151
|
Functional significance of rare neuroligin 1 variants found in autism. PLoS Genet 2017; 13:e1006940. [PMID: 28841651 PMCID: PMC5571902 DOI: 10.1371/journal.pgen.1006940] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations contribute to the etiology of autism spectrum disorder (ASD), a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3), a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1) is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L) missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders. Autism spectrum disorder (ASD) is a childhood disorder manifested by abnormal social behavior, interests, and activities. The genetic contribution to ASD is higher than in other psychiatric disorders such as schizophrenia and mood disorders. Here, we found a novel mutation in NLGN1, a gene encoding a synaptic protein, in patients with ASD. We also developed a mouse model with this mutation, and showed that the model mouse exhibits abnormal social behavior. These results suggest that a rare variant in NLGN1 is functionally significant and support that the NLGN synaptic pathway may be important in the etiology of neuropsychiatric disorders. This humanized mouse model recapitulates some of the symptoms of patients with ASD and will serve as a valuable tool for therapeutic development.
Collapse
|
152
|
Need AC, Goldstein DB. Neuropsychiatric genomics in precision medicine: diagnostics, gene discovery, and translation. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757059 PMCID: PMC5067142 DOI: 10.31887/dcns.2016.18.3/aneed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Only a few years after its development, next-generation sequencing is rapidly becoming an essential part of clinical care for patients with serious neurological conditions, especially in the diagnosis of early-onset and severe presentations. Beyond this diagnostic role, there has been an explosion in definitive gene discovery in a range of neuropsychiatric diseases. This is providing new pointers to underlying disease biology and is beginning to outline a new framework for genetic stratification of neuropsychiatric disease, with clear relevance to both individual treatment optimization and clinical trial design. Here, we outline these developments and chart the expected impact on the treatment of neurological, neurodevelopmental, and psychiatric disease.
Collapse
Affiliation(s)
- Anna C Need
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, W12 ONN, UK
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
153
|
Autistic Phenotype of Permutation and Intermediate Alleles of FMR1 Gene. IRANIAN JOURNAL OF PEDIATRICS 2017. [DOI: 10.5812/ijp.9445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
154
|
Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci Rep 2017; 7:5679. [PMID: 28720891 PMCID: PMC5515956 DOI: 10.1038/s41598-017-06033-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with genetic and clinical heterogeneity. The interplay of de novo and inherited rare variants has been suspected in the development of ASD. Here, we applied whole exome sequencing (WES) on 19 trios from singleton Saudi families with ASD. We developed an analysis pipeline that allows capturing both de novo and inherited rare variants predicted to be deleterious. A total of 47 unique rare variants were detected in 17 trios including 38 which are newly discovered. The majority were either autosomal recessive or X-linked. Our pipeline uncovered variants in 15 ASD-candidate genes, including 5 (GLT8D1, HTATSF1, OR6C65, ITIH6 and DDX26B) that have not been reported in any human condition. The remaining variants occurred in genes formerly associated with ASD or other neurological disorders. Examples include SUMF1, KDM5B and MXRA5 (Known-ASD genes), PRODH2 and KCTD21 (implicated in schizophrenia), as well as USP9X and SMS (implicated in intellectual disability). Consistent with expectation and previous studies, most of the genes implicated herein are enriched for biological processes pertaining to neuronal function. Our findings underscore the private and heterogeneous nature of the genetic architecture of ASD even in a population with high consanguinity rates.
Collapse
|
155
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
156
|
Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism 2017; 8:21. [PMID: 28540026 PMCID: PMC5441062 DOI: 10.1186/s13229-017-0137-9] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 04/05/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Over the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15). METHODS We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls). RESULTS We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10-6). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23. CONCLUSIONS This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.
Collapse
|
157
|
Lammert DB, Middleton FA, Pan J, Olson EC, Howell BW. The de novo autism spectrum disorder RELN R2290C mutation reduces Reelin secretion and increases protein disulfide isomerase expression. J Neurochem 2017; 142:89-102. [PMID: 28419454 DOI: 10.1111/jnc.14045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
Despite the recent identification of over 40 missense heterozygous Reelin gene (RELN) mutations in autism spectrum disorder (ASD), none of these has been functionally characterized. Reelin is an integral signaling ligand for proper brain development and post-natal synapse function - properties likely disrupted in ASD patients. We find that the R2290C mutation, which arose de novo in an affected ASD proband, and other analogous mutations in arginine-amino acid-arginine domains reduce protein secretion. Closer analysis of RELN R2290C heterozygous neurospheres reveals up-regulation of Protein Disulfide Isomerase A1, best known as an endoplasmic reticulum-chaperone protein, which has been linked to neuronal pathology. This effect is recapitulated in a heterozygous RELN mouse mutant that is characterized by defective Reelin secretion. These findings suggest that both a deficiency in Reelin signaling and pathologic impairment of Reelin secretion may contribute to ASD risk.
Collapse
Affiliation(s)
- Dawn B Lammert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Frank A Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jen Pan
- The Broad Institute, Stanley Center Neurobiology, Cambridge, Massachusetts, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Brian W Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
158
|
Woodbury-Smith M, Nicolson R, Zarrei M, Yuen RKC, Walker S, Howe J, Uddin M, Hoang N, Buchanan JA, Chrysler C, Thompson A, Szatmari P, Scherer SW. Variable phenotype expression in a family segregating microdeletions of the NRXN1 and MBD5 autism spectrum disorder susceptibility genes. NPJ Genom Med 2017. [PMID: 28649445 PMCID: PMC5482711 DOI: 10.1038/s41525-017-0020-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorder is a developmental condition of early childhood onset, which impacts socio-communicative functioning and is principally genetic in etiology. Currently, more than 50 genomic loci are deemed to be associated with susceptibility to autism spectrum disorder, showing de novo and inherited unbalanced copy number variants and smaller insertions and deletions (indels), more complex structural variants, as well as single-nucleotide variants deemed of pathological significance. However, the phenotypes associated with many of these genes are variable, and penetrance is largely unelaborated in clinical descriptions. This case report describes a family harboring two copy number variant microdeletions, which affect regions of NRXN1 and MBD5—each well-established in association with risk of autism spectrum disorder and other neurodevelopmental disorders. Although each copy number variant would likely be categorized as pathologically significant, both genomic alterations are transmitted in this family from an unaffected father to the proband, and shared by an unaffected sibling. This family case illustrates the importance of recognizing that phenotype can vary among exon overlapping variants of the same gene, and the need to evaluate penetrance of such variants in order to properly inform on risks.
Collapse
Affiliation(s)
- Marc Woodbury-Smith
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Mehdi Zarrei
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ryan K C Yuen
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Susan Walker
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer Howe
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohammed Uddin
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ny Hoang
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON, Canada
| | - Janet A Buchanan
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christina Chrysler
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Ann Thompson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Peter Szatmari
- Centre for Addiction and Mental Health, The Hospital for Sick Children & University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
159
|
Robert C, Pasquier L, Cohen D, Fradin M, Canitano R, Damaj L, Odent S, Tordjman S. Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy. Int J Mol Sci 2017; 18:E618. [PMID: 28287497 PMCID: PMC5372633 DOI: 10.3390/ijms18030618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022] Open
Abstract
Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling.
Collapse
Affiliation(s)
- Cyrille Robert
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - David Cohen
- Hospital-University Department of Child and Adolescent Psychiatry, Pitié-Salpétrière Hospital, Paris 6 University, 75013 Paris, France.
