151
|
Anggakusuma, Romero-Brey I, Berger C, Colpitts CC, Boldanova T, Engelmann M, Todt D, Perin PM, Behrendt P, Vondran FWR, Xu S, Goffinet C, Schang LM, Heim MH, Bartenschlager R, Pietschmann T, Steinmann E. Interferon-inducible cholesterol-25-hydroxylase restricts hepatitis C virus replication through blockage of membranous web formation. Hepatology 2015; 62:702-14. [PMID: 25999047 DOI: 10.1002/hep.27913] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/20/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a positive-strand RNA virus that primarily infects human hepatocytes. Infections with HCV constitute a global health problem, with 180 million people currently chronically infected. Recent studies have reported that cholesterol 25-hydroxylase (CH25H) is expressed as an interferon-stimulated gene and mediates antiviral activities against different enveloped viruses through the production of 25-hydroxycholesterol (25HC). However, the intrinsic regulation of human CH25H (hCH25H) expression within the liver as well as its mechanistic effects on HCV infectivity remain elusive. In this study, we characterized the expression of hCH25H using liver biopsies and primary human hepatocytes. In addition, the antiviral properties of this protein and its enzymatic product, 25HC, were further characterized against HCV in tissue culture. Levels of hCH25H messenger RNA were significantly up-regulated both in HCV-positive liver biopsies and in HCV-infected primary human hepatocytes. The expression of hCH25H in primary human hepatocytes was primarily and transiently induced by type I interferon. Transient expression of hCH25H in human hepatoma cells restricted HCV infection in a genotype-independent manner. This inhibition required the enzymatic activity of CH25H. We observed an inhibition of viral membrane fusion during the entry process by 25HC, which was not due to a virucidal effect. Yet the primary effect by 25HC on HCV was at the level of RNA replication, which was observed using subgenomic replicons of two different genotypes. Further analysis using electron microscopy revealed that 25HC inhibited formation of the membranous web, the HCV replication factory, independent of RNA replication. CONCLUSION Infection with HCV causes up-regulation of interferon-inducible CH25H in vivo, and its product, 25HC, restricts HCV primarily at the level of RNA replication by preventing formation of the viral replication factory.
Collapse
Affiliation(s)
- Anggakusuma
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Carola Berger
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Che C Colpitts
- Departments of Biochemistry and of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Tujana Boldanova
- Department of Biomedicine, University of Basel and Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Michael Engelmann
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Daniel Todt
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Paula Monteiro Perin
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Patrick Behrendt
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Gastroenterology, Hepatology, and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral, and Transplantation Surgery, Hannover Medical School, and German Centre for Infection Research, Hannover-Braunschweig, Hannover, Germany
| | - Shuting Xu
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Christine Goffinet
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Luis M Schang
- Departments of Biochemistry and of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Markus H Heim
- Department of Biomedicine, University of Basel and Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.,German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| |
Collapse
|
152
|
Miot C, Beaumont E, Duluc D, Le Guillou-Guillemette H, Preisser L, Garo E, Blanchard S, Hubert Fouchard I, Créminon C, Lamourette P, Fremaux I, Calès P, Lunel-Fabiani F, Boursier J, Braum O, Fickenscher H, Roingeard P, Delneste Y, Jeannin P. IL-26 is overexpressed in chronically HCV-infected patients and enhances TRAIL-mediated cytotoxicity and interferon production by human NK cells. Gut 2015; 64:1466-75. [PMID: 25183206 DOI: 10.1136/gutjnl-2013-306604] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/16/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interleukin-26 (IL-26) is a member of the IL-10 cytokine family, first discovered based on its peculiar expression by virus-transformed T cells. IL-26 is overexpressed in chronic inflammation (rheumatoid arthritis and Crohn's disease) and induces proinflammatory cytokines by myeloid cells and some epithelial cells. We thus investigated the expression and potential role of IL-26 in chronic HCV infection, a pathology associated with chronic inflammation. DESIGN IL-26 was quantified in a cohort of chronically HCV-infected patients, naive of treatment and its expression in the liver biopsies investigated by immunohistochemistry. We also analysed the ability of IL-26 to modulate the activity of natural killer (NK) cells, which control HCV infection. RESULTS The serum levels of IL-26 are enhanced in chronically HCV-infected patients, mainly in those with severe liver inflammation. Immunohistochemistry reveals an intense IL-26 staining in liver lesions, mainly in infiltrating CD3+ cells. We also show that NK cells from healthy subjects and from HCV-infected patients are sensitive to IL-26. IL-26 upregulates membrane tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) expression on CD16- CD56(bright) NK cells, enabling them to kill HCV-infected hepatoma cells, with the same efficacy as interferon (IFN)-α-treated NK cells. IL-26 also induces the expression of the antiviral cytokines IFN-β and IFN-γ, and of the proinflammatory cytokines IL-1β and TNF-α by NK cells. CONCLUSIONS This study highlights IL-26 as a new player in the inflammatory and antiviral immune responses associated with chronic HCV infection.
Collapse
Affiliation(s)
- Charline Miot
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France Laboratoire d'Immunologie et Allergologie, CHU Angers, Angers, France
| | - Elodie Beaumont
- Université de Tours, Tours, France Inserm, Unité 966, Tours, France
| | - Dorothée Duluc
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France
| | | | - Laurence Preisser
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France
| | - Erwan Garo
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France
| | - Simon Blanchard
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France Laboratoire d'Immunologie et Allergologie, CHU Angers, Angers, France
| | | | - Christophe Créminon
- Service de Pharmacologie et d'Immunoanalyse, Commissariat à l'Energie Atomique Saclay, iBiTec-S, Gif sur Yvette, France
| | - Patricia Lamourette
- Service de Pharmacologie et d'Immunoanalyse, Commissariat à l'Energie Atomique Saclay, iBiTec-S, Gif sur Yvette, France
| | - Isabelle Fremaux
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France
| | - Paul Calès
- Université d'Angers, UPRES 3859, Angers, France Service d'Hépato-Gastroentérologie, CHU Angers, Angers, France
| | - Françoise Lunel-Fabiani
- Laboratoire de Bactériologie-Virologie, CHU Angers, Angers, France Université d'Angers, UPRES 3859, Angers, France
| | - Jérôme Boursier
- Service d'Hépato-Gastroentérologie, CHU Angers, Angers, France
| | - Oliver Braum
- Institute for Infection Medicine, Christian Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Yves Delneste
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France Laboratoire d'Immunologie et Allergologie, CHU Angers, Angers, France
| | - Pascale Jeannin
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France Laboratoire d'Immunologie et Allergologie, CHU Angers, Angers, France
| |
Collapse
|
153
|
Read SA, Tay ES, Shahidi M, O’Connor KS, Booth DR, George J, Douglas MW. Hepatitis C Virus Driven AXL Expression Suppresses the Hepatic Type I Interferon Response. PLoS One 2015; 10:e0136227. [PMID: 26313459 PMCID: PMC4551482 DOI: 10.1371/journal.pone.0136227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/30/2015] [Indexed: 01/06/2023] Open
Abstract
Treatment of chronic hepatitis C virus (HCV) infection is evolving rapidly with the development of novel direct acting antivirals (DAAs), however viral clearance remains intimately linked to the hepatic innate immune system. Patients demonstrating a high baseline activation of interferon stimulated genes (ISGs), termed interferon refractoriness, are less likely to mount a strong antiviral response and achieve viral clearance when placed on treatment. As a result, suppressor of cytokine signalling (SOCS) 3 and other regulators of the IFN response have been identified as key candidates for the IFN refractory phenotype due to their regulatory role on the IFN response. AXL is a receptor tyrosine kinase that has been identified as a key regulator of interferon (IFN) signalling in myeloid cells of the immune system, but has not been examined in the context of chronic HCV infection. Here, we show that AXL is up-regulated following HCV infection, both in vitro and in vivo and is likely induced by type I/III IFNs and inflammatory signalling pathways. AXL inhibited type IFNα mediated ISG expression resulting in a decrease in its antiviral efficacy against HCV in vitro. Furthermore, patients possessing the favourable IFNL3 rs12979860 genotype associated with treatment response, showed lower AXL expression in the liver and a stronger induction of AXL in the blood, following their first dose of IFN. Together, these data suggest that elevated AXL expression in the liver may mediate an IFN-refractory phenotype characteristic of patients possessing the unfavourable rs12979860 genotype, which is associated with lower rates of viral clearance.
Collapse
Affiliation(s)
- Scott A. Read
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Enoch S. Tay
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Mahsa Shahidi
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Kate S. O’Connor
- Centre for Immunology and Allergy Research, University of Sydney at Westmead Hospital, Westmead, Australia
| | - David R. Booth
- Centre for Immunology and Allergy Research, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Mark W. Douglas
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, Australia
| |
Collapse
|
154
|
Abstract
Deciphering the many interactions that occur between a virus and host cell over the course of infection is paramount to understanding mechanisms of pathogenesis and to the future development of antiviral therapies. Over the past decade, researchers have started to understand these complicated relationships through the development of methodologies, including advances in RNA interference, proteomics, and the development of genetic tools such as haploid cell lines, allowing high-throughput screening to identify critical contact points between virus and host. These advances have produced a wealth of data regarding host factors hijacked by viruses to promote infection, as well as antiviral factors responsible for subverting viral infection. This review highlights findings from virus-host screens and discusses our thoughts on the direction of screening strategies moving forward.
