151
|
McCarty MF, Iloki Assanga SB, Lewis Luján L, O’Keefe JH, DiNicolantonio JJ. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond. Nutrients 2020; 13:E47. [PMID: 33375692 PMCID: PMC7823562 DOI: 10.3390/nu13010047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Inflammasomes are intracellular protein complexes that form in response to a variety of stress signals and that serve to catalyze the proteolytic conversion of pro-interleukin-1β and pro-interleukin-18 to active interleukin-1β and interleukin-18, central mediators of the inflammatory response; inflammasomes can also promote a type of cell death known as pyroptosis. The NLRP3 inflammasome has received the most study and plays an important pathogenic role in a vast range of pathologies associated with inflammation-including atherosclerosis, myocardial infarction, the complications of diabetes, neurological and autoimmune disorders, dry macular degeneration, gout, and the cytokine storm phase of COVID-19. A consideration of the molecular biology underlying inflammasome priming and activation enables the prediction that a range of nutraceuticals may have clinical potential for suppressing inflammasome activity-antioxidants including phycocyanobilin, phase 2 inducers, melatonin, and N-acetylcysteine, the AMPK activator berberine, glucosamine, zinc, and various nutraceuticals that support generation of hydrogen sulfide. Complex nutraceuticals or functional foods featuring a number of these agents may find utility in the prevention and control of a wide range of medical disorders.
Collapse
Affiliation(s)
| | - Simon Bernard Iloki Assanga
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | - Lidianys Lewis Luján
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | | | | |
Collapse
|
152
|
Weaver C, Cyr B, de Rivero Vaccari JC, de Rivero Vaccari JP. Inflammasome Proteins as Inflammatory Biomarkers of Age-Related Macular Degeneration. Transl Vis Sci Technol 2020; 9:27. [PMID: 33364081 PMCID: PMC7746957 DOI: 10.1167/tvst.9.13.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) can result in severe vision loss and blurriness in the older population. The early and intermediate stages of AMD typically start without noticeable symptoms and can only be detected with a comprehensive eye exam. Because of the quiet onset of the disease, it is necessary to identify potential biomarkers to aid in the diagnosis, staging, and association with disease onset. Inflammasome signaling proteins are prominent biomarkers in the central nervous system, and the inflammasome has been shown to play a role in the innate inflammatory response in aging and AMD. Methods Serum from healthy controls and AMD patients were analyzed for the protein levels of Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), interleukin (IL)-18 and C-reactive protein (CRP) to determine cutoff points, positive and negative predictive values, and receiver operator characteristic curves, as well as univariate and multivariate linear and logistic regression models. Results ASC, IL-18, and CRP were elevated in the serum of AMD patients when compared to healthy controls. The area under the curve (AUC) for ASC was 0.98 with a cutoff point of 365.6 pg/mL, whereas IL-18 had an AUC of 0.73 and a cutoff point of 242.4 pg/mL, and the AUC for CRP was 0.67 with a cutoff point of 8,684,152 pg/mL. Levels of IL-18 had a statistically significant linear correlation with that of ASC with an adjusted R2 of 0.1906, indicating that 19% of IL-18 could be explained by ASC protein levels in serum. Moreover, a logistic regression model for the diagnosis of AMD consists of ASC and having a diagnosis of hypertension, indicating that these two factors (elevated levels of ASC and a diagnosis of hypertension [HTN]) are associated with the diagnosis of AMD. Conclusions ASC, IL-18, and CRP are elevated in patients with AMD, and the protein levels of IL-18 are partially the result of ASC protein expression. Moreover, elevated protein levels of ASC in serum and a diagnosis of HTN increase the odds of patients having a diagnosis of AMD. Translational Relevance Biomarkers of AMD may be used to monitor disease risk, response to treatment and disease progression.
Collapse
Affiliation(s)
- Cailey Weaver
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brianna Cyr
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA.,InflamaCORE, LLC. Miami, FL, USA
| |
Collapse
|
153
|
Nagai N, Kawashima H, Toda E, Homma K, Osada H, Guzman NA, Shibata S, Uchiyama Y, Okano H, Tsubota K, Ozawa Y. Renin-angiotensin system impairs macrophage lipid metabolism to promote age-related macular degeneration in mouse models. Commun Biol 2020; 3:767. [PMID: 33299105 PMCID: PMC7725839 DOI: 10.1038/s42003-020-01483-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome, a condition involving obesity and hypertension, increases the risk of aging-associated diseases such as age-related macular degeneration (AMD). Here, we demonstrated that high-fat diet (HFD)-fed mice accumulated oxidized low-density lipoprotein (ox-LDL) in macrophages through the renin–angiotensin system (RAS). The ox-LDL-loaded macrophages were responsible for visual impairment in HFD mice along with a disorder of the retinal pigment epithelium (RPE), which is required for photoreceptor outer segment renewal. RAS repressed ELAVL1, which reduced PPARγ, impeding ABCA1 induction to levels that are sufficient to excrete overloaded cholesterol within the macrophages. The ox-LDL-loaded macrophages expressed inflammatory cytokines and attacked the RPE. An antihypertensive drug, angiotensin II type 1 receptor (AT1R) blocker, resolved the decompensation of lipid metabolism in the macrophages and reversed the RPE condition and visual function in HFD mice. AT1R signaling could be a future therapeutic target for macrophage-associated aging diseases, such as AMD. Nagai et al. show that mice fed high-fat diet (HFD) accumulate oxidized low-density lipoprotein in macrophages through the renin–angiotensin system, which impairs visual function. They find that angiotensin II type 1 receptor (AT1R) improves the visual function of HFD mice, suggesting AT1R signaling as a potential therapeutic target for age-related macular degeneration.
Collapse
Affiliation(s)
- Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Naymel A Guzman
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan. .,St. Luke's International University, 9-1 Akashi-Cho, Tokyo, 104-8560, Japan.
| |
Collapse
|
154
|
Hertzog J, Rehwinkel J. Regulation and inhibition of the DNA sensor cGAS. EMBO Rep 2020; 21:e51345. [PMID: 33155371 PMCID: PMC7726805 DOI: 10.15252/embr.202051345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous sensing of nucleic acids is essential for host defence against invading pathogens by inducing antiviral and inflammatory cytokines. cGAS has emerged in recent years as a non-redundant DNA sensor important for detection of many viruses and bacteria. Upon binding to DNA, cGAS synthesises the cyclic dinucleotide 2'3'-cGAMP that binds to the adaptor protein STING and thereby triggers IRF3- and NFκB-dependent transcription. In addition to infection, the pathophysiology of an ever-increasing number of sterile inflammatory conditions in humans involves the recognition of DNA through cGAS. Consequently, the cGAS/STING signalling axis has emerged as an attractive target for pharmacological modulation. However, the development of cGAS and STING inhibitors has just begun and a need for specific and effective compounds persists. In this review, we focus on cGAS and explore how its activation by immunostimulatory DNA is regulated by cellular mechanisms, viral immune modulators and small molecules. We further use our knowledge of cGAS modulation by cells and viruses to conceptualise potential new ways of pharmacological cGAS targeting.
Collapse
Affiliation(s)
- Jonny Hertzog
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Jan Rehwinkel
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
155
|
Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat Neurosci 2020; 24:61-73. [PMID: 33257875 DOI: 10.1038/s41593-020-00745-w] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Normal aging is accompanied by escalating systemic inflammation. Yet the potential impact of immune homeostasis on neurogenesis and cognitive decline during brain aging have not been previously addressed. Here we report that natural killer (NK) cells of the innate immune system reside in the dentate gyrus neurogenic niche of aged brains in humans and mice. In situ expansion of these cells contributes to their abundance, which dramatically exceeds that of other immune subsets. Neuroblasts within the aged dentate gyrus display a senescence-associated secretory phenotype and reinforce NK cell activities and surveillance functions, which result in NK cell elimination of aged neuroblasts. Genetic or antibody-mediated depletion of NK cells leads to sustained improvements in neurogenesis and cognitive function during normal aging. These results demonstrate that NK cell accumulation in the aging brain impairs neurogenesis, which may serve as a therapeutic target to improve cognition in the aged population.
Collapse
|
156
|
Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun 2020; 8:189. [PMID: 33168089 PMCID: PMC7654589 DOI: 10.1186/s40478-020-01062-w] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 ubiquitin-protein ligase (PARKIN) genes are associated with familial forms of Parkinson’s disease (PD). PINK1, a protein kinase, and PARKIN, an E3 ubiquitin ligase, control the specific elimination of dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial network and preserving energy metabolism. PINK1 regulates PARKIN translocation in impaired mitochondria and drives their removal via selective autophagy, a process known as mitophagy. As knowledge obtained using different PINK1 and PARKIN transgenic animal models is being gathered, growing evidence supports the contribution of mitophagy impairment to several human pathologies, including PD and Alzheimer’s diseases (AD). Therefore, therapeutic interventions aiming to modulate PINK1/PARKIN signalling might have the potential to treat these diseases. In this review, we will start by discussing how the interplay of PINK1 and PARKIN signalling helps mediate mitochondrial physiology. We will continue by debating the role of mitochondrial dysfunction in disorders such as amyotrophic lateral sclerosis, Alzheimer’s, Huntington’s and Parkinson’s diseases, as well as eye diseases such as age-related macular degeneration and glaucoma, and the causative factors leading to PINK1/PARKIN-mediated neurodegeneration and neuroinflammation. Finally, we will discuss PINK1/PARKIN gene augmentation possibilities with a particular focus on AD, PD and glaucoma.