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, 53100 Siena, Italy.
| | - Léna Damaj
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Laboratory of Psychology of Perception, University Paris Descartes, 75270 Paris, France.
| |
Collapse
|
160
|
|
161
|
C Yuen RK, Merico D, Bookman M, L Howe J, Thiruvahindrapuram B, Patel RV, Whitney J, Deflaux N, Bingham J, Wang Z, Pellecchia G, Buchanan JA, Walker S, Marshall CR, Uddin M, Zarrei M, Deneault E, D'Abate L, Chan AJS, Koyanagi S, Paton T, Pereira SL, Hoang N, Engchuan W, Higginbotham EJ, Ho K, Lamoureux S, Li W, MacDonald JR, Nalpathamkalam T, Sung WWL, Tsoi FJ, Wei J, Xu L, Tasse AM, Kirby E, Van Etten W, Twigger S, Roberts W, Drmic I, Jilderda S, Modi BM, Kellam B, Szego M, Cytrynbaum C, Weksberg R, Zwaigenbaum L, Woodbury-Smith M, Brian J, Senman L, Iaboni A, Doyle-Thomas K, Thompson A, Chrysler C, Leef J, Savion-Lemieux T, Smith IM, Liu X, Nicolson R, Seifer V, Fedele A, Cook EH, Dager S, Estes A, Gallagher L, Malow BA, Parr JR, Spence SJ, Vorstman J, Frey BJ, Robinson JT, Strug LJ, Fernandez BA, Elsabbagh M, Carter MT, Hallmayer J, Knoppers BM, Anagnostou E, Szatmari P, Ring RH, Glazer D, Pletcher MT, Scherer SW. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci 2017; 20:602-611. [PMID: 28263302 DOI: 10.1038/nn.4524] [Citation(s) in RCA: 544] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022]
Abstract
We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible on a cloud platform and through a controlled-access internet portal. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertions and deletions or copy number variations per ASD subject. We identified 18 new candidate ASD-risk genes and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (P = 6 × 10-4). In 294 of 2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.
Collapse
Affiliation(s)
- Ryan K C Yuen
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Deep Genomics Inc., Toronto, Canada
| | - Matt Bookman
- Google, Mountain View, California, USA.,Verily Life Sciences, South San Francisco, California, USA
| | - Jennifer L Howe
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Rohan V Patel
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Joe Whitney
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Nicole Deflaux
- Google, Mountain View, California, USA.,Verily Life Sciences, South San Francisco, California, USA
| | - Jonathan Bingham
- Google, Mountain View, California, USA.,Verily Life Sciences, South San Francisco, California, USA
| | - Zhuozhi Wang
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Janet A Buchanan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Susan Walker
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Mohammed Uddin
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Eric Deneault
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lia D'Abate
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ada J S Chan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Stephanie Koyanagi
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Tara Paton
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Ny Hoang
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Karen Ho
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Weili Li
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Wilson W L Sung
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Fiona J Tsoi
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - John Wei
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lizhen Xu
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anne-Marie Tasse
- Public Population Project in Genomics and Society, McGill University, Montreal, Canada
| | - Emily Kirby
- Public Population Project in Genomics and Society, McGill University, Montreal, Canada
| | | | | | - Wendy Roberts
- Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
| | - Irene Drmic
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
| | - Sanne Jilderda
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
| | - Bonnie MacKinnon Modi
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
| | - Barbara Kellam
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Michael Szego
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Dalla Lana School of Public Health and the Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl Cytrynbaum
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Dalla Lana School of Public Health and the Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
| | | | - Marc Woodbury-Smith
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Jessica Brian
- Bloorview Research Institute, University of Toronto, Toronto, Canada.
| | - Lili Senman
- Bloorview Research Institute, University of Toronto, Toronto, Canada.
| | - Alana Iaboni
- Bloorview Research Institute, University of Toronto, Toronto, Canada.
| | | | - Ann Thompson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Christina Chrysler
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Jonathan Leef
- Bloorview Research Institute, University of Toronto, Toronto, Canada.
| | | | - Isabel M Smith
- Departments of Pediatrics and of Psychology &Neuroscience, Dalhousie University and Autism Research Centre, IWK Health Centre, Halifax, Canada
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kinston, Canada
| | - Rob Nicolson
- Children's Health Research Institute, London, Ontario, Canada.,Western University, London, Ontario, Canada
| | | | | | - Edwin H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Annette Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Beth A Malow
- Sleep Disorders Division, Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jeremy R Parr
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Sarah J Spence
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jacob Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Brendan J Frey
- Deep Genomics Inc., Toronto, Canada.,Department of Electrical and Computer Engineering and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - James T Robinson
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Lisa J Strug
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Bridget A Fernandez
- Disciplines of Genetics and Medicine, Memorial University of Newfoundland and Provincial Medical Genetic Program, Eastern Health, St. John's, Canada
| | | | - Melissa T Carter
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada.,Regional Genetics Program, The Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | | | | | - Peter Szatmari
- Child Youth and Family Services, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, Canada
| | - Robert H Ring
- Department of Pharmacology &Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - David Glazer
- Google, Mountain View, California, USA.,Verily Life Sciences, South San Francisco, California, USA
| | | | - Stephen W Scherer
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,McLaughlin Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
162
|
Chen Y, Zhao L, Wang Y, Cao M, Gelowani V, Xu M, Agrawal SA, Li Y, Daiger SP, Gibbs R, Wang F, Chen R. SeqCNV: a novel method for identification of copy number variations in targeted next-generation sequencing data. BMC Bioinformatics 2017; 18:147. [PMID: 28253855 PMCID: PMC5335817 DOI: 10.1186/s12859-017-1566-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 02/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background Targeted next-generation sequencing (NGS) has been widely used as a cost-effective way to identify the genetic basis of human disorders. Copy number variations (CNVs) contribute significantly to human genomic variability, some of which can lead to disease. However, effective detection of CNVs from targeted capture sequencing data remains challenging. Results Here we present SeqCNV, a novel CNV calling method designed to use capture NGS data. SeqCNV extracts the read depth information and utilizes the maximum penalized likelihood estimation (MPLE) model to identify the copy number ratio and CNV boundary. We applied SeqCNV to both bacterial artificial clone (BAC) and human patient NGS data to identify CNVs. These CNVs were validated by array comparative genomic hybridization (aCGH). Conclusions SeqCNV is able to robustly identify CNVs of different size using capture NGS data. Compared with other CNV-calling methods, SeqCNV shows a significant improvement in both sensitivity and specificity. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1566-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Chen
- Shanghai Key Lab of Intelligent Information Processing, Shanghai, China.,School of Computer Science and Technology, Fudan University, Shanghai, China
| | - Li Zhao
- Structural and Computational Biology & Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Yi Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Cao
- University of Texas Health Science Center, Houston, TX, USA
| | - Violet Gelowani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mingchu Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Smriti A Agrawal
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stephen P Daiger
- Department of Ophthalmology and Visual Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Richard Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Fei Wang
- Shanghai Key Lab of Intelligent Information Processing, Shanghai, China. .,School of Computer Science and Technology, Fudan University, Shanghai, China.
| | - Rui Chen
- Structural and Computational Biology & Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX, USA. .,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
163
|
Effects of bumetanide on neurobehavioral function in children and adolescents with autism spectrum disorders. Transl Psychiatry 2017; 7:e1056. [PMID: 28291262 PMCID: PMC5416661 DOI: 10.1038/tp.2017.10] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/17/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
In animal models of autism spectrum disorder (ASD), the NKCC1 chloride-importer inhibitor bumetanide restores physiological (Cl-)i levels, enhances GABAergic inhibition and attenuates electrical and behavioral symptoms of ASD. In an earlier phase 2 trial; bumetanide reduced the severity of ASD in children and adolescents (3-11 years old). Here we report the results of a multicenter phase 2B study primarily to assess dose/response and safety effects of bumetanide. Efficacy outcome measures included the Childhood Autism Rating Scale (CARS), the Social Responsive Scale (SRS) and the Clinical Global Impressions (CGI) Improvement scale (CGI-I). Eighty-eight patients with ASD spanning across the entire pediatric population (2-18 years old) were subdivided in four age groups and randomized to receive bumetanide (0.5, 1.0 or 2.0 mg twice daily) or placebo for 3 months. The mean CARS value was significantly improved in the completers group (P: 0.015). Also, 23 treated children had more than a six-point improvement in the CARS compared with only one placebo-treated individual. Bumetanide significantly improved CGI (P: 0.0043) and the SRS score by more than 10 points (P: 0.02). The most frequent adverse events were hypokalemia, increased urine elimination, loss of appetite, dehydration and asthenia. Hypokalemia occurred mainly at the beginning of the treatment at 1.0 and 2.0 mg twice-daily doses and improved gradually with oral potassium supplements. The frequency and incidence of adverse event were directly correlated with the dose of bumetanide. Therefore, bumetanide improves the core symptoms of ASD and presents a favorable benefit/risk ratio particularly at 1.0 mg twice daily.
Collapse
|
164
|
Bruni M, Flax JF, Buyske S, Shindhelm AD, Witton C, Brzustowicz LM, Bartlett CW. Behavioral and Molecular Genetics of Reading-Related AM and FM Detection Thresholds. Behav Genet 2017; 47:193-201. [PMID: 27826669 PMCID: PMC5305590 DOI: 10.1007/s10519-016-9821-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/28/2016] [Indexed: 12/24/2022]
Abstract
Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h 2 = 0.20) and FM (h 2 = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.