Collapse
Affiliation(s)
- Holly Ramage
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| |
Collapse
|
155
|
Yi Z, Chen J, Kozlowski M, Yuan Z. Innate detection of hepatitis B and C virus and viral inhibition of the response. Cell Microbiol 2015; 17:1295-303. [PMID: 26243406 DOI: 10.1111/cmi.12489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 12/23/2022]
Abstract
Viral hepatitis caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) infections poses a significant burden to the public health system. Although HBV and HCV differ in structure and life cycles, they share unique characteristics, such as tropism to infect hepatocytes and association with hepatic and extrahepatic disorders that are of innate immunity nature. In response to HBV and HCV infection, the liver innate immune cells eradicate pathogens by recognizing specific molecules expressed by pathogens via distinct cellular pattern recognition receptors whose triggering activates intracellular signalling pathways inducing cytokines, interferons and anti-viral response genes that collectively function to clear infections. However, HBV and HCV evolve strategies to inactivate innate signalling factors and as such establish persistent infections without being recognized by the innate immunity. We review recent insights into how HBV and HCV are sensed and how they evade innate immunity to establish chronicity. Understanding the mechanisms of viral hepatitis is mandatory to develop effective and safe therapies for eradication of viral hepatitis.
Collapse
Affiliation(s)
- Zhigang Yi
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Maya Kozlowski
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
156
|
Irudayam JI, Contreras D, Spurka L, Subramanian A, Allen J, Ren S, Kanagavel V, Nguyen Q, Ramaiah A, Ramamoorthy K, French SW, Klein AS, Funari V, Arumugaswami V. Characterization of type I interferon pathway during hepatic differentiation of human pluripotent stem cells and hepatitis C virus infection. Stem Cell Res 2015; 15:354-364. [PMID: 26313525 DOI: 10.1016/j.scr.2015.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/26/2015] [Accepted: 08/13/2015] [Indexed: 01/08/2023] Open
Abstract
Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-α and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-α treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs--LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival.
Collapse
Affiliation(s)
- Joseph Ignatius Irudayam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Deisy Contreras
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lindsay Spurka
- Cedars-Sinai Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | - Aparna Subramanian
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jenieke Allen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Songyang Ren
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vidhya Kanagavel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Quoclinh Nguyen
- Cedars-Sinai Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | - Arunachalam Ramaiah
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Hindustan Genomics Institute, SVA Medical Center, Kadayam, Tamil Nadu 627415, India
| | - Kalidas Ramamoorthy
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India.,Hindustan Genomics Institute, SVA Medical Center, Kadayam, Tamil Nadu 627415, India
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles CA 90095, USA
| | - Andrew S Klein
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery, University of California at Los Angeles, Los Angeles CA 90095, USA
| | - Vincent Funari
- Cedars-Sinai Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | - Vaithilingaraja Arumugaswami
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery, University of California at Los Angeles, Los Angeles CA 90095, USA
| |
Collapse
|
157
|
The yin and yang of hepatitis C: synthesis and decay of hepatitis C virus RNA. Nat Rev Microbiol 2015; 13:544-58. [PMID: 26256788 DOI: 10.1038/nrmicro3506] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is an unusual RNA virus that has a striking capacity to persist for the remaining life of the host in the majority of infected individuals. In order to persist, HCV must balance viral RNA synthesis and decay in infected cells. In this Review, we focus on interactions between the positive-sense RNA genome of HCV and the host RNA-binding proteins and microRNAs, and describe how these interactions influence the competing processes of viral RNA synthesis and decay to achieve stable, long-term persistence of the viral genome. Furthermore, we discuss how these processes affect hepatitis C pathogenesis and therapeutic strategies against HCV.
Collapse
|
158
|
Halota W, Ferenci P, Kozielewicz D, Dybowska D, Lisovoder N, Samira S, Shalit I, Ellis R, Ilan Y. Oral anti-CD3 immunotherapy for HCV-nonresponders is safe, promotes regulatory T cells and decreases viral load and liver enzyme levels: results of a phase-2a placebo-controlled trial. J Viral Hepat 2015; 22:651-7. [PMID: 25412903 DOI: 10.1111/jvh.12369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Orally administered anti-CD3 antibodies are biologically active in the gut through induction of regulatory T cells, exert an immune-modulatory effect, and alleviate insulin resistance and liver damage in patients with NASH. AIMS To determine the safety of oral anti-CD3 monoclonal antibody (MAb) immunotherapy in chronic HCV patients with associated immune dysfunction. METHODS Four groups (n = 9) of chronic HCV patients who were nonresponders to interferon plus ribavirin therapy received oral placebo (group A) or anti-CD3 MAb at one of three dosage levels for 30 days. Patients were followed for safety parameters and serum levels of liver enzymes, virus, cytokines and regulatory T cells. RESULTS Oral anti-CD3 immunotherapy was safe and well tolerated; no treatment-related adverse events were noted. The following improvements were noted relative to pretreatment levels: HCV viral load and AST and ALT levels decreased in the low- and high-dose groups following 30 days of therapy. In two of the treated groups, an increase in regulatory T cells (CD4(+) CD25(+) ) was noted. The positive effects were somewhat more apparent in subjects with initially elevated liver enzyme levels. CONCLUSIONS Oral anti-CD3 MAb immunotherapy for nonresponder HCV patients was safe and well tolerated. Trends and statistically significant improvements were observed as reductions in viral load and liver enzyme levels, along with an increase in regulatory T-cell levels. These data support a role for the immune system in the pathogenesis of HCV infection and suggest that this immunotherapy is worthy of evaluation in combination with HCV antiviral drugs.
Collapse
Affiliation(s)
- W Halota
- Department of Infectious Diseases and Hepatology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| | - P Ferenci
- University Hospital, Vienna, Austria
| | - D Kozielewicz
- Department of Infectious Diseases and Hepatology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| | - D Dybowska
- Department of Infectious Diseases and Hepatology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | | | | | - R Ellis
- NasVax Ltd, Ness-Ziona, Israel
| | - Y Ilan
- Liver Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
159
|
Roles of unphosphorylated ISGF3 in HCV infection and interferon responsiveness. Proc Natl Acad Sci U S A 2015. [PMID: 26216956 DOI: 10.1073/pnas.1513341112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Up-regulation of IFN-stimulated genes (ISGs) is sustained in hepatitis C virus (HCV)-infected livers. Here, we investigated the mechanism of prolonged ISG expression and its role in IFN responsiveness during HCV infection in relation to unphosphorylated IFN-stimulated gene factor 3 (U-ISGF3), recently identified as a tripartite transcription factor formed by high levels of IFN response factor 9 (IRF9), STAT1, and STAT2 without tyrosine phosphorylation of the STATs. The level of U-ISGF3, but not tyrosine phosphorylated STAT1, is significantly elevated in response to IFN-λ and IFN-β during chronic HCV infection. U-ISGF3 prolongs the expression of a subset of ISGs and restricts HCV chronic replication. However, paradoxically, high levels of U-ISGF3 also confer unresponsiveness to IFN-α therapy. As a mechanism of U-ISGF3-induced resistance to IFN-α, we found that ISG15, a U-ISGF3-induced protein, sustains the abundance of ubiquitin-specific protease 18 (USP18), a negative regulator of IFN signaling. Our data demonstrate that U-ISGF3 induced by IFN-λs and -β drives prolonged expression of a set of ISGs, leading to chronic activation of innate responses and conferring a lack of response to IFN-α in HCV-infected liver.
Collapse
|
160
|
Liu B, Chen S, Guan Y, Chen L. Type III Interferon Induces Distinct SOCS1 Expression Pattern that Contributes to Delayed but Prolonged Activation of Jak/STAT Signaling Pathway: Implications for Treatment Non-Response in HCV Patients. PLoS One 2015; 10:e0133800. [PMID: 26193702 PMCID: PMC4508043 DOI: 10.1371/journal.pone.0133800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) has long been thought to block type I interferon signaling. However, IFN-λ, a type III IFN with limited receptor expression in hepatic cells, efficiently inhibits HCV (Hepatitis C virus) replication in vivo with potentially less side effects than IFN-α. Previous studies demonstrated that type I and type III activated Janus kinase/signal transducer and activator of transcription (Jak/STAT) signaling pathway differently, with delayed but prolonged activation by IFN-λ stimulation compared to IFNα/β. However, the molecular mechanisms underlying this observation is not well understood. Here, we found that there are distinct differences in SOCS1 expression patterns in Huh-7.5.1 cells following stimulation with IFN-α and IFN-λ. IFN-λ induced a faster but shorter expression of SOCS1. Furthermore, we confirmed that SOCS1 over-expression abrogates anti-HCV effect of both IFN-α and IFN-λ, leading to increased HCV RNA replication in both HCV replicon cells and JFH1 HCV culture system. In line with this, SOCS1 over-expression inhibited STAT1 phosphorylation, attenuated IFN-stimulated response elements (ISRE) reporter activity, and blocked IFN-stimulated genes (ISGs) expression. Finally, we measured SOCS1 mRNA expression levels in peripheral blood mononuclear cells (PBMCs) with or without IFN-α treatment from 48 chronic hepatitis C patients and we found the baseline SOCS1 expression levels are higher in treatment non-responders than in responders before IFN-α treatment. Taken together, SOCS1 acts as a suppressor for both type I and type III IFNs and is negatively associated with sustained virological response (SVR) to IFN-based therapy in patients with HCV. More importantly, faster but shorter induction of SOCS1 by IFN-λ may contribute to delayed but prolonged activation of IFN signaling and ISG expression kinetics by type III IFN.