Collapse
|
157
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res 2020; 79:100858. [PMID: 32298788 PMCID: PMC7650008 DOI: 10.1016/j.preteyeres.2020.100858] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Szabolcs Felszeghy
- Department of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA, 90033, USA
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, PA 15224, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA
| | - Deborah Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
158
|
Guo Y, Gu R, Gan D, Hu F, Li G, Xu G. Mitochondrial DNA drives noncanonical inflammation activation via cGAS-STING signaling pathway in retinal microvascular endothelial cells. Cell Commun Signal 2020; 18:172. [PMID: 33115500 PMCID: PMC7592595 DOI: 10.1186/s12964-020-00637-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathological stimuli cause mitochondrial damage and leakage of mitochondrial DNA (mtDNA) into the cytosol, as demonstrated in many cell types. The cytosolic mtDNA then drives the activation of noninfectious inflammation. Retinal microvascular endothelial cells (RMECs) play an important role in the inner endothelial blood-retinal barrier (BRB). RMEC dysfunction frequently occurs in posterior-segment eye diseases, causing loss of vision. In this study, we investigated the involvement of cytosolic mtDNA in noninfectious immune inflammation in RMECs under pathological stimuli. METHODS RMECs were stimulated with 100 ng/ml lipopolysaccharide (LPS), 200 μM hydrogen peroxide (H2O2), or 25 mM D-glucose. After 24 h, immunofluorescent staining was used to detect the opening of the mitochondrial permeability transition pore (MPTP). Cytosolic mtDNA was detected with immunofluorescent staining and PCR after stimulation. mtDNA was then isolated and used to transfect RMECs in vitro, and the protein levels of cGAS were evaluated with western blotting. Real-time PCR was used to examine cGAS mRNA expression levels at different time points after mtDNA stimulation. The activation of STING was detected with immunofluorescent staining 6 h after mtDNA stimulation. Western blotting was used to determine the expression of STING and IFNβ, the phosphorylation status of TBK1, IRF3, and nuclear factor-κB (NF-κB) P65, and the nuclear translocation of IRF3 and NF-κB P65 at 0, 3, 6, 12, and 24 h. The mRNA expression of proinflammatory cytokines CCL4, CXCL10, and IFNB1, and transcription factor IRF1 were determined with real-time PCR, together with the concentrations of intercellular adhesion molecule 1 (ICAM-1) mRNA. RESULTS Pathological stimuli caused mtDNA to leak into the cytosol by opening the MPTP in RMECs after 24 h. Cytosolic mtDNA regulated the expression of cGAS and the distribution of STING in RMECs. It promoted ICAM-1, STING and IFNβ expression, TBK1, IRF3, and NF-κB phosphorylation and the nuclear translocation in RMECs at 12 and 24 h after its transfection. The mRNAs of proinflammatory cytokines CCL4, CXCL10, and IFNB1, and transcription factor IRF1 were significantly elevated at 12 and 24 h after mtDNA stimulation. CONCLUSIONS Pathological stimulation induces mtDNA escape into the cytosol of RMECs. This cytoplasmic mtDNA is recognized by the DNA sensor cGAS, increasing the expression of inflammatory cytokines through the STING-TBK1 signaling pathway. Video Abstract. (MP4 37490 kb).
Collapse
Affiliation(s)
- Yue Guo
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Dekang Gan
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Fangyuan Hu
- Eye Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Gang Li
- Eye Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China. .,Key Laboratory of Myopia of State Health Ministry, Shanghai, 200031, China.
| |
Collapse
|
159
|
Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res 2020; 83:100915. [PMID: 33069860 DOI: 10.1016/j.preteyeres.2020.100915] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated virus (AAV) is the leading vector for gene therapy in the retina. As non-pathogenic, non-integrating, replication deficient vector, the recombinant virus efficiently transduces all key retinal cell populations. Successful testing of AAV vectors in clinical trials of inherited retinal diseases led to the recent approval of voretigene neparvovec (Luxturna) for the treatment of RPE65 mutation-associated retinal dystrophies. However, studies applying AAV-mediated retinal gene therapy independently reported intraocular inflammation and/or loss of efficacy after initial functional improvements. Both observations might be explained by targeted removal of transduced cells via anti-viral defence mechanisms. AAV has been shown to activate innate pattern recognition receptors (PRRs) such as toll-like receptor (TLR)-2 and TLR-9 resulting in the release of inflammatory cytokines and type I interferons. The vector can also induce capsid-specific and transgene-specific T cell responses and neutralizing anti-AAV antibodies which both limit the therapeutic effect. However, the target organ of retinal gene therapy, the eye, is known as an immune-privileged site. It is characterized by suppression of inflammation and promotion of immune tolerance which might prevent AAV-induced immune responses. This review evaluates AAV-related immune responses, toxicity and inflammation in studies of retinal gene therapy, identifies influencing variables of these responses and discusses potential strategies to modulate immune reactions to AAV vectors to increase the safety and efficacy of ocular gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Eduardo Rodríguez-Bocanegra
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniyar Dauletbekov
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
160
|
Ambati J, Magagnoli J, Leung H, Wang SB, Andrews CA, Fu D, Pandey A, Sahu S, Narendran S, Hirahara S, Fukuda S, Sun J, Pandya L, Ambati M, Pereira F, Varshney A, Cummings T, Hardin JW, Edun B, Bennett CL, Ambati K, Fowler BJ, Kerur N, Röver C, Leitinger N, Werner BC, Stein JD, Sutton SS, Gelfand BD. Repurposing anti-inflammasome NRTIs for improving insulin sensitivity and reducing type 2 diabetes development. Nat Commun 2020; 11:4737. [PMID: 32968070 PMCID: PMC7511405 DOI: 10.1038/s41467-020-18528-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Innate immune signaling through the NLRP3 inflammasome is activated by multiple diabetes-related stressors, but whether targeting the inflammasome is beneficial for diabetes is still unclear. Nucleoside reverse-transcriptase inhibitors (NRTI), drugs approved to treat HIV-1 and hepatitis B infections, also block inflammasome activation. Here, we show, by analyzing five health insurance databases, that the adjusted risk of incident diabetes is 33% lower in patients with NRTI exposure among 128,861 patients with HIV-1 or hepatitis B (adjusted hazard ratio for NRTI exposure, 0.673; 95% confidence interval, 0.638 to 0.710; P < 0.0001; 95% prediction interval, 0.618 to 0.734). Meanwhile, an NRTI, lamivudine, improves insulin sensitivity and reduces inflammasome activation in diabetic and insulin resistance-induced human cells, as well as in mice fed with high-fat chow; mechanistically, inflammasome-activating short interspersed nuclear element (SINE) transcripts are elevated, whereas SINE-catabolizing DICER1 is reduced, in diabetic cells and mice. These data suggest the possibility of repurposing an approved class of drugs for prevention of diabetes.
Collapse
Affiliation(s)
- Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Hannah Leung
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shao-Bin Wang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chris A Andrews
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Eye Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Dongxu Fu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Akshat Pandey
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Jian Sun
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lekha Pandya
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Meenakshi Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Akhil Varshney
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tammy Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - James W Hardin
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Babatunde Edun
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Medicine, Baystate Medical Center, Springfield, MA, USA
| | - Charles L Bennett
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
- Center for Medication Safety and Efficacy, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Kameshwari Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christian Röver
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Brian C Werner
- Department of Orthopaedics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joshua D Stein
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - S Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
161
|
Bai L, Li W, Zheng W, Xu D, Chen N, Cui J. Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacol Res 2020; 159:105017. [DOI: 10.1016/j.phrs.2020.105017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
162
|
Ma R, Ortiz Serrano TP, Davis J, Prigge AD, Ridge KM. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J 2020; 34:13156-13170. [PMID: 32860267 PMCID: PMC8121456 DOI: 10.1096/fj.202001607r] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
The presence of DNA in the cytosol is usually a sign of microbial infections, which alerts the host innate immune system to mount a defense response. Cyclic GMP-AMP synthase (cGAS) is a critical cytosolic DNA sensor that elicits robust innate immune responses through the production of the second messenger, cyclic GMP-AMP (cGAMP), which binds and activates stimulator of interferon genes (STING). However, cGAS binds to DNA irrespective of DNA sequence, therefore, self-DNA leaked from the nucleus or mitochondria can also serve as a cGAS ligand to activate this pathway and trigger extensive inflammatory responses. Dysregulation of the cGAS-STING pathway is responsible for a broad array of inflammatory and autoimmune diseases. Recently, evidence has shown that self-DNA release and cGAS-STING pathway over-activation can drive lung disease, making this pathway a promising therapeutic target for inflammatory lung disease. Here, we review recent advances on the cGAS-STING pathway governing self-DNA sensing, highlighting its role in pulmonary disease.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Davis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
163
|
Narendran S, Pereira F, Yerramothu P, Apicella I, Wang SB, Varshney A, Baker KL, Marion KM, Ambati M, Ambati VL, Ambati K, Sadda SR, Gelfand BD, Ambati J. A Clinical Metabolite of Azidothymidine Inhibits Experimental Choroidal Neovascularization and Retinal Pigmented Epithelium Degeneration. Invest Ophthalmol Vis Sci 2020; 61:4. [PMID: 32749462 PMCID: PMC7441363 DOI: 10.1167/iovs.61.10.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Azidothymidine (AZT), a nucleoside reverse transcriptase inhibitor, possesses anti-inflammatory and anti-angiogenic activity independent of its ability to inhibit reverse transcriptase. The aim of this study was to evaluate the efficacy of 5'-glucuronyl azidothymidine (GAZT), an antiretrovirally inert hepatic clinical metabolite of AZT, in mouse models of retinal pigment epithelium (RPE) degeneration and choroidal neovascularization (CNV), hallmark features of dry and wet age-related macular degeneration (AMD), respectively. Methods RPE degeneration was induced in wild-type (WT) C57BL/6J mice by subretinal injection of Alu RNA. RPE degeneration was assessed by fundus photography and confocal microscopy of zonula occludens-1-stained RPE flat mounts. Choroidal neovascularization was induced by laser injury in WT mice, and CNV volume was measured by confocal microscopy. AZT and GAZT were delivered by intravitreous injections. Inflammasome activation was monitored by western blotting for caspase-1 and by ELISA for IL-1β in Alu RNA-treated bone marrow-derived macrophages (BMDMs). Results GAZT inhibited Alu RNA-induced RPE degeneration and laser-induced CNV. GAZT also reduced Alu RNA-induced caspase-1 activation and IL-1β release in BMDMs. Conclusions GAZT possesses dual anti-inflammatory and anti-angiogenic properties and could be a viable treatment option for both forms of AMD.
