151
|
Zinser EG, Hartmann T, Grimm MOW. Amyloid beta-protein and lipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1991-2001. [PMID: 17418089 DOI: 10.1016/j.bbamem.2007.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 01/16/2023]
Abstract
Lipids play an important part as risk or protective factors for Alzheimer's disease. This review summarizes the current findings in which lipids influence Alzheimer's disease and introduces the molecular mechanism how these lipids are linked to amyloid production. Besides the pathological impact of amyloid in Alzheimer's disease, amyloid has a physiological function in regulating lipid homeostasis in return. The understanding of the resulting regulatory cycles between amyloid precursor protein processing and lipids provides a platform for the development of new causal therapeutic approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- Eva G Zinser
- Universität des Saarlandes, Uniklinikum Homburg, Neurobiologie, Neurologie, Gebäude 90, 66421 Homburg/Saar, Germany
| | | | | |
Collapse
|
152
|
Matsuzaki K. Physicochemical interactions of amyloid beta-peptide with lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1935-42. [PMID: 17382287 DOI: 10.1016/j.bbamem.2007.02.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 11/15/2022]
Abstract
The aggregation and deposition onto neuronal cells of amyloid beta-peptide (Abeta) is central to the pathogenesis of Alzheimer's disease. Accumulating evidence suggests that membranes play a catalytic role in the aggregation of Abeta. This article summarizes the structures and properties of Abeta in solution and the physicochemical interaction of Abeta with lipid bilayers of various compositions. Reasons for discrepancies between results by different research groups are discussed. The importance of ganglioside clusters in the aggregation of Abeta is emphasized. Finally, a hypothetical physicochemical cascade in the pathogenesis of the disease is proposed.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
153
|
Abstract
It has been known for some time that diabetes may be associated with impaired cognitive function. During the last decade, epidemiological data have emerged suggesting a linkage between diabetes, particularly type 2 diabetes, and Alzheimer's disease (AD). There is evidence to suggest that impaired activities of neurotrophic factors such as insulin, IGF-1 and NGF, which occur in both diabetes and AD, may provide a mechanistic link between the two disorders. An additional probable factor that has been less evaluated to date is hypercholesterolemia, a common accompaniment to type 2 diabetes. Increased cholesterol availability is believed to play a crucial role in the abnormal metabolism of amyloid precursor protein leading to accumulation of amyloid-beta. Impaired insulin signaling in particular appears to be involved in hyperphosphorylation of the tau protein, which constitutes neurofibrillary tangles in AD. The linkage between abnormal amyloid metabolism and phosphor-tau is likely to be provided by the activation of caspases both by increased amyloid-beta and by impaired insulin signaling. Although the details of many of these components still await evaluation, it appears clear that commonalities exist in the underlying pathogenesis of diabetes and Alzheimer's disease. In this review we provide a brief update on linkages between these two diverse but common disorders.
Collapse
Affiliation(s)
- Anders A.F. Sima
- Departments of Pathology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
- Departments of Neurology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
- Address correspondence to: Anders A.F. Sima, e-mail:
| | - Zhen-guo Li
- Departments of Pathology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
154
|
Levano-Garcia J, Mortara RA, Verjovski-Almeida S, DeMarco R. Characterization of Schistosoma mansoni ATPDase2 gene, a novel apyrase family member. Biochem Biophys Res Commun 2007; 352:384-9. [PMID: 17113569 DOI: 10.1016/j.bbrc.2006.11.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 11/07/2006] [Indexed: 12/29/2022]
Abstract
Schistosoma mansoni is a major causative agent of schistosomiasis, which constitutes a severe health problem in developing countries. We have previously described the SmATPDase1 gene, encoding a protein from the external surface of the parasites. In this work, we describe the cloning and characterization of SmATPDase2, a novel CD39-like ATP diphosphohydrolase gene in S. mansoni. In silico analysis of the protein encoded by SmATPDase2 predicts a single N-terminal transmembrane domain similar to that described for secreted human apyrase isoforms. Immuno-colocalization experiments detected both SmATPDase proteins at the S. mansoni adult worm tegument basal and apical membranes, but only SmATPDase2 in the tegument syncytium. SmATPDase2 but not SmATPDase1 protein was detected by Western blot in culture medium supernatants following incubation of adult worms in vitro, indicating that SmATPDase2 was secreted by the parasite to the medium. Taken together these data suggest a non-redundant role for SmATPDase2 in the parasite-host interplay.
Collapse
Affiliation(s)
- Julio Levano-Garcia
- Departamento de Bioquímica, Instituto de Química,Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
155
|
Gylys KH, Fein JA, Yang F, Miller CA, Cole GM. Increased cholesterol in Aβ-positive nerve terminals from Alzheimer's disease cortex. Neurobiol Aging 2007; 28:8-17. [PMID: 16332401 DOI: 10.1016/j.neurobiolaging.2005.10.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/14/2005] [Accepted: 10/31/2005] [Indexed: 01/01/2023]
Abstract
Synapse loss in Alzheimer's disease (AD) is poorly understood but evidence suggests it is a key pathological event. In order to precisely detect stable synaptic changes, we have developed methods for flow cytometry analysis of synaptosomes prepared from cryopreserved AD samples, and have previously shown that amyloid-beta (Abeta) accumulates in surviving presynaptic terminals in AD cortex. In the present experiments we have examined amyloid-containing terminals in more detail, first dual labeling synaptosomes from AD cortex for Abeta and a series of markers, and then using quadrant analysis to compare amyloid-positive and amyloid-negative terminals. Amyloid-positive synaptosomes were larger in size than amyloid-negatives (p<0.007), and significant increases were observed in mean fluorescence for the lipid raft markers cholesterol (27%; p<0.0005) and GM1 ganglioside (24%; p<0.005). SNAP-25 immunofluorescence was increased by 31% (p<0.0001) in amyloid-bearing terminals, consistent with a sprouting response to amyloid accumulation. These results suggest that Abeta accumulation in synaptic terminals may underly dysfunction prior to or independent of extracellular amyloid deposition.
Collapse
|
156
|
Choucair A, Chakrapani M, Chakravarthy B, Katsaras J, Johnston LJ. Preferential accumulation of Aβ(1−42) on gel phase domains of lipid bilayers: An AFM and fluorescence study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:146-54. [PMID: 17052685 DOI: 10.1016/j.bbamem.2006.09.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 01/09/2023]
Abstract
Peptide-membrane interactions have been implicated in both the toxicity and aggregation of beta-amyloid (Abeta) peptides. Recent studies have provided evidence for the involvement of liquid-ordered membrane domains known as lipid rafts in the formation and aggregation of Abeta. As a model, we have examined the interaction of Abeta(1-42) with phase separated DOPC/DPPC lipid bilayers using a combination of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRF). AFM images show that addition of Abeta to preformed supported bilayers leads to accumulation of small peptide aggregates exclusively on the gel phase DPPC domains. Initial aggregates are observed approximately 90 min after peptide addition and increase in diameter to 45-150 nm within 24 h. TIRF studies with a mixture of Abeta and Abeta-Fl demonstrate that accumulation of the peptide on the gel phase domains occurs as early as 15 min after Abeta addition and is maintained for over 24 h. By contrast, Abeta is randomly distributed throughout both fluid and gel phases when the peptide is reconstituted into DOPC/DPPC vesicles prior to formation of a supported bilayer. The preferential accumulation of Abeta on DPPC domains suggests that rigid domains may act as platforms to concentrate peptide and enhance its aggregation and may be relevant to the postulated involvement of lipid rafts in modulating Abeta activity in vivo.
Collapse
Affiliation(s)
- A Choucair
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6
| | | | | | | | | |
Collapse
|
157
|
Posse de Chaves EI. Sphingolipids in apoptosis, survival and regeneration in the nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1995-2015. [PMID: 17084809 DOI: 10.1016/j.bbamem.2006.09.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 12/27/2022]
Abstract
Simple sphingolipids such as ceramide, sphingosine and sphingosine 1-phosphate are key regulators of diverse cellular functions. Their roles in the nervous system are supported by extensive evidence derived primarily from studies in cultured cells. More recently animal studies and studies with human samples have revealed the importance of ceramide and its metabolites in the development and progression of neurodegenerative disorders. The roles of sphingolipids in neurons and glial cells are complex, cell dependent, and many times contradictory. In this review I will summarize the effects elicited by ceramide and ceramide metabolites in cells of the nervous system, in particular those effects related to cell survival and death, emphasizing the molecular mechanisms involved. I also discuss recent evidence for the implication of sphingolipids in the development and progression of certain dementias.