Collapse
Affiliation(s)
- Bing Liu
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, People’s Republic of China
| | - Shan Chen
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, People’s Republic of China
| | - Yujuan Guan
- Guangzhou No.8 People's Hospital, Guangzhou, China
| | - Limin Chen
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, People’s Republic of China
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
161
|
Zhu C, Xiao F, Hong J, Wang K, Liu X, Cai D, Fusco DN, Zhao L, Jeong SW, Brisac C, Chusri P, Schaefer EA, Zhao H, Peng LF, Lin W, Chung RT. EFTUD2 Is a Novel Innate Immune Regulator Restricting Hepatitis C Virus Infection through the RIG-I/MDA5 Pathway. J Virol 2015; 89:6608-18. [PMID: 25878102 PMCID: PMC4468487 DOI: 10.1128/jvi.00364-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/03/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The elongation factor Tu GTP binding domain-containing protein 2 (EFTUD2) was identified as an anti-hepatitis C virus (HCV) host factor in our recent genome-wide small interfering RNA (siRNA) screen. In this study, we sought to further determine EFTUD2's role in HCV infection and investigate the interaction between EFTUD2 and other regulators involved in HCV innate immune (RIG-I, MDA5, TBK1, and IRF3) and JAK-STAT1 pathways. We found that HCV infection decreased the expression of EFTUD2 and the viral RNA sensors RIG-I and MDA5 in HCV-infected Huh7 and Huh7.5.1 cells and in liver tissue from in HCV-infected patients, suggesting that HCV infection downregulated EFTUD2 expression to circumvent the innate immune response. EFTUD2 inhibited HCV infection by inducing expression of the interferon (IFN)-stimulated genes (ISGs) in Huh7 cells. However, its impact on HCV infection was absent in both RIG-I knockdown Huh7 cells and RIG-I-defective Huh7.5.1 cells, indicating that the antiviral effect of EFTUD2 is dependent on RIG-I. Furthermore, EFTUD2 upregulated the expression of the RIG-I-like receptors (RLRs) RIG-I and MDA5 to enhance the innate immune response by gene splicing. Functional experiments revealed that EFTUD2-induced expression of ISGs was mediated through interaction of the EFTUD2 downstream regulators RIG-I, MDA5, TBK1, and IRF3. Interestingly, the EFTUD2-induced antiviral effect was independent of the classical IFN-induced JAK-STAT pathway. Our data demonstrate that EFTUD2 restricts HCV infection mainly through an RIG-I/MDA5-mediated, JAK-STAT-independent pathway, thereby revealing the participation of EFTUD2 as a novel innate immune regulator and suggesting a potentially targetable antiviral pathway. IMPORTANCE Innate immunity is the first line defense against HCV and determines the outcome of HCV infection. Based on a recent high-throughput whole-genome siRNA library screen revealing a network of host factors mediating antiviral effects against HCV, we identified EFTUD2 as a novel innate immune regulator against HCV in the infectious HCV cell culture model and confirmed that its expression in HCV-infected liver tissue is inversely related to HCV infection. Furthermore, we determined that EFTUD2 exerts its antiviral activity mainly through governing its downstream regulators RIG-I and MDA5 by gene splicing to activate IRF3 and induce classical ISG expression independent of the JAT-STAT signaling pathway. This study broadens our understanding of the HCV innate immune response and provides a possible new antiviral strategy targeting this novel regulator of the innate response.
Collapse
Affiliation(s)
- Chuanlong Zhu
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Xiao
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Hong
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun Wang
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Xiao Liu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dachuan Cai
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dahlene N Fusco
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Zhao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Soung Won Jeong
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cynthia Brisac
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pattranuch Chusri
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esperance A Schaefer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong Zhao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Lee F Peng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
162
|
Tran HA, Jones TL, Ianna EA, Reeves GEM. THE ABSENCE OF THYROID DISEASE IN AN AUSTRALIAN HEPATITIS C COHORT TREATED WITH TRIPLE COMBINATION THERAPY: A PARADIGM SHIFT. Endocr Pract 2015; 21:1035-9. [PMID: 26121446 DOI: 10.4158/ep14561.or] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To assess the prevalence of thyroid disease in triple combination therapy with interferon (IFN)-α, ribavirin (RBV), and protease inhibitors (boceprevir and telaprevir) for the treatment of chronic hepatitis C virus (HCV) infection in an Australian hepatitis C cohort. Also, to compare with those who received dual RBV and IFN in the past. METHODS A preliminary, retrospective, and nested case control study of thyroid disease in patients who underwent triple combination therapy for chronic HCV infection compared with dual therapy at a major tertiary referral hospital center. Fifty-nine patients were treated with such therapy at the Hunter New England Area Hepatitis C Treatment Center. Of these, 38 were treated with boceprevir and 21 with telaprevir. All had genotype 1 HCV infection. The main outcome measures included (1) the prevalence of thyroid disease (TD), including hyperthyroidism and hypothyroidism, and (2) thyroid outcome comparison with patients who had received dual therapy. RESULTS There was no case of TD detected for the entire duration of therapy with triple anti-HCV therapy. There was a significant absence of TD in the protease inhibitor-treated group. CONCLUSION No case of TD was detected during the treatment of HCV patients with protease inhibitor-based triple therapy. The reasons for this are unclear. Larger studies are necessary to confirm this finding.
Collapse
|
163
|
Zhang AM, Ma K, Song Y, Feng Y, Duan H, Zhao P, Wang B, Xu G, Li Z, Xia X. Mitochondrial DNAs decreased and correlated with clinical features in HCV patients from Yunnan, China. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2516-9. [PMID: 26099975 DOI: 10.3109/19401736.2015.1036255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis C was the most popular chronic infectious liver disease worldwide. It was identified that Hepatitis C virus (HCV) infection could lead to mitochondrial dysfunction, though the mechanism was not fully understood. To investigate whether mtDNA copy number could be affected by HCV infection and be associated with clinical features of HCV patients, mtDNA copy numbers were analyzed in 242 patients with HCV infection and 226 matched control samples. The results suggested that mtDNA copy numbers significantly decreased in HCV patients (68.80 ± 3.33) than in control samples (81.54 ± 4.50) (p = 0.022). When males/females were separated from total patients to compare mtDNA copy numbers with gender matched controls, mtDNA copy numbers still significantly decreased in male HCV patients (p = 0.002). Further analysis indicated that level of high-density lipoprotein cholesterol (HDL-C) was negatively correlated with mtDNA copy numbers in total HCV patients (r = -0.128, p = 0.047), and this correlation was more significant in male HCV patients (r = -0.266, p = 0.030). Intriguingly, aspartate amino-transferase (AST) showed positive correlation with mtDNA copy numbers (r = 0.260, p = 0.034) in male HCV patients. Our results indicated that mtDNA copy numbers depleted and correlated with clinical features in male HCV patients.
Collapse
Affiliation(s)
- A-Mei Zhang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming, Yunnan , China
| | - Ke Ma
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming, Yunnan , China
| | - Yuzhu Song
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming, Yunnan , China
| | - Yue Feng
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming, Yunnan , China
| | - Haiping Duan
- b Department of Clinical Laboratory , The People's Hospital of LuXi County in Yunnan Province , Yunnan , China
| | - Ping Zhao
- c Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University , Shanghai , China , and
| | - Binghui Wang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming, Yunnan , China
| | - Gang Xu
- c Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University , Shanghai , China , and
| | - Zheng Li
- d Department of Clinical Laboratory , The First People's Hospital of Yunnan Province , Yunnan , China
| | - Xueshan Xia
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming, Yunnan , China
| |
Collapse
|
164
|
IFN-λ: A New Class of Interferon with Distinct Functions-Implications for Hepatitis C Virus Research. Gastroenterol Res Pract 2015; 2015:796461. [PMID: 26078754 PMCID: PMC4452855 DOI: 10.1155/2015/796461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/06/2015] [Indexed: 12/14/2022] Open
Abstract
Pegylated interferon-α and ribavirin (PEG-IFN/RBV) is widely used to treat chronic hepatitis C virus infection with notorious adverse reactions since the broad expression of IFN-α receptors on all nucleated cells. Accordingly, a Type III IFN with restricted receptors distribution is much safer as an alternative for HCV therapy. In addition, single nucleotide polymorphisms (SNPs) near the human IFN-λ3 gene, IL-28B, correlate strongly with the ability to achieve a sustained virological response (SVR) to therapy with pegylated IFN-α plus ribavirin in patients infected with chronic hepatitis C. Furthermore, we also discuss the most recent findings: IFN-λ4 predicts treatment outcomes of HCV infection. In consideration of the apparent limitations of current HCV therapy, especially high failure rate and universal side effects, prediction of treatment outcomes prior to the initiation of treatment and developing new alternative drugs are two important goals in HCV research.
Collapse
|
165
|
Errett JS, Gale M. Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity. Virol Sin 2015; 30:163-73. [PMID: 25997992 PMCID: PMC7090589 DOI: 10.1007/s12250-015-3604-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is critical for the control of virus infection and operates to restrict viral susceptibility and direct antiviral immunity for protection from acute or chronic viral-associated diseases including cancer. RIG-I like receptors (RLRs) are cytosolic RNA helicases that function as pathogen recognition receptors to detect RNA pathogen associated molecular patterns (PAMPs) of virus infection. The RLRs include RIG-I, MDA5, and LGP2. They function to recognize and bind to PAMP motifs within viral RNA in a process that directs the RLR to trigger downstream signaling cascades that induce innate immunity that controls viral replication and spread. Products of RLR signaling also serve to modulate the adaptive immune response to infection. Recent studies have additionally connected RLRs to signaling cascades that impart inflammatory and apoptotic responses to virus infection. Viral evasion of RLR signaling supports viral outgrowth and pathogenesis, including the onset of viral-associated cancer.
Collapse
Affiliation(s)
- John S Errett
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, 98109, USA
| | | |
Collapse
|
166
|
Yu W, Grubor-Bauk B, Mullick R, Das S, Gowans EJ. Immunocompetent mouse models to evaluate intrahepatic T cell responses to HCV vaccines. Hum Vaccin Immunother 2015; 10:3576-8. [PMID: 25483684 DOI: 10.4161/hv.34343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite considerable progress in the development of immunocompetent mouse models using different high end technologies, most available small animal models for HCV study are unsuitable for challenge experiments, which are vital for vaccine development, as they fail to measure the T cell response in liver. A recently developed intra-hepatic challenge model results in HCV antigen expression in mouse hepatocytes and through the detection of the surrogate marker, SEAP, in serum, the effect of prior vaccination can be monitored longitudinally.