Collapse
Affiliation(s)
- Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Shao-bin Wang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Akhil Varshney
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Kirstie L. Baker
- Doheny Eye Institute, Los Angeles, Los Angeles, California, United States
| | - Kenneth M. Marion
- Doheny Eye Institute, Los Angeles, Los Angeles, California, United States
| | - Meenakshi Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Center for Digital Image Evaluation, Charlottesville, Virginia, United States
| | - Vidya L. Ambati
- Center for Digital Image Evaluation, Charlottesville, Virginia, United States
| | - Kameshwari Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Srinivas R. Sadda
- Doheny Eye Institute, Los Angeles, Los Angeles, California, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Bradley D. Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
164
|
Kaarniranta K, Pawlowska E, Szczepanska J, Blasiak J. DICER1 in the Pathogenesis of Age-related Macular Degeneration (AMD) - Alu RNA Accumulation versus miRNA Dysregulation. Aging Dis 2020; 11:851-862. [PMID: 32765950 PMCID: PMC7390522 DOI: 10.14336/ad.2019.0809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
DICER1 deficiency in the retinal pigment epithelium (RPE) was associated with the accumulation of Alu transcripts and implicated in geographic atrophy (GA), a form of age-related macular degeneration (AMD), an eye disease leading to blindness in millions of people. Although the exact mechanism of this association is not fully known, the activation of the NLRP3 inflammasome, maturation of caspase-1 and disruption in mitochondrial homeostasis in RPE cells were shown as critical for it. DICER1 deficiency results in dysregulation of miRNAs and changes in the expression of many genes important for RPE homeostasis, which may also contribute to AMD. DICER1 deficiency can change the functions of the miR-183/96/182 cluster that regulates photoreceptors and their synaptic transmission. Aging, the main AMD risk factor, is associated with decreased expression of DICER1 and changes in its diurnal pattern that are not synchronized with circadian regulation in the retina. The initial insult inducing DICER1 deficiency in AMD may be oxidative stress, another major risk factor of AMD, but further studies on the role of deficient DICER1 in AMD pathogenesis and its therapeutic potential are needed.
Collapse
Affiliation(s)
- Kai Kaarniranta
- 1Department of Ophthalmology, University of Eastern Finland, Kuopio 70211, Finland and Department of Ophthalmology, Kuopio University Hospital, Kuopio 70029, Finland
| | - Elzbieta Pawlowska
- 2Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland
| | - Joanna Szczepanska
- 3Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Janusz Blasiak
- 4Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
165
|
Yamada K, Kaneko H, Shimizu H, Suzumura A, Namba R, Takayama K, Ito S, Sugimoto M, Terasaki H. Lamivudine Inhibits Alu RNA-induced Retinal Pigment Epithelium Degeneration via Anti-inflammatory and Anti-senescence Activities. Transl Vis Sci Technol 2020; 9:1. [PMID: 32855848 PMCID: PMC7422901 DOI: 10.1167/tvst.9.8.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Accumulation of the long noncoding Alu element RNA activates the NLRP3 inflammasome and leads to retinal pigment epithelium (RPE) cell death, a key event in the pathogenesis of geographic atrophy during late-stage age-related macular degeneration. Lamivudine (3TC) is a nucleoside analog reverse transcriptase inhibitor known to inhibit the NLRP3 inflammasome. Currently, the intracellular response of the senescence marker p16Ink4a to the long noncoding RNA is being actively studied. The present study aimed to assess the efficacy of 3TC against Alu RNA-induced RPE inflammation and senescence by evaluating changes in expression of the proinflammatory cytokines IL-18 and IL-1β and of p16INK4a in RPE cells. Methods Cultured human RPE cells and in vivo mouse RPE cells were transfected with an in vitro-transcribed Alu RNA, and changes in IL-18, IL-1β, and p16Ink4a expression measured in the presences of 3TC or 3,4-(M)CA as a negative control. Results Treatment with 3TC markedly reduced Alu RNA-induced expression of IL-18 and IL-1β in human and mouse RPE cells compared with the negative control. Further, Alu RNA-induced p16INK4a expression was suppressed by 3TC in human RPE cells. Conclusions Our data suggest that Alu RNA accumulation contributes to RPE cell senescence in age-related macular degeneration and that this pathogenic process can be suppressed by 3TC. Translational Relevance Further verifying this study leads to potential targets for age-related macular degeneration therapy.
Collapse
Affiliation(s)
- Kazuhisa Yamada
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rina Namba
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Takayama
- Department of Ophthalmology, National Defense Medical College, Japan
| | - Seina Ito
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masataka Sugimoto
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
166
|
Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proc Natl Acad Sci U S A 2020; 117:15989-15999. [PMID: 32581130 PMCID: PMC7354937 DOI: 10.1073/pnas.2002144117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Huntington disease (HD) is a genetic disorder caused by glutamine-expansion in the huntingtin (mHTT) protein, which affects motor, psychiatric, and cognitive function, but the mechanisms remain unclear. mHTT is known to induce DNA damage and affect autophagy, both associated with inflammatory responses, but what mediates all these were unknown. Here we report that cGAS, a DNA damage sensor, is highly upregulated in the striatum of a mouse model and HD human patient’s tissue. We found ribosomes, which make proteins, are robustly accumulated on the cGAS mRNA in HD cells. cGAS depletion decreases—and cGAS expression increases—both inflammatory and autophagy responses in HD striatal cells. Thus, cGAS is a therapeutic target for HD. Blocking cGAS will prevent/slow down HD symptoms. Huntington disease (HD) is caused by an expansion mutation of the N-terminal polyglutamine of huntingtin (mHTT). mHTT is ubiquitously present, but it induces noticeable damage to the brain’s striatum, thereby affecting motor, psychiatric, and cognitive functions. The striatal damage and progression of HD are associated with the inflammatory response; however, the underlying molecular mechanisms remain unclear. Here, we report that cGMP-AMP synthase (cGAS), a DNA sensor, is a critical regulator of inflammatory and autophagy responses in HD. Ribosome profiling revealed that the cGAS mRNA has high ribosome occupancy at exon 1 and codon-specific pauses at positions 171 (CCG) and 172 (CGT) in HD striatal cells. Moreover, the protein levels and activity of cGAS (based on the phosphorylated STING and phosphorylated TBK1 levels), and the expression and ribosome occupancy of cGAS-dependent inflammatory genes (Ccl5 and Cxcl10) are increased in HD striatum. Depletion of cGAS diminishes cGAS activity and decreases the expression of inflammatory genes while suppressing the up-regulation of autophagy in HD cells. In contrast, reinstating cGAS in cGAS-depleted HD cells activates cGAS activity and promotes inflammatory and autophagy responses. Ribosome profiling also revealed that LC3A and LC3B, the two major autophagy initiators, show altered ribosome occupancy in HD cells. We also detected the presence of numerous micronuclei, which are known to induce cGAS, in the cytoplasm of neurons derived from human HD embryonic stem cells. Collectively, our results indicate that cGAS is up-regulated in HD and mediates inflammatory and autophagy responses. Thus, targeting the cGAS pathway may offer therapeutic benefits in HD.
Collapse
|
167
|
Yum S, Li M, Chen ZJ. Old dogs, new trick: classic cancer therapies activate cGAS. Cell Res 2020; 30:639-648. [PMID: 32541866 PMCID: PMC7395767 DOI: 10.1038/s41422-020-0346-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
The discovery of cancer immune surveillance and immunotherapy has opened up a new era of cancer treatment. Immunotherapies modulate a patient’s immune system to specifically eliminate cancer cells; thus, it is considered a very different approach from classic cancer therapies that usually induce DNA damage to cause cell death in a cell-intrinsic manner. However, recent studies have revealed that classic cancer therapies such as radiotherapy and chemotherapy also elicit antitumor immunity, which plays an essential role in their therapeutic efficacy. The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and the downstream effector Stimulator of Interferon Genes (STING) have been determined to be critical for this interplay. Here, we review the antitumor roles of the cGAS-STING pathway during tumorigenesis, cancer immune surveillance, and cancer therapies. We also highlight classic cancer therapies that elicit antitumor immune responses through cGAS activation.