Collapse
Affiliation(s)
- Elena I Posse de Chaves
- Centre for Alzheimer and Neurodegenerative Research, Signal Transduction Research Group and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
158
|
Woltjer RL, McMahan W, Milatovic D, Kjerulf JD, Shie FS, Rung LG, Montine KS, Montine TJ. Effects of chemical chaperones on oxidative stress and detergent-insoluble species formation following conditional expression of amyloid precursor protein carboxy-terminal fragment. Neurobiol Dis 2006; 25:427-37. [PMID: 17141508 DOI: 10.1016/j.nbd.2006.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 09/29/2006] [Accepted: 10/11/2006] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress, protein misfolding, protein complex formation, and detergent insolubility are biochemical features of Alzheimer's disease (AD). We tested the cause-and-effect relationships among these using MC65 human neuroblastoma cells that exhibit toxicity upon conditional expression of carboxy-terminal fragments (CTFs) of the human amyloid precursor protein (APP). Treatments with three different antioxidants (alpha-tocopherol, N-acetyl cysteine, and alpha-lipoic acid) or three different compounds (glycerol, trimethylamine-N-oxide, and 4-phenylbutyric acid) that have been described to have a "chemical chaperone" function in promoting protein folding all had a protective effect on MC65 cells and decreased markers of oxidative damage and accumulation of high molecular weight amyloid (A) beta-immunoreactive (IR) species. However, chaperones partially reduced detergent insolubility of the remaining Abeta-IR species, while antioxidants did not. These results suggest that protein misfolding associated with overexpression of APP CTFs promotes oxidative stress and cytotoxicity and contributes to formation of detergent-insoluble species that appear unrelated to cytotoxicity.
Collapse
Affiliation(s)
- Randall L Woltjer
- Department of Pathology, University of Washington, Box 359645, Harborview Medical Center, 300 Ninth Avenue, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Hoyer S, Riederer P. Alzheimer disease--no target for statin treatment. A mini review. Neurochem Res 2006; 32:695-706. [PMID: 17063393 DOI: 10.1007/s11064-006-9168-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
Nosologically, Alzheimer disease (AD) is not a single disorder. A minority of around 400 families worldwide can be grouped as hereditary in origin, whereas the majority of all Alzheimer cases (approx. 25 million worldwide) are sporadic in origin. In the pathophysiology of the latter type, a number of susceptibility genes contribute to the disease among which are allelic abnormalities of the apolipoprotein E4 gene pointing to a link between disturbed cholesterol metabolism and sporadic AD. Cholesterol is a main component of membrane composition enriched in microdomains and is functionally linked to the proteolytic processing of amyloid precursor protein (APP). In sporadic AD, a marked diminution of both membrane phospholipids and cholesterol has been found. Evidence has been provided that high plasma cholesterol may protect from AD. In contrast to these well documented abnormalities observed in AD patients, it was assumed that an elevated cholesterol concentration might favour the generation of beta-amyloid and, thus, AD. However, a series of in vitro-and in vivo-studies did not provide evidence for the assumption that an enhanced cholesterol concentration increased betaA4-production. A harsh reduction of membrane cholesterol only caused a "beneficial" effect of APP metabolism. However, this experimentally induced condition may not be compatible to sporadic AD. The application of statins in sporadic AD did not yield results to assume that this therapeutic strategy may prevent or treat successfully sporadic AD.
Collapse
Affiliation(s)
- Siegfried Hoyer
- Department of Pathology, University of Heidelberg, Im Neuenheimer Feld 220/221, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
160
|
Abstract
Detergent-resistant lipid rafts are required for the generation of Abeta as they concentrate not only amyloid precursor protein (APP), but also the beta- and gamma-secretase that convert APP to Abeta. Recently, Abeta has been shown to be oligomerized, which results in neuronal cytotoxicity and synaptic failure. In this study, we have demonstrated that Abeta oligomers appeared immediately after the incubation of Abeta with lipid rafts isolated from the brain tissues of rats, and were converted into few Abeta fibrils, even after longer periods of incubation. The oligomerization of Abeta was not abolished after the brain lipid rafts were treated with heat, or with protease K, implying that the lipid raft proteins were determined not to be prerequisites for Abeta oligomerization. The cholesterol present in the lipid rafts might not be essential to Abeta oligomerization because Abeta oligomerization was not prevented after the cholesterol was removed from the lipid rafts with methyl-beta-cyclodextrin (MbetaCD). The Abeta oligomerization was accelerated by the application of lipid rafts isolated from ganglioside-rich cells, C2C12 cells, whereas this was not observed with the lipid rafts isolated from ganglioside-poor cells SK-N-MC and HeLa cells. In addition, lipid raft-induced Abeta oligomerization was shown to be inhibited in CHO-K1 cells which were defective with regard to ganglioside biosynthesis. This indicates that Abeta oligomerization requires gangliosides that are enriched in the lipid rafts.
Collapse
Affiliation(s)
- Sang-Il Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Korea
| | | | | |
Collapse
|
161
|
Grimm MOW, Tschäpe JA, Grimm HS, Zinser EG, Hartmann T. Altered membrane fluidity and lipid raft composition in presenilin-deficient cells. Acta Neurol Scand 2006; 185:27-32. [PMID: 16866908 DOI: 10.1111/j.1600-0404.2006.00682.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathology of Alzheimer's disease is closely connected with lipid metabolism. Processing of amyloid precursor protein (APP) is sensitive to membrane alterations in levels of cholesterol and gangliosides. As cholesterol and gangliosides are major components of rafts and BACE I and gamma-secretase are supposed to be localized to rafts there might be a yet unknown biological function underlying this connection. Increasing evidence shows a close connection between cholesterol homeostasis and APP processing and Abeta production respectively. We measured membrane fluidity by anisotropy determination, isolated detergent resistant membrane (DRM) fractions from membrane preparations and determined cholesterol content of these fractions by a coupled enzymatic assay. We found membrane fluidity to be changed in mouse embryonic fibroblasts (MEF) PS1/2 -/- along with altered cholesterol content in DRM fraction of these cells. In addition, total ganglioside levels were enhanced in absence of presenilin (PS).
Collapse
Affiliation(s)
- M O W Grimm
- Centre for Molecular Biology Heidelberg, Germany
| | | | | | | | | |
Collapse
|
162
|
Hashimoto M, Hossain S, Shimada T, Shido O. DOCOSAHEXAENOIC ACID-INDUCED PROTECTIVE EFFECT AGAINST IMPAIRED LEARNING IN AMYLOID ?-INFUSED RATS IS ASSOCIATED WITH INCREASED SYNAPTOSOMAL MEMBRANE FLUIDITY. Clin Exp Pharmacol Physiol 2006; 33:934-9. [PMID: 17002670 DOI: 10.1111/j.1440-1681.2006.04467.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we investigated the relationship between the docosahexaenoic acid (DHA)-induced protection of learning deficit of amyloid beta(1-40)-infused Alzheimer's disease (AD) model rats and changes in synaptosomal plasma membrane fluidity of the cerebral cortex. Synaptosomal membrane lateral and rotational fluidity were measured using pyrene excimer spectroscopy and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), respectively. Avoidance learning ability, as assessed by a two-way active avoidance paradigm, decreased significantly in the AD model rats. Pyrene-determined annular/non-annular fluidity ratio and the DPH-determined bulk fluidity of the synaptosomal plasma membrane decreased in the amyloid beta(1-40)-infused rats. Oral pre-administration of DHA (300 mg/kg per day for 12 weeks) significantly increased both lateral and rotational fluidity. The synaptosomal membrane DHA content increased and the cholesterol to phospholipid molar ratio and lipid peroxidation decreased. The annular to non-annular fluidity ratio of the synaptic plasma membrane was positively correlated with total avoidance learning. The present results indicate that DHA-induced alterations in synaptic plasma membrane fluidity may contribute to the synaptic plasma membrane-related functions that constitute avoidance learning-related memory in amyloid beta(1-40)-infused rats.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University, Faculty of Medicine, Izumo, Japan.
| | | | | | | |
Collapse
|
163
|
Kim H, Ahn M, Moon C, Matsumoto Y, Sung Koh C, Shin T. Immunohistochemical study of flotillin-1 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res 2006; 1114:204-11. [PMID: 16919610 DOI: 10.1016/j.brainres.2006.07.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 01/18/2023]
Abstract
We analyzed flotillin-1 expression in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis (EAE). Western blot analysis showed that flotillin-1 expression increased significantly in the spinal cords from rats at the peak stage of EAE compared with the levels in control animals (p<0.05) and declined thereafter. Immunohistochemistry demonstrated that flotillin-1 was expressed constitutively in the gray matter (particularly in the dorsal horn) of the normal rat spinal cord and in some neurons and glial cells. In EAE lesions, flotillin-1 immunoreactivity was detected in some macrophages and astrocytes, in which cathepsin D, a lysosomal marker, was localized. In the spinal cord cells in EAE, there was increased expression of flotillin-1 above the constitutive expression of flotillin-1 in normal spinal cords. Taking all these findings into consideration, we postulate that expression of flotillin-1 begins to increase when EAE is initiated and that flotillin-1 contributes to the formation of phagosomes in affected cells in EAE.
Collapse
Affiliation(s)
- Heechul Kim
- Department of Veterinary Medicine, Cheju National University, Jeju 690-756, South Korea
| | | | | | | | | | | |
Collapse
|
164
|
|
165
|
Tate BA, Mathews PM. Targeting the role of the endosome in the pathophysiology of Alzheimer's disease: a strategy for treatment. ACTA ACUST UNITED AC 2006; 2006:re2. [PMID: 16807486 DOI: 10.1126/sageke.2006.10.re2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Membrane-bound endosomal vesicles play an integral role in multiple cellular events, including protein processing and turnover, and often critically regulate the cell-surface availability of receptors and other plasma membrane proteins in many different cell types. Neurons are no exception, being dependent on endosomal function for housekeeping and synaptic events. Growing evidence suggests a link between neuronal endosomal function and Alzheimer's disease (AD) pathophysiology. Endosomal abnormalities invariably occur within neurons in AD brains, and endocytic compartments are one likely site for the production of the pathogenic beta-amyloid peptide (Abeta), which accumulates within the brain during the disease and is generated by proteolytic processing of the amyloid precursor protein (APP). The enzymes and events involved in APP processing are appealing targets for therapeutic agents aimed at slowing or reversing the pathogenesis of AD. The neuronal endosome may well prove to be the intracellular site of action for inhibitors of beta-amyloidogenic APP processing. We present here the view that knowledge of the endosomal system in the disease can guide drug discovery of AD therapeutic agents.
Collapse
Affiliation(s)
- Barbara A Tate
- CNS Discovery, Global Research & Development, Pfizer Inc., Groton, CT 06234, USA.
| | | |
Collapse
|
166
|
Schneider A, Schulz-Schaeffer W, Hartmann T, Schulz JB, Simons M. Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol Dis 2006; 23:573-7. [PMID: 16777421 DOI: 10.1016/j.nbd.2006.04.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/18/2006] [Accepted: 04/30/2006] [Indexed: 11/28/2022] Open
Abstract
A key event in the pathogenesis of Alzheimer's disease is the conversion of soluble amyloid Abeta-peptide into toxic aggregates. Here, we studied the effect of cholesterol depletion on the formation of insoluble Abeta. We found that reduction of neuronal cholesterol by approximately 25% reduced the neuronal formation of insoluble Abeta without affecting the secretion of soluble Abeta. Moreover, we demonstrate that Abeta-oligomers from Alzheimer's disease brains associate with a detergent-resistant membrane fraction in a cholesterol-dependent manner. These results suggest a key role for cholesterol in aggregation of Abeta.
Collapse
Affiliation(s)
- Anja Schneider
- Center for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
167
|
Burns MP, Vardanian L, Pajoohesh-Ganji A, Wang L, Cooper M, Harris DC, Duff K, Rebeck GW. The effects of ABCA1 on cholesterol efflux and Abeta levels in vitro and in vivo. J Neurochem 2006; 98:792-800. [PMID: 16771834 DOI: 10.1111/j.1471-4159.2006.03925.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ABCA1 promotes cholesterol efflux from cells and is required for maintaining plasma cholesterol levels. Cholesterol homeostasis is important in the production of beta-amyloid (Abeta), a peptide that is overproduced in Alzheimer's disease (AD). Overexpression of ABCA1 can be achieved by stimulating Liver X Receptors (LXR), and changes in Abeta have been reported after LXR stimulation in vitro. To determine whether ABCA1 could alter endogenous Abeta levels, we used two different in vivo systems. We first examined the effects of an LXR agonist (TO-901317) on wild-type mice and found an increase in brain ABCA1 and apoE levels, which caused an increase in plasma cholesterol. This was accompanied by a decrease in brain Abeta levels. We then examined endogenous Abeta levels in ABCA1 knockout mice and found that, despite having no ABCA1, lowered brain apoE levels, and lowered plasma cholesterol, there was no change in Abeta levels. To assess these in vivo models in an in vitro system, we designed a model in which cholesterol transport via ABCA1 (or related transporters) was prevented. Switching off cholesterol efflux, even in the presence of TO-901317, caused no change in Abeta levels. However, when efflux capability was restored, TO-901317 reduced Abeta levels. These data show that promoting cholesterol efflux is a viable target for Abeta reducing strategies; however, knockout of cholesterol transporters is not sufficient to alter Abeta in vitro or in vivo.
Collapse
Affiliation(s)
- Mark P Burns
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Romano DM, Dong Y, Hiltunen M, Tanzi RE, Xie Z. Artefactual effects of lipid-based cell transfection reagents on AbetaPP processing and Abeta production. Amyloid 2006; 13:86-92. [PMID: 16911962 DOI: 10.1080/13506120600722605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The study of amyloidogenic beta-amyloid precursor protein (AbetaPP) metabolism and amyloid beta protein (Abeta) production has been a major focus of Alzheimer's disease (AD) neuropathogenesis research. Cell transfection is a commonly employed method for assessing the effects of various genes on AbetaPP processing and Abeta production. Certain cell transfection reagents utilize lipid-based formulations that could potentially affect AbetaPP processing and Abeta production. Thus, we set out to assess the effects of cell transfection reagents with lipid formulations (TKO, FuGene6, RNAifect) on AbetaPP processing and Abeta level in H4 human neuroglioma cells overexpressing human AbetaPP. We found both TKO and RNAifect increase the protein levels of AbetaPP-C-terminal fragments (CTFs) and Abeta levels, while FuGene6 increases the protein levels of AbetaPP-CTFs without altering Abeta level. In contrast, electroporation-based cell transfection does not affect AbetaPP processing and Abeta production in our studies. These results suggest for the first time that lipid-based cell transfection reagents may artefactually affect AbetaPP processing and Abeta production, thereby confounding studies aimed at assessing the effects of transfected genes on AbetaPP metabolism.
Collapse
Affiliation(s)
- Donna M Romano
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, MA 02129-2060, USA
| | | | | | | | | |
Collapse
|
169
|
Chen TY, Liu PH, Ruan CT, Chiu L, Kung FL. The intracellular domain of amyloid precursor protein interacts with flotillin-1, a lipid raft protein. Biochem Biophys Res Commun 2006; 342:266-72. [PMID: 16480949 DOI: 10.1016/j.bbrc.2006.01.156] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 01/31/2006] [Indexed: 11/30/2022]
Abstract
Amyloid beta (Abeta) is a pathological hallmark of Alzheimer's disease (AD). It is derived from the amyloid precursor protein (APP) by two sequential proteolytic cleavages, which also generate the APP intracellular domain (AICD). The precise cellular function(s) of AICD still remain obscure. To elucidate the roles of AICD in the development of AD, a yeast two-hybrid system was used to screen a human brain cDNA library for proteins interacting directly with AICD. One of the potential AICD-interacting proteins identified from our screening result is a lipid raft-associated protein, flotillin-1. The interaction was confirmed by glutathione S-transferase pull-down and coimmunoprecipitation studies. Since lipid raft has been suggested to play an important role in signal transduction as well as the pathogenic development of neurodegenerative diseases, it is proposed that flotillin-1 may recruit APP to lipid rafts and therefore participate in the localization and processing of APP.
Collapse
Affiliation(s)
- Ting-Yu Chen
- School of Pharmacy, National Taiwan University, Taipei 10051, Taiwan, ROC
| | | | | | | | | |
Collapse
|
170
|
Hattori C, Asai M, Onishi H, Sasagawa N, Hashimoto Y, Saido TC, Maruyama K, Mizutani S, Ishiura S. BACE1 interacts with lipid raft proteins. J Neurosci Res 2006; 84:912-7. [PMID: 16823808 DOI: 10.1002/jnr.20981] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A neuropathological hallmark of Alzheimer's disease is the presence of amyloid plaques in the brain. Amyloid-beta peptide (Abeta) is the major constituent of the plaques and is generated by proteolytic cleavages of amyloid precursor protein (APP) by beta- and gamma-secretases. Growing evidence shows that lipid rafts are critically involved in regulating the Abeta generation. In support of this, APP, Abeta, and presenilins have been found in lipid rafts. Although cholesterol plays a crucial role in maintaining lipid rafts, functions of other components in the generation of Abeta are unknown. Caveolins (CAVs) and flotillins (FLOTs) are principal proteins related to lipid rafts and have been suggested to be involved in APP processing. Here, we report that FLOT-1 binds to BACE1 (beta-site APP cleaving enzyme 1) and that overexpression of CAV-1 or FLOT-1 results in recruiting BACE1 into lipid rafts and influence on beta-secretase activity in cultured cells. Our results show that both CAV-1 and FLOT-1 may modulate beta-secretase activity by interacting with BACE1.
Collapse
Affiliation(s)
- Chinatsu Hattori
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
The amyloidogenesis occurring in Alzheimer's disease represents a fundamental membrane-related pathology involving a membrane-bound substrate metabolized by integral membrane proteases (secretases). Thus, the amyloid-beta peptide (Abeta), which accumulates extracellularly as plaques in the brains of Alzheimer's disease patients, is derived by sequential proteolytic cleavage of the integral transmembrane amyloid precursor protein (APP). Beta-Secretase or BACE-1 (beta-site APP cleaving enzyme) is a transmembrane aspartic protease responsible for the first of these cleavage events, generating the soluble APP ectodomain sAPPbeta, and a C-terminal fragment CTFbeta. CTFbeta is subsequently cleaved by the ?gamma-secretase complex, of which presenilin is the catalytic core, to produce Ass. A variety of studies indicate that cholesterol is an important factor in the regulation of Ass production, with high cholesterol levels being linked to increased Ass generation and deposition. However, the mechanism(s) underlying this effect are unclear at present. Recent evidence suggests that amyloidogenic APP processing may preferentially occur in the cholesterol-rich regions of membranes known as lipid rafts, and that changes in cholesterol levels could exert their effects by altering the distribution of APP-cleaving enzymes within the membrane. Rafts may be involved in the aggregation of Ass and also in its clearance by amyloid-degrading enzymes such as plasmin or possibly neprilysin (NEP).
Collapse
Affiliation(s)
- Joanna M Cordy
- Proteolysis Research Group, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | | | | |
Collapse
|
172
|
Sepúlveda MR, Berrocal-Carrillo M, Gasset M, Mata AM. The plasma membrane Ca2+-ATPase isoform 4 is localized in lipid rafts of cerebellum synaptic plasma membranes. J Biol Chem 2005; 281:447-53. [PMID: 16249176 DOI: 10.1074/jbc.m506950200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we describe the association of the synaptosomal plasma membrane Ca2+-ATPase (PMCA) from pig cerebellum with cholesterol/sphingomyelin-rich membrane domains (rafts). The PMCA4 was localized exclusively in rafts prepared by flotation in Nycodenz density gradients of ice-cold Brij 96 extracts. This was corroborated by its colocalization with the raft markers cholesterol, ganglioside GM1, and PrP(C). The remaining PMCA isoforms were found in the detergent-soluble fractions, with the majority of the membrane proteins. Activity assays confirmed the bimodal distribution of the PMCA isoforms in the density gradient, with a lower activity for PMCA4 and greater stimulation by calmodulin than for the other isoforms. By providing an ordered membrane microenvironment, lipid rafts may contribute to the interaction of PMCA4 with proteins involved in Ca2+ signaling at discrete functional positions on the synaptic nerve terminals.
Collapse
Affiliation(s)
- M Rosario Sepúlveda
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avda de Elvas s/n, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
173
|
Désiré L, Bourdin J, Loiseau N, Peillon H, Picard V, De Oliveira C, Bachelot F, Leblond B, Taverne T, Beausoleil E, Lacombe S, Drouin D, Schweighoffer F. RAC1 inhibition targets amyloid precursor protein processing by gamma-secretase and decreases Abeta production in vitro and in vivo. J Biol Chem 2005; 280:37516-25. [PMID: 16150730 DOI: 10.1074/jbc.m507913200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Amyloid peptides (Abeta) that form the senile plaques of Alzheimer disease consist mainly of 40- and 42-amino acid (Abeta 40 and Abeta 42) peptides generated from the cleavage of the amyloid precursor protein (APP). Generation of Abeta involves beta-secretase and gamma-secretase activities and is regulated by membrane trafficking of the proteins involved in Abeta production. Here we describe a new small molecule, EHT 1864, which blocks the Rac1 signaling pathways. In vitro, EHT 1864 blocks Abeta 40 and Abeta 42 production but does not impact sAPPalpha levels and does not inhibit beta-secretase. Rather, EHT 1864 modulates APP processing at the level of gamma-secretase to prevent Abeta 40 and Abeta 42 generation. This effect does not result from a direct inhibition of the gamma-secretase activity and is specific for APP cleavage, since EHT 1864 does not affect Notch cleavage. In vivo, EHT 1864 significantly reduces Abeta 40 and Abeta 42 levels in guinea pig brains at a threshold that is compatible with delaying plaque accumulation and/or clearing the existing plaque in brain. EHT 1864 is the first derivative of a new chemical series that consists of candidates for inhibiting Abeta formation in the brain of AD patients. Our findings represent the first pharmacological validation of Rac1 signaling as a target for developing novel therapies for Alzheimer disease.
Collapse
|
174
|
Abstract
While our understanding of lipid microdomains has advanced in recent years, many aspects of their formation and dynamics are still unclear. In particular, the molecular determinants that facilitate the partitioning of integral membrane proteins into lipid raft domains are yet to be clarified. This review focuses on a family of raft-associated integral membrane proteins, termed flotillins, which belongs to a larger class of integral membrane proteins that carry an evolutionarily conserved domain called the prohibitin homology (PHB) domain. A number of studies now suggest that eucaryotic proteins carrying this domain have affinity for lipid raft domains. The PHB domain is carried by a diverse array of proteins including stomatin, podocin, the archetypal PHB protein, prohibitin, lower eucaryotic proteins such as the Dictyostelium discoideum proteins vacuolin A and vacuolin B and the Caenorhabditis elegans proteins unc-1, unc-24 and mec-2. The presence of this domain in some procaryotic proteins suggests that the PHB domain may constitute a primordial lipid recognition motif. Recent work has provided new insights into the trafficking and targeting of flotillin and other PHB domain proteins. While the function of this large family of proteins remains unclear, studies of the C. elegans PHB proteins suggest possible links to a class of volatile anaesthetics raising the possibility that these lipophilic agents could influence lipid raft domains. This review will discuss recent insights into the cell biology of flotillins and the large family of evolutionarily conserved PHB domain proteins.
Collapse
Affiliation(s)
- Isabel C Morrow
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
175
|
Kokubo H, Kayed R, Glabe CG, Yamaguchi H. Soluble Abeta oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer's disease brain. Brain Res 2005; 1031:222-8. [PMID: 15649447 DOI: 10.1016/j.brainres.2004.10.041] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2004] [Indexed: 11/25/2022]
Abstract
Soluble Abeta oligomers have recently been considered to be responsible for cognitive dysfunction prior to senile plaque (SP) formation in Alzheimer's disease (AD) brain. To investigate the ultrastructural localization of soluble Abeta oligomers, we conducted the post-embedding immunoelectron microscopic (IEM) study using an antibody against a molecular mimic of oligomeric Abeta. We examined autopsied brains from AD patients and nondemented subjects. Oligomer-specific immunoreactions detected by IEM tended to be found with higher density (1) in AD than in nondemented brains and (2) at the axon and axon terminal in AD than in nondemented brains. These findings imply that soluble Abeta oligomers might be related to synaptic dysfunction in AD brain.
Collapse
Affiliation(s)
- Hideko Kokubo
- Gunma University School of Health Sciences, 3-39-15 Showa-machi, Maebashi 371-8514, Japan
| | | | | | | |
Collapse
|
176
|
Ding Y, Jiang M, Jiang W, Su Y, Zhou H, Hu X, Zhang Z. Expression, purification, and characterization of recombinant human flotillin-1 in Escherichia coli. Protein Expr Purif 2005; 42:137-45. [PMID: 15939299 DOI: 10.1016/j.pep.2005.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/01/2005] [Accepted: 03/02/2005] [Indexed: 11/28/2022]
Abstract
Human flotillin-1 (reggie-2), a major hydrophobic protein of biomembrane microdomain lipid rafts, was cloned and expressed in Escherichia coli with four different fusion tags (hexahistidine, glutathione S-transferase, NusA, and thioredoxin) to increase the yield. The best expressed flotillin-1 with thioredoxin tag was solubilized from inclusion bodies, first purified by immobilized metal affinity column under denaturing condition and direct refolded on column by decreasing urea gradient method. The thioredoxin tag was cleaved by thrombin, and the flotillin-1 protein was further purified by anion exchanger and gel filtration column. The purified protein was verified by denaturing gel electrophoresis and Western blot. The typical yield was 3.4 mg with purity above 98% from 1L culture medium. Using pull-down assay, the interaction of both the recombinant flotillin-1 and the native flotillin-1 from human erythrocyte membranes with c-Cbl-associated protein or neuroglobin was confirmed, which demonstrated that the recombinant proteins were functional active. This is the first report describing expression, purification, and characterization of active recombinant raft specific protein in large quantity and highly purity, which would facilitate further research such as X-ray crystallography.
Collapse
Affiliation(s)
- Yu Ding
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
177
|
Hamano T, Mutoh T, Tabira T, Araki W, Kuriyama M, Mihara T, Yano S, Yamamoto H. Abnormal intracellular trafficking of high affinity nerve growth factor receptor, Trk, in stable transfectants expressing presenilin 1 protein. ACTA ACUST UNITED AC 2005; 137:70-6. [PMID: 15950763 DOI: 10.1016/j.molbrainres.2005.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 01/21/2005] [Accepted: 02/13/2005] [Indexed: 10/25/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is now thought to be tightly linked to Abeta deposition and oxidative stress, but it is still unknown how these factors result in neuronal dysfunction and cell death. Mutations of presenilin 1 (PS1) gene are the causative gene for early onset familial AD (FAD) due to the overproduction and deposition of pathogenic Abeta1-42 peptides. We report here the molecular influences of the overexpression of PS1 protein by stable transfection of PS1 cDNA into SH-SY5Y neuroblastoma cells on the function of high affinity nerve growth factor receptor, Trk, that is essential for neuronal survival and differentiation. We examined the sensitivity of these transfectants to oxidative stress and found that mutant (I143T) PS1-expressing clones showed the highest vulnerability to an oxidative stress inducer, hydrogen peroxide treatment compared with that of mock-transfected clones, whereas wild PS1-expressing cells were less vulnerable to the treatment than mutant PS1 transfectants. Because nerve growth factor (NGF) is known to protect neuronal cells from oxidative stress-induced cell death, we examined the NGF-Trk-mediated intracellular signaling pathway in these transfectants. In the wild and mutant PS1 cDNA-transfected cells, NGF did not elicit the autophosphorylation response of Trk, although their basal levels of tyrosine phosphorylation were higher than those of mock-transfected cells. Immunocytochemical and subcellular fractionation studies revealed that most of Trk proteins are abnormally located in the cytoplasm as well as in the nucleus in PS1-overexpressing clones irrespective of wild and mutant forms. These results strongly indicate that the expression level of PS1 protein has a cross talk with the Trk-dependent neuroprotective intracellular signaling pathway.
Collapse
Affiliation(s)
- Tadanori Hamano
- The Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Urano Y, Hayashi I, Isoo N, Reid PC, Shibasaki Y, Noguchi N, Tomita T, Iwatsubo T, Hamakubo T, Kodama T. Association of active γ-secretase complex with lipid rafts. J Lipid Res 2005; 46:904-12. [PMID: 15716592 DOI: 10.1194/jlr.m400333-jlr200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesterol has been implicated in the pathogenesis of Alzheimer's disease (AD). Although the underlying mechanisms are not yet clear, several studies have provided evidence for the involvement of cholesterol-rich lipid rafts in the production of amyloid beta peptide (Abeta), the major component of amyloid deposits in AD. In this regard, the gamma-secretase complex is responsible for the final cleavage event in the processing of beta-amyloid precursor protein (betaAPP), resulting in Abeta generation. The gamma-secretase complex is a multiprotein complex composed of presenilin, nicastrin (NCT), APH-1, and PEN-2. Recent reports have suggested that gamma-secretase activity is predominantly localized in lipid rafts, and presenilin and NCT have been reported to be localized in lipid rafts. In this study, various biochemical methods, including coimmunoprecipitation, in vitro gamma-secretase assay, and methyl-beta-cyclodextrin (MbetaCD) treatment, are employed to demonstrate that all four components of the active endogenous gamma-secretase complex, including APH-1 and PEN-2, are associated with lipid rafts in human neuroblastoma cells (SH-SY5Y). Treatment with statins, 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitors, significantly decreased the association of the gamma-secretase complex with lipid rafts without affecting the distribution of flotillin-1. This effect was partially abrogated by the addition of geranylgeraniol. These results suggest that both cholesterol and protein isoprenylation influence the active gamma-secretase complex association with lipid rafts.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Kokubo H, Saido TC, Iwata N, Helms JB, Shinohara R, Yamaguchi H. Part of membrane-bound Abeta exists in rafts within senile plaques in Tg2576 mouse brain. Neurobiol Aging 2005; 26:409-18. [PMID: 15653169 DOI: 10.1016/j.neurobiolaging.2004.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/24/2004] [Accepted: 04/30/2004] [Indexed: 10/26/2022]
Abstract
To clarify whether rafts are the site of abnormal amyloid beta protein (Abeta) deposition, we examined the ultrastructural localization of both flotillin-1 (pre-embedding) and Abeta (post-embedding) in Tg2576 mouse brains. After observing the exact areas of senile plaques by reflection contrast microscopy, we observed these same plaques under an electron microscope. Membrane-bound Abeta was predominantly observed on plasma membranes of small processes in diffuse plaques. Non-fibrillar and fibrillar Abeta was increased in primitive plaques, and the fibrillar form was predominant in mature plaques. The number of flotillin-1-positive rafts per field in mature plaques was prominently less than those outside of the plaques, in diffuse plaques and in primitive plaques. The colocalization of flotillin-1 with Abeta42 appeared approximately 10% of flotillin-1-positive rafts within senile plaques, while there was no colocalization found outside of the plaques. This study ultrastructurally demonstrated that part of membrane-bound Abeta exists in lipid rafts within senile plaques, and suggests that rafts could be one of the sites for initial Abeta deposition.
Collapse
Affiliation(s)
- Hideko Kokubo
- Gunma University School of Health Sciences, 3-39-15 Showa-machi, 371-8514 Maebashi, Japan
| | | | | | | | | | | |
Collapse
|
180
|
Kokubo H, Kayed R, Glabe CG, Saido TC, Iwata N, Helms JB, Yamaguchi H. Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. Brain Res 2005; 1045:224-8. [PMID: 15910781 DOI: 10.1016/j.brainres.2005.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 03/12/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
We examined the ultrastructural localization of oligomeric proteins, Abeta42, and flotillin-1 in Tg2576 mouse brains by triple immunoelectron microscopy. Oligomer-specific immunoreactions localized to cell processes, especially to axon terminals with higher density in Tg than in nonTg mouse brains. The oligomer was less frequently colocalized to flotillin-1-immunoreactive rafts than Abeta42, suggesting that rafts are one of the sites of polymeric Abeta deposition, but not of oligomeric proteins including Abeta.
Collapse
Affiliation(s)
- Hideko Kokubo
- Gunma University School of Health Sciences, 3-39-15 Showa-machi, Maebashi 371-8514, Japan
| | | | | | | | | | | | | |
Collapse
|
181
|
Kaether C, Haass C. A lipid boundary separates APP and secretases and limits amyloid beta-peptide generation. ACTA ACUST UNITED AC 2005; 167:809-12. [PMID: 15583026 PMCID: PMC2172467 DOI: 10.1083/jcb.200410090] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Millions of patients suffer from Alzheimer's disease, and intensive efforts to find a cure for this devastating disorder center on the proteases, which release the deadly amyloid beta-peptide from its precursor. The cutting procedure is thought to be cholesterol dependent and strategies to lower cholesterol as therapeutic treatment are under intensive investigation. Recent findings suggest that the complete proteolytic machinery required for amyloid beta-peptide generation is located within lipid rafts. Data by Dotti and colleagues (Abad-Rodriguez et al., 2004), in this issue, suggest that rafts isolate the cutting machinery away from its deadly substrate. These findings describe a novel mechanism for controlling proteolytic activity by building a lipid boundary between proteases and their substrates.
Collapse
Affiliation(s)
- Christoph Kaether
- Adolf Butenandt Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig Maximilans University, München, Germany
| | | |
Collapse
|
182
|
Xiu J, Nordberg A, Shan KR, Yu WF, Olsson JM, Nordman T, Mousavi M, Guan ZZ. Lovastatin stimulates up-regulation of α7 nicotinic receptors in cultured neurons without cholesterol dependency, a mechanism involving production of the α-form of secreted amyloid precursor protein. J Neurosci Res 2005; 82:531-41. [PMID: 16240392 DOI: 10.1002/jnr.20658] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The cholesterol-lowering drug lovastatin enhances the secretion of the alpha-secretase cleavage product of amyloid precursor protein (APP). To investigate whether this effect is mediated via activation of alpha7 nicotinic acetylcholine receptors (nAChRs), we treated SH-SY5Y cells and PC12 cells with lovastatin and measured the levels of alpha7 nAChRs, the alpha-form of secreted APP (alphaAPPs), and lovastatin-related lipids, including cholesterol and ubiquinone. The results showed that low concentrations of lovastatin significantly induced up-regulation of alpha7 nAChRs. No effects of lovastatin were observed on alpha3-containing nAChRs, muscarinic receptors, or N-methyl-D-aspartate receptors. alphaAPPs levels increased in the culture medium of cells treated with lovastatin, whereas no change in whole APP was observed. The increase in alphaAPPs was inhibited by prior exposure of these cells to alpha-bungarotoxin, an antagonist of alpha7 nAChRs. The concentrations of lovastatin used in the study did not change the cholesterol content, but high doses can decrease the levels of ubiquinone and cell viability. These results indicate that lovastatin may play a neuronal role that is cholesterol independent. We also show that the up-regulation of alpha7 nAChRs stimulated by lovastatin is involved in a mechanism that enhances production of alphaAPPs during APP processing.
Collapse
MESH Headings
- Amyloid beta-Protein Precursor/biosynthesis
- Animals
- Blotting, Northern/methods
- Blotting, Western/methods
- Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics
- Bungarotoxins/pharmacology
- Cell Line, Tumor
- Cholesterol/metabolism
- Chromatography, High Pressure Liquid/methods
- Dose-Response Relationship, Drug
- Drug Interactions
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Isotopes/pharmacokinetics
- Lovastatin/pharmacology
- Neuroblastoma
- Neurons/drug effects
- Neurons/metabolism
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacokinetics
- PC12 Cells
- Protein Binding/drug effects
- Pyridines/pharmacokinetics
- Quinuclidinyl Benzilate/pharmacokinetics
- RNA, Messenger/metabolism
- Radioligand Assay/methods
- Rats
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Ubiquinone/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Jin Xiu
- Neurotec Department, Division of Molecular Neuropharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Lee G. Tau and src family tyrosine kinases. Biochim Biophys Acta Mol Basis Dis 2005; 1739:323-30. [PMID: 15615649 DOI: 10.1016/j.bbadis.2004.09.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 09/01/2004] [Indexed: 11/26/2022]
Abstract
The interaction between tau and src family non-receptor tyrosine kinases represents a new function for tau. Mediated by the proline-rich region of tau and the SH3 domain of fyn or src, this interaction has the potential to confer novel cellular activities for tau in the growth cone and in the membrane. The subsequent finding that tau is tyrosine phosphorylated has led to the observation that tau in neurofibrillary tangles is tyrosine phosphorylated. Therefore, a role for tyrosine kinases such as fyn in neuropathogenesis is predicted.
Collapse
Affiliation(s)
- Gloria Lee
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
184
|
Yu W, Zou K, Gong JS, Ko M, Yanagisawa K, Michikawa M. Oligomerization of amyloid ?-protein occurs during the isolation of lipid rafts. J Neurosci Res 2005; 80:114-9. [PMID: 15704187 DOI: 10.1002/jnr.20428] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cholesterol- and glycosphingolipid-rich microdomains, called "lipid rafts," are suggested to initiate and promote the pathophysiology of Alzheimer's disease by serving as a platform for generation, aggregation, or degradation of amyloid-beta protein (Abeta). However, methods for biochemical isolation of these microdomains may produce artifacts. In this study, when synthetic Abeta1- 40 monomers were added to the brain fragment at a final concentration of 2.1 microM, followed by homogenization and isolation of lipid rafts by an established method, Abeta1- 40 accumulated as oligomers in the lipid raft fraction. However, in the absence of a brain homogenate, synthetic Abeta1- 40 did not accumulate in the lipid raft fraction. When fractionation was performed in the absence of synthetic Abeta1-40 and synthetic Abeta1-40 was incubated in an aliquot of each fraction, a marked oligomerization of Abeta1- 40 was observed in the lipid raft aliquot. These results indicate that exogenous Abeta associates with lipid rafts, and Abeta bound to rafts forms oligomers during the isolation of lipid rafts. In addition, endogenous Abeta1-40 in a Triton X-100-insoluble fraction of a brain homogenate of the Tg2576 transgenic mouse model of Alzheimer's disease formed oligomers when the fraction was incubated at 4 degrees C for 20 hr. Thus, one should be careful when one discusses the role of lipid rafts in amyloid precursor protein processing and in the generation, aggregation, and degradation of Abeta.
Collapse
Affiliation(s)
- Wenxin Yu
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
185
|
Nakamura M, Sakurai Y, Takeda Y, Toda T. Comparative proteomics of flotillin-rich Triton X-100-insoluble lipid raft fractions of mitochondria and synaptosome from mouse brain. ACTA ACUST UNITED AC 2005. [DOI: 10.2198/jelectroph.49.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
186
|
Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Månsson JE, Fredman P. Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J Neurochem 2005; 92:171-82. [PMID: 15606906 DOI: 10.1111/j.1471-4159.2004.02849.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of neurotoxic beta-amyloid fibrils in Alzheimer's disease (AD) is suggested to involve membrane rafts and to be promoted, in vitro, by enriched concentrations of gangliosides, particularly GM1, and the cholesterol therein. In our study, the presence of rafts and their content of the major membrane lipids and gangliosides in the temporal cortex, reflecting late stages of AD pathology, and the frontal cortex, presenting earlier stages, has been investigated. Whole tissue and isolated detergent-resistant membrane fractions (DRMs) were analysed from 10 AD and 10 age-matched control autopsy brains. DRMs from the frontal cortex of AD brains contained a significantly higher concentration (micromol/micromol glycerophospholipids), of ganglioside GM1 (22.3 +/- 4.6 compared to 10.3 +/- 6.4, p <0.001) and GM2 (2.5 +/- 1.0 compared to 0.55 +/- 0.3, p <0.001). Similar increases of these gangliosides were also seen in DRMs from the temporal cortex of AD brains, which, in addition, comprised significantly lower proportions of DRMs. Moreover, these remaining rafts were depleted in cholesterol (from 1.5 +/- 0.2 to 0.6 +/- 0.3 micromol/micromol glycerophospholipids, p <0.001). In summary, we found an increased proportion of GM1 and GM2 in DRMs, and accelerating plaque formation at an early stage, which may gradually lead to membrane raft disruptions and thereby affect cellular functions associated with the presence of such membrane domains.
Collapse
Affiliation(s)
- Marie Molander-Melin
- Institute of Clinical Neuroscience, Experimental Neuroscience Section, Göteborg University, Sweden
| | | | | | | | | | | |
Collapse
|
187
|
Wood DR, Nye JS, Lamb NJC, Fernandez A, Kitzmann M. Intracellular retention of caveolin 1 in presenilin-deficient cells. J Biol Chem 2004; 280:6663-8. [PMID: 15613480 DOI: 10.1074/jbc.m410332200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in genes encoding presenilins (PS1 and PS2) are responsible for the majority of early onset familial Alzheimer's disease. PS, a critical component of gamma-secretase, is responsible for the intramembranous cleavage of amyloid precursor protein and Notch. Other physiological functions have been assigned to PS without any clear identification of the mechanisms underlying these multiple biological roles. The early embryonic lethality of PS1 and PS2 double knock-out (PS1/2 null) mice prevents the evaluation of physiological roles of PS. To investigate new functions for presenilins, we performed a proteomic approach by using cells derived from PS1/2 null blastocysts and wild type controls. We identified a presenilin-dependent cell-surface binding of albumin. Binding of albumin depends on intact caveolae on the cellular surface. Abnormal caveolin 1 localization in PS1/2 null cells was associated with a loss of caveolae and an absence of caveolin 1 expression within lipid rafts. Expressing PS1 or PS2 but not the intracellular form of Notch1 in PS1/2 null cells restored normal caveolin 1 localization, demonstrating that presenilins are required for the subcellular trafficking of caveolin 1 independently from Notch activity. Despite an expression of both caveolin 1 and PS1 within lipid raft-enriched fractions after sucrose density centrifugation in wild type cells, no direct interaction between these two proteins was detected, implying that presenilins affect caveolin 1 trafficking in an indirect manner. We conclude that presenilins are required for caveolae formation by controlling transport of intracellular caveolin 1 to the plasma membrane.
Collapse
Affiliation(s)
- Douglas R Wood
- Department of Urology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
188
|
Fuentealba RA, Farias G, Scheu J, Bronfman M, Marzolo MP, Inestrosa NC. Signal transduction during amyloid-β-peptide neurotoxicity: role in Alzheimer disease. ACTA ACUST UNITED AC 2004; 47:275-89. [PMID: 15572177 DOI: 10.1016/j.brainresrev.2004.07.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive dementia accompanied by two main structural changes in the brain: intracellular protein deposits termed neurofibrillary tangles (NFT) and extracellular amyloid protein deposits surrounded by dystrophic neurites that constitutes the senile plaques. Currently, it is widely accepted that amyloid beta-peptide (A beta) metabolism disbalance is crucial for AD progression. A beta deposition may be enhanced by molecular chaperones, including metals like copper and proteins like acetylcholinesterase (AChE). At the neuronal level, several AD-related proteins interact with transducers of the Wnt/beta-catenin signaling pathway, including beta-catenin and glycogen synthase kinase 3 beta (GSK-3 beta) and both in vitro and in vivo studies suggest that Wnt/beta-catenin signaling is a target for A beta toxicity. Accordingly, activation of this signaling by lithium or Wnt ligands in AD-experimental animal models or in primary hippocampal neurons attenuate A beta neurotoxicity by recovering beta-catenin levels and Wnt-target gene expression of survival genes such as bcl-2. On the other hand, peroxisomal proliferator-activated receptor gamma (PPAR gamma) and muscarinic acetylcholine receptor (mAChR) agonists also activate Wnt/beta-catenin signaling and they have neuroprotective effects on hippocampal neurons. Our studies are consistent with the idea that a sustained loss of function of Wnt signaling components would trigger a series of events, determining the onset and development of AD and that modulation of this pathway through the activation of cross-talking signaling cascades should be considered as a possible therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Rodrigo A Fuentealba
- Centro FONDAP de Regulación Celular y Patología Joaquín Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
189
|
Hayashi H, Kimura N, Yamaguchi H, Hasegawa K, Yokoseki T, Shibata M, Yamamoto N, Michikawa M, Yoshikawa Y, Terao K, Matsuzaki K, Lemere CA, Selkoe DJ, Naiki H, Yanagisawa K. A seed for Alzheimer amyloid in the brain. J Neurosci 2004; 24:4894-902. [PMID: 15152051 PMCID: PMC6729458 DOI: 10.1523/jneurosci.0861-04.2004] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fundamental question about the early pathogenesis of Alzheimer's disease (AD) concerns how toxic aggregates of amyloid beta protein (Abeta) are formed from its nontoxic soluble form. We hypothesized previously that GM1 ganglioside-bound Abeta (GAbeta) is involved in the process. We now examined this possibility using a novel monoclonal antibody raised against GAbeta purified from an AD brain. Here, we report that GAbeta has a conformation distinct from that of soluble Abeta and initiates Abeta aggregation by acting as a seed. Furthermore, GAbeta generation in the brain was validated by both immunohistochemical and immunoprecipitation studies. These results imply a mechanism underlying the onset of AD and suggest that an endogenous seed can be a target of therapeutic strategy.
Collapse
Affiliation(s)
- Hideki Hayashi
- Department of Dementia Research, National Institute for Longevity Sciences, Obu 474-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Gaudreault SB, Dea D, Poirier J. Increased caveolin-1 expression in Alzheimer's disease brain. Neurobiol Aging 2004; 25:753-9. [PMID: 15165700 DOI: 10.1016/j.neurobiolaging.2003.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 07/14/2003] [Accepted: 07/29/2003] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that cholesterol plays a central role in the pathophysiology of Alzheimer's disease (AD). Caveolin is a cholesterol-binding membrane protein involved in cellular cholesterol transport. We investigated the changes in the protein amount of hippocampal caveolin of autopsy-confirmed AD and aged-matched control subjects. Our results demonstrate that caveolin protein levels in the hippocampus and caveolin mRNA in the frontal cortex are up-regulated in AD by approximately two-fold, compared to control brains. These results suggest a relationship between caveolin-1 expression levels and a dysregulation of cholesterol homeostasis at the plasma membrane of brain cells. In support of this hypothesis, a significant increase in caveolin protein levels has also been observed in hippocampal tissue from ApoE-deficient (knockout) and aged wild-type mice; two situations associated with modifications of transbilayer distribution of cholesterol in brain synaptic plasma membranes. These results indicate that caveolin over-expression is linked to alterations of cholesterol distribution in the plasma membrane of brain cells and are consistent with the notion of a deterioration of cholesterol homeostasis in AD.
Collapse
Affiliation(s)
- Sophie B Gaudreault
- Departments of Psychiatry and Neurology & Neurosurgery, Douglas Hospital Research Centre, McGill University, Montreal, Que., Canada H4A 2B4
| | | | | |
Collapse
|
191
|
Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, Wong PC, Xu H, Thinakaran G. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 2004; 279:44945-54. [PMID: 15322084 PMCID: PMC1201506 DOI: 10.1074/jbc.m407986200] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease-associated beta-amyloid peptides (Abeta) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by beta- and gamma-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major beta-secretase in neurons is a palmitoylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the gamma-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1(-/-)/PS2(-/-) and NCT(-/-) fibroblasts, gamma-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires gamma-secretase complex assembly. Biochemical evidence shows that subunits of the gamma-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of gamma-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP.
Collapse
Affiliation(s)
| | - Haipeng Cheng
- From the Department of Neurobiology, Pharmacology and Physiology and the
| | - William Lin
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, the
| | - Takashi Sakurai
- Laboratory for Neurodegeneration Signal and Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan, the
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the
| | - Nobuyuki Nukina
- Laboratory for Neurodegeneration Signal and Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan, the
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the
| | - Huaxi Xu
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, California 92037
| | - Gopal Thinakaran
- From the Department of Neurobiology, Pharmacology and Physiology and the
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, the
- §§ To whom correspondence should be addressed. Tel.: 773-834-3752; Fax: 773-834-3808; E-mail:
| |
Collapse
|
192
|
Kawarabayashi T, Shoji M, Younkin LH, Wen-Lang L, Dickson DW, Murakami T, Matsubara E, Abe K, Ashe KH, Younkin SG. Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease. J Neurosci 2004; 24:3801-9. [PMID: 15084661 PMCID: PMC6729359 DOI: 10.1523/jneurosci.5543-03.2004] [Citation(s) in RCA: 284] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To investigate lipid rafts as a site where amyloid beta protein (Abeta) oligomers might accumulate and cause toxicity in Alzheimer's disease (AD), we analyzed Abeta in the Tg2576 transgenic mouse model of AD. Abeta was highly concentrated in lipid rafts, which comprise a small fraction of brain volume but contain 27% of brain Abeta42 and 24% of Abeta40 in young mice. In the Tg2576 model, memory impairment begins at 6 months before amyloid plaques are visible. Here we show that Abeta dimers appear in lipid rafts at 6 months and that raft Abeta, which is primarily dimeric, rapidly accumulates reaching levels >500x those in young mice by 24-28 months. A similar large accumulation of dimeric Abeta was observed in lipid rafts from AD brain. In contrast to extracellular amyloid fibrils, which are SDS-insoluble, virtually all Abeta in lipid rafts is SDS soluble. Coupled with recent studies showing that synthetic and naturally occurring Abeta oligomers can inhibit hippocampal long-term potentiation, the in vivo age-dependent accumulation of SDS-soluble Abeta dimers in lipid rafts at the time when memory impairment begins in Tg2576 mice provides strong evidence linking Abeta oligomers to memory impairment. After dimeric Abeta began to accumulate in lipid rafts of the Tg2576 brain, apolipoprotein E (ApoE) and then phosphorylated tau accumulated. A similar increase in ApoE and a large increase in phosphorylated tau was observed in lipid rafts from AD brain. These findings suggest that lipid rafts may be an important site for interaction between dimeric Abeta, ApoE, and tau.
Collapse
Affiliation(s)
- Takeshi Kawarabayashi
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Yamamoto N, Igbabvoa U, Shimada Y, Ohno-Iwashita Y, Kobayashi M, Wood WG, Fujita SC, Yanagisawa K. Accelerated Aβ aggregation in the presence of GM1-ganglioside-accumulated synaptosomes of aged apoE4-knock-in mouse brain. FEBS Lett 2004; 569:135-9. [PMID: 15225622 DOI: 10.1016/j.febslet.2004.05.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
Abstract
Aging and apolipoprotein E4 (apoE4) expression are strong risk factors for the development of Alzheimer's disease (AD); however, their pathological roles remain to be clarified. In the process of AD development, the conversion of the nontoxic amyloid beta-protein (Abeta) monomer to its toxic aggregates is a fundamental process. We previously hypothesized that Abeta aggregation is accelerated through the generation of GM1 ganglioside (GM1)-bound Abeta which acts as a seed for Abeta fibril formation. Here we report that GM1 level in detergent-resistant membrane microdomains (DRMs) of synaptosomes increased with age and that this increase was significantly pronounced in the apoE4- than the apoE3-knock-in mouse brain. Furthermore, we show that Abeta aggregation is markedly accelerated in the presence of the synaptosomes of the aged apoE4-knock-in mouse brain. These observations suggest that aging and apoE4 expression cooperatively accelerate Abeta aggregation in the brain through an increase in the level of GM1 in neuronal membranes.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu 474-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Gu Y, Sanjo N, Chen F, Hasegawa H, Petit A, Ruan X, Li W, Shier C, Kawarai T, Schmitt-Ulms G, Westaway D, St George-Hyslop P, Fraser PE. The presenilin proteins are components of multiple membrane-bound complexes that have different biological activities. J Biol Chem 2004; 279:31329-36. [PMID: 15123598 DOI: 10.1074/jbc.m401548200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several lines of evidence have indicated that the presenilin proteins function within macromolecular complexes and are necessary for the regulated intramembranous proteolysis of certain type 1 transmembrane proteins, including the amyloid precursor protein, Notch, and p75. Data from multiple complementary experiments now suggest that there may be several distinct presenilin complexes. We show here that presenilin mutations and certain detergents affect the abundance and componentry of the presenilin complexes, and these structural effects correlate with their effects on gamma-secretase activity. Our data suggest that there are at least three complexes, including a approximately 150-kDa nicastrin-aph-1 complex (which is likely to be a precursor complex). There is a stable and abundant intermediate complex of approximately 440 kDa, which contains aph-1, pen-2, nicastrin, and PS1. However, it is the very low abundance, high mass (>/=670 kDa) heteromeric complexes that are associated with the highest gamma-secretase-specific activity.
Collapse
Affiliation(s)
- Yongjun Gu
- Centre for Research in Neurodegenerative Diseases, Department of Medicine, University of Toronto, 6 Queen's Park Crescent West, Toronto, Ontario M5S 3H2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Watanabe N, Araki W, Chui DH, Makifuchi T, Ihara Y, Tabira T. Glypican-1 as an Abeta binding HSPG in the human brain: its localization in DIG domains and possible roles in the pathogenesis of Alzheimer's disease. FASEB J 2004; 18:1013-5. [PMID: 15084524 DOI: 10.1096/fj.03-1040fje] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies have suggested that heparan sulfate proteoglycans (HSPGs) play a role in deposition of beta-amyloid protein (Abeta) in the Alzheimer's disease (AD) brain. In the present study, we demonstrated that glypican-1 can bind fibrillar Abeta, and the binding is mainly mediated by heparan sulfate (HS) chains. Further analysis revealed that glypican-1 is the major HSPG localized in detergent-insoluble glycosphingolipid-enriched (DIG) domains where all machineries for Abeta production exist and Abeta is accumulated as monomeric and oligomeric forms. Immunohistochemical studies demonstrated that glypican-1 is localized in primitive plaques as well as classic plaques. Moreover, overexpression of glypican-1 and amyloid precursor protein in SH-SY5Y cells resulted in reduced cell viability and made cells more susceptible to thapsigargin-induced stress and Abeta toxicity. The results raise the possibility that glypican-1 interacts with oligomerized or polymerized Abeta in such a specific compartment as DIG, resulting not only in amyloid deposition in senile plaques of AD brain, but also in accelerating neuronal cell death in response to stress and Abeta.
Collapse
Affiliation(s)
- Norifumi Watanabe
- National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan.
| | | | | | | | | | | |
Collapse
|
196
|
Harris-Cerruti C, Kamsler A, Kaplan B, Lamb B, Segal M, Groner Y. Functional and morphological alterations in compound transgenic mice overexpreszing Cu/Zn superoxide dismutaze and amyloid precursor protein. Eur J Neurosci 2004; 19:1174-90. [PMID: 15016076 DOI: 10.1111/j.1460-9568.2004.03188.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Down's syndrome (DS), the phenotypic manifestation of trisomy 21, involves overexpression of chromosome 21-encoded genes. The gene for amyloid precursor protein (APP), known to be involved in AD pathology, resides on chromosome 21 along with the gene for Cu/Zn superoxide dismutase (SOD1), a key enzyme in the metabolism of oxygen free radicals. We investigated the consequences of a combined increase in APP and SOD1, in a double-transgenic (tg)-APP-SOD1 mouse. These mice expressed severe impairment in learning, working and long-term memory. Expression of long-term potentiation in hippocampal slices was impaired in both tg-SOD and tg-APP-SOD mice, but not in tg-APP mice, indicating that increased APP by itself did not affect in vitro synaptic plasticity. In tg-APP-SOD mice, membrane-bound high molecular weight APP species accumulated while APP cleavage products did not increase and levels of secreted APP were unchanged. Severe morphological damage, including lipofuscin accumulation and mitochondria abnormalities, were found in aged tg-APP-SOD but not in the other mice. Thus, a combined elevation of the two chromosome 21 genes in tg-APP-SOD mice induced age-dependent alterations in morphological and behavioural functions.
Collapse
|
197
|
Sawamura N, Ko M, Yu W, Zou K, Hanada K, Suzuki T, Gong JS, Yanagisawa K, Michikawa M. Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J Biol Chem 2004; 279:11984-91. [PMID: 14715666 DOI: 10.1074/jbc.m309832200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid rafts and their component, cholesterol, modulate the processing of beta-amyloid precursor protein (APP). However, the role of sphingolipids, another major component of lipid rafts, in APP processing remains undetermined. Here we report the effect of sphingolipid deficiency on APP processing in Chinese hamster ovary cells treated with a specific inhibitor of serine palmitoyltransferase, which catalyzes the first step of sphingolipid biosynthesis, and in a mutant LY-B strain defective in the LCB1 subunit of serine palmitoyltransferase. We found that in sphingolipid-deficient cells, the secretion of soluble APPalpha (sAPPalpha) and the generation of C-terminal fragment cleaved at alpha-site dramatically increased, whereas beta-cleavage activity remained unchanged, and the epsilon-cleavage activity decreased without alteration of the total APP level. The secretion of amyloid beta-protein 42 increased in sphingolipid-deficient cells, whereas that of amyloid beta-protein 40 did not. All of these alterations were restored in sphingolipid-deficient cells by adding exogenous sphingosine and in LY-B cells by transfection with cLCB1. Sphingolipid deficiency increased MAPK/ERK activity and a specific inhibitor of MAPK kinase, PD98059, restored sAPPalpha level, indicating that sphingolipid deficiency enhances sAPPalpha secretion via activation of MAPK/ERK pathway. These results suggest that not only the cellular level of cholesterol but also that of sphingolipids may be involved in the pathological process of Alzheimer's disease by modulating APP cleavage.
Collapse
Affiliation(s)
- Naoya Sawamura
- Department of Dementia Research, National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Tashima Y, Oe R, Lee S, Sugihara G, Chambers EJ, Takahashi M, Yamada T. The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid beta-peptide from liposomes prepared from brain membrane-like lipids. J Biol Chem 2004; 279:17587-95. [PMID: 14709559 DOI: 10.1074/jbc.m308622200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order to investigate the influence of cholesterol (Ch) and monosialoganglioside (GM1) on the release and subsequent deposition/aggregation of amyloid beta peptide (Abeta)-(1-40) and Abeta-(1-42), we have examined Abeta peptide model membrane interactions by circular dichroism, turbidity measurements, and transmission electron microscopy (TEM). Model liposomes containing Abeta peptide and a lipid mixture composition similar to that found in the cerebral cortex membranes (CCM-lipid) have been prepared. In all, four Abeta-containing liposomes were investigated: CCM-lipid; liposomes with no GM1 (GM1-free lipid); those with no cholesterol (Ch-free lipid); liposomes with neither cholesterol nor GM1 (Ch-GM1-free lipid). In CCM liposomes, Abeta was rapidly released from membranes to form a well defined fibril structure. However, for the GM1-free lipid, Abeta was first released to yield a fibril structure about the membrane surface, then the membrane became disrupted resulting in the formation of small vesicles. In Ch-free lipid, a fibril structure with a phospholipid membrane-like shadow formed, but this differed from the well defined fibril structure seen for CCM-lipid. In Ch-GM1-free lipid, no fibril structure formed, possibly because of membrane solubilization by Abeta. The absence of fibril structure was noted at physiological extracellular pH (7.4) and also at liposomal/endosomal pH (5.5). Our results suggest a possible role for both Ch and GM1 in the membrane release of Abeta from brain lipid bilayers.
Collapse
Affiliation(s)
- Yoshihiko Tashima
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | |
Collapse
|
199
|
Allinson TMJ, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 2003; 74:342-52. [PMID: 14598310 DOI: 10.1002/jnr.10737] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the non-amyloidogenic pathway, the Alzheimer's amyloid precursor protein (APP) is cleaved within the amyloid-beta domain by alpha-secretase precluding deposition of intact amyloid-beta peptide. The large ectodomain released from the cell surface by the action of alpha-secretase has several neuroprotective properties. Studies with protease inhibitors have shown that alpha-secretase is a zinc metalloproteinase, and several members of the adamalysin family of proteins, tumour necrosis factor-alpha convertase (TACE, ADAM17), ADAM10, and ADAM9, all fulfil some of the criteria required of alpha-secretase. We review the evidence for each of these ADAMs acting as the alpha-secretase. What seems to be emerging from numerous studies, including those with mice in which each of the ADAMs has been knocked out, is that there is a team of zinc metalloproteinases able to cleave APP at the alpha-secretase site. We also discuss how upregulation of alpha-secretase activity by muscarinic agonists, cholesterol-lowering drugs, steroid hormones, non-steroidal anti-inflammatory drugs, and metal ions may explain some of the therapeutic actions of these agents in Alzheimer's disease.
Collapse
Affiliation(s)
- Tobias M J Allinson
- Proteolysis Research Group, School of Biochemistry and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | |
Collapse
|
200
|
Girardot N, Allinquant B, Langui D, Laquerrière A, Dubois B, Hauw JJ, Duyckaerts C. Accumulation of flotillin-1 in tangle-bearing neurones of Alzheimer's disease. Neuropathol Appl Neurobiol 2003; 29:451-61. [PMID: 14507337 DOI: 10.1046/j.1365-2990.2003.00479.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The protein flotillin-1 is associated with the 'lipid rafts', that is, membrane microdomains that are enriched in cholesterol and sphingolipids. We compared flotillin-1 immunoreactivity in the hippocampus, amygdala and isocortex (Brodmann area 22) of six controls and 13 Alzheimer's disease (AD) cases (10 sporadic and three familial). A diffuse labelling of the neuropil was observed in most of the samples. The intensity of this labelling was not correlated with the density of neurofibrillary tangles (NFT) or of senile plaques. Some neuronal cell bodies were diffusely labelled in patients as in controls. Immunostained granular bodies were found in the cell body of a few neurones. The density of neuronal profiles containing large granular bodies (diameter > or =2 microm) was significantly higher in AD cases and was correlated with the density of NFTs in the three regions that were studied. Sections stained by double immunofluorescence methods and examined with confocal microscopy suggested that flotillin-1 accumulated most often in tangle-bearing neurones (76% of flotillin-1-positive neurones contained a NFT). Flotillin-1 immunoreactivity, even when found in a tangle-bearing neurone, was not colocalized with tau protein indicating that the two proteins were not in close contact and probably in different subcellular compartments. Flotillin-1-positive granular bodies were also found in neurones containing Pin1-positive vesicles but were not colocalized with them. Flotillin-1 immunoreactivity was colocalized with cathepsin D, a lysosomal marker. These data indicate that flotillin-1, a marker of rafts, accumulates in lysosomes of tangle-bearing neurones in the course of AD.
Collapse
Affiliation(s)
- N Girardot
- Laboratoire de Neuropathologie Raymond Escourolle, CHU Pitié-Salpêtrière, AP-HP & Association Claude Bernard, Paris, Inserm U106, Paris, France
| | | | | | | | | | | | | |
Collapse
|