Collapse
Affiliation(s)
- Wenbo Yu
- a Discipline of Surgery ; University of Adelaide; Basil Hetzel Institute ; Adelaide , SA , Australia
| | | | | | | | | |
Collapse
|
167
|
Abstract
Antiviral immunity is initiated upon host recognition of viral products via non-self molecular patterns known as pathogen-associated molecular patterns (PAMPs). Such recognition initiates signaling cascades that induce intracellular innate immune defenses and an inflammatory response that facilitates development of the acquired immune response. The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein family are key cytoplasmic pathogen recognition receptors that are implicated in the recognition of viruses across genera and virus families, including functioning as major sensors of RNA viruses, and promoting recognition of some DNA viruses. RIG-I, the charter member of the RLR family, is activated upon binding to PAMP RNA. Activated RIG-I signals by interacting with the adapter protein MAVS leading to a signaling cascade that activates the transcription factors IRF3 and NF-κB. These actions induce the expression of antiviral gene products and the production of type I and III interferons that lead to an antiviral state in the infected cell and surrounding tissue. RIG-I signaling is essential for the control of infection by many RNA viruses. Recently, RIG-I crosstalk with other pathogen recognition receptors and components of the inflammasome has been described. In this review, we discuss the current knowledge regarding the role of RIG-I in recognition of a variety of virus families and its role in programming the adaptive immune response through cross-talk with parallel arms of the innate immune system, including how RIG-I can be leveraged for antiviral therapy.
Collapse
Affiliation(s)
- Alison M Kell
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
168
|
Fine-mapping butyrophilin family genes revealed several polymorphisms influencing viral genotype selection in hepatitis C infection. Genes Immun 2015; 16:297-300. [PMID: 25928882 DOI: 10.1038/gene.2015.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/15/2022]
Abstract
Host-viral genetic interaction has a key role in hepatitis C infection (HCV) and maybe in the viral selection. In a preliminary GWAS analysis, we identified BTN3A2 rs9104 to be associated with HCV genotype 1. Therefore, our aim was to determine the influence of BTN family on the selection of HCV genotype. We performed a fine-mapping analysis of BTN gene region in a cohort of chronic HCV infection (N=841), validating significant results in another independent chronic HCV infection cohort (N=637), according to selection of viral genotype. BTN3A2 rs9104, BTN3A2 rs733528, BTN2A1 rs6929846, BTN2A1 rs7763910 and BTN3A3 rs13220495 were associated with viral genotype selection. Interestingly, BTN3A2 rs9104 GG genotype was closely related to genotype 1 infection (80.7% (394/488) compared with genotype 3 infection (53.5% (23/43); P=0.0001) in patients harboring IL28B-CT/TT genotype, although this effect was not observed in IL28B-CC genotype. Similarly, BTN3A3 rs13220495 CC genotype was linked to genotype 3 infection (100% (32/32)) compared to genotype 1 (87.3% (137/157); P=0.028) in patients harboring IL28B-CC genotype, but did not in IL28B-CT/TT genotype. Genetic variants in the butyrophilin family genes may alter susceptibility to infection, selecting HCV genotype and influencing disease progression. BTN3A2 rs9104 was strongly associated with genotype 1 infection and the haplotype BTN3A3 rs13220495 CC+IL28B genotype CC was universal in patients with hepatitis C genotype 3a.
Collapse
|
169
|
Barth H. Hepatitis C virus: Is it time to say goodbye yet? Perspectives and challenges for the next decade. World J Hepatol 2015; 7:725-737. [PMID: 25914773 PMCID: PMC4404378 DOI: 10.4254/wjh.v7.i5.725] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
The majority of individuals exposed to hepatitis C virus (HCV) establish a persistent infection, which is a leading cause of chronic liver disease, cirrhosis and hepatocellular carcinoma. Major progress has been made during the past twenty-five years in understanding the HCV life cycle and immune responses against HCV infection. Increasing evidence indicates that host genetic factors can significantly influence the outcome of HCV infection and the response to interferon alpha-based antiviral therapy. The arrival of highly effective and convenient treatment regimens for patients chronically infected with HCV has improved prospects for the eradication of HCV worldwide. Clinical trials are evaluating the best anti-viral drug combination, treatment doses and duration. The new treatments are better-tolerated and have shown success rates of more than 95%. However, the recent breakthrough in HCV treatment raises new questions and challenges, including the identification of HCV-infected patients and to link them to appropriate health care, the high pricing of HCV drugs, the emergence of drug resistance or naturally occurring polymorphism in HCV sequences which can compromise HCV treatment response. Finally, we still do not have a vaccine against HCV. In this concise review, we will highlight the progress made in understanding HCV infection and therapy. We will focus on the most significant unsolved problems and the key future challenges in the management of HCV infection.
Collapse
|
170
|
Carpentier A, Jake Liang T. Transplantation d’hépatocytes humains dérivés de cellules souches dans le foie de souris. Med Sci (Paris) 2015; 31:256-9. [DOI: 10.1051/medsci/20153103010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
171
|
Obaid A, Ahmad J, Naz A, Awan FM, Paracha RZ, Tareen SHK, Anjum S, Raza A, Baumbach J, Ali A. Modeling and analysis of innate immune responses induced by the host cells against hepatitis C virus infection. Integr Biol (Camb) 2015; 7:544-59. [PMID: 25848650 DOI: 10.1039/c4ib00285g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An in-depth understanding of complex systems such as hepatitis C virus (HCV) infection and host immunomodulatory response is an open challenge for biologists. In order to understand the mechanisms involved in immune evasion by HCV, we present a simplified formalization of the highly dynamic system consisting of HCV, its replication cycle and host immune responses at the cellular level using hybrid Petri net (HPN). The approach followed in this study comprises of step wise simulation, model validation and analysis of host immune response. This study was performed with an objective of making correlations among viral RNA levels, interferon (IFN) production and interferon stimulated genes (ISGs) induction. The results correlate with the biological data verifying that the model is very useful in predicting the dynamic behavior of the signaling proteins in response to a stimulus. This study implicates that HCV infection is dependent upon several key factors of the host immune response. The effect of host proteins on limiting viral infection is effectively overruled by the viral pathogen. This study also analyzes activity levels of RNase L, miR-122, IFN, ISGs and PKR induction and inhibition of TLR3/RIG1 mediated pathways in response to targeted manipulation in the presence of HCV. The results are in complete agreement at the time of writing with the published expression studies and western blot experiments. Our model also provides some biological insights regarding the role of PKR in the acute infection of HCV. It might help to explain why many patients fail to clear acute HCV infection while others, with low ISG basal levels, clear HCV spontaneously. The described methodology can easily be reproduced, which suitably supports the study of other viral infections in a formal, automated and expressive manner. The Petri net-based modeling approach applied here may provide valuable insights for study design and analyses to evaluate other disease associated integrated pathways in biological systems.
Collapse
Affiliation(s)
- Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Yang DR, Zhu HZ. Hepatitis C virus and antiviral innate immunity: Who wins at tug-of-war? World J Gastroenterol 2015; 21:3786-3800. [PMID: 25852264 PMCID: PMC4385526 DOI: 10.3748/wjg.v21.i13.3786] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/21/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major human pathogen of chronic hepatitis and related liver diseases. Innate immunity is the first line of defense against invading foreign pathogens, and its activation is dependent on the recognition of these pathogens by several key sensors. The interferon (IFN) system plays an essential role in the restriction of HCV infection via the induction of hundreds of IFN-stimulated genes (ISGs) that inhibit viral replication and spread. However, numerous factors that trigger immune dysregulation, including viral factors and host genetic factors, can help HCV to escape host immune response, facilitating viral persistence. In this review, we aim to summarize recent advances in understanding the innate immune response to HCV infection and the mechanisms of ISGs to suppress viral survival, as well as the immune evasion strategies for chronic HCV infection.
Collapse
|
173
|
Impairment of type I but not type III IFN signaling by hepatitis C virus infection influences antiviral responses in primary human hepatocytes. PLoS One 2015; 10:e0121734. [PMID: 25826356 PMCID: PMC4380495 DOI: 10.1371/journal.pone.0121734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
Peginterferon lambda-1a (Lambda), a type III interferon (IFN), acts through a unique receptor complex with limited cellular expression outside the liver which may result in a differentiated tolerability profile compared to peginterferon alfa (alfa). In Phase 2b clinical studies, Lambda administered in combination with ribavirin (RBV) was efficacious in patients with hepatitis C virus (HCV) infection representing genotypes 1 through 4, and was associated with more rapid declines in HCV RNA compared to alfa plus RBV. To gain insights into potential mechanisms for this finding, we investigated the effects of HCV replication on IFN signaling in primary human hepatocytes (PHH) and in induced hepatocyte-like cells (iHLCs). HCV infection resulted in rapid down-regulation of the type I IFN-α receptor subunit 1 (IFNAR1) transcript in hepatocytes while the transcriptional level of the unique IFN-λ receptor subunit IL28RA was transiently increased. In line with this observation, IFN signaling was selectively impaired in infected cells upon stimulation with alfa but not in response to Lambda. Importantly, in contrast to alfa, Lambda was able to induce IFN-stimulated gene (ISG) expression in HCV-infected hepatocytes, reflecting the onset of innate responses. Moreover, global transcriptome analysis in hepatocytes indicated that Lambda stimulation prolonged the expression of various ISGs that are potentially beneficial to antiviral defense mechanisms. Collectively, these observed effects of HCV infection on IFN receptor expression and signaling within infected hepatocytes provide a possible explanation for the more pronounced early virologic responses observed in patients treated with Lambda compared to alfa.