Collapse
Affiliation(s)
- Matthew Bruni
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Judy F Flax
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Steven Buyske
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers The State University of New Jersey, Piscataway, NJ, USA
- Department of Statistics, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Amber D Shindhelm
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Caroline Witton
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Linda M Brzustowicz
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher W Bartlett
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital & The Ohio State University, 575 Children's Crossroad, Columbus, OH, 43205, USA.
| |
Collapse
|
165
|
Khanzada NS, Butler MG, Manzardo AM. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia. Int J Mol Sci 2017; 18:ijms18030527. [PMID: 28264500 PMCID: PMC5372543 DOI: 10.3390/ijms18030527] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
Bipolar disorder (BPD) and schizophrenia (SCH) show similar neuropsychiatric behavioral disturbances, including impaired social interaction and communication, seen in autism spectrum disorder (ASD) with multiple overlapping genetic and environmental influences implicated in risk and course of illness. GeneAnalytics software was used for pathway analysis and genetic profiling to characterize common susceptibility genes obtained from published lists for ASD (792 genes), BPD (290 genes) and SCH (560 genes). Rank scores were derived from the number and nature of overlapping genes, gene-disease association, tissue specificity and gene functions subdivided into categories (e.g., diseases, tissues or functional pathways). Twenty-three genes were common to all three disorders and mapped to nine biological Superpathways including Circadian entrainment (10 genes, score = 37.0), Amphetamine addiction (five genes, score = 24.2), and Sudden infant death syndrome (six genes, score = 24.1). Brain tissues included the medulla oblongata (11 genes, score = 2.1), thalamus (10 genes, score = 2.0) and hypothalamus (nine genes, score = 2.0) with six common genes (BDNF, DRD2, CHRNA7, HTR2A, SLC6A3, and TPH2). Overlapping genes impacted dopamine and serotonin homeostasis and signal transduction pathways, impacting mood, behavior and physical activity level. Converging effects on pathways governing circadian rhythms support a core etiological relationship between neuropsychiatric illnesses and sleep disruption with hypoxia and central brain stem dysfunction.
Collapse
Affiliation(s)
- Naveen S Khanzada
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Merlin G Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Ann M Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
166
|
Hensel C, Vanzo R, Martin M, Dixon S, Lambert C, Levy B, Nelson L, Peiffer A, Ho KS, Rushton P, Serrano M, South S, Ward K, Wassman E. Analytical and Clinical Validity Study of FirstStepDx PLUS: A Chromosomal Microarray Optimized for Patients with Neurodevelopmental Conditions. PLOS CURRENTS 2017; 9. [PMID: 28357155 PMCID: PMC5346028 DOI: 10.1371/currents.eogt.7d92ce775800ef3fbc72e3840fb1bc22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction: Chromosomal microarray analysis (CMA) is recognized as the first-tier test in the genetic evaluation of children with developmental delays, intellectual disabilities, congenital anomalies and autism spectrum disorders of unknown etiology. Array Design: To optimize detection of clinically relevant copy number variants associated with these conditions, we designed a whole-genome microarray, FirstStepDx PLUS (FSDX). A set of 88,435 custom probes was added to the Affymetrix CytoScanHD platform targeting genomic regions strongly associated with these conditions. This combination of 2,784,985 total probes results in the highest probe coverage and clinical yield for these disorders. Results and Discussion: Clinical testing of this patient population is validated on DNA from either non-invasive buccal swabs or traditional blood samples. In this report we provide data demonstrating the analytic and clinical validity of FSDX and provide an overview of results from the first 7,570 consecutive patients tested clinically. We further demonstrate that buccal sampling is an effective method of obtaining DNA samples, which may provide improved results compared to traditional blood sampling for patients with neurodevelopmental disorders who exhibit somatic mosaicism.
Collapse
Affiliation(s)
| | - Rena Vanzo
- Clinical Genetic Services, Lineagen, Inc., Salt Lake City, Utah, USA
| | | | - Sean Dixon
- Operations, Lineagen, Inc., Salt Lake City, Utah, USA
| | - Christophe Lambert
- Department of Internal Medicine, Center for Global Health, Division of Translational Informatics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Brynn Levy
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Lesa Nelson
- Affiliated Genetics Laboratory, Inc., Salt Lake City, Utah, USA
| | - Andy Peiffer
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA; Lineagen, Inc., Salt Lake City, Utah, USA
| | - Karen S Ho
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA; Lineagen, Inc., Salt Lake City, Utah, USA
| | | | | | - Sarah South
- ARUP Laboratories, Salt Lake City, Utah, USA; 23andMe, Inc., Mountain View, California, USA
| | - Kenneth Ward
- Affiliated Genetics Laboratory, Inc., Salt Lake City, Utah, USA
| | | |
Collapse
|
167
|
Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plast 2017; 2017:8081758. [PMID: 28331639 PMCID: PMC5346360 DOI: 10.1155/2017/8081758] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype.
Collapse
|
168
|
Woodbury-Smith M, Bilder DA, Morgan J, Jerominski L, Darlington T, Dyer T, Paterson AD, Coon H. Combined genome-wide linkage and targeted association analysis of head circumference in autism spectrum disorder families. J Neurodev Disord 2017; 9:5. [PMID: 28289475 PMCID: PMC5304400 DOI: 10.1186/s11689-017-9187-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022] Open
Abstract
Background It has long been recognized that there is an association between enlarged head circumference (HC) and autism spectrum disorder (ASD), but the genetics of HC in ASD is not well understood. In order to investigate the genetic underpinning of HC in ASD, we undertook a genome-wide linkage study of HC followed by linkage signal targeted association among a sample of 67 extended pedigrees with ASD. Methods HC measurements on members of 67 multiplex ASD extended pedigrees were used as a quantitative trait in a genome-wide linkage analysis. The Illumina 6K SNP linkage panel was used, and analyses were carried out using the SOLAR implemented variance components model. Loci identified in this way formed the target for subsequent association analysis using the Illumina OmniExpress chip and imputed genotypes. A modification of the qTDT was used as implemented in SOLAR. Results We identified a linkage signal spanning 6p21.31 to 6p22.2 (maximum LOD = 3.4). Although targeted association did not find evidence of association with any SNP overall, in one family with the strongest evidence of linkage, there was evidence for association (rs17586672, p = 1.72E−07). Conclusions Although this region does not overlap with ASD linkage signals in these same samples, it has been associated with other psychiatric risk, including ADHD, developmental dyslexia, schizophrenia, specific language impairment, and juvenile bipolar disorder. The genome-wide significant linkage signal represents the first reported observation of a potential quantitative trait locus for HC in ASD and may be relevant in the context of complex multivariate risk likely leading to ASD. Electronic supplementary material The online version of this article (doi:10.1186/s11689-017-9187-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Woodbury-Smith
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON Canada.,Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada.,St Joseph's Healthcare, West 5th Campus, 100 West 5th Street, Hamilton, ON Canada
| | - D A Bilder
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| | - J Morgan
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| | - L Jerominski
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| | - T Darlington
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| | - T Dyer
- University of Texas Rio Grande Valley School of Medicine and South Texas Diabetes and Obesity Institute, Harlingen, TX USA
| | - A D Paterson
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada.,Division of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
| | - H Coon
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| |
Collapse
|
169
|
Peixoto S, Melo JB, Ferrão J, Pires LM, Lavoura N, Pinto M, Oliveira G, Carreira IM. MLPA analysis in a cohort of patients with autism. Mol Cytogenet 2017; 10:2. [PMID: 28174603 PMCID: PMC5292146 DOI: 10.1186/s13039-017-0302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/04/2017] [Indexed: 12/22/2022] Open
Abstract
Background Autism is a global neurodevelopmental disorder which generally manifests during the first 2 years and continues throughout life, with a range of symptomatic variations. Epidemiological studies show an important role of genetic factors in autism and several susceptible regions and genes have been identified. The aim of our study was to validate a cost-effective set of commercial Multiplex Ligation dependent Probe Amplification (MLPA) and methylation specific multiplex ligation dependent probe amplification (MS-MLPA) test in autistic children refered by the neurodevelopmental center and autism unit of a Paediatric Hospital. Results In this study 150 unrelated children with autism spectrum disorders were analysed for copy number variation in specific regions of chromosomes 15, 16 and 22, using MLPA. All the patients had been previously studied by conventional karyotype and fluorescence in situ hybridization (FISH) analysis for 15(q11.2q13) and, with these techniques, four alterations were identified. The MLPA technique confirmed these four and identified further six alterations by the combined application of the two different panels. Conclusions Our data show that MLPA is a cost effective straightforward and rapid method for detection of imbalances in a clinically characterized population with autism. It contributes to strengthen the relationship between genotype and phenotype of children with autism, showing the clinical difference between deletions and duplications.