Collapse
Affiliation(s)
- Seoyun Yum
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Minghao Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhijian J Chen
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
168
|
Matikainen S, Nyman TA, Cypryk W. Function and Regulation of Noncanonical Caspase-4/5/11 Inflammasome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3063-3069. [PMID: 32513874 DOI: 10.4049/jimmunol.2000373] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 01/05/2025]
Abstract
Inflammasomes are multiprotein complexes of the innate immune system that orchestrate development of inflammation by activating the secretion of proinflammatory cytokines, IL-1β and IL-18. The LPS of Gram-negative bacteria have been shown to activate a novel, noncanonical inflammasome by directly binding in the cytosol to human caspase-4 and mouse caspase-11. Activation of noncanonical inflammasome exerts two major effects: it activates the NLRP3-caspase-1-mediated processing and secretion of IL-1β and IL-18 and induces the inflammatory cell death, pyroptosis, via gasdermin D. This previously unexpected cytosolic LPS sensing of the innate immune system provides critical hints for host response to Gram-negative bacterial infections and development of different inflammatory diseases. However, many of its molecular regulatory mechanisms are yet to be discovered. In this review, we provide comprehensive analysis of current understanding of intracellular LPS detection and pyroptosis via noncanonical inflammasome and discuss the recently proposed mechanisms of its function and regulation.
Collapse
Affiliation(s)
- Sampsa Matikainen
- Helsinki Rheumatic Disease and Inflammation Research Group, Translational Immunology Research Program, University of Helsinki, Helsinki University Clinicum, 00290 Helsinki, Finland;
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0372 Oslo, Norway; and
| | - Wojciech Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland
| |
Collapse
|
169
|
Bravo JI, Nozownik S, Danthi PS, Benayoun BA. Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development 2020; 147:dev175786. [PMID: 32527937 PMCID: PMC10680986 DOI: 10.1242/dev.175786] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our understanding of the molecular regulation of aging and age-related diseases is still in its infancy, requiring in-depth characterization of the molecular landscape shaping these complex phenotypes. Emerging classes of molecules with promise as aging modulators include transposable elements, circRNAs and the mitochondrial transcriptome. Analytical complexity means that these molecules are often overlooked, even though they exhibit strong associations with aging and, in some cases, may directly contribute to its progress. Here, we review the links between these novel factors and age-related phenotypes, and we suggest tools that can be easily incorporated into existing pipelines to better understand the aging process.
Collapse
Affiliation(s)
- Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Séverine Nozownik
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Magistère européen de Génétique, Université Paris Diderot-Paris 7, Paris 75014, France
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
170
|
Zhao W, Xiong M, Yuan X, Li M, Sun H, Xu Y. In Silico Screening-Based Discovery of Novel Inhibitors of Human Cyclic GMP-AMP Synthase: A Cross-Validation Study of Molecular Docking and Experimental Testing. J Chem Inf Model 2020; 60:3265-3276. [PMID: 32459092 DOI: 10.1021/acs.jcim.0c00171] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) has been recently uncovered to be a promising therapeutic target for immune-associated diseases. Until now, only a few inhibitors have been identified through high-throughput screening campaigns. Here, we reported the discovery of novel inhibitors for the catalytic domain of human cGAS (h-cGASCD) by virtual screening for the first time. To generate a reliable docking mode, we first obtained a high-resolution crystal structure of h-cGASCD in complex with PF-06928215, a known inhibitor of h-cGAS, followed by molecular dynamics simulations on this complex structure. Four fragment hits were identified by the virtual screening together with a thermal shift assay. The crystal structures of these four compounds in complex with h-cGASCD were subsequently determined, and the binding modes of the compounds were similar to those predicted by molecular docking, supporting the reliability of the docking model. In addition, an enzyme activity assay identified compound 18 (IC50 = 29.88 ± 3.20 μM) from the compounds predicted by the virtual screening. A similarity search of compound 18 followed by a second virtual screening led to the discovery of compounds S2 (IC50 = 13.1 ± 0.09 μM) and S3 (IC50 = 4.9 ± 0.26 μM) as h-cGAS inhibitors with improved potency. Therefore, the present study not only provides the validated hit compounds for further development of h-cGAS inhibitors but also demonstrates a cross-validation study of virtual screening, in vitro experimental assays, and crystal structure determination.
Collapse
Affiliation(s)
- Wenfeng Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China.,CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Muya Xiong
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojing Yuan
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
171
|
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 2020; 21:501-521. [PMID: 32424334 DOI: 10.1038/s41580-020-0244-x] [Citation(s) in RCA: 1175] [Impact Index Per Article: 235.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The cGAS-STING signalling axis, comprising the synthase for the second messenger cyclic GMP-AMP (cGAS) and the cyclic GMP-AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS-STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS-STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome-dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid-liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS-STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany. .,Gene Center, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Veit Hornung
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany. .,Gene Center, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
172
|
Wan D, Jiang W, Hao J. Research Advances in How the cGAS-STING Pathway Controls the Cellular Inflammatory Response. Front Immunol 2020; 11:615. [PMID: 32411126 PMCID: PMC7198750 DOI: 10.3389/fimmu.2020.00615] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Double-stranded DNA (dsDNA) sensor cyclic-GMP-AMP synthase (cGAS) along with the downstream stimulator of interferon genes (STING) acting as essential immune-surveillance mediators have become hot topics of research. The intrinsic function of the cGAS-STING pathway facilitates type-I interferon (IFN) inflammatory signaling responses and other cellular processes such as autophagy, cell survival, senescence. cGAS-STING pathway interplays with other innate immune pathways, by which it participates in regulating infection, inflammatory disease, and cancer. The therapeutic approaches targeting this pathway show promise for future translation into clinical applications. Here, we present a review of the important previous works and recent advances regarding the cGAS-STING pathway, and provide a comprehensive understanding of the modulatory pattern of the cGAS-STING pathway under multifarious pathologic states.
Collapse
Affiliation(s)
- Dongshan Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
173
|
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical bases of NLRP3 activation and regulation and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
Collapse
|
174
|
Bader V, Winklhofer KF. Mitochondria at the interface between neurodegeneration and neuroinflammation. Semin Cell Dev Biol 2020; 99:163-171. [DOI: 10.1016/j.semcdb.2019.05.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
|
175
|
Saeed AFUH, Ruan X, Guan H, Su J, Ouyang S. Regulation of cGAS-Mediated Immune Responses and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902599. [PMID: 32195086 PMCID: PMC7080523 DOI: 10.1002/advs.201902599] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Indexed: 05/08/2023]
Abstract
Early detection of infectious nucleic acids released from invading pathogens by the innate immune system is critical for immune defense. Detection of these nucleic acids by host immune sensors and regulation of DNA sensing pathways have been significant interests in the past years. Here, current understandings of evolutionarily conserved DNA sensing cyclic GMP-AMP (cGAMP) synthase (cGAS) are highlighted. Precise activation and tight regulation of cGAS are vital in appropriate innate immune responses, senescence, tumorigenesis and immunotherapy, and autoimmunity. Hence, substantial insights into cytosolic DNA sensing and immunotherapy of indispensable cytosolic sensors have been detailed to extend limited knowledge available thus far. This Review offers a critical, in-depth understanding of cGAS regulation, cytosolic DNA sensing, and currently established therapeutic approaches of essential cytosolic immune agents for improved human health.
Collapse
Affiliation(s)
- Abdullah F. U. H. Saeed
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266237China
- College of Chemistry and Materials ScienceFujian Normal UniversityFuzhou350117China
| | - Xinglin Ruan
- Department of NeurologyFujian Medical University Union Hospital29 Xinquan Road Gulou DistrictFuzhou350001China
| | - Hongxin Guan
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Jingqian Su
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266237China
| |
Collapse
|
176
|
Advances in the molecular mechanisms of NLRP3 inflammasome activators and inactivators. Biochem Pharmacol 2020; 175:113863. [PMID: 32081791 DOI: 10.1016/j.bcp.2020.113863] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
NLRP3 inflammasome is an intracellular protein complex that initiates cellular injury via assembly of NLRP3, ASC and caspase-1 in response to microbial infection and sterile stressors. The importance of NLRP3 inflammasome in immunity and human diseases has been well documented. Up to now, targeted inhibition of the assembly of NLRP3 inflammasome complex and of its activation was thought to be therapeutic strategy for associated diseases. Recent studies show that a host of molecules such as NIMA-related kinase 7 (Nek7) and DEAD-box helicase 3 X-linked (DDX3X) and a large number of biological mediators including cytokines, microRNAs, nitric oxide, carbon monoxide, nuclear factor erythroid-2 related factor 2 (Nrf2) and cellular autophagy participate in the activation and inactivation of NLRP3 inflammasome. This review summarizes current understanding of the molecular basis of NLRP3 inflammasome activation and inactivation. This knowledge may lead to development of new therapies directed at NLRP3 inflammasome related diseases.