Collapse
|
174
|
Horner SM. Insights into antiviral innate immunity revealed by studying hepatitis C virus. Cytokine 2015; 74:190-7. [PMID: 25819428 DOI: 10.1016/j.cyto.2015.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 02/07/2023]
Abstract
Experimental studies on the interactions of the positive strand RNA virus hepatitis C virus (HCV) with the host have contributed to several discoveries in the field of antiviral innate immunity. These include revealing the antiviral sensing pathways that lead to the induction of type I interferon (IFN) during HCV infection and also the importance of type III IFNs in the antiviral immune response to HCV. These studies on HCV/host interactions have contributed to our overall understanding of viral sensing and viral evasion of the antiviral intracellular innate immune response. In this review, I will highlight how these studies of HCV/host interactions have led to new insights into antiviral innate immunity. Overall, I hope to emphasize that studying antiviral immunity in the context of virus infection is necessary to fully understand antiviral immunity and how it controls the outcome of viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
175
|
Lepiller Q, Soulier E, Li Q, Lambotin M, Barths J, Fuchs D, Stoll-Keller F, Liang TJ, Barth H. Antiviral and Immunoregulatory Effects of Indoleamine-2,3-Dioxygenase in Hepatitis C Virus Infection. J Innate Immun 2015; 7:530-44. [PMID: 25792183 DOI: 10.1159/000375161] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
In patients with hepatitis C virus (HCV) infection, enhanced activity of indoleamine-2,3-dioxygenase 1 (IDO) has been reported. IDO - a tryptophan-catabolizing enzyme - has been considered as both an innate defence mechanism and an important regulator of the immune response. The molecular mechanism of IDO induction in HCV infection and its role in the antiviral immune response remain unknown. Using primary human hepatocytes, we show that HCV infection stimulates IDO expression. IDO gene induction was transient and coincided with the expression of types I and III interferons (IFNs) and IFN-stimulated genes in HCV-infected hepatocytes. Overexpression of hepatic IDO prior to HCV infection markedly impaired HCV replication in hepatocytes, suggesting that IDO limits the spread of HCV within the liver. siRNA-mediated IDO knock-down revealed that IDO functions as an IFN-mediated anti-HCV effector. Hepatic IDO was most potently induced by IFN-x03B3;, and ongoing HCV replication could significantly upregulate IDO expression. IRF1 (IFN-regulatory factor 1) and STAT1 (signal transducer and activator of transcription 1) regulated hepatic IDO expression. Hepatic IDO expression also had a significant inhibitory effect on CD4+ T-cell proliferation. Our data suggest that hepatic IDO plays a dual role during HCV infection by slowing down viral replication and also regulating host immune responses.
Collapse
Affiliation(s)
- Quentin Lepiller
- Laboratoire de Virologie, Hx00F4;pitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Protease Inhibitors Block Multiple Functions of the NS3/4A Protease-Helicase during the Hepatitis C Virus Life Cycle. J Virol 2015; 89:5362-70. [PMID: 25740995 DOI: 10.1128/jvi.03188-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/23/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) NS3 is a multifunctional protein composed of a protease domain and a helicase domain linked by a flexible linker. Protease activity is required to generate viral nonstructural (NS) proteins involved in RNA replication. Helicase activity is required for RNA replication, and genetic evidence implicates the helicase domain in virus assembly. Binding of protease inhibitors (PIs) to the protease active site blocks NS3-dependent polyprotein processing but might impact other steps of the virus life cycle. Kinetic analyses of antiviral suppression of cell culture-infectious genotype 1a strain H77S.3 were performed using assays that measure different readouts of the viral life cycle. In addition to the active-site PI telaprevir, we examined an allosteric protease-helicase inhibitor (APHI) that binds a site in the interdomain interface. By measuring nucleotide incorporation into HCV genomes, we found that telaprevir inhibits RNA synthesis as early as 12 h at high but clinically relevant concentrations. Immunoblot analyses showed that NS5B abundance was not reduced until after 12 h, suggesting that telaprevir exerts a direct effect on RNA synthesis. In contrast, the APHI could partially inhibit RNA synthesis, suggesting that the allosteric site is not always available during RNA synthesis. The APHI and active-site PI were both able to block virus assembly soon (<12 h) after drug treatment, suggesting that they rapidly engage with and block a pool of NS3 involved in assembly. In conclusion, PIs and APHIs can block NS3 functions in RNA synthesis and virus assembly, in addition to inhibiting polyprotein processing. IMPORTANCE The NS3/4A protease of hepatitis C virus (HCV) is an important antiviral target. Currently, three PIs have been approved for therapy of chronic hepatitis C, and several others are in development. NS3-dependent cleavage of the HCV polyprotein is required to generate the mature nonstructural proteins that form the viral replicase. Inhibition of protease activity can block RNA replication by preventing expression of mature replicase components. Like many viral proteins, NS3 is multifunctional, but how PIs affect stages of the HCV life cycle beyond polyprotein processing has not been well studied. Using cell-based assays, we show here that PIs can directly inhibit viral RNA synthesis and also block a late stage in virus assembly/maturation at clinically relevant concentrations.
Collapse
|
177
|
Characterization of nonprimate hepacivirus and construction of a functional molecular clone. Proc Natl Acad Sci U S A 2015; 112:2192-7. [PMID: 25646476 DOI: 10.1073/pnas.1500265112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼ 3% viremic. NPHV natural history and molecular virology remain largely unexplored, however. Here, we show that NPHV, like HCV, can cause persistent infection for over a decade, with high titers and negative strand RNA in the liver. NPHV is a near-universal contaminant of commercial horse sera for cell culture. The complete NPHV 3'-UTR was determined and consists of interspersed homopolymer tracts and an HCV-like 3'-terminal poly(U)-X-tail. NPHV translation is stimulated by miR-122 and the 3'-UTR and, similar to HCV, the NPHV NS3-4A protease can cleave mitochondrial antiviral-signaling protein to inactivate the retinoic acid-inducible gene I pathway. Using an NPHV consensus cDNA clone, replication was not observed in primary equine fetal liver cultures or after electroporation of selectable replicons. However, intrahepatic RNA inoculation of a horse initiated infection, yielding high RNA titers in the serum and liver. Delayed seroconversion, slightly elevated circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host.
Collapse
|
178
|
Esumi M, Ishibashi M, Yamaguchi H, Nakajima S, Tai Y, Kikuta S, Sugitani M, Takayama T, Tahara M, Takeda M, Wakita T. Transmembrane serine protease TMPRSS2 activates hepatitis C virus infection. Hepatology 2015; 61:437-46. [PMID: 25203900 PMCID: PMC7165505 DOI: 10.1002/hep.27426] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/30/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED The human liver reacts to hepatitis C virus (HCV) with a balanced response consisting of host anti- and proviral activities. To explore these subtle host responses, we used oligonucleotide microarrays to investigate the differential gene expression between two groups of liver samples with high and low HCV loads (>100-fold difference). We identified and validated 26 genes that were up-regulated in livers with high HCV loads, including transmembrane protease serine 2 (TMPRSS2). Trypsin inhibitors inhibited the infection of Huh7-25-CD81 cells with cell-culture-derived HCV (HCVcc) of Japanese fulminant hepatitis 1 isolate at the postbinding and entry step, and trypsin enhanced HCVcc infection at an early stage of infection. Several major transmembrane serine proteases, in particular, furin and hepsin, were detected in Huh7-25-CD81 cells, but TMPRSS2 was not. Huh7-25-CD81 cell clones stably expressing TMPRSS2- WT (wild type) and inactive TMPRSS2-mutant genes showed positive and negative enhancement of their susceptibility to HCVcc infection, respectively. The enhanced susceptibility of TMPRSS2-WT Huh7-25-CD81 cells was confirmed by knockdown of TMPRSS2 using small interfering RNA. The cell-surface protease activity of TMPRSS2-WT cells was markedly active in the cleavage of QAR and QGR, corresponding to amino acid residues at P3 to P1. CONCLUSION The cell-surface activity of a trypsin-like serine protease, such as TMPRSS2, activates HCV infection at the postbinding and entry stage. Host transmembrane serine proteases may be involved in the sensitivity, persistence, and pathogenesis of HCV infection and be possible targets for antiviral therapy.
Collapse
Affiliation(s)
- Mariko Esumi
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Mariko Ishibashi
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Hiromi Yamaguchi
- Department of PathologyNihon University School of MedicineTokyoJapan,Department of Functional MorphologyNihon University School of MedicineTokyoJapan
| | - Satomi Nakajima
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Yuhi Tai
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Sachiko Kikuta
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Masahiko Sugitani
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Tadatoshi Takayama
- Department of Digestive SurgeryNihon University School of MedicineTokyoJapan
| | - Maino Tahara
- Department of Virology IIINational Institute of Infectious DiseasesTokyoJapan
| | - Makoto Takeda
- Department of Virology IIINational Institute of Infectious DiseasesTokyoJapan
| | - Takaji Wakita
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| |
Collapse
|
179
|
Hoffmann F, Schmidt A, Chevillotte MD, Wisskirchen C, Hellmuth JC, Willms S, Gilmore RH, Glas J, Folwaczny M, Müller T, Berg T, Spengler U, Fitzmaurice K, Kelleher D, Reisch N, Rice CM, Endres S, Rothenfusser S. Polymorphisms in melanoma differentiation-associated gene 5 link protein function to clearance of hepatitis C virus. Hepatology 2015; 61:460-70. [PMID: 25130193 PMCID: PMC4315306 DOI: 10.1002/hep.27344] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
Abstract
UNLABELLED Among patients newly infected with hepatitis C virus (HCV), only 20-30% clear the infection spontaneously. In the remaining 70% the infection persists, causing chronic liver inflammation and disease. It is well established that polymorphisms in host genes, especially in components of the innate immune response, contribute to the phenomenon of spontaneous HCV clearance. Retinoic acid inducible gene-I (RIG-I)-like helicases such as melanoma differentiation-associated gene 5 (MDA-5) are cytoplasmic sensors of viral RNA that are critical for triggering innate immune responses after infection with RNA viruses. We analyzed 14 nonsynonymous single-nucleotide polymorphisms in RIG-I-like helicase-pathway-genes comparing European patients who spontaneously cleared HCV (n = 285) or had persistent infection (n = 509). We found that polymorphic haplotypes in the MDA-5 gene IFIH1 encoding histidine at position 843 and threonine at position 946 strongly correlate with the resolution of HCV infection (odds ratio [OR]: 16.23; 95% confidence interval [CI]: 3.67-71.87; P = 1.1 × 10(-6) ). Overexpression of MDA-5 genetic variants in HEK 293 cells and in a tissue culture model of HCV infection revealed that the histidine 843/threonine 946 variant leads to increased baseline and ligand-induced expression of interferon-induced genes and confers an increased ability to suppress HCV replication. CONCLUSION These data suggest that MDA-5 plays a significant role in the defense against HCV and that polymorphisms in MDA-5 can influence the outcome of HCV infection.