Collapse
Affiliation(s)
- Sara Peixoto
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurodevelopmental and Autism Unit from Child Developmental Center and Centro de Investigação e Formação Clinica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Department of Paediatrics of the Centro Hospitalar de Trás-os-Montes e Alto Douro, EPE, Vila Real, Portugal
| | - Joana B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,CIMAGO - Centro Investigação em Meio Ambiente, Genética e Oncobiologia, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - José Ferrão
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís M Pires
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Lavoura
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Marta Pinto
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Guiomar Oliveira
- Neurodevelopmental and Autism Unit from Child Developmental Center and Centro de Investigação e Formação Clinica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University Clinic of Pediatrics and Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,CIMAGO - Centro Investigação em Meio Ambiente, Genética e Oncobiologia, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
170
|
Li M, Carey J, Cristiano S, Susztak K, Coresh J, Boerwinkle E, Kao WHL, Beaty TH, Köttgen A, Scharpf RB. Genome-Wide Association of Copy Number Polymorphisms and Kidney Function. PLoS One 2017; 12:e0170815. [PMID: 28135296 PMCID: PMC5279752 DOI: 10.1371/journal.pone.0170815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023] Open
Abstract
Genome-wide association studies (GWAS) using single nucleotide polymorphisms (SNPs) have identified more than 50 loci associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. However, significant SNPs account for a small proportion of eGFR variability. Other forms of genetic variation have not been comprehensively evaluated for association with eGFR. In this study, we assess whether changes in germline DNA copy number are associated with GFR estimated from serum creatinine, eGFRcrea. We used hidden Markov models (HMMs) to identify copy number polymorphic regions (CNPs) from high-throughput SNP arrays for 2,514 African (AA) and 8,645 European ancestry (EA) participants in the Atherosclerosis Risk in Communities (ARIC) study. Separately for the EA and AA cohorts, we used Bayesian Gaussian mixture models to estimate copy number at regions identified by the HMM or previously reported in the HapMap Project. We identified 312 and 464 autosomal CNPs among individuals of EA and AA, respectively. Multivariate models adjusted for SNP-derived covariates of population structure identified one CNP in the EA cohort near genome-wide statistical significance (Bonferroni-adjusted p = 0.067) located on chromosome 5 (876-880kb). Overall, our findings suggest a limited role of CNPs in explaining eGFR variability.
Collapse
Affiliation(s)
- Man Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jacob Carey
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Stephen Cristiano
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Wen Hong L. Kao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland, United States of America
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Division of Genetic Epidemiology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Robert B. Scharpf
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
171
|
Martin-Vilchez S, Whitmore L, Asmussen H, Zareno J, Horwitz R, Newell-Litwa K. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development. PLoS One 2017; 12:e0170464. [PMID: 28114311 PMCID: PMC5256999 DOI: 10.1371/journal.pone.0170464] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development.
Collapse
Affiliation(s)
- Samuel Martin-Vilchez
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Leanna Whitmore
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Hannelore Asmussen
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jessica Zareno
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Karen Newell-Litwa
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
172
|
Xu W, Ma J, Greenwood CMT, Paterson AD, Bull SB. Model-Free Linkage Analysis of a Binary Trait. Methods Mol Biol 2017; 1666:343-373. [PMID: 28980254 DOI: 10.1007/978-1-4939-7274-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetic linkage analysis aims to detect chromosomal regions containing genetic variants that influence risk of specific inherited diseases. The presence of linkage is indicated when a disease or trait cosegregates through the families with genetic markers at a particular region of the genome. Two main types of genetic linkage analysis are in common use, namely model-based linkage analysis and model-free linkage analysis. In this chapter, we focus solely on the latter type and specifically on binary traits or phenotypes, such as the presence or absence of a specific disease. Model-free linkage analysis is based on allele-sharing, where patterns of genetic similarity among affected relatives are compared to chance expectations. Because the model-free methods do not require the specification of the inheritance parameters of a genetic model, they are preferred by many researchers at early stages in the study of a complex disease. We introduce the history of model-free linkage analysis in Subheading 1. Table 1 describes a standard model-free linkage analysis workflow. We describe three popular model-free linkage analysis methods, the nonparametric linkage (NPL) statistic, the affected sib-pair (ASP) likelihood ratio test, and a likelihood approach for pedigrees. The theory behind each linkage test is described in this section together with a simple example of the relevant calculations. Table 4 provides a summary of popular genetic analysis software packages that implement model-free linkage models. In Subheading 2, we work through the methods on a rich example providing sample software code and output. Subheading 3 contains notes with additional details on various topics that may need further consideration during analysis.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 2M9
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada, M5T 3M7
| | - Jin Ma
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Celia M T Greenwood
- Lady Davis Research Institute, Jewish General Hospital, Montréal, QC, Canada, H3T 1E2
- Department of Oncology and Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, QC, Canada, H4A 3T2 and H3A 1A2
| | - Andrew D Paterson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada, M5T 3M7
| | - Shelley B Bull
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Box 18, Toronto, ON, Canada, M5T 3L9.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada, M5T 3M7.
| |
Collapse
|
173
|
Anatomy and Cell Biology of Autism Spectrum Disorder: Lessons from Human Genetics. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:1-25. [PMID: 28551748 DOI: 10.1007/978-3-319-52498-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Until recently autism spectrum disorder (ASD) was regarded as a neurodevelopmental condition with unknown causes and pathogenesis. In the footsteps of the revolution of genome technologies and genetics, and with its high degree of heritability, ASD became the first neuropsychiatric disorder for which clues towards molecular and cellular pathogenesis were uncovered by genetic identification of susceptibility genes. Currently several hundreds of risk genes have been assigned, with a recurrence below 1% in the ASD population. The multitude and diversity of known ASD genes has extended the clinical notion that ASD comprises very heterogeneous conditions ranging from severe intellectual disabilities to mild high-functioning forms. The results of genetics have allowed to pinpoint a limited number of cellular and molecular processes likely involved in ASD including protein synthesis, signal transduction, transcription/chromatin remodelling and synaptic function all playing an essential role in the regulation of synaptic homeostasis during brain development. In this context, we highlight the role of protein synthesis as a key process in ASD pathogenesis as it might be central in synaptic deregulation and a potential target for intervention. These current insights should lead to a rational design of interventions in molecular and cellular pathways of ASD pathogenesis that may be applied to affected individuals in the future.
Collapse
|
174
|
Lamanna AL, Craig F, Matera E, Simone M, Buttiglione M, Margari L. Risk factors for the existence of attention deficit hyperactivity disorder symptoms in children with autism spectrum disorders. Neuropsychiatr Dis Treat 2017; 13:1559-1567. [PMID: 28670125 PMCID: PMC5478272 DOI: 10.2147/ndt.s132214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Over the years, several authors have reported symptoms of attention deficit hyperactivity disorder (ADHD) in patients with autism spectrum disorders (ASD); however, studies on the risk factors of ADHD symptoms in children with ASD are lacking. The aim of this cross-sectional study was to identify the risk factors for the development of ADHD symptoms in children with ASD. The sample consisted of 67 children with ASD who were assessed with Conner's Parent Rating Scale-Revised (CPRS-R), and with a semi-structured detailed interview administered to parents, to collect a series of clinical data such as coexisting somatic and neuropsychiatric problems and familial and pre/peri/postpartum risk factors. We found that 55% of ASD children exceeded the cut-off of CPRS-R Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), total scale. The univariate analyses showed that children's age (P=0.048), motor delay (P=0.039), enuresis (P=0.014), allergies (P<0.01), comorbid oppositional defiant disorder (P=0.026) and intellectual disabilities comorbidities (P=0.034) were associated to the CPRS-R DSM-IV total score. Some familial predictors such as neuropsychiatric family history of intellectual disabilities (P=0.003) and psychosis (P=0.039) were related to the CPRS-R DSM-IV total score. In particular, a model including allergies (P=0.000) and family history of psychosis (P=0.03) explained 25% (corrected R2=0.25) of the variance of the DSM-IV ADHD score. In conclusion, we identified some risk factors associated with the development of ADHD symptoms in ASD children that need to be studied further.