Collapse
|
177
|
Wooff Y, Fernando N, Wong JHC, Dietrich C, Aggio-Bruce R, Chu-Tan JA, Robertson AAB, Doyle SL, Man SM, Natoli R. Caspase-1-dependent inflammasomes mediate photoreceptor cell death in photo-oxidative damage-induced retinal degeneration. Sci Rep 2020; 10:2263. [PMID: 32041990 PMCID: PMC7010818 DOI: 10.1038/s41598-020-58849-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
Activation of the inflammasome is involved in the progression of retinal degenerative diseases, in particular, in the pathogenesis of Age-Related Macular Degeneration (AMD), with NLRP3 activation the focus of many investigations. In this study, we used genetic and pharmacological approaches to explore the role of the inflammasome in a mouse model of retinal degeneration. We identify that Casp1/11-/- mice have better-preserved retinal function, reduced inflammation and increased photoreceptor survivability. While Nlrp3-/- mice display some level of preservation of retinal function compared to controls, pharmacological inhibition of NLRP3 did not protect against photoreceptor cell death. Further, Aim2-/-, Nlrc4-/-, Asc-/-, and Casp11-/- mice show no substantial retinal protection. We propose that CASP-1-associated photoreceptor cell death occurs largely independently of NLRP3 and other established inflammasome sensor proteins, or that inhibition of a single sensor is not sufficient to repress the inflammatory cascade. Therapeutic targeting of CASP-1 may offer a more promising avenue to delay the progression of retinal degenerations.
Collapse
Affiliation(s)
- Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Josephine H C Wong
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Catherine Dietrich
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Avril A B Robertson
- School of Chemistry and Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- The National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Si Ming Man
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
- The ANU Medical School, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
178
|
Wright CB, Uehara H, Kim Y, Yasuma T, Yasuma R, Hirahara S, Makin RD, Apicella I, Pereira F, Nagasaka Y, Narendran S, Fukuda S, Albuquerque R, Fowler BJ, Bastos-Carvalho A, Georgel P, Hatada I, Chang B, Kerur N, Ambati BK, Ambati J, Gelfand BD. Chronic Dicer1 deficiency promotes atrophic and neovascular outer retinal pathologies in mice. Proc Natl Acad Sci U S A 2020; 117:2579-2587. [PMID: 31964819 PMCID: PMC7007521 DOI: 10.1073/pnas.1909761117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Degeneration of the retinal pigmented epithelium (RPE) and aberrant blood vessel growth in the eye are advanced-stage processes in blinding diseases such as age-related macular degeneration (AMD), which affect hundreds of millions of people worldwide. Loss of the RNase DICER1, an essential factor in micro-RNA biogenesis, is implicated in RPE atrophy. However, the functional implications of DICER1 loss in choroidal and retinal neovascularization are unknown. Here, we report that two independent hypomorphic mouse strains, as well as a separate model of postnatal RPE-specific DICER1 ablation, all presented with spontaneous RPE degeneration and choroidal and retinal neovascularization. DICER1 hypomorphic mice lacking critical inflammasome components or the innate immune adaptor MyD88 developed less severe RPE atrophy and pathological neovascularization. DICER1 abundance was also reduced in retinas of the JR5558 mouse model of spontaneous choroidal neovascularization. Finally, adenoassociated vector-mediated gene delivery of a truncated DICER1 variant (OptiDicer) reduced spontaneous choroidal neovascularization in JR5558 mice. Collectively, these findings significantly expand the repertoire of DICER1 in preserving retinal homeostasis by preventing both RPE degeneration and pathological neovascularization.
Collapse
Affiliation(s)
- Charles B Wright
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Hironori Uehara
- Department of Ophthalmology, Loma Linda University, Loma Linda, CA 92350
| | - Younghee Kim
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Tetsuhiro Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Reo Yasuma
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Ryan D Makin
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Aravind Medical Research Foundation, Aravind Eye Care System, Madurai, Tamil Nadu 625020, India
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Romulo Albuquerque
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Ana Bastos-Carvalho
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Philippe Georgel
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, 67085 Strasbourg, France
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | | | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903;
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA 22904
| |
Collapse
|
179
|
Zhang W, Qu J, Liu GH, Belmonte JCI. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 2020; 21:137-150. [PMID: 32020082 DOI: 10.1038/s41580-019-0204-5] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Ageing is characterized by the functional decline of tissues and organs and the increased risk of ageing-associated disorders. Several 'rejuvenating' interventions have been proposed to delay ageing and the onset of age-associated decline and disease to extend healthspan and lifespan. These interventions include metabolic manipulation, partial reprogramming, heterochronic parabiosis, pharmaceutical administration and senescent cell ablation. As the ageing process is associated with altered epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, and non-coding RNAs, the manipulation of these mechanisms is central to the effectiveness of age-delaying interventions. This Review discusses the epigenetic changes that occur during ageing and the rapidly increasing knowledge of how these epigenetic mechanisms have an effect on healthspan and lifespan extension, and outlines questions to guide future research on interventions to rejuvenate the epigenome and delay ageing processes.
Collapse
Affiliation(s)
- Weiqi Zhang
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.,Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guang-Hui Liu
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
180
|
Chalmers TJ, Wu LE. Transposable Elements Cross Kingdom Boundaries and Contribute to Inflammation and Ageing: Somatic Acquisition of Foreign Transposable Elements as a Catalyst of Genome Instability, Epigenetic Dysregulation, Inflammation, Senescence, and Ageing. Bioessays 2020; 42:e1900197. [PMID: 31994769 DOI: 10.1002/bies.201900197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Indexed: 01/07/2023]
Abstract
The de-repression of transposable elements (TEs) in mammalian genomes is thought to contribute to genome instability, inflammation, and ageing, yet is viewed as a cell-autonomous event. In contrast to mammalian cells, prokaryotes constantly exchange genetic material through TEs, crossing both cell and species barriers, contributing to rapid microbial evolution and diversity in complex communities such as the mammalian gut. Here, it is proposed that TEs released from prokaryotes in the microbiome or from pathogenic infections regularly cross the kingdom barrier to the somatic cells of their eukaryotic hosts. It is proposed this horizontal transfer of TEs from microbe to host is a stochastic, ongoing catalyst of genome destabilization, resulting in structural and epigenetic variations, and activation of well-evolved host defense mechanisms contributing to inflammation, senescence, and biological ageing. It is proposed that innate immunity pathways defend against the horizontal acquisition of microbial TEs, and that activation of this pathway during horizontal transposon transfer promotes chronic inflammation during ageing. Finally, it is suggested that horizontal acquisition of prokaryotic TEs into mammalian genomes has been masked and subsequently under-reported due to flaws in current sequencing pipelines, and new strategies to uncover these events are proposed.
Collapse
Affiliation(s)
| | - Lindsay E Wu
- School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
181
|
Mitochondrial DNA: A Key Regulator of Anti-Microbial Innate Immunity. Genes (Basel) 2020; 11:genes11010086. [PMID: 31940818 PMCID: PMC7017290 DOI: 10.3390/genes11010086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
During the last few years, mitochondrial DNA has attained much attention as a modulator of immune responses. Due to common evolutionary origin, mitochondrial DNA shares various characteristic features with DNA of bacteria, as it consists of a remarkable number of unmethylated DNA as 2′-deoxyribose cytidine-phosphate-guanosine (CpG) islands. Due to this particular feature, mitochondrial DNA seems to be recognized as a pathogen-associated molecular pattern by the innate immune system. Under the normal physiological situation, mitochondrial DNA is enclosed in the double membrane structure of mitochondria. However, upon pathological conditions, it is usually released into the cytoplasm. Growing evidence suggests that this cytosolic mitochondrial DNA induces various innate immune signaling pathways involving NLRP3, toll-like receptor 9, and stimulator of interferon genes (STING) signaling, which participate in triggering downstream cascade and stimulating to produce effector molecules. Mitochondrial DNA is responsible for inflammatory diseases after stress and cellular damage. In addition, it is also involved in the anti-viral and anti-bacterial innate immunity. Thus, instead of entire mitochondrial importance in cellular metabolism and energy production, mitochondrial DNA seems to be essential in triggering innate anti-microbial immunity. Here, we describe existing knowledge on the involvement of mitochondrial DNA in the anti-microbial immunity by modulating the various immune signaling pathways.