Collapse
Affiliation(s)
- Franziska Hoffmann
- Center of Integrated Protein Research Munich (CIPS-M) and Division of Clinical Pharmacology, Medizinische Klinik IV, University of Munich,Institute of Clinical Neuroimmunology, Klinikum Großhadern, University of Munich
| | - Andreas Schmidt
- Center of Integrated Protein Research Munich (CIPS-M) and Division of Clinical Pharmacology, Medizinische Klinik IV, University of Munich
| | | | - Christian Wisskirchen
- Center of Integrated Protein Research Munich (CIPS-M) and Division of Clinical Pharmacology, Medizinische Klinik IV, University of Munich
| | - Johannes C. Hellmuth
- Center of Integrated Protein Research Munich (CIPS-M) and Division of Clinical Pharmacology, Medizinische Klinik IV, University of Munich
| | - Simone Willms
- Center of Integrated Protein Research Munich (CIPS-M) and Division of Clinical Pharmacology, Medizinische Klinik IV, University of Munich
| | - Rachel H. Gilmore
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York
| | - Jürgen Glas
- Department for Preventive Dentistry and Periodontology, University of Munich,Department of Human Genetics, RWTH Aachen
| | - Matthias Folwaczny
- Department for Preventive Dentistry and Periodontology, University of Munich
| | - Tobias Müller
- Department of Gastroenterology and Hepatology, Charité University Hospital, Berlin
| | - Thomas Berg
- Department of Gastroenterology and Rheumatology, Section Hepatology, University Hospital, Leipzig
| | | | - Karen Fitzmaurice
- Trinity Centre for Health Sciences, St. James’ Hospital, Dublin, Ireland
| | - Dermot Kelleher
- Trinity Centre for Health Sciences, St. James’ Hospital, Dublin, Ireland
| | - Nicole Reisch
- Section Gastroenterology and Endocrinology, Medizinische Klinik IV, University of Munich
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York
| | - Stefan Endres
- Center of Integrated Protein Research Munich (CIPS-M) and Division of Clinical Pharmacology, Medizinische Klinik IV, University of Munich
| | - Simon Rothenfusser
- Center of Integrated Protein Research Munich (CIPS-M) and Division of Clinical Pharmacology, Medizinische Klinik IV, University of Munich,Section Gastroenterology and Endocrinology, Medizinische Klinik IV, University of Munich
| |
Collapse
|
180
|
Hepatitis C virus-mediated enhancement of microRNA miR-373 impairs the JAK/STAT signaling pathway. J Virol 2015; 89:3356-65. [PMID: 25589644 DOI: 10.1128/jvi.03085-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) is a serious global health problem and establishes chronic infection in a significant number of infected humans worldwide. Interferon (IFN) and IFN-stimulated genes (ISGs) are amplified during HCV infection but fail to eliminate virus from the liver in a large number of infected patients, and the mechanism is not fully understood. MicroRNAs (miRNAs) have been implicated in the control of many biological processes, including IFN signaling. To gain more insights into the role of cellular miRNAs in possible countermeasures of HCV for suppression of the host antiviral response, a miRNA array was performed by using primary human hepatocytes infected with in vitro cell culture-grown HCV. A group of miRNAs were modulated in HCV-infected primary human hepatocytes. We focused on miR-373, as this miRNA was significantly upregulated in HCV-infected primary human hepatocytes. Here, we analyzed the function of miR-373 in the context of HCV infection. HCV infection upregulates miR-373 expression in hepatocytes and HCV-infected liver biopsy specimens. Furthermore, we discovered that miR-373 directly targets Janus kinase 1 (JAK1) and IFN-regulating factor 9 (IRF9), important factors in the IFN signaling pathway. The upregulation of miR-373 by HCV also inhibited STAT1 phosphorylation, which is involved in ISG factor 3 (ISGF3) complex formation and ISG expression. The knockdown of miR-373 in hepatocytes enhanced JAK1 and IRF9 expression and reduced HCV RNA replication. Taken together, our results demonstrated that miR-373 is upregulated during HCV infection and negatively regulated the type I IFN signaling pathway by suppressing JAK1 and IRF9. Our results offer a potential therapeutic approach for antiviral intervention. IMPORTANCE Chronic HCV infection is one of the major causes of end-stage liver disease worldwide. Although the recent introduction of direct-acting antiviral (DAA) therapy is extremely encouraging, some infected individuals do not respond to this therapy. Furthermore, these drugs target HCV nonstructural proteins, and with selective pressure, the virus may develop a resistant strain. Therefore, understanding the impairment of IFN signals will help in designing additional therapeutic modalities. In this study, we provide evidence of HCV-mediated upregulation of miR-373 and show that miR-373 impairs IFN signaling by targeting JAK1/IRF9 molecules. The knockdown of miR-373 inhibited HCV replication by upregulating interferon-stimulating gene expression. Together, these results provided new mechanistic insights into the role of miR-373 in HCV infection and suggest a new potential target against HCV infection.
Collapse
|
181
|
Barriocanal M, Carnero E, Segura V, Fortes P. Long Non-Coding RNA BST2/BISPR is Induced by IFN and Regulates the Expression of the Antiviral Factor Tetherin. Front Immunol 2015; 5:655. [PMID: 25620967 PMCID: PMC4288319 DOI: 10.3389/fimmu.2014.00655] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/08/2014] [Indexed: 12/17/2022] Open
Abstract
Many long non-coding RNAs (lncRNAs) are expressed in cells but only a few have been well characterized. In these cases, lncRNAs have been shown to be key regulators of several cellular processes. Therefore, there is a great need to understand the function of more lncRNAs and their regulation in response to stimuli. Interferon (IFN) is a key molecule in the cellular antiviral response. IFN binding to its receptor activates transcription of several IFN-stimulated genes (ISGs) that function as potent antivirals. In addition, several ISGs are positive or negative regulators of the IFN pathway. This is essential to ensure a strong antiviral response and a later return of the cell to homeostasis. As the ISGs described to date are coding genes, we sought to determine whether IFN also regulates the expression of long non-coding ISGs. To this aim, we used RNA sequencing to analyze the transcriptome of control and HuH7 cells treated with IFNα2. The results show that IFN-treatment regulates the expression of several unknown non-coding transcripts. We have validated two lncRNAs upregulated after treatment with different doses of type I IFNα2 in different cells or with type III IFNλ. These lncRNAs were also induced by influenza and vesicular stomatitis virus mutants unable to block the IFN response, but not by several wild-type lytic viruses tested. These lncRNA genes were named lncISG15 and lncBST2 as they are located close to ISGs ISG15 and BST2, respectively. Interestingly, inhibition experiments showed that lncBST2 is a positive regulator of BST2. Therefore lncBST2 has been renamed BISPR, from BST2 IFN-stimulated positive regulator. Our results may have therapeutic implications as lncBST2/BISPR, but also lncISG15 and their coding neighbors, are increased in cells infected with hepatitis C virus and in the liver of infected patients. These results allow us to hypothesize that several lncRNAs could be activated by IFN to control the potency of the antiviral IFN response.
Collapse
Affiliation(s)
- Marina Barriocanal
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Elena Carnero
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Victor Segura
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| |
Collapse
|
182
|
Szabo G, Saha B, Bukong TN. Alcohol and HCV: implications for liver cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:197-216. [PMID: 25427909 DOI: 10.1007/978-3-319-09614-8_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver cancers are one of the deadliest known malignancies which are increasingly becoming a major public health problem in both developed and developing countries. Overwhelming evidence suggests a strong role of infection with hepatitis B and C virus (HBV and HCV), alcohol abuse, as well as metabolic diseases such as obesity and diabetes either individually or synergistically to cause or exacerbate the development of liver cancers. Although numerous etiologic mechanisms for liver cancer development have been advanced and well characterized, the lack of definite curative treatments means that gaps in knowledge still exist in identifying key molecular mechanisms and pathways in the pathophysiology of liver cancers. Given the limited success with current therapies and preventive strategies against liver cancer, there is an urgent need to identify new therapeutic options for patients. Targeting HCV and or alcohol-induced signal transduction, or virus-host protein interactions may offer novel therapies for liver cancer. This review summarizes current knowledge on the mechanistic development of liver cancer associated with HCV infection and alcohol abuse as well as highlights potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA,
| | | | | |
Collapse
|
183
|
Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol Immunol 2014; 13:11-35. [PMID: 25544499 PMCID: PMC4712384 DOI: 10.1038/cmi.2014.127] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022] Open
Abstract
Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed.
Collapse
|
184
|
Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol Immunol 2014; 11:218-20. [PMID: 25544499 DOI: 10.1038/cmi.2014.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed.
