology Unit, Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
186
|
Aghamohammadi A, Abolhassani H, Puchalka J, Greif-Kohistani N, Zoghi S, Klein C, Rezaei N. Preference of Genetic Diagnosis of CXCR4 Mutation Compared with Clinical Diagnosis of WHIM Syndrome. J Clin Immunol 2017; 37:282-286. [DOI: 10.1007/s10875-017-0387-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/20/2017] [Indexed: 01/13/2023]
|
187
|
Lim VY, Zehentmeier S, Fistonich C, Pereira JP. A Chemoattractant-Guided Walk Through Lymphopoiesis: From Hematopoietic Stem Cells to Mature B Lymphocytes. Adv Immunol 2017; 134:47-88. [PMID: 28413023 DOI: 10.1016/bs.ai.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes develop from hematopoietic stem cells (HSCs) in specialized bone marrow niches composed of rare mesenchymal lineage stem/progenitor cells (MSPCs) and sinusoidal endothelial cells. These niches are defined by function and location: MSPCs are mostly perisinusoidal cells that together with a small subset of sinusoidal endothelial cells express stem cell factor, interleukin-7 (IL-7), IL-15, and the highest amounts of CXCL12 in bone marrow. Though rare, MSPCs are morphologically heterogeneous, highly reticular, and form a vast cellular network in the bone marrow parenchyma capable of interacting with large numbers of hematopoietic cells. HSCs, downstream multipotent progenitor cells, and common lymphoid progenitor cells utilize CXCR4 to fine-tune access to critical short-range growth factors provided by MSPCs for their long-term maintenance and/or multilineage differentiation. In later stages, developing B lymphocytes use CXCR4 to navigate the bone marrow parenchyma, and predominantly cannabinoid receptor-2 for positioning within bone marrow sinusoids, prior to being released into peripheral blood circulation. In the final stages of differentiation, transitional B cells migrate to the spleen where they preferentially undergo further rounds of differentiation until selection into the mature B cell pool occurs. This bottleneck purges up to 97% of all developing B cells in a peripheral selection process that is heavily controlled not only by the intensity of BCR signaling and access to BAFF but also by the proper functioning of the B cell motility machinery.
Collapse
Affiliation(s)
- Vivian Y Lim
- Yale University School of Medicine, New Haven, CT, United States
| | | | - Chris Fistonich
- Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
188
|
Effect of human cytomegalovirus (HCMV) US27 on CXCR4 receptor internalization measured by fluorogen-activating protein (FAP) biosensors. PLoS One 2017; 12:e0172042. [PMID: 28207860 PMCID: PMC5313195 DOI: 10.1371/journal.pone.0172042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen and a member of the Herpesviridae family. HCMV has a large genome that encodes many genes that are non-essential for virus replication but instead play roles in manipulation of the host immune environment. One of these is the US27 gene, which encodes a protein with homology to the chemokine receptor family of G protein-coupled receptors (GPCRs). The US27 protein has no known chemokine ligands but can modulate the signaling activity of host receptor CXCR4. We investigated the mechanism for enhanced CXCR4 signaling in the presence of US27 using a novel biosensor system comprised of fluorogen activating proteins (FAPs). FAP-tagged CXCR4 and US27 were used to explore receptor internalization and recovery dynamics, and the results demonstrate that significantly more CXCR4 internalization was observed in the presence of US27 compared to CXCR4 alone upon stimulation with CXCL12. While ligand-induced endocytosis rates were higher, steady state internalization of CXCR4 was not affected by US27. Additionally, US27 underwent rapid endocytosis at a rate that was independent of either CXCR4 expression or CXCL12 stimulation. These results demonstrate that one mechanism by which US27 can enhance CXCR4 signaling is to alter receptor internalization dynamics, which could ultimately have the effect of promoting virus dissemination by increasing trafficking of HCMV-infected cells to tissues where CXCL12 is highly expressed.