Collapse
|
182
|
Liao Y, Zhang H, He D, Wang Y, Cai B, Chen J, Ma J, Liu Z, Wu Y. Retinal Pigment Epithelium Cell Death Is Associated With NLRP3 Inflammasome Activation by All-trans Retinal. Invest Ophthalmol Vis Sci 2019; 60:3034-3045. [PMID: 31311035 DOI: 10.1167/iovs.18-26360] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Visual (retinoid) cycle anomalies induce aberrant build-up of all-trans retinal (atRAL) in the retinal pigment epithelium (RPE), which is a cause of RPE atrophy in Stargardt disease type 1 and age-related macular degeneration. NLR family pyrin domain containing 3 (NLRP3) inflammasome activation is implicated in the etiology of age-related macular degeneration. Here, we elucidated the relationship between NLRP3 inflammasome activation and atRAL-induced death of RPE cells. Methods Cellular toxicities were assessed by MTS or MTT assays. Expression levels of mRNAs and proteins were determined by quantitative reverse transcription-polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. Fluorescence microscopy was used to examine intracellular signals. Ultrastructural features of organelles were examined by transmission electron microscope. Results Abnormal accumulation of atRAL was associated with a significant increase in the proportion of human ARPE-19 cells exhibiting features of apoptosis and Caspase-3/gasdermin E (GSDME)-mediated pyroptosis. These cells also exhibited elevated expression of NLRP3, ASC, cleaved Caspase-1/poly ADP-ribose polymerase (PARP)/Caspase-3/GSDME, interleukin-1β (IL-1β), and IL-18, as well as NLRP3 inflammasome-related genes (IL1B and IL18). After exposure of human ARPE-19 cells to excess atRAL, reactive oxygen species (ROS) (including mitochondrial ROS) and cathepsins released from lysosomes transmitted signals leading to NLRP3 inflammasome activation. Suppressing the production of ROS, NLRP3 inflammasome, Caspase-1, cathepsin B, or cathepsin D protected ARPE-19 cells against atRAL-associated cytotoxicity. Damage to mitochondria, lysosomes, and endoplasmic reticulum in atRAL-exposed ARPE-19 cells was partially alleviated by treatment with MCC950, a selective NLRP3 inflammasome inhibitor. Conclusions Aberrant build-up of atRAL promotes the death of RPE cells via NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yi Liao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen City, China
| | - Houjian Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen City, China
| | - Danxue He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen City, China
| | - Yan Wang
- Department of Ophthalmology, Shenzhen Hospital, Southern Medical University, Shenzhen City, China
| | - Binxiang Cai
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen City, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen City, China
| | - Jianxing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen City, China
| | - Yalin Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen City, China.,Shenzhen Research Institute of Xiamen University, Shenzhen City, China
| |
Collapse
|
183
|
Sintim HO, Mikek CG, Wang M, Sooreshjani MA. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. MEDCHEMCOMM 2019; 10:1999-2023. [PMID: 32206239 PMCID: PMC7069516 DOI: 10.1039/c8md00555a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
The cyclic dinucleotide-cGAS-STING axis plays important roles in host immunity. Activation of this signaling pathway, via cytosolic sensing of bacterial-derived c-di-GMP/c-di-AMP or host-derived cGAMP, leads to the production of inflammatory interferons and cytokines that help resolve infection. Small molecule activators of the cGAS-STING axis have the potential to augment immune response against various pathogens or cancer. The aberrant activation of this pathway, due to gain-of-function mutations in any of the proteins that are part of the signaling axis, could lead to various autoimmune diseases. Inhibiting various nodes of the cGAS-STING axis could provide relief to patients with autoimmune diseases. Many excellent reviews on the cGAS-STING axis have been published recently, and these have mainly focused on the molecular details of the cGAS-STING pathway. This review however focuses on small molecules that can be used to modulate various aspects of the cGAS-STING pathway, as well as other parallel inflammatory pathways.
Collapse
Affiliation(s)
- Herman O Sintim
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Institute for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
- Purdue Institute of Inflammation and Infectious Diseases , Purdue University , West Lafayette , IN 47907 , USA
| | - Clinton G Mikek
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Modi Wang
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Moloud A Sooreshjani
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| |
Collapse
|
184
|
Zhong F, Liang S, Zhong Z. Emerging Role of Mitochondrial DNA as a Major Driver of Inflammation and Disease Progression. Trends Immunol 2019; 40:1120-1133. [PMID: 31744765 DOI: 10.1016/j.it.2019.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Inflammation benefits the host by promoting the elimination of invading pathogens and clearance of cellular debris after tissue injury. Inflammation also stimulates tissue repair and regeneration to restore homeostasis and organismal health. Emerging evidence suggests that mitochondrial DNA (mtDNA), the only form of non-nuclear DNA in eukaryotic cells, is a major activator of inflammation when leaked out from stressed mitochondria. Here, we review the current understanding on the role of mtDNA in innate immunity, discussing how dysregulated mtDNA metabolism can promote chronic inflammation and disease progression.
Collapse
Affiliation(s)
- Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology and College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei 071000, China
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
185
|
Göös H, Fogarty CL, Sahu B, Plagnol V, Rajamäki K, Nurmi K, Liu X, Einarsdottir E, Jouppila A, Pettersson T, Vihinen H, Krjutskov K, Saavalainen P, Järvinen A, Muurinen M, Greco D, Scala G, Curtis J, Nordström D, Flaumenhaft R, Vaarala O, Kovanen PE, Keskitalo S, Ranki A, Kere J, Lehto M, Notarangelo LD, Nejentsev S, Eklund KK, Varjosalo M, Taipale J, Seppänen MRJ. Gain-of-function CEBPE mutation causes noncanonical autoinflammatory inflammasomopathy. J Allergy Clin Immunol 2019; 144:1364-1376. [PMID: 31201888 PMCID: PMC11057357 DOI: 10.1016/j.jaci.2019.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/06/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND CCAAT enhancer-binding protein epsilon (C/EBPε) is a transcription factor involved in late myeloid lineage differentiation and cellular function. The only previously known disorder linked to C/EBPε is autosomal recessive neutrophil-specific granule deficiency leading to severely impaired neutrophil function and early mortality. OBJECTIVE The aim of this study was to molecularly characterize the effects of C/EBPε transcription factor Arg219His mutation identified in a Finnish family with previously genetically uncharacterized autoinflammatory and immunodeficiency syndrome. METHODS Genetic analysis, proteomics, genome-wide transcriptional profiling by means of RNA-sequencing, chromatin immunoprecipitation (ChIP) sequencing, and assessment of the inflammasome function of primary macrophages were performed. RESULTS Studies revealed a novel mechanism of genome-wide gain-of-function that dysregulated transcription of 464 genes. Mechanisms involved dysregulated noncanonical inflammasome activation caused by decreased association with transcriptional repressors, leading to increased chromatin occupancy and considerable changes in transcriptional activity, including increased expression of NLR family, pyrin domain-containing 3 protein (NLRP3) and constitutively expressed caspase-5 in macrophages. CONCLUSION We describe a novel autoinflammatory disease with defective neutrophil function caused by a homozygous Arg219His mutation in the transcription factor C/EBPε. Mutated C/EBPε acts as a regulator of both the inflammasome and interferome, and the Arg219His mutation causes the first human monogenic neomorphic and noncanonical inflammasomopathy/immunodeficiency. The mechanism, including widely dysregulated transcription, is likely not unique for C/EBPε. Similar multiomics approaches should also be used in studying other transcription factor-associated diseases.
Collapse
Affiliation(s)
- Helka Göös
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Christopher L Fogarty
- Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Diabetes & Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland; Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Vincent Plagnol
- University College London Genetics Institute, University College London, London, United Kingdom
| | - Kristiina Rajamäki
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katariina Nurmi
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Annukka Jouppila
- Helsinki University Hospital Research Institute, Helsinki, Finland
| | - Tom Pettersson
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Internal Medicine and Rehabilitation, Helsinki University Hospital, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kaarel Krjutskov
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Helsinki University Hospital Research Institute, Helsinki, Finland; Competence Centre on Health Technologies, Tartu, Estonia
| | - Päivi Saavalainen
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Asko Järvinen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mari Muurinen
- Folkhälsan Institute of Genetics, Helsinki, Finland; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Faculty of Medicine and Life Sciences & Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Giovanni Scala
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Faculty of Medicine and Life Sciences & Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - James Curtis
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dan Nordström
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Rheumatology, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Robert Flaumenhaft
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Outi Vaarala
- Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Respiratory, Inflammation and Autoimmunity, Innovative Medicine, AstraZeneca, Mölndal, Sweden
| | - Panu E Kovanen
- Department of Pathology, University of Helsinki, and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereal Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland; School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Markku Lehto
- Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Diabetes & Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kari K Eklund
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Rheumatology, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Orton Orthopaedic Hospital and Research Institute, Invalid Foundation, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jussi Taipale
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden; Department of Biochemistry, Cambridge University, Cambridge, United Kingdom
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Rare Diseases Center and Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
186
|
Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, Fujii R, Ishidate F, Tanaka T, Tanaka Y, Hirokawa N, Nangaku M, Inagi R. Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury. Cell Rep 2019; 29:1261-1273.e6. [DOI: 10.1016/j.celrep.2019.09.050] [Citation(s) in RCA: 378] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/01/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
|
187
|
DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2019; 20:95-112. [PMID: 31558839 DOI: 10.1038/s41577-019-0215-7] [Citation(s) in RCA: 1070] [Impact Index Per Article: 178.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
The innate immune system has the capacity to detect 'non-self' molecules derived from pathogens, known as pathogen-associated molecular patterns, via pattern recognition receptors. In addition, an increasing number of endogenous host-derived molecules, termed damage-associated molecular patterns (DAMPs), have been found to be sensed by various innate immune receptors. The recognition of DAMPs, which are produced or released by damaged and dying cells, promotes sterile inflammation, which is important for tissue repair and regeneration, but can also lead to the development of numerous inflammatory diseases, such as metabolic disorders, neurodegenerative diseases, autoimmune diseases and cancer. Here we examine recent discoveries concerning the roles of DAMP-sensing receptors in sterile inflammation and in diseases resulting from dysregulated sterile inflammation, and then discuss insights into the cross-regulation of these receptors and their ligands.