Collapse
|
185
|
Gokhale NS, Vazquez C, Horner SM. Hepatitis C Virus. Strategies to Evade Antiviral Responses. Future Virol 2014; 9:1061-1075. [PMID: 25983854 DOI: 10.2217/fvl.14.89] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) causes chronic liver disease and poses a major clinical and economic burden worldwide. HCV is an RNA virus that is sensed as non-self in the infected liver by host pattern recognition receptors, triggering downstream signaling to interferons (IFNs). The type III IFNs play an important role in immunity to HCV, and human genetic variation in their gene loci is associated with differential HCV infection outcomes. HCV evades host antiviral innate immune responses to mediate a persistent infection in the liver. This review focuses on anti-HCV innate immune sensing, innate signaling and effectors, and the processes and proteins used by HCV to evade and regulate host innate immunity.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Christine Vazquez
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Stacy M Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710 ; Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
186
|
Carnero E, Barriocanal M, Segura V, Guruceaga E, Prior C, Börner K, Grimm D, Fortes P. Type I Interferon Regulates the Expression of Long Non-Coding RNAs. Front Immunol 2014; 5:548. [PMID: 25414701 PMCID: PMC4222131 DOI: 10.3389/fimmu.2014.00548] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/14/2014] [Indexed: 12/22/2022] Open
Abstract
Interferons (IFNs) are key players in the antiviral response. IFN sensing by the cell activates transcription of IFN-stimulated genes (ISGs) able to induce an antiviral state by affecting viral replication and release. IFN also induces the expression of ISGs that function as negative regulators to limit the strength and duration of IFN response. The ISGs identified so far belong to coding genes. However, only a small proportion of the transcriptome corresponds to coding transcripts and it has been estimated that there could be as many coding as long non-coding RNAs (lncRNAs). To address whether IFN can also regulate the expression of lncRNAs, we analyzed the transcriptome of HuH7 cells treated or not with IFNα2 by expression arrays. Analysis of the arrays showed increased levels of several well-characterized coding genes that respond to IFN both at early or late times. Furthermore, we identified several IFN-stimulated or -downregulated lncRNAs (ISRs and IDRs). Further validation showed that ISR2, 8, and 12 expression mimics that of their neighboring genes GBP1, IRF1, and IL6, respectively, all related to the IFN response. These genes are induced in response to different doses of IFNα2 in different cell lines at early (ISR2 or 8) or later (ISR12) time points. IFNβ also induced the expression of these lncRNAs. ISR2 and 8 were also induced by an influenza virus unable to block the IFN response but not by other wild-type lytic viruses tested. Surprisingly, both ISR2 and 8 were significantly upregulated in cultured cells and livers from patients infected with HCV. Increased levels of ISR2 were also detected in patients chronically infected with HIV. This is relevant as genome-wide guilt-by-association studies predict that ISR2, 8, and 12 may function in viral processes, in the IFN pathway and the antiviral response. Therefore, we propose that these lncRNAs could be induced by IFN to function as positive or negative regulators of the antiviral response.
Collapse
Affiliation(s)
- Elena Carnero
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Marina Barriocanal
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Victor Segura
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Elizabeth Guruceaga
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Celia Prior
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Kathleen Börner
- Centre for Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks , Heidelberg , Germany ; German Center for Infection Research (DZIF) , Heidelberg , Germany
| | - Dirk Grimm
- Centre for Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks , Heidelberg , Germany
| | - Puri Fortes
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| |
Collapse
|
187
|
Eyre NS, Helbig KJ, Beard MR. Current and future targets of antiviral therapy in the hepatitis C virus life cycle. Future Virol 2014. [DOI: 10.2217/fvl.14.83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT Advances in our understanding of the hepatitis C virus (HCV) life cycle have enabled the development of numerous clinically advanced direct-acting antivirals. Indeed, the recent approval of first-generation direct-acting antivirals that target the viral NS3–4A protease and NS5B RNA-dependent RNA polymerase brings closer the possibility of universally efficacious and well-tolerated antiviral therapies for this insidious infection. However, the complexities of comorbidities, unforeseen side effects or drug–drug interactions, viral diversity, the high mutation rate of HCV RNA replication and the elegant and constantly evolving mechanisms employed by HCV to evade host and therapeutically implemented antiviral strategies remain as significant obstacles to this goal. Here, we review advances in our understanding of the HCV life cycle and associated opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Nicholas S Eyre
- School of Molecular & Biomedical Science, The University of Adelaide & Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Karla J Helbig
- School of Molecular & Biomedical Science, The University of Adelaide & Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Michael R Beard
- School of Molecular & Biomedical Science, The University of Adelaide & Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
188
|
Antonelli A, Ferrari SM, Giuggioli D, Di Domenicantonio A, Ruffilli I, Corrado A, Fabiani S, Marchi S, Ferri C, Ferrannini E, Fallahi P. Hepatitis C virus infection and type 1 and type 2 diabetes mellitus. World J Diabetes 2014; 5:586-600. [PMID: 25317237 PMCID: PMC4138583 DOI: 10.4239/wjd.v5.i5.586] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/10/2014] [Accepted: 07/12/2014] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection and diabetes mellitus are two major public health problems that cause devastating health and financial burdens worldwide. Diabetes can be classified into two major types: type 1 diabetes mellitus (T1DM) and T2DM. T2DM is a common endocrine disorder that encompasses multifactorial mechanisms, and T1DM is an immunologically mediated disease. Many epidemiological studies have shown an association between T2DM and chronic hepatitis C (CHC) infection. The processes through which CHC is associated with T2DM seem to involve direct viral effects, insulin resistance, proinflammatory cytokines, chemokines, and other immune-mediated mechanisms. Few data have been reported on the association of CHC and T1DM and reports on the potential association between T1DM and acute HCV infection are even rarer. A small number of studies indicate that interferon-α therapy can stimulate pancreatic autoimmunity and in certain cases lead to the development of T1DM. Diabetes and CHC have important interactions. Diabetic CHC patients have an increased risk of developing cirrhosis and hepatocellular carcinoma compared with non-diabetic CHC subjects. However, clinical trials on HCV-positive patients have reported improvements in glucose metabolism after antiviral treatment. Further studies are needed to improve prevention policies and to foster adequate and cost-effective programmes for the surveillance and treatment of diabetic CHC patients.
Collapse
|
189
|
Interferon lambda alleles predict innate antiviral immune responses and hepatitis C virus permissiveness. Cell Host Microbe 2014; 15:190-202. [PMID: 24528865 DOI: 10.1016/j.chom.2014.01.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/02/2014] [Accepted: 01/16/2014] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) infection can result in viral chronicity or clearance. Although host genetics and particularly genetic variation in the interferon lambda (IFNL) locus are associated with spontaneous HCV clearance and treatment success, the mechanisms guiding these clinical outcomes remain unknown. Using a laser capture microdissection-driven unbiased systems virology approach, we isolated and transcriptionally profiled HCV-infected and adjacent primary human hepatocytes (PHHs) approaching single-cell resolution. An innate antiviral immune signature dominated the transcriptional response but differed in magnitude and diversity between HCV-infected and adjacent cells. Molecular signatures associated with more effective antiviral control were determined by comparing donors with high and low infection frequencies. Cells from donors with clinically unfavorable IFNL genotypes were infected at a greater frequency and exhibited dampened antiviral and cell death responses. These data suggest that early virus-host interactions, particularly host genetics and induction of innate immunity, critically determine the outcome of HCV infection.
Collapse
|
190
|
Molecular basis of interferon resistance in hepatitis C virus. Curr Opin Virol 2014; 8:38-44. [DOI: 10.1016/j.coviro.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 02/08/2023]
|
191
|
Lim PJ, Gallay PA. Hepatitis C NS5A protein: two drug targets within the same protein with different mechanisms of resistance. Curr Opin Virol 2014; 8:30-7. [PMID: 24879295 PMCID: PMC4195798 DOI: 10.1016/j.coviro.2014.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
The era of interferon-free antiviral treatments for hepatitis C virus infection has arrived. With increasing numbers of approved antivirals, evaluating all parameters that may influence response is necessary to choose optimal combinations for treatment success. Targeting NS5A has become integral in antiviral combinations in clinical development. Daclatasvir and ledipasvir belong to the NS5A inhibitor class, which directly target the NS5A protein. Alisporivir, a host-targeting antiviral, is a cyclophilin inhibitor that indirectly targets NS5A by blocking NS5A/cyclophilin A interaction. Resistance to daclatasvir and ledipasvir differs from alisporivir, with mutations arising in NS5A domains I and II, respectively. Combining these two classes acting on distinct NS5A domains represents an attractive strategy for potentially effective interferon-free treatments for chronic hepatitis C infection.
Collapse
Affiliation(s)
- Precious J Lim
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philippe A Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
192
|
Affiliation(s)
- Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
193
|
Goody MF, Sullivan C, Kim CH. Studying the immune response to human viral infections using zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:84-95. [PMID: 24718256 PMCID: PMC4067600 DOI: 10.1016/j.dci.2014.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 05/24/2023]
Abstract
Humans and viruses have a long co-evolutionary history. Viral illnesses have and will continue to shape human history: from smallpox, to influenza, to HIV, and beyond. Animal models of human viral illnesses are needed in order to generate safe and effective antiviral medicines, adjuvant therapies, and vaccines. These animal models must support the replication of human viruses, recapitulate aspects of human viral illnesses, and respond with conserved immune signaling cascades. The zebrafish is perhaps the simplest, most commonly used laboratory model organism in which innate and/or adaptive immunity can be studied. Herein, we will discuss the current zebrafish models of human viral illnesses and the insights they have provided. We will highlight advantages of early life stage zebrafish and the importance of innate immunity in human viral illnesses. We will also discuss viral characteristics to consider before infecting zebrafish with human viruses as well as predict other human viruses that may be able to infect zebrafish.