Collapse
|
189
|
Hunter ZR, Yang G, Xu L, Liu X, Castillo JJ, Treon SP. Genomics, Signaling, and Treatment of Waldenström Macroglobulinemia. J Clin Oncol 2017; 35:994-1001. [PMID: 28294689 DOI: 10.1200/jco.2016.71.0814] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Next-generation sequencing has revealed recurring somatic mutations in Waldenström macroglobulinemia (WM). Commonly recurring mutations include MYD88 (95% to 97%), CXCR4 (30% to 40%), ARID1A (17%), and CD79B (8% to 15%). Diagnostic discrimination of WM from overlapping B-cell malignancies is aided by MYD88 mutation status. Transcription is affected by MYD88 and CXCR4 mutations and includes overexpression of genes involved in VDJ recombination, CXCR4 pathway signaling, and BCL2 family members. Among patients with MYD88 mutations, those with CXCR4 mutations show transcriptional silencing of tumor suppressors associated with acquisition of mutated MYD88. Deletions involving chromosome 6q are common and include genes that modulate nuclear factor-κB, BCL2, BTK, apoptosis, differentiation, and ARID1B. Non-chromosome 6q genes are also frequently deleted and include LYN, a regulator of B-cell receptor signaling. MYD88 and CXCR4 mutations affect WM disease presentation and treatment outcome. Patients with wild-type MYD88 show lower bone marrow disease burden and serum immunoglobulin M levels but show an increased risk of death. Patients with CXCR4 mutations have higher bone marrow disease burden, and those with nonsense CXCR4 mutations have higher serum immunoglobulin M levels and incidence of symptomatic hyperviscosity. Mutated MYD88 triggers BTK, IRAK1/IRAK4, and HCK growth and survival signaling, whereas CXCR4 mutations promote AKT and extracellular regulated kinase-1/2 signaling and drug resistance in the presence of its ligand CXCL12. Ibrutinib is active in patients with WM and is affected by MYD88 and CXCR4 mutation status. Patients with mutated MYD88 and wild-type CXCR4 mutation status exhibit best responses to ibrutinib. Lower response rates and delayed responses to ibrutinib are associated with mutated CXCR4 in patients with WM. MYD88 and CXCR4 mutation status may be helpful in treatment selection for symptomatic patients. Novel therapeutic approaches under investigation include therapeutics targeting MYD88, CXCR4, and BCL2 signaling.
Collapse
Affiliation(s)
- Zachary R Hunter
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Guang Yang
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Lian Xu
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Xia Liu
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Jorge J Castillo
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Steven P Treon
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| |
Collapse
|
190
|
Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review. J Immunol Res 2017; 2017:8913860. [PMID: 28280748 PMCID: PMC5322437 DOI: 10.1155/2017/8913860] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022] Open
Abstract
The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV) infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.
Collapse
|
191
|
Campa CC, Germena G, Ciraolo E, Copperi F, Sapienza A, Franco I, Ghigo A, Camporeale A, Di Savino A, Martini M, Perino A, Megens RTA, Kurz ARM, Scheiermann C, Sperandio M, Gamba A, Hirsch E. Rac signal adaptation controls neutrophil mobilization from the bone marrow. Sci Signal 2016; 9:ra124. [PMID: 27999173 DOI: 10.1126/scisignal.aah5882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mobilization of neutrophils from the bone marrow determines neutrophil blood counts and thus is medically important. Balanced neutrophil mobilization from the bone marrow depends on the retention-promoting chemokine CXCL12 and its receptor CXCR4 and the egression-promoting chemokine CXCL2 and its receptor CXCR2. Both pathways activate the small guanosine triphosphatase Rac, leaving the role of this signaling event in neutrophil retention and egression ambiguous. On the assumption that active Rac determines persistent directional cell migration, we generated a mathematical model to link chemokine-mediated Rac modulation to neutrophil egression time. Our computer simulation indicated that, in the bone marrow, where the retention signal predominated, egression time strictly depended on the time it took Rac to return to its basal activity (namely, adaptation). This prediction was validated in mice lacking the Rac inhibitor ArhGAP15. Neutrophils in these mice showed prolonged Rac adaptation and cell-autonomous retention in the bone marrow. Our model thus demonstrates that mobilization in the presence of two spatially defined opposing chemotactic cues strictly depends on inhibitors shaping the time course of signal adaptation. Furthermore, our findings might help to find new modes of intervention to treat conditions characterized by excessively low or high circulating neutrophils.