Collapse
Affiliation(s)
- Anna Linda Lamanna
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Craig
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Emilia Matera
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marta Simone
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maura Buttiglione
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Margari
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
175
|
Harkin LF, Lindsay SJ, Xu Y, Alzu'bi A, Ferrara A, Gullon EA, James OG, Clowry GJ. Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. Cereb Cortex 2017; 27:216-232. [PMID: 28013231 PMCID: PMC5654756 DOI: 10.1093/cercor/bhw394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
Neurexins (NRXNs) are presynaptic terminal proteins and candidate neurodevelopmental disorder susceptibility genes; mutations presumably upset synaptic stabilization and function. However, analysis of human cortical tissue samples by RNAseq and quantitative real-time PCR at 8-12 postconceptional weeks, prior to extensive synapse formation, showed expression of all three NRXNs as well as several potential binding partners. However, the levels of expression were not identical; NRXN1 increased with age and NRXN2 levels were consistently higher than for NRXN3. Immunohistochemistry for each NRXN also revealed different expression patterns at this stage of development. NRXN1 and NRXN3 immunoreactivity was generally strongest in the cortical plate and increased in the ventricular zone with age, but was weak in the synaptogenic presubplate (pSP) and marginal zone. On the other hand, NRXN2 colocalized with synaptophysin in neurites of the pSP, but especially with GAP43 and CASK in growing axons of the intermediate zone. Alternative splicing modifies the role of NRXNs and we found evidence by RNAseq for exon skipping at splice site 4 and concomitant expression of KHDBRS proteins which control this splicing. NRXN2 may play a part in early cortical synaptogenesis, but NRXNs could have diverse roles in development including axon guidance, and intercellular communication between proliferating cells and/or migrating neurons.
Collapse
Affiliation(s)
- Lauren F Harkin
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Susan J Lindsay
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: Wellcome Trust, Sanger Institute, Cambridge, CB10 1SA, UK
| | - Ayman Alzu'bi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Alexandra Ferrara
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Emily A Gullon
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Owen G James
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
176
|
The emerging roles of MicroRNAs in autism spectrum disorders. Neurosci Biobehav Rev 2016; 71:729-738. [DOI: 10.1016/j.neubiorev.2016.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/27/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022]
|
177
|
|
178
|
Yoshizaki K, Furuse T, Kimura R, Tucci V, Kaneda H, Wakana S, Osumi N. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders. PLoS One 2016; 11:e0166665. [PMID: 27855195 PMCID: PMC5113965 DOI: 10.1371/journal.pone.0166665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.
Collapse
Affiliation(s)
- Kaichi Yoshizaki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tamio Furuse
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Valter Tucci
- Department of Neuroscience and Brain Technologies. Istituto Italiano di Tecnologia, Genova, Italy
| | - Hideki Kaneda
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
179
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
180
|
Clinical Performance of an Ultrahigh Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3284534. [PMID: 27975050 PMCID: PMC5128689 DOI: 10.1155/2016/3284534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/27/2016] [Accepted: 10/20/2016] [Indexed: 11/21/2022]
Abstract
Copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) significantly contribute to the etiology of neurodevelopmental disorders, such as developmental delay (DD), intellectual disability (ID), and autism spectrum disorder (ASD). This study summarizes the results of 3.5 years of CMA testing by a CLIA-certified clinical testing laboratory 5487 patients with neurodevelopmental conditions were clinically evaluated for rare copy number variants using a 2.8-million probe custom CMA optimized for the detection of CNVs associated with neurodevelopmental disorders. We report an overall detection rate of 29.4% in our neurodevelopmental cohort, which rises to nearly 33% when cases with DD/ID and/or MCA only are considered. The detection rate for the ASD cohort is also significant, at 25%. Additionally, we find that detection rate and pathogenic yield of CMA vary significantly depending on the primary indications for testing, the age of the individuals tested, and the specialty of the ordering doctor. We also report a significant difference between the detection rate on the ultrahigh resolution optimized array in comparison to the array from which it originated. This increase in detection can significantly contribute to the efficient and effective medical management of neurodevelopmental conditions in the clinic.
Collapse
|
181
|
Mitra I, Tsang K, Ladd-Acosta C, Croen LA, Aldinger KA, Hendren RL, Traglia M, Lavillaureix A, Zaitlen N, Oldham MC, Levitt P, Nelson S, Amaral DG, Herz-Picciotto I, Fallin MD, Weiss LA. Pleiotropic Mechanisms Indicated for Sex Differences in Autism. PLoS Genet 2016; 12:e1006425. [PMID: 27846226 PMCID: PMC5147776 DOI: 10.1371/journal.pgen.1006425] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
Sexual dimorphism in common disease is pervasive, including a dramatic male preponderance in autism spectrum disorders (ASDs). Potential genetic explanations include a liability threshold model requiring increased polymorphism risk in females, sex-limited X-chromosome contribution, gene-environment interaction driven by differences in hormonal milieu, risk influenced by genes sex-differentially expressed in early brain development, or contribution from general mechanisms of sexual dimorphism shared with secondary sex characteristics. Utilizing a large single nucleotide polymorphism (SNP) dataset, we identify distinct sex-specific genome-wide significant loci. We investigate genetic hypotheses and find no evidence for increased genetic risk load in females, but evidence for sex heterogeneity on the X chromosome, and contribution of sex-heterogeneous SNPs for anthropometric traits to ASD risk. Thus, our results support pleiotropy between secondary sex characteristic determination and ASDs, providing a biological basis for sex differences in ASDs and implicating non brain-limited mechanisms.
Collapse
Affiliation(s)
- Ileena Mitra
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, California, United States of America
| | - Kathryn Tsang
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, California, United States of America
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, California, United States of America
| | - Kimberly A. Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Robert L. Hendren
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, California, United States of America
| | - Michela Traglia
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, California, United States of America
| | - Alinoë Lavillaureix
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, California, United States of America
- Université Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, France
| | - Noah Zaitlen
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Pat Levitt
- Program in Developmental Neurogenetics, Institute for the Developing Mind, Children’s Hospital Los Angeles and Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stanley Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, Medicine and Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California, Davis School of Medicine, Sacramento, California, United States of America
| | - Irva Herz-Picciotto
- Department of Public Health Sciences and Medicine and Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California, Davis School of Medicine, Sacramento, California, United States of America
| | - M. Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lauren A. Weiss
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, California, United States of America
| |
Collapse
|
182
|
Yeh E, Weiss LA. If genetic variation could talk: What genomic data may teach us about the importance of gene expression regulation in the genetics of autism. Mol Cell Probes 2016; 30:346-356. [PMID: 27751841 DOI: 10.1016/j.mcp.2016.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) has been long known to have substantial genetic etiology. Much research has attempted to identify specific genes contributing to ASD risk with the goal of tying gene function to a molecular pathological explanation for ASD. A unifying molecular pathology would potentially increase understanding of what is going wrong during development, and could lead to diagnostic biomarkers or targeted preventative or therapeutic directions. We review past and current genetic mapping approaches and discuss major results, leading to the hypothesis that global dysregulation of gene or protein expression may be implicated in ASD rather than disturbance of brain-specific functions. If substantiated, this hypothesis might indicate the need for novel experimental and analytical approaches in order to understand this neurodevelopmental disorder, develop biomarkers, or consider treatment approaches.
Collapse
Affiliation(s)
- Erika Yeh
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lauren A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
183
|
Baig DN, Yanagawa T, Tabuchi K. Distortion of the normal function of synaptic cell adhesion molecules by genetic variants as a risk for autism spectrum disorders. Brain Res Bull 2016; 129:82-90. [PMID: 27743928 DOI: 10.1016/j.brainresbull.2016.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Synaptic cell adhesion molecules (SCAMs) are a functional category of cell adhesion molecules that connect pre- and postsynapses by the protein-protein interaction via their extracellular cell adhesion domains. Countless numbers of common genetic variants and rare mutations in SCAMs have been identified in the patients with autism spectrum disorders (ASDs). Among these, NRXN and NLGN family proteins cooperatively function at synaptic terminals both of which genes are strongly implicated as risk genes for ASDs. Knock-in mice carrying a single rare point mutation of NLGN3 (NLGN3 R451C) discovered in the patients with ASDs display a deficit in social interaction and an enhancement of spatial learning and memory ability reminiscent of the clinical phenotype of ASDs. NLGN4 knockout (KO) and NRXN2α KO mice also show a deficit in sociability as well as some specific neuropsychiatric behaviors. In this review, we selected NRXNs/NLGNs, CNTNAP2/CNTNAP4, CNTN4, ITGB3, and KIRREL3 as strong ASD risk genes based on SFARI score and summarize the protein structures, functions at synapses, representative discoveries in human genetic studies, and phenotypes of the mutant model mice in light of the pathophysiology of ASDs.