Collapse
Affiliation(s)
- Michelle F Goody
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Con Sullivan
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Carol H Kim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
194
|
Chen J, Zhao Y, Zhang C, Chen H, Feng J, Chi X, Pan Y, Du J, Guo M, Cao H, Chen H, Wang Z, Pei R, Wang Q, Pan L, Niu J, Chen X, Tang H. Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res 2014; 24:1050-66. [PMID: 25155355 PMCID: PMC4152738 DOI: 10.1038/cr.2014.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/15/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023] Open
Abstract
The majority of hepatitis C virus (HCV) infection develops chronic infection, which causes steatosis, cirrhosis and hepatocellular carcinoma. However, understanding HCV chronicity and pathogenesis is hampered by its narrow host range, mostly restricted to human and chimpanzee. Recent endeavour to infect a variety of humanized mice has not been able to achieve persistent HCV infection unless the essential innate immune responsive genes are knocked out. Nevertheless, such immune-compromised humanized mice still lacked HCV infection-induced hepatopathogenesis. Here we report that transgenic mice in ICR background harboring both human CD81 and occludin genes (C/OTg) are permissive to HCV infection at a chronicity rate comparable to humans. In this mouse model, HCV accomplishes its replication cycle, leading to sustained viremia and infectivity for more than 12 months post infection with expected fibrotic and cirrhotic progression. Host factors favorable for HCV replication, and inadequate innate immune-response may contribute to the persistence. Lastly, NS3/4 protease inhibitor telaprevir can effectively inhibit de novo RNA synthesis and acute HCV infection of C/OTg mice. Thus, chronic HCV infection with complete replication cycle and hepatopathologic manifestations is recapitulated, for the first time, in immune-competent mice. This model will open a new venue to study the mechanisms of chronic hepatitis C and develop better treatments.
Collapse
Affiliation(s)
- Jizheng Chen
- State Key Laboratory of Virology and the Center for Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yang Zhao
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hairong Chen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Feng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiumei Chi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yu Pan
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jun Du
- The Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Min Guo
- State Key Laboratory of Virology and the Center for Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Huang Cao
- State Key Laboratory of Virology and the Center for Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Honghe Chen
- State Key Laboratory of Virology and the Center for Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Zilong Wang
- State Key Laboratory of Virology and the Center for Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology and the Center for Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Qian Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 210093, China
| | - Lei Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xinwen Chen
- State Key Laboratory of Virology and the Center for Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hong Tang
- 1] State Key Laboratory of Virology and the Center for Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China [2] Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
195
|
Autophagy in HCV infection: keeping fat and inflammation at bay. BIOMED RESEARCH INTERNATIONAL 2014; 2014:265353. [PMID: 25162004 PMCID: PMC4138948 DOI: 10.1155/2014/265353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is one of the main causes of chronic liver disease. Viral persistence and pathogenesis rely mainly on the ability of HCV to deregulate specific host processes, including lipid metabolism and innate immunity. Recently, autophagy has emerged as a cellular pathway, playing a role in several aspects of HCV infection. This review summarizes current knowledge on the molecular mechanisms that link the HCV life cycle with autophagy machinery. In particular, we discuss the role of HCV/autophagy interaction in dysregulating inflammation and lipid homeostasis and its potential for translational applications in the treatment of HCV-infected patients.
Collapse
|
196
|
Di Paolo NC. Recognition of human oncogenic viruses by host pattern-recognition receptors. Front Immunol 2014; 5:353. [PMID: 25101093 PMCID: PMC4105630 DOI: 10.3389/fimmu.2014.00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/09/2014] [Indexed: 12/31/2022] Open
Abstract
Human oncogenic viruses include Epstein-Barr virus, hepatitis B virus, hepatitis C virus, human papilloma virus, human T-cell lymphotropic virus, Kaposi's associated sarcoma virus, and Merkel cell polyomavirus. It would be expected that during virus-host interaction, the immune system would recognize these pathogens and eliminate them. However, through evolution, these viruses have developed a number of strategies to avoid such an outcome and successfully establish chronic infections. The persistent nature of the infection caused by these viruses is associated with their oncogenic potential. In this article, we will review the latest information on the interaction between oncogenic viruses and the innate immune system of the host. In particular, we will summarize the available knowledge on the recognition by host pattern-recognition receptors of pathogen-associated molecular patterns present in the incoming viral particle or generated during the virus' life cycle. We will also review the data on the recognition of cell-derived danger associated molecular patterns generated during the virus infection that may impact the outcome of the host-pathogen interaction and the development cancer.
Collapse
Affiliation(s)
- Nelson C Di Paolo
- Lowance Center for Human Immunology, Division of Rheumatology, Departments of Pediatrics and Medicine, Emory University , Atlanta, GA , USA
| |
Collapse
|
197
|
Dustin LB, Cashman SB, Laidlaw SM. Immune control and failure in HCV infection--tipping the balance. J Leukoc Biol 2014; 96:535-48. [PMID: 25015956 DOI: 10.1189/jlb.4ri0214-126r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the development of potent antiviral drugs, HCV remains a global health problem; global eradication is a long way off. In this review, we discuss the immune response to HCV infection and particularly, the interplay between viral strategies that delay the onset of antiviral responses and host strategies that limit or even eradicate infected cells but also contribute to pathogenesis. Although HCV can disable some cellular virus-sensing machinery, IFN-stimulated antiviral genes are induced in the infected liver. Whereas epitope evolution contributes to escape from T cell-mediated immunity, chronic high antigen load may also blunt the T cell response by activating exhaustion or tolerance mechanisms. The evasive maneuvers of HCV limit sterilizing humoral immunity through rapid evolution of decoy epitopes, epitope masking, stimulation of interfering antibodies, lipid shielding, and cell-to-cell spread. Whereas the majority of HCV infections progress to chronic hepatitis with persistent viremia, at least 20% of patients spontaneously clear the infection. Most of these are protected from reinfection, suggesting that protective immunity to HCV exists and that a prophylactic vaccine may be an achievable goal. It is therefore important that we understand the correlates of protective immunity and mechanisms of viral persistence.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Siobhán B Cashman
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Stephen M Laidlaw
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| |
Collapse
|
198
|
Zhou X, Sun P, Lucendo-Villarin B, Angus A, Szkolnicka D, Cameron K, Farnworth S, Patel A, Hay D. Modulating innate immunity improves hepatitis C virus infection and replication in stem cell-derived hepatocytes. Stem Cell Reports 2014; 3:204-14. [PMID: 25068132 PMCID: PMC4110790 DOI: 10.1016/j.stemcr.2014.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 02/05/2023] Open
Abstract
In this study, human embryonic stem cell-derived hepatocytes (hESC-Heps) were investigated for their ability to support hepatitis C virus (HCV) infection and replication. hESC-Heps were capable of supporting the full viral life cycle, including the release of infectious virions. Although supportive, hESC-Hep viral infection levels were not as great as those observed in Huh7 cells. We reasoned that innate immune responses in hESC-Heps may lead to the low level of infection and replication. Upon further investigation, we identified a strong type III interferon response in hESC-Heps that was triggered by HCV. Interestingly, specific inhibition of the JAK/STAT signaling pathway led to an increase in HCV infection and replication in hESC-Heps. Of note, the interferon response was not evident in Huh7 cells. In summary, we have established a robust cell-based system that allows the in-depth study of virus-host interactions in vitro.
Collapse
Affiliation(s)
- Xiaoling Zhou
- Shantou University Medical College, Shantou 515041, People’s Republic of China
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G11 5JR, UK
| | - Pingnan Sun
- Shantou University Medical College, Shantou 515041, People’s Republic of China
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G11 5JR, UK
| | | | - Allan G.N. Angus
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G11 5JR, UK
| | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sarah L. Farnworth
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G11 5JR, UK
- Corresponding author
| | - David C. Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
- Corresponding author
| |
Collapse
|
199
|
Beard MR, Ffrench R, Gowans EJ, Helbig KJ, Eyre NM, Douglas MMW, Grebely J, Ahlenstiel G, Locarnini S, George J, Shackel NA, White PA, Thompson AJ, Drummer HE. A summary of the 20th International Symposium on Hepatitis C Virus and Related Viruses. Gastroenterology 2014; 147:e1-4. [PMID: 24861641 DOI: 10.1053/j.gastro.2014.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Michael R Beard
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, and Centre for Cancer Biology, SA Pathology, Adelaide, Australia.
| | - Rose Ffrench
- Centre for Biomedicine, Burnet Institute, Melbourne, Department of Immunology, Monash University, Melbourne, Australia
| | - Eric J Gowans
- Virology Laboratory, Discipline of Surgery, University of Adelaide, Basil Hetzel Institute for Translational Medicine, Adelaide, South Australia
| | - Karla J Helbig
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, and Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Nicholas M Eyre
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, and Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Mark M W Douglas
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Jason Grebely
- The Kirby Institute, UNSW Australia, Sydney, Australia
| | - Golo Ahlenstiel
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Jacob George
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Nick A Shackel
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Heidi E Drummer
- Centre for Biomedicine, Burnet Institute, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia; Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
200
|
Chinnaswamy S. Genetic variants at the IFNL3 locus and their association with hepatitis C virus infections reveal novel insights into host-virus interactions. J Interferon Cytokine Res 2014; 34:479-97. [PMID: 24555572 PMCID: PMC4080901 DOI: 10.1089/jir.2013.0113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022] Open
Abstract
Human genetic variation plays a critical role in both spontaneous clearance of and response to interferon (IFN)-based therapies against hepatitis C virus (HCV) as shown by the success of recent genome-wide association studies (GWAS). Several GWAS and later validation studies have shown that single nucleotide polymorphisms (SNPs) at the IFNL3 (formerly IL28B) locus on chromosome 19 are involved in eliminating HCV in human patients. No doubt that this information is helping clinicians worldwide in making better clinical decisions in anti-HCV therapy, but the biological mechanisms involving the SNPs leading to differential responses to therapy and spontaneous clearance of HCV remain elusive. Recent reports including the discovery of a novel IFN (IFN-λ4) gene at the IFNL3 locus and in vitro functional studies implicating 2 SNPs as causal variants lead to novel conclusions and perhaps to new directions in research. An attempt is made in this review to summarize the major findings of the GWAS, the efforts involved in the discovery of causal SNPs; and to explain the biological basis for spontaneous clearance and response to treatment in HCV infections.
Collapse
|