Collapse
Affiliation(s)
- Carlo Cosimo Campa
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Giulia Germena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Elisa Ciraolo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Francesca Copperi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Anna Sapienza
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Irene Franco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Annalisa Camporeale
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Augusta Di Savino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Alessia Perino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9, 80336 Munich, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| | - Angela R M Kurz
- Biomedical Center, Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Christoph Scheiermann
- Biomedical Center, Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Markus Sperandio
- Biomedical Center, Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Andrea Gamba
- Department of Applied Science and Technology, Institute of Condensed Matter Physics and Complex Systems, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy. .,Human Genetics Foundation, Via Nizza 52, 10126 Torino, Italy.,Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
192
|
The CXCL12/CXCR4 Signaling Pathway: A New Susceptibility Factor in Human Papillomavirus Pathogenesis. PLoS Pathog 2016; 12:e1006039. [PMID: 27918748 PMCID: PMC5138052 DOI: 10.1371/journal.ppat.1006039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022] Open
Abstract
The productive human papillomavirus (HPV) life cycle is tightly linked to the differentiation and cycling of keratinocytes. Deregulation of these processes and stimulation of cell proliferation by the action of viral oncoproteins and host cell factors underlies HPV-mediated carcinogenesis. Severe HPV infections characterize the wart, hypogammaglobulinemia, infection, and myelokathexis (WHIM) immunodeficiency syndrome, which is caused by gain-of-function mutations in the CXCR4 receptor for the CXCL12 chemokine, one of which is CXCR41013. We investigated whether CXCR41013 interferes in the HPV18 life cycle in epithelial organotypic cultures. Expression of CXCR41013 promoted stabilization of HPV oncoproteins, thus disturbing cell cycle progression and proliferation at the expense of the ordered expression of the viral genes required for virus production. Conversely, blocking CXCR41013 function restored virus production and limited HPV-induced carcinogenesis. Thus, CXCR4 and its potential activation by genetic alterations in the course of the carcinogenic process can be considered as an important host factor for HPV carcinogenesis. Human papillomaviruses (HPV) are epitheliotropic tumor viruses causing mostly benign warts but that have developed strategies to establish persistent infections. Although host immune responses clear most infections, persistence of some HPV types causes ~5% of human cancers and severe pathogenesis in immunosuppressed individuals. How early events in HPV infection, determined by the interaction between viral and host proteins, might lead to viral persistence and pathogenesis is unknown. Here, we thought to investigate this issue by providing mechanistic insights into the selective susceptibility to HPV pathogenesis displayed by patients who are immunosuppressed as a consequence of mutations in the CXCR4 gene encoding for the receptor of the CXCL12 chemokine (WHIM syndrome). We previously unraveled the existence of a general interplay between the CXCL12/CXCR4 axis and HPV, which is hijacked toward cell transformation upon expression of the CXCR4 mutant. Here, using three dimensional epithelial cell cultures to analyze the HPV life cycle, we found that the CXCR4 mutant promotes cell hyperproliferation and stabilization of viral oncoprotein expression at the expense of virus production. Our results, which identify CXCR4 as an important gatekeeper of keratinocyte proliferation and as a new susceptibility factor in HPV pathogenesis, may be translated into anti-viral and anti-cancer strategies.