Collapse
Affiliation(s)
- Deeba Noreen Baig
- Department of Biological Sciences, Forman Christian College, Zahoor Elahi Rd, Lahore, 54600, Pakistan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan; PRESTO, JST, Saitama, 332-0012, Japan.
| |
Collapse
|
184
|
Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landén M, Moran JL, Purcell SM, Sklar P, Sullivan PF, Hultman CM, McCarroll SA. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci 2016; 19:1433-1441. [PMID: 27694994 PMCID: PMC5104192 DOI: 10.1038/nn.4402] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
By analyzing the exomes of 12,332 unrelated Swedish individuals – including 4,877 affected with schizophrenia – in ways informed by exome sequences from 45,376 other individuals, we identified 244,246 coding-sequence and splice-site ultra-rare variants (URVs) that were unique to individual Swedes. We found that gene-disruptive and putatively protein-damaging URVs (but not synonymous URVs) were more abundant in schizophrenia cases than controls (P = 1.3 × 10−10). This elevation of protein-compromising URVs was several times larger than an analogously elevated rate for de novo mutations, suggesting that most rare-variant effects on schizophrenia risk are inherited. Among individuals with schizophrenia, the elevated frequency of protein-compromising URVs was concentrated in brain-expressed genes, particularly in neuronally expressed genes; most of this genetic signal arose from large sets of genes whose RNAs have been found to interact with synaptically localized proteins. Our results suggest that synaptic dysfunction may mediate a large fraction of strong, individually rare genetic influences on schizophrenia risk.
Collapse
Affiliation(s)
- Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Menachem Fromer
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eli A Stahl
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Douglas M Ruderfer
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience a Physiology at Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Jennifer L Moran
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shaun M Purcell
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pamela Sklar
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
185
|
Kentner AC, Khoury A, Lima Queiroz E, MacRae M. Environmental enrichment rescues the effects of early life inflammation on markers of synaptic transmission and plasticity. Brain Behav Immun 2016; 57:151-160. [PMID: 27002704 DOI: 10.1016/j.bbi.2016.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/04/2016] [Accepted: 03/17/2016] [Indexed: 12/13/2022] Open
Abstract
Environmental enrichment (EE) has been successful at rescuing the brain from a variety of early-life psychogenic stressors. However, its ability to reverse the behavioral and neural alterations induced by a prenatal maternal infection model of schizophrenia is less clear. Moreover, the specific interactions between the components (i.e. social enhancement, novelty, physical activity) of EE that lead to its success as a supportive intervention have not been adequately identified. In the current study, standard housed female Sprague-Dawley rats were administered either the inflammatory endotoxin lipopolysaccharide (LPS; 100μg/kg) or pyrogen-free saline (equivolume) on gestational day 15. On postnatal day 50, offspring were randomized into one of three conditions: EE (group housed in a large multi-level cage with novel toys, tubes and ramps), Colony Nesting (CN; socially-housed in a larger style cage), or Standard Care (SC; pair-housed in standard cages). Six weeks later we scored social engagement and performance in the object-in-place task. Afterwards hippocampus and prefrontal cortex (n=7-9) were collected and evaluated for excitatory amino acid transporter (EAAT) 1-3, brain-derived neurotrophic factor (BDNF), and neurotrophic tyrosine kinase, receptor type 2 (TrkB) gene expression (normalized to GAPDH) using qPCR methods. Overall, we show that gestational inflammation downregulates genes critical to synaptic transmission and plasticity, which may underlie the pathogenesis of neurodevelopmental disorders such as schizophrenia and autism. Additionally, we observed disruptions in both social engagement and spatial discrimination. Importantly, behavioral and neurophysiological effects were rescued in an experience dependent manner. Given the evidence that schizophrenia and autism may be associated with infection during pregnancy, these data have compelling implications for the prevention and reversibility of the consequences that follow immune activation in early in life.
Collapse
Affiliation(s)
- Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, MCPHS University (formerly the Massachusetts College of Pharmacy & Health Sciences), Boston, MA 02115, United States.
| | - Antoine Khoury
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| | | | - Molly MacRae
- School of Arts & Sciences, Health Psychology Program, MCPHS University (formerly the Massachusetts College of Pharmacy & Health Sciences), Boston, MA 02115, United States
| |
Collapse
|
186
|
Abstract
Despite the progress made in understanding the biology of autism spectrum disorder (ASD), effective biological interventions for the core symptoms remain elusive. Because of the etiological heterogeneity of ASD, identification of a "one-size-fits-all" treatment approach will likely continue to be challenging. A meeting was convened at the University of Missouri and the Thompson Center to discuss strategies for stratifying patients with ASD for the purpose of moving toward precision medicine. The "white paper" presented here articulates the challenges involved and provides suggestions for future solutions.
Collapse
|
187
|
Ha K, Shen Y, Graves T, Kim CH, Kim HG. The presence of two rare genomic syndromes, 1q21 deletion and Xq28 duplication, segregating independently in a family with intellectual disability. Mol Cytogenet 2016; 9:74. [PMID: 27708714 PMCID: PMC5041540 DOI: 10.1186/s13039-016-0286-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 01/21/2023] Open
Abstract
Background 1q21 microdeletion syndrome is a rare contiguous gene deletion disorder with de novo or autosomal dominant inheritance patterns and its phenotypic features include intellectual disability, distinctive facial dysmorphism, microcephaly, cardiac abnormalities, and cataracts. MECP2 duplication syndrome is an X-linked recessive neurodevelopmental disorder characterized by intellectual disability, global developmental delay, and other neurological complications including late-onset seizures. Previously, these two different genetic syndromes have not been reported segregating independently in a same family. Case presentation Here we describe two siblings carrying either a chromosome 1q21 microdeletion or a chromosome Xq28 duplication. Using a comparative genomic hybridization (CGH) array, we identified a 1.24 Mb heterozygous deletion at 1q21 resulting in the loss of 9 genes in a girl with learning disability, hypothyroidism, short stature, sensory integration disorder, and soft dysmorphic features including cupped ears and a unilateral ear pit. We also characterized a 508 kb Xq28 duplication encompassing MECP2 in her younger brother with hypotonia, poor speech, cognitive and motor impairment. The parental CGH and quantitative PCR (qPCR) analyses revealed that the 1q21 deletion in the elder sister is de novo, but the Xq28 duplication in the younger brother was originally inherited from the maternal grandmother through the mother, both of whom are asymptomatic carriers. RT-qPCR assays revealed that the affected brother has almost double the amount of MECP2 mRNA expression compared to other family members of both genders including maternal grandmother and mother who have the same Xq28 duplication with no phenotype. This suggests the X chromosome with an Xq28 duplication in the carrier females is preferentially silenced. Conclusion From our understanding, this would be the first report showing the independent segregation of two genetically unrelated syndromes, 1q21 microdeletion and Xq28 duplication, in a same family, especially in siblings. Although these two chromosomal abnormalities share some similar phenotypes such as intellectual disability, mild dysmorphic features, and cardiac abnormalities, the presence of two unrelated and rare syndromes in siblings is very unusual. Therefore, further comprehensive investigations in similar cases are required for future studies.