Collapse
|
188
|
Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019; 18:845-867. [PMID: 31554927 DOI: 10.1038/s41573-019-0043-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Nucleic acid sensors, primarily TLR and RLR family members, as well as cGAS-STING signalling, play a critical role in the preservation of cellular and organismal homeostasis. Accordingly, deregulated nucleic acid sensing contributes to the origin of a diverse range of disorders, including infectious diseases, as well as cardiovascular, autoimmune and neoplastic conditions. Accumulating evidence indicates that normalizing aberrant nucleic acid sensing can mediate robust therapeutic effects. However, targeting nucleic acid sensors with pharmacological agents, such as STING agonists, presents multiple obstacles, including drug-, target-, disease- and host-related issues. Here, we discuss preclinical and clinical data supporting the potential of this therapeutic paradigm and highlight key limitations and possible strategies to overcome them.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Jules A Hoffmann
- University of Strasbourg Institute for Advanced Studies, Strasbourg, France.,CNRS UPR 9022, Institute for Molecular and Cellular Biology, Strasbourg, France.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université Paris Descartes, Paris, France.
| |
Collapse
|
189
|
Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res 2019; 74:100778. [PMID: 31505218 DOI: 10.1016/j.preteyeres.2019.100778] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 01/03/2023]
Abstract
Innate immune cells such as neutrophils, monocyte-macrophages and microglial cells are pivotal for the health and disease of the retina. For the maintenance of retinal homeostasis, these cells and immunosuppressive molecules in the eye actively regulate the induction and the expression of inflammation in order to prevent excessive activation and subsequent tissue damage. In the disease context, these regulatory mechanisms are modulated genetically and/or by environmental stimuli such as damage-associated molecular patterns (DAMPs), and a chronic innate immune response regulates or contributes to the formation of diverse retinal disorders such as uveitis, retinitis pigmentosa, retinal vascular diseases and retinal fibrosis. Here we summarize the recent knowledge regarding the innate immune response in both ocular immune regulation and inflammatory retinal diseases, and we describe the potential of the innate immune response as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
190
|
Abstract
Acute graft-versus-host disease (GVHD) remains a major obstacle for the wider usage of allogeneic hematopoietic stem cell transplantation (allo-HSCT), which is an effective therapy for hematopoietic malignancy. Here we show that caspase-11, the cytosolic receptor for bacterial endotoxin (lipopolysaccharide: LPS), enhances GVHD severity. Allo-HSCT markedly increases the LPS-caspase-11 interaction, leading to the cleavage of gasdermin D (GSDMD). Caspase-11 and GSDMD mediate the release of interleukin-1α (IL-1α) in allo-HSCT. Deletion of Caspase-11 or Gsdmd, inhibition of LPS-caspase-11 interaction, or neutralizing IL-1α uniformly reduces intestinal inflammation, tissue damage, donor T cell expansion and mortality in allo-HSCT. Importantly, Caspase-11 deficiency does not decrease the graft-versus-leukemia (GVL) activity, which is essential to prevent cancer relapse. These findings have major implications for allo-HSCT, as pharmacological interference with the caspase-11 signaling might reduce GVHD while preserving GVL activity. An increasing number of inflammatory pathologies is associated with IL-1 production downstream of caspases 1 and 11. Here the authors show that graft-versus-host-disease (GvHD) is diminished in mice with genetic or pharmacological ablation of caspase-11, and provide mechanistic insights into the signals leading to caspase-11 activation in GvHD.
Collapse
|
191
|
Ablasser A, Chen ZJ. cGAS in action: Expanding roles in immunity and inflammation. Science 2019; 363:363/6431/eaat8657. [PMID: 30846571 DOI: 10.1126/science.aat8657] [Citation(s) in RCA: 698] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA is highly immunogenic. It represents a key pathogen-associated molecular pattern (PAMP) during infection. Host DNA can, however, also act as a danger-associated molecular pattern (DAMP) and elicit strong inflammatory responses. The cGAS-STING pathway has emerged as a major pathway that detects intracellular DNA. Here, we highlight recent advances on how cGAS and STING mediate inflammatory responses and how these are regulated, allowing cells to readily respond to infections and noxious agents while avoiding the inappropriate sensing of self-DNA. A particular focus is placed on the role of cGAS in the context of sterile inflammatory conditions. Manipulating cGAS or STING may open the door for new therapeutic strategies for the treatment of acute and chronic inflammation relevant to many human diseases.
Collapse
Affiliation(s)
- Andrea Ablasser
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Zhijian J Chen
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
192
|
Peng H, Hulleman JD. Prospective Application of Activity-Based Proteomic Profiling in Vision Research-Potential Unique Insights into Ocular Protease Biology and Pathology. Int J Mol Sci 2019; 20:ijms20163855. [PMID: 31398819 PMCID: PMC6720450 DOI: 10.3390/ijms20163855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Activity-based proteomic profiling (ABPP) is a powerful tool to specifically target and measure the activity of a family of enzymes with the same function and reactivity, which provides a significant advantage over conventional proteomic strategies that simply provide abundance information. A number of inherited and age-related eye diseases are caused by polymorphisms/mutations or abnormal expression of proteases including serine proteases, cysteine proteases, and matrix metalloproteinases, amongst others. However, neither conventional genomic, transcriptomic, nor traditional proteomic profiling directly interrogate protease activities. Thus, leveraging ABPP to probe the activity of these enzyme classes as they relate to normal function and pathophysiology of the eye represents a unique potential opportunity for disease interrogation and possibly intervention.
Collapse
Affiliation(s)
- Hui Peng
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
193
|
Tavakoli Dargani Z, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol 2019; 317:H460-H471. [PMID: 31172809 PMCID: PMC6732475 DOI: 10.1152/ajpheart.00056.2019] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Doxorubicin (Dox)-induced cardiac side effects are regulated through increased oxidative stress and apoptosis. However, it remains unknown whether Dox induces the specific inflammatory-mediated form of cell death called pyroptosis. The current study is undertaken to determine whether Dox induces pyroptosis in an in vitro model and to test the potential of exosomes derived from embryonic stem cells (ES-Exos) in inhibiting pyroptosis. H9c2 cells were exposed to Dox to generate pyroptosis and then subsequently treated with exosomes to investigate the protective effects of ES-Exos. Mouse embryonic fibroblast-exosomes (MEF-Exos) were used as a cell line control. We confirmed pyroptosis by analyzing the presence of Toll-like receptor 4 (TLR4)-pyrin domain containing-3 (NLRP3) inflammasome that initiates pyroptosis, which was further confirmed with pyroptotic markers caspase-1, IL-1β, caspase-11, and gasdermin-D. The presence of inflammation was confirmed for proinflammatory cytokines, TNF-α, and IL-6. Our data show that Dox exposure significantly (P < 0.05) increases expression of TLR4, NLRP3, pyroptotic markers (caspase-1, IL-1β, caspase-11, and gasdermin-D), and proinflammatory cytokines (TNF-α and IL-6) in H9c2 cells. The increased expression of inflammasome, pyroptosis, and inflammation was significantly (P < 0.05) inhibited by ES-Exos. Interestingly, our cell line control, MEF-Exos, did not show any protective effects. Furthermore, our cytokine array data suggest increased anti-inflammatory (IL-4, IL-9, and IL-13) and decreased proinflammatory cytokines (Fas ligand, IL-12, and TNF-α) in ES-Exos, suggesting that anti-inflammatory cytokines might be mediating the protective effects of ES-Exos. In conclusion, our data show that Dox induces pyroptotic cell death in the H9c2 cell culture model and is attenuated via treatment with ES-Exos.NEW & NOTEWORTHY Doxorubicin (Dox)-induced cardiotoxicity is mediated through increased oxidative stress, apoptosis, and necrosis. We report for the first time as per the best of our knowledge that Dox initiates Toll-like receptor 4 and pyrin domain containing-3 inflammasome formation and induces caspase-1-mediated inflammatory pyroptotic cell death in H9c2 cells. Moreover, we establish that inflammation and pyroptosis is inhibited by embryonic stem cell-derived exosomes that could be used as a future therapeutic option to treat Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zahra Tavakoli Dargani
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| |
Collapse
|
194
|
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; 20:657-674. [PMID: 31358977 DOI: 10.1038/s41576-019-0151-1] [Citation(s) in RCA: 948] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
The detection of pathogens through nucleic acid sensors is a defining principle of innate immunity. RNA-sensing and DNA-sensing receptors sample subcellular compartments for foreign nucleic acids and, upon recognition, trigger immune signalling pathways for host defence. Over the past decade, our understanding of how the recognition of nucleic acids is coupled to immune gene expression has advanced considerably, particularly for the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signalling effector stimulator of interferon genes (STING), as well as the molecular components and regulation of this pathway. Moreover, the ability of self-DNA to engage cGAS has emerged as an important mechanism fuelling the development of inflammation and implicating the cGAS-STING pathway in human inflammatory diseases and cancer. This detailed mechanistic and biological understanding is paving the way for the development and clinical application of pharmacological agonists and antagonists in the treatment of chronic inflammation and cancer.