Collapse
|
193
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
194
|
Burnworth B, Wang Z, Singleton TP, Bennington A, Fritschle W, Bennington R, Brodersen LE, Wells DA, Loken MR, Zehentner BK. Clone-specific MYD88 L265P and CXCR4 mutation status can provide clinical utility in suspected Waldenström macroglobulinemia/lymphoplasmacytic lymphoma. Leuk Res 2016; 51:41-48. [PMID: 27890075 DOI: 10.1016/j.leukres.2016.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
MYD88 L265P, a diagnostic marker for lymphoplasmacytic lymphoma (LPL)/Waldenström macroglobulinemia (WM) can also be detected in other hematopoietic malignancies. We demonstrate a novel approach to increase the specificity of this marker for WM/LPL diagnosis by combining flow cytometric cell sorting with molecular analysis. Clonal B-lymphocyte and co-occurring clonal plasma cell populations of low-grade B-cell lymphomas were sorted by flow cytometry and analyzed for immunoglobulin gene rearrangements (PCR), and for MYD88 and CXCR4 mutations. Identical clonal origin was confirmed by PCR for 21 LPL/WM cases and MYD88 L265P was detected in both B-cell and plasma cell fractions. 9/20 other B-cell lymphomas with identical light chain restriction on B-cells and plasma cells were genotypically identical by PCR and MYD88 L265P was detected in both cell fractions in 7/9 whereas in 11/20 specimens with different clonal origin, MYD88 L265P was absent (5/11), or only found in B-lymphocytes (4/11), or plasma cells (2/11). CXCR4 mutations were detected in 17/39 cases, but missed in 63% of these without cell sorting. Confirming MYD88L265P in both B-cells and plasma cell fractions can provide a novel and powerful discriminator to distinguish LPL/WM from phenotypically similar disorders. Furthermore, this approach significantly increases CXCR4 detection sensitivity.
Collapse
Affiliation(s)
- Bettina Burnworth
- Hematologics Inc, 3161 Elliott Avenue, Suite 200, Seattle, WA, 98121, USA
| | - Zhixing Wang
- Hematologics Inc, 3161 Elliott Avenue, Suite 200, Seattle, WA, 98121, USA
| | | | - Angela Bennington
- Hematologics Inc, 3161 Elliott Avenue, Suite 200, Seattle, WA, 98121, USA
| | - Wayne Fritschle
- Hematologics Inc, 3161 Elliott Avenue, Suite 200, Seattle, WA, 98121, USA
| | - Richard Bennington
- Hematologics Inc, 3161 Elliott Avenue, Suite 200, Seattle, WA, 98121, USA
| | | | - Denise A Wells
- Hematologics Inc, 3161 Elliott Avenue, Suite 200, Seattle, WA, 98121, USA
| | - Michael R Loken
- Hematologics Inc, 3161 Elliott Avenue, Suite 200, Seattle, WA, 98121, USA
| | | |
Collapse
|
195
|
Chong SZ, Evrard M, Devi S, Chen J, Lim JY, See P, Zhang Y, Adrover JM, Lee B, Tan L, Li JLY, Liong KH, Phua C, Balachander A, Boey A, Liebl D, Tan SM, Chan JKY, Balabanian K, Harris JE, Bianchini M, Weber C, Duchene J, Lum J, Poidinger M, Chen Q, Rénia L, Wang CI, Larbi A, Randolph GJ, Weninger W, Looney MR, Krummel MF, Biswas SK, Ginhoux F, Hidalgo A, Bachelerie F, Ng LG. CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. J Exp Med 2016; 213:2293-2314. [PMID: 27811056 PMCID: PMC5068243 DOI: 10.1084/jem.20160800] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 11/04/2022] Open
Abstract
It is well established that Ly6Chi monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6Chi monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6Chi monocytes consist of two distinct subpopulations (CXCR4hi and CXCR4lo subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4hi subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4lo monocytes. We propose that the CXCR4hi subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues.