Collapse
Affiliation(s)
- Kyungsoo Ha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA ; Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics & Gynecology, Augusta University, Augusta, GA 30912 USA
| | - Yiping Shen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tyler Graves
- Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics & Gynecology, Augusta University, Augusta, GA 30912 USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134 South Korea
| | - Hyung-Goo Kim
- Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics & Gynecology, Augusta University, Augusta, GA 30912 USA ; Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| |
Collapse
|
188
|
Devi U, Kumar V, Gupta PS, Dubey S, Singh M, Gautam S, Rawat JK, Roy S, Yadav RK, Ansari MN, Saeedan AS, Kaithwas G. Experimental Models for Autism Spectrum Disorder Follow-Up for the Validity. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2016. [DOI: 10.1007/s40489-016-0088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
189
|
An JY, Claudianos C. Genetic heterogeneity in autism: From single gene to a pathway perspective. Neurosci Biobehav Rev 2016; 68:442-453. [DOI: 10.1016/j.neubiorev.2016.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/15/2016] [Accepted: 06/14/2016] [Indexed: 12/22/2022]
|
190
|
Need AC. Neuropsychiatric genomics in precision medicine: diagnostics, gene discovery, and translation. DIALOGUES IN CLINICAL NEUROSCIENCE 2016; 18:237-252. [PMID: 27757059 PMCID: PMC5067142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Only a few years after its development, next-generation sequencing is rapidly becoming an essential part of clinical care for patients with serious neurological conditions, especially in the diagnosis of early-onset and severe presentations. Beyond this diagnostic role, there has been an explosion in definitive gene discovery in a range of neuropsychiatric diseases. This is providing new pointers to underlying disease biology and is beginning to outline a new framework for genetic stratification of neuropsychiatric disease, with clear relevance to both individual treatment optimization and clinical trial design. Here, we outline these developments and chart the expected impact on the treatment of neurological, neurodevelopmental, and psychiatric disease.
Collapse
Affiliation(s)
- Anna C. Need
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, W12 ONN, UK
| |
Collapse
|
191
|
Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016; 22:345-61. [PMID: 27050589 DOI: 10.1038/nm.4071] [Citation(s) in RCA: 530] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies.
Collapse
|
192
|
The genetic architecture of autism spectrum disorders (ASDs) and the potential importance of common regulatory genetic variants. SCIENCE CHINA-LIFE SCIENCES 2016; 58:968-75. [PMID: 26335735 DOI: 10.1007/s11427-012-4336-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, there is great interest in identifying genetic variants that contribute to the risk of developing autism spectrum disorders (ASDs), due in part to recent increases in the frequency of diagnosis of these disorders worldwide. While there is nearly universal agreement that ASDs are complex diseases, with multiple genetic and environmental contributing factors, there is less agreement concerning the relative importance of common vs rare genetic variants in ASD liability. Recent observations that rare mutations and copy number variants (CNVs) are frequently associated with ASDs, combined with reduced fecundity of individuals with these disorders, has led to the hypothesis that ASDs are caused primarily by de novo or rare genetic mutations. Based on this model, large-scale whole-genome DNA sequencing has been proposed as the most appropriate method for discovering ASD liability genes. While this approach will undoubtedly identify many novel candidate genes and produce important new insights concerning the genetic causes of these disorders, a full accounting of the genetics of ASDs will be incomplete absent an understanding of the contributions of common regulatory variants, which are likely to influence ASD liability by modifying the effects of rare variants or, by assuming unfavorable combinations, directly produce these disorders. Because it is not yet possible to identify regulatory genetic variants by examination of DNA sequences alone, their identification will require experimentation. In this essay, I discuss these issues and describe the advantages of measurements of allelic expression imbalance (AEI) of mRNA expression for identifying cis-acting regulatory variants that contribute to ASDs.
Collapse
|
193
|
Yuen RKC, Merico D, Cao H, Pellecchia G, Alipanahi B, Thiruvahindrapuram B, Tong X, Sun Y, Cao D, Zhang T, Wu X, Jin X, Zhou Z, Liu X, Nalpathamkalam T, Walker S, Howe JL, Wang Z, MacDonald JR, Chan A, D'Abate L, Deneault E, Siu MT, Tammimies K, Uddin M, Zarrei M, Wang M, Li Y, Wang J, Wang J, Yang H, Bookman M, Bingham J, Gross SS, Loy D, Pletcher M, Marshall CR, Anagnostou E, Zwaigenbaum L, Weksberg R, Fernandez BA, Roberts W, Szatmari P, Glazer D, Frey BJ, Ring RH, Xu X, Scherer SW. Genome-wide characteristics of de novo mutations in autism. NPJ Genom Med 2016; 1:160271-1602710. [PMID: 27525107 PMCID: PMC4980121 DOI: 10.1038/npjgenmed.2016.27] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo mutations (DNMs) are important in Autism Spectrum Disorder (ASD), but so far analyses have mainly been on the ~1.5% of the genome encoding genes. Here, we performed whole genome sequencing (WGS) of 200 ASD parent-child trios and characterized germline and somatic DNMs. We confirmed that the majority of germline DNMs (75.6%) originated from the father, and these increased significantly with paternal age only (p=4.2×10-10). However, when clustered DNMs (those within 20kb) were found in ASD, not only did they mostly originate from the mother (p=7.7×10-13), but they could also be found adjacent to de novo copy number variations (CNVs) where the mutation rate was significantly elevated (p=2.4×10-24). By comparing DNMs detected in controls, we found a significant enrichment of predicted damaging DNMs in ASD cases (p=8.0×10-9; OR=1.84), of which 15.6% (p=4.3×10-3) and 22.5% (p=7.0×10-5) were in the non-coding or genic non-coding, respectively. The non-coding elements most enriched for DNM were untranslated regions of genes, boundaries involved in exon-skipping and DNase I hypersensitive regions. Using microarrays and a novel outlier detection test, we also found aberrant methylation profiles in 2/185 (1.1%) of ASD cases. These same individuals carried independently identified DNMs in the ASD risk- and epigenetic- genes DNMT3A and ADNP. Our data begins to characterize different genome-wide DNMs, and highlight the contribution of non-coding variants, to the etiology of ASD.
Collapse
Affiliation(s)
- Ryan K C Yuen
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Giovanna Pellecchia
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Babak Alipanahi
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xin Tong
- BGI-Shenzhen, Yantian, Shenzhen, China
| | - Yuhui Sun
- BGI-Shenzhen, Yantian, Shenzhen, China
| | | | - Tao Zhang
- BGI-Shenzhen, Yantian, Shenzhen, China
| | - Xueli Wu
- BGI-Shenzhen, Yantian, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, Yantian, Shenzhen, China
| | - Ze Zhou
- BGI-Shenzhen, Yantian, Shenzhen, China
| | | | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Susan Walker
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer L Howe
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zhuozhi Wang
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ada Chan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lia D'Abate
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Deneault
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle T Siu
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Pediatric Neuropsychiatry Unit, Karolinska Institutet, Stockholm, Sweden
| | - Mohammed Uddin
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Jun Wang
- BGI-Shenzhen, Yantian, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, Yantian, Shenzhen, China
| | | | | | | | | | - Dion Loy
- Google, Mountain View, California, USA
| | | | - Christian R Marshall
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bridget A Fernandez
- Disciplines of Genetics and Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada; Provincial Medical Genetic Program, Eastern Health, St. John's, Newfoundland, Canada
| | - Wendy Roberts
- Autism Research Unit, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Szatmari
- Autism Research Unit, The Hospital for Sick Children, Toronto, Ontario, Canada; Child Youth and Family Services, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - David Glazer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brendan J Frey
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | | | - Xun Xu
- BGI-Shenzhen, Yantian, Shenzhen, China
| | - Stephen W Scherer
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
194
|
Zatkova M, Bakos J, Hodosy J, Ostatnikova D. Synapse alterations in autism: Review of animal model findings. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:201-10. [DOI: 10.5507/bp.2015.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/04/2015] [Indexed: 12/30/2022] Open
|
195
|
Sung PY, Wang YT, Yu YW, Chung RH. An efficient gene-gene interaction test for genome-wide association studies in trio families. Bioinformatics 2016; 32:1848-55. [PMID: 26873927 PMCID: PMC5939888 DOI: 10.1093/bioinformatics/btw077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/04/2016] [Accepted: 02/04/2016] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Several efficient gene-gene interaction tests have been developed for unrelated case-control samples in genome-wide association studies (GWAS), making it possible to test tens of billions of interaction pairs of single-nucleotide polymorphisms (SNPs) in a reasonable timeframe. However, current family-based gene-gene interaction tests are computationally expensive and are not applicable to genome-wide interaction analysis. RESULTS We developed an efficient family-based gene-gene interaction test, GCORE, for trios (i.e. two parents and one affected sib). The GCORE compares interlocus correlations at two SNPs between the transmitted and non-transmitted alleles. We used simulation studies to compare the statistical properties such as type I error rates and power for the GCORE with several other family-based interaction tests under various scenarios. We applied the GCORE to a family-based GWAS for autism consisting of approximately 2000 trios. Testing a total of 22 471 383 013 interaction pairs in the GWAS can be finished in 36 h by the GCORE without large-scale computing resources, demonstrating that the test is practical for genome-wide gene-gene interaction analysis in trios. AVAILABILITY AND IMPLEMENTATION GCORE is implemented with C ++ and is available at http://gscore.sourceforge.net CONTACT rchung@nhri.org.tw SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pei-Yuan Sung
- Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan and
| | - Yi-Ting Wang
- Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan and
| | - Ya-Wen Yu
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Ren-Hua Chung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
196
|
Lumish HS, Wynn J, Devinsky O, Chung WK. Brief Report: SETD2 Mutation in a Child with Autism, Intellectual Disabilities and Epilepsy. J Autism Dev Disord 2016; 45:3764-70. [PMID: 26084711 DOI: 10.1007/s10803-015-2484-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Whole exome sequencing (WES) has been utilized with increasing frequency to identify mutations underlying rare diseases. Autism spectrum disorders (ASD) and intellectual disability (ID) are genetically heterogeneous, and novel genes for these disorders are rapidly being identified, making these disorders ideal candidates for WES. Here we report a 17-year-old girl with ASD, developmental delay, ID, seizures, Chiari I malformation, macrocephaly, and short stature. She was found by WES to have a de novo c.2028delT (P677LfsX19) mutation in the SET domain-containing protein 2 (SETD2) gene, predicted to be gene-damaging. This case offers evidence for the potential the role of SETD2 in ASD and ID and provides further detail about the phenotypic manifestations of mutations in SETD2.