Collapse
Affiliation(s)
- Mona Motwani
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Scott Pesiridis
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
195
|
Wu Y, Wei Q, Yu J. The cGAS/STING pathway: a sensor of senescence-associated DNA damage and trigger of inflammation in early age-related macular degeneration. Clin Interv Aging 2019; 14:1277-1283. [PMID: 31371933 PMCID: PMC6628971 DOI: 10.2147/cia.s200637] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among the elderly. Considering the relatively limited effect of therapy on early AMD, it is important to focus on the pathogenesis of AMD, especially early AMD. Ageing is one of the strongest risk factors for AMD, and analysis of the impact of ageing on AMD development is valuable. Among all the ageing hallmarks, increased DNA damage accumulation is regarded as the beginning of cellular senescence and is related to abnormal expression of inflammatory cytokines, which is called the senescence-associated secretory phenotype (SASP). The exact pathway for DNA damage that triggers senescence-associated hallmarks is poorly understood. Recently, mounting evidence has shown that the cGAS/STING pathway is an important DNA sensor related to proinflammatory factor secretion and is associated with another hallmark of ageing, SASP. Thus, we hypothesized that the cGAS/STING pathway is a vital signalling pathway for early AMD development and that inhibition of STING might be a potential therapeutic strategy for AMD cases.
Collapse
Affiliation(s)
- Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China.,Department of Ophthalmology, Ninghai First Hospital, Zhejiang, People's Republic of China
| |
Collapse
|
196
|
Bai J, Liu F. The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes 2019; 68:1099-1108. [PMID: 31109939 PMCID: PMC6610018 DOI: 10.2337/dbi18-0052] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
It has been appreciated for many years that there is a strong association between metabolism and immunity in advanced metazoan organisms. Distinct immune signatures and signaling pathways have been found not only in immune but also in metabolic cells. The newly discovered DNA-sensing cGAS-cGAMP-STING pathway mediates type I interferon inflammatory responses in immune cells to defend against viral and bacterial infections. Recent studies show that this pathway is also activated by host DNA aberrantly localized in the cytosol, contributing to increased sterile inflammation, insulin resistance, and the development of nonalcoholic fatty liver disease (NAFLD). Potential interactions of the cGAS-cGAMP-STING pathway with mTORC1 signaling, autophagy, and apoptosis have been reported, suggesting an important role of the cGAS-cGAMP-STING pathway in the networking and coordination of these important biological processes. However, the regulation, mechanism of action, and tissue-specific role of the cGAS-cGAMP-STING signaling pathway in metabolic disorders remain largely elusive. It is also unclear whether targeting this signaling pathway is effective for the prevention and treatment of obesity-induced metabolic diseases. Answers to these questions would provide new insights for developing effective therapeutic interventions for metabolic diseases such as insulin resistance, NAFLD, and type 2 diabetes.
Collapse
Affiliation(s)
- Juli Bai
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX
| | - Feng Liu
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX
| |
Collapse
|
197
|
Miao NJ, Xie HY, Xu D, Yin JY, Wang YZ, Wang B, Yin F, Zhou ZL, Cheng Q, Chen PP, Zhou L, Xue H, Zhang W, Wang XX, Liu J, Lu LM. Caspase-11 promotes renal fibrosis by stimulating IL-1β maturation via activating caspase-1. Acta Pharmacol Sin 2019; 40:790-800. [PMID: 30382182 DOI: 10.1038/s41401-018-0177-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/24/2018] [Indexed: 12/28/2022]
Abstract
Caspase-11 is a key upstream modulator for activation of inflammatory response under pathological conditions. In this study, we investigated the roles of caspase-11 in the maturation of interleukin-1β (IL-1β) and development of renal interstitial fibrosis in vivo and in vitro. Mice were subjected to unilateral ureteral obstruction (UUO). The mice were treated with either caspase-11 inhibitor wedelolactone (Wed, 30 mg/kg/day, ig) for 7 days or caspase-11 siRNA (10 nmol/20 g body weight per day, iv) for 14 days. The mice were euthanized on day 14, their renal tissue and blood sample were collected. We found that the obstructed kidney had significantly higher caspase-11 levels and obvious tubular injury and interstitial fibrosis. Treatment with Wed or caspase-11 siRNA significantly mitigated renal fibrosis in UUO mice, evidenced by the improved histological changes. Furthermore, caspase-11 inhibition significantly blunted caspase-1 activation, IL-1β maturation, transforming growth factor-β (TGF-β), fibronectin, and collagen I expressions in the obstructed kidney. Renal tubular epithelial NRK-52E cells were treated in vitro with angiotensin (Ang, 1 μmol/L), which stimulated caspase-11 activation and IL-1β maturation. Treatment with IL-1β (20 ng/ml) significantly increased the expression of TGF-β, fibronectin, and collagen I in the cells. Ang II-induced expression of TGF-β, fibronectin, and collagen I were suppressed by caspase-11 siRNA or Wed. Finally, we revealed using co-immunoprecipitation that caspase-11 was able to interact with caspase-1 in NRK-52E cells. These results suggest that caspase-11 is involved in UUO-induced renal fibrosis. Elevation of caspase-11 in the obstructed kidney promotes renal fibrosis by stimulating caspase-1 activation and IL-1β maturation.
Collapse
|
198
|
Crow MK, Ronnblom L. Type I interferons in host defence and inflammatory diseases. Lupus Sci Med 2019; 6:e000336. [PMID: 31205729 PMCID: PMC6541752 DOI: 10.1136/lupus-2019-000336] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
Type I interferons (IFN) can have dual and opposing roles in immunity, with effects that are beneficial or detrimental to the individual depending on whether IFN pathway activation is transient or sustained. Determinants of IFN production and its functional consequences include the nature of the microbial or nucleic acid stimulus, the type of nucleic acid sensor involved in inducing IFN, the predominant subtype of type I IFN produced and the immune ecology of the tissue at the time of IFN expression. When dysregulated, the type I IFN system drives many autoimmune and non-autoimmune inflammatory diseases, including SLE and the tissue inflammation associated with chronic infection. The type I IFN system may also contribute to outcomes for patients affected by solid cancers or myocardial infarction. Significantly more research is needed to discern the mechanisms of induction and response to type I IFNs across these diseases, and patient endophenotyping may help determine whether the cytokine is acting as 'friend' or 'foe', within a particular patient, and at the time of treatment. This review summarises key concepts and discussions from the second International Summit on Interferons in Inflammatory Diseases, during which expert clinicians and scientists evaluated the evidence for the role of type I IFNs in autoimmune and other inflammatory diseases.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, Weill Cornell Medical College, New York City, New York, USA
| | - Lars Ronnblom
- Section of Rheumatology, Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
199
|
Miao N, Yin F, Xie H, Wang Y, Xu Y, Shen Y, Xu D, Yin J, Wang B, Zhou Z, Cheng Q, Chen P, Xue H, Zhou L, Liu J, Wang X, Zhang W, Lu L. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int 2019; 96:1105-1120. [PMID: 31405732 DOI: 10.1016/j.kint.2019.04.035] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
Abstract
Inflammation and tubular cell death are the hallmarks of acute kidney injury. However, the precise mechanism underlying these effects has not been fully elucidated. Here we tested whether caspase-11, an inflammatory member of the caspase family, was increased in cisplatin or ischemia-reperfusion-induced acute kidney injury. Caspase-11 knockout mice after cisplatin treatment exhibited attenuated deterioration of renal functional, reduced tubular damage, reduced macrophage and neutrophil infiltration, and decreased urinary IL-18 excretion. Mechanistically, the upregulation of caspase-11 by either cisplatin or ischemia-reperfusion cleaved gasdermin D (GSDMD) into GSDMD-N, which translocated onto the plasma membrane, thus triggering cell pyroptosis and facilitated IL-18 release in primary cultured renal tubular cells. These results were further confirmed in GSDMD knockout mice that cisplatin-induced renal morphological and functional deterioration as well as urinary IL-18 excretion were alleviated. Furthermore, deficiency of GSDMD significantly suppressed cisplatin-induced IL-18 release but not the transcription and maturation level of IL-18 in tubular cells. Thus, our study indicates that caspase-11/GSDMD dependent tubule cell pyroptosis plays a significant role in initiating tubular cell damage, urinary IL-18 excretion and renal functional deterioration in acute kidney injury.
Collapse
Affiliation(s)
- Naijun Miao
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Fan Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Hongyan Xie
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Yanzhe Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Dan Xu
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Jianyong Yin
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bao Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Zhuanli Zhou
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Qian Cheng
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Panpan Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Hong Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Xiaoxia Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, Shanghai, China.
| |
Collapse
|
200
|
Chromosomal instability and pro-inflammatory response in aging. Mech Ageing Dev 2019; 182:111118. [PMID: 31102604 DOI: 10.1016/j.mad.2019.111118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
Aging refers to the progressive deterioration of tissue and organ function over time. Increasing evidence points to the accumulation of highly damaged cell cycle-arrested cells with age (cellular senescence) as major reason for the development of certain aging-associated diseases. Recent studies have independently shown that aneuploidy, an abnormal chromosome set, occurs in senescent cells, and that the accumulation of cytoplasmic DNA driven by faulty chromosome segregation during mitosis aids in the establishment of senescence and its associated secretory phenotype known as SASP. Here we review the emerging link between chromosomal instability (CIN) and senescence in the context of aging, with emphasis on the cGAS-STING pathway activation and its role in the development of the SASP. Based on current evidence, we propose that age-associated CIN in mitotically active cells contributes to aging and its associated diseases, and we discuss the inhibition of CIN as a potential strategy to prevent the generation of aneuploid senescent cells and thereby to delay aging.
Collapse
|