Collapse
Affiliation(s)
- Shu Zhen Chong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore.,School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Sapna Devi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Jyue Yuan Lim
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Peter See
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Yiru Zhang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Biopolis, 138673 Singapore
| | - José M Adrover
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Jackson L Y Li
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Ka Hang Liong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Cindy Phua
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Adrian Boey
- Institute of Medical Biology (IMB)-Institute of Molecular and Cell Biology (IMCB) Electron Microscopy Suite, A*STAR (Agency for Science, Technology and Research), Biopolis, 138671 Singapore
| | - David Liebl
- Institute of Medical Biology (IMB)-Institute of Molecular and Cell Biology (IMCB) Electron Microscopy Suite, A*STAR (Agency for Science, Technology and Research), Biopolis, 138671 Singapore
| | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jerry K Y Chan
- Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899 Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 169857 Singapore
| | - Karl Balabanian
- INSERM UMR-S996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, 92140 Clamart, France
| | - John E Harris
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Johan Duchene
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Josephine Lum
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Biopolis, 138673 Singapore
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Cheng-I Wang
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | | | - Wolfgang Weninger
- Centenary Institute for Cancer Medicine and Cell Biology, Newton, New South Wales 2042, Australia
| | - Mark R Looney
- Department of Medicine and Pathology, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Matthew F Krummel
- Department of Medicine and Pathology, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Françoise Bachelerie
- INSERM UMR-S996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, 92140 Clamart, France
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore .,School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
196
|
Gauthier-Vasserot A, Thauvin-Robinet C, Bruel AL, Duffourd Y, St-Onge J, Jouan T, Rivière JB, Heron D, Donadieu J, Bellanné-Chantelot C, Briandet C, Huet F, Kuentz P, Lehalle D, Duplomb-Jego L, Gautier E, Maystadt I, Pinson L, Amram D, El Chehadeh S, Melki J, Julia S, Faivre L, Thevenon J. Application of whole-exome sequencing to unravel the molecular basis of undiagnosed syndromic congenital neutropenia with intellectual disability. Am J Med Genet A 2016; 173:62-71. [DOI: 10.1002/ajmg.a.37969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Affiliation(s)
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD); Centre Hospitalier Universitaire Dijon; Dijon France
| | - Ange-Line Bruel
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | - Yannis Duffourd
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | - Judith St-Onge
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | - Thibaud Jouan
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | | | - Delphine Heron
- Département de Génétique et Centre de Référence « Déficiences intellectuelles de causes rares »; AP-HP; Groupe Hospitalier Pitié-Salpêtrière; Paris France
| | - Jean Donadieu
- Service d'Hémato-Oncologie Pédiatrique; Registre des neutropénies congénitales; AP-HP Hôpital Trousseau; Paris France
| | | | | | - Frédéric Huet
- Service de Pédiatrie 1; Hôpital d'Enfants; CHU Dijon France
| | - Paul Kuentz
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Daphné Lehalle
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Laurence Duplomb-Jego
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Elodie Gautier
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Isabelle Maystadt
- Centre de Génétique Humaine; Institut de Pathologie et Génétique (I.P.G); Gosselies (Charleroi) Belgium
| | - Lucile Pinson
- Département de Génétique Médicale; CHRU Montpellier; Faculté de Médecine de Montpellier-Nimes; Université Montpellier 1; Inserm; Montpellier France
| | - Daniel Amram
- Unité de Génétique Clinique; CH Intercommunal de Créteil; Créteil France
| | - Salima El Chehadeh
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Judith Melki
- Unité Mixte de Recherche-1169; INSERM; France; University Paris-Sud, le Kremlin-Bicêtre; France
| | - Sophia Julia
- Service de Génétique Médicale; CHU Toulouse; Toulouse France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD); Centre Hospitalier Universitaire Dijon; Dijon France
| | - Julien Thevenon
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD); Centre Hospitalier Universitaire Dijon; Dijon France
| |
Collapse
|
197
|
Pals ST, Kersten MJ, Spaargaren M. Targeting cell adhesion and homing as strategy to cure Waldenström's macroglobulinemia. Best Pract Res Clin Haematol 2016; 29:161-168. [PMID: 27825462 DOI: 10.1016/j.beha.2016.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/19/2022]
Abstract
Most B-cell malignancies strictly depend on signals from the microenvironment for their survival and proliferation. This niche-dependency can be regarded as their Achilles' heel and provides an excellent target for therapy. Waldenström's macroglobulinemia (WM) is characterized by the accumulation of neoplastic post-germinal center B cells within the bone marrow (BM). Interestingly, one third of the patients carry activating mutations in the chemokine receptor CXCR4, a key mediator of B cell and plasma cell homing to the BM. We have previously shown that signals from the B-cell antigen receptor (BCR) and from chemokine receptors play a central role in controlling the interaction of normal and malignant B cells with their microenvironment by regulating the activity of integrin adhesion molecules. Apart from controlling the homing and retention of lymphocytes within their growth- and survival niches, integrins also emit signals that directly promote cell growth and survival. By analogy to the successful treatment with BTK inhibitors, we propose that targeting pathways controlling integrin-mediated retention of the WM cells in the BM, thereby inducing 'homelessness' (anoikis) by mobilization of the malignant cells from their protective niches, may be an efficient treatment strategy for WM.