Collapse
Affiliation(s)
- Heidi S Lumish
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, Psychiatry, and Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA.
| |
Collapse
|
197
|
Zhu Τ, Liang C, Li D, Tian M, Liu S, Gao G, Guan JS. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α. Sci Rep 2016; 6:26597. [PMID: 27229316 PMCID: PMC4882582 DOI: 10.1038/srep26597] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/05/2016] [Indexed: 11/09/2022] Open
Abstract
Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning.
Collapse
Affiliation(s)
- Τao Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Chen Liang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Dongdong Li
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Miaomiao Tian
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Sanxiong Liu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Guanjun Gao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Ji-Song Guan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
198
|
Lowther C, Speevak M, Armour CM, Goh ES, Graham GE, Li C, Zeesman S, Nowaczyk MJM, Schultz LA, Morra A, Nicolson R, Bikangaga P, Samdup D, Zaazou M, Boyd K, Jung JH, Siu V, Rajguru M, Goobie S, Tarnopolsky MA, Prasad C, Dick PT, Hussain AS, Walinga M, Reijenga RG, Gazzellone M, Lionel AC, Marshall CR, Scherer SW, Stavropoulos DJ, McCready E, Bassett AS. Molecular characterization of NRXN1 deletions from 19,263 clinical microarray cases identifies exons important for neurodevelopmental disease expression. Genet Med 2016; 19:53-61. [PMID: 27195815 PMCID: PMC4980119 DOI: 10.1038/gim.2016.54] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 01/31/2023] Open
Abstract
Purpose The purpose of the current study was to assess the penetrance of NRXN1 deletions. Methods We compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant CNVs was used as a proxy to estimate the relative penetrance of NRXN1 deletions. Results We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability, significantly greater than in controls [OR=8.14 (95% CI 2.91–22.72), p< 0.0001)]. Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3′ end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5′ NRXN1 deletion [OR=7.47 (95% CI 2.36–23.61), p=0.0006]. The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (p=0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV, a two-fold greater prevalence than for exonic NRXN1 deletion cases (p=0.0035). Conclusions The results support the importance of exons near the 5′ end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.
Collapse
Affiliation(s)
- Chelsea Lowther
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marsha Speevak
- Trillium Health Partners Credit Valley Site, Toronto, Ontario, Canada
| | - Christine M Armour
- Regional Genetics Program, Children's Hospital of Eastern Ontario, Toronto, ON, Canada
| | - Elaine S Goh
- Trillium Health Partners Credit Valley Site, Toronto, Ontario, Canada
| | - Gail E Graham
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Chumei Li
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada.,McMaster Children's Hospital, Department of Pediatrics and Clinical Genetics Program, Hamilton, Ontario, Canada
| | - Susan Zeesman
- McMaster Children's Hospital, Department of Pediatrics and Clinical Genetics Program, Hamilton, Ontario, Canada
| | - Malgorzata J M Nowaczyk
- McMaster Children's Hospital, Department of Pediatrics and Clinical Genetics Program, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lee-Anne Schultz
- McMaster Children's Hospital, Department of Pediatrics and Clinical Genetics Program, Hamilton, Ontario, Canada
| | - Antonella Morra
- Trillium Health Partners Credit Valley Site, Toronto, Ontario, Canada
| | - Rob Nicolson
- Department of Psychiatry, Western University, London, Ontario, Canada
| | | | - Dawa Samdup
- Hotel Dieu Hospital, Child Development Centre, Kingston, Ontario, Canada
| | - Mostafa Zaazou
- Trillium Health Partners Credit Valley Site, Toronto, Ontario, Canada
| | - Kerry Boyd
- Department of Psychiatry, McMaster University, Hamilton, Ontario, Canada
| | - Jack H Jung
- London Health Sciences Centre, Children's Hospital of Western Ontario, London, Ontario, Canada
| | - Victoria Siu
- Department of Pediatrics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | | | - Sharan Goobie
- Department of Pediatrics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Chitra Prasad
- Department of Pediatrics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Paul T Dick
- Grey Bruce Health Services, Owen Sound, Ontario, Canada
| | - Asmaa S Hussain
- London Health Sciences Centre, Children's Hospital of Western Ontario, London, Ontario, Canada
| | | | | | - Matthew Gazzellone
- The Centre for Applied Genomics, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anath C Lionel
- The Centre for Applied Genomics, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, the Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- Cytogenetics Laboratory, Department of Pediatric Laboratory Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anne S Bassett
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
199
|
Abstract
Neurexin 1 (NRXN1), a presynaptic cell adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including autism, intellectual disability and schizophrenia. To gain insight into NRXN1's involvement in human cortical development we used quantitative real-time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms, NRXN1-α and NRXN1-β, in prefrontal cortex from fetal stages to aging. In addition, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison with non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, markedly increasing with gestational age. In the postnatal dorsolateral prefrontal cortex, expression levels were negatively correlated with age, peaking at birth until ~3 years of age, after which levels declined markedly to be stable across the lifespan. NRXN1-β expression was modestly but significantly elevated in the brains of patients with schizophrenia compared with non-psychiatric controls, whereas NRXN1-α expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human dorsolateral prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders.
Collapse
|
200
|
Ziats MN, Rennert OM. The Evolving Diagnostic and Genetic Landscapes of Autism Spectrum Disorder. Front Genet 2016; 7:65. [PMID: 27200076 PMCID: PMC4844926 DOI: 10.3389/fgene.2016.00065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022] Open
Abstract
The autism spectrum disorders (ASD) are a heterogeneous set of neurodevelopmental syndromes defined by impairments in verbal and non-verbal communication, restricted social interaction, and the presence of stereotyped patterns of behavior. The prevalence of ASD is rising, and the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. Although the majority of individuals with ASD will not have an identifiable genetic cause, almost 25% of cases have identifiable causative DNA variants. The rapidly improving ability to identify genetic mutations because of advances in next generation sequencing, coupled with previous epidemiological studies demonstrating high heritability of ASD, have led to many recent attempts to identify causative genetic mutations underlying the ASD phenotype. However, although hundreds of mutations have been identified to date, they are either rare variants affecting only a handful of ASD patients, or are common variants in the general population conferring only a small risk for ASD. Furthermore, the genes implicated thus far are heterogeneous in their structure and function, hampering attempts to understand shared molecular mechanisms among all ASD patients; an understanding that is crucial for the development of targeted diagnostics and therapies. However, new work is beginning to suggest that the heterogeneous set of genes implicated in ASD may ultimately converge on a few common pathways. In this review, we discuss the parallel evolution of our diagnostic and genetic understanding of autism spectrum disorders, and highlight recent attempts to infer common biology underlying this complicated syndrome.
Collapse
Affiliation(s)
- Mark N. Ziats
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeshire, UK
- Medical Scientist Training Program, Baylor College of MedicineHouston, TX, USA
| | - Owen M. Rennert
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|