151
|
Zhang L, Shao J, Zhou Y, Chen H, Qi H, Wang Y, Chen L, Zhu Y, Zhang M, Chen L, Du Y, Zhong M, Shi X, Li Q. Inhibition of PDGF-BB-induced proliferation and migration in VSMCs by proanthocyanidin A2: Involvement of KDR and Jak-2/STAT-3/cPLA 2 signaling pathways. Biomed Pharmacother 2018; 98:847-855. [PMID: 29571255 DOI: 10.1016/j.biopha.2018.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Proanthocyanidin A2 (PA2), one of A-type proanthocyanidins, has been shown to harbor a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anti-HIV, anti-CDV and anti-?-glucosidase activities. However, little is known about the role for PA2 in regulating PDGF-induced VSMC proliferation and migration. In the present study, we investigated the possible effects of PA2 on PDGF-BB-induced proliferation, migration and inflammation in VSMCs in vitro to mimic a postangioplasty PDGF shedding condition. Herein, the data clearly show that PA2 markedly inhibited proliferation, migration and inflammatory responses at 0-30??g/ml concentration in VSMCs in vitro. 10-30??g/ml PA2 inhibited PDGF-mediated NAD(P)H oxidase activation and intracellular ROS formation in VSMCs. Furthermore, the effects exerted by PA2 involve the participation of KDR and Jak-2/STAT-3/cPLA2 signaling pathways. These data also highlight the possible therapeutic use of PA2 in vascular proliferative diseases, where abnormal proliferation and migration play important pathological roles.
Collapse
Affiliation(s)
- Liudi Zhang
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital North, Shanghai 201907, China
| | - Yufu Zhou
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Yi Wang
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Yongjun Zhu
- Department of Cardio-thoracic surgery, Huashan Hospital, Shanghai 200040, China.
| | - Meng Zhang
- Brunswick Laboratories (China), Suzhou Industrial Park 215021, China
| | - Li Chen
- Pharmacy Department, Xuhui district Central Hospital, 966 Huai Hai M Road, Shanghai 200031, China
| | - Yongli Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China.
| |
Collapse
|
152
|
Yue Y, Ma K, Li Z, Wang Z. Angiotensin II type 1 receptor-associated protein regulates carotid intimal hyperplasia through controlling apoptosis of vascular smooth muscle cells. Biochem Biophys Res Commun 2018; 495:2030-2037. [DOI: 10.1016/j.bbrc.2017.12.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022]
|
153
|
Lai Z, Lin P, Weng X, Su J, Chen Y, He Y, Wu G, Wang J, Yu Y, Zhang L. MicroRNA-574-5p promotes cell growth of vascular smooth muscle cells in the progression of coronary artery disease. Biomed Pharmacother 2018; 97:162-167. [DOI: 10.1016/j.biopha.2017.10.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
154
|
Dutzmann J, Bauersachs J, Sedding DG. Evidence for the use of mineralocorticoid receptor antagonists in the treatment of coronary artery disease and post-angioplasty restenosis. Vascul Pharmacol 2017; 107:S1537-1891(17)30281-1. [PMID: 29274772 DOI: 10.1016/j.vph.2017.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/05/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Mineralocorticoid receptor antagonists (MRAs), such as spironolactone and eplerenone have an established role in the treatment of heart failure. However, many experimental and clinical studies have shown that aldosterone also plays a pivotal role in a variety of other pathophysiological conditions within the cardiovascular system. Aldosterone has been suggested to promote inflammation, endothelial dysfunction and smooth muscle cell hyperplasia during the development of atherosclerosis, thereby promoting the development of coronary artery disease (CAD). Since CAD and subsequent ischemic cardiomyopathy are the major causes of heart failure, it is of major interest, whether pharmacological therapy with MRAs among heart failure patients will also affect the common underlying conditions, namely, atherosclerosis and subsequent coronary vessel narrowing/rarefication. Therefore, in this article, we reviewed and discussed the preclinical and clinical evidence of MRAs for the treatment of acute or chronic vascular remodeling processes, such as atherosclerosis and post-angioplasty restenosis, which determine the progression of CAD and subsequent ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Jochen Dutzmann
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
155
|
Daniel JM, Reich F, Dutzmann J, Weisheit S, Teske R, Gündüz D, Bauersachs J, Preissner K, Sedding D. Cleaved high-molecular-weight kininogen inhibits neointima formation following vascular injury. Thromb Haemost 2017; 114:603-13. [DOI: 10.1160/th15-01-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
SummaryCleaved high-molecular-weight kininogen (HKa) or its peptide domain 5 (D5) alone exert anti-adhesive properties in vitro related to impeding integrin-mediated cellular interactions. However, the anti-adhesive effects of HKa in vivo remain elusive. In this study, we investigated the effects of HKa on leukocyte recruitment and neointima formation following wire-induced injury of the femoral artery in C57BL/6 mice. Local application of HKa significantly reduced the accumulation of monocytes and also reduced neointimal lesion size 14 days after injury. Moreover, C57BL/6 mice transplanted with bone marrow from transgenic mice expressing enhanced green fluorescence protein (eGFP) showed a significantly reduced accumulation of eGFP+-cells at the arterial injury site and decreased neointimal lesion size after local application of HKa or the polypeptide D5 alone. A differentiation of accumulating eGFP+-cells into highly specific smooth muscle cells (SMC) was not detected in any group. In contrast, application of HKa significantly reduced the proliferation of locally derived neointimal cells. In vitro, HKa and D5 potently inhibited the adhesion of SMC to vitronectin, thus impairing their proliferation, migration, and survival rates. In conclusion, application of HKa or D5 decreases the inflammatory response to vascular injury and exerts direct effects on SMC by impeding the binding of integrins to extracellular matrix components. Therefore, HKa and D5 may hold promise as novel therapeutic substances to prevent neointima formation.
Collapse
|
156
|
Cholinergic anti-inflammatory pathway inhibits neointimal hyperplasia by suppressing inflammation and oxidative stress. Redox Biol 2017; 15:22-33. [PMID: 29197233 PMCID: PMC5723281 DOI: 10.1016/j.redox.2017.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Neointimal hyperplasia as a consequence of vascular injury is aggravated by inflammatory reaction and oxidative stress. The α7 nicotinic acetylcholine receptor (α7nAChR) is a orchestrator of cholinergic anti-inflammatory pathway (CAP), which refers to a physiological neuro-immune mechanism that restricts inflammation. Here, we investigated the potential role of CAP in neointimal hyperplasia using α7nAChR knockout (KO) mice. Male α7nAChR-KO mice and their wild-type control mice (WT) were subjected to wire injury in left common carotid artery. At 4 weeks post injury, the injured aortae were isolated for examination. The neointimal hyperplasia after wire injury was significantly aggravated in α7