Collapse
Affiliation(s)
- Steven T Pals
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam - LYMMCARE, The Netherlands.
| | - Marie José Kersten
- Department of Hematology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam - LYMMCARE, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam - LYMMCARE, The Netherlands
| |
Collapse
|
198
|
Biajoux V, Natt J, Freitas C, Alouche N, Sacquin A, Hemon P, Gaudin F, Fazilleau N, Espéli M, Balabanian K. Efficient Plasma Cell Differentiation and Trafficking Require Cxcr4 Desensitization. Cell Rep 2016; 17:193-205. [DOI: 10.1016/j.celrep.2016.08.068] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/07/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
|
199
|
Rahimi M, Vinciguerra M, Daghighi M, Özcan B, Akbarkhanzadeh V, Sheedfar F, Amini M, Mazza T, Pazienza V, Motazacker MM, Mahmoudi M, De Rooij FWM, Sijbrands E, Peppelenbosch MP, Rezaee F. Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. Oncotarget 2016; 6:29818-32. [PMID: 26337083 PMCID: PMC4745765 DOI: 10.18632/oncotarget.4904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022] Open
Abstract
Despite numerous developed drugs based on glucose metabolism interventions for treatment of age-related diseases such as diabetes neuropathies (DNs), DNs are still increasing in patients with type 1 or type 2 diabetes (T1D, T2D). We aimed to identify novel candidates in adipose tissue (AT) and pancreas with T2D for targeting to develop new drugs for DNs therapy. AT-T2D displayed 15 (e.g. SYT4 up-regulated and VGF down-regulated) and pancreas-T2D showed 10 (e.g. BAG3 up-regulated, VAV3 and APOA1 down-regulated) highly differentially expressed genes with neuronal functions as compared to control tissues. ELISA was blindly performed to measure proteins of 5 most differentially expressed genes in 41 human subjects. SYT4 protein was upregulated, VAV3 and APOA1 were down-regulated, and BAG3 remained unchanged in 1- Obese and 2- Obese-T2D without insulin, VGF protein was higher in these two groups as well as in group 3- Obese-T2D receiving insulin than 4-lean subjects. Interaction networks analysis of these 5 genes showed several metabolic pathways (e.g. lipid metabolism and insulin signaling). Pancreas is a novel site for APOA1 synthesis. VGF is synthesized in AT and could be considered as good diagnostic, and even prognostic, marker for age-induced diseases obesity and T2D. This study provides new targets for rational drugs development for the therapy of age-related DNs.
Collapse
Affiliation(s)
- Mehran Rahimi
- Faculty of Medical Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manlio Vinciguerra
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.,Gastroenterology Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mojtaba Daghighi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Behiye Özcan
- Department of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Fareeba Sheedfar
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marzyeh Amini
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mahdi M Motazacker
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Morteza Mahmoudi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States.,Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Felix W M De Rooij
- Department of Cardiovascular Genetics, Metabolism, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric Sijbrands
- Department of Cardiovascular Genetics, Metabolism, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, University of Rotterdam, Rotterdam, The Netherlands
| | - Farhad Rezaee
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, University of Rotterdam, Rotterdam, The Netherlands.,Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
200
|
Álvarez I, Pérez-Pardal L, Traoré A, Fernández I, Goyache F. Lack of specific alleles for the bovine chemokine (C-X-C) receptor type 4 (CXCR4) gene in West African cattle questions its role as a candidate for trypanotolerance. INFECTION GENETICS AND EVOLUTION 2016; 42:30-3. [DOI: 10.1016/j.meegid.2016.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/06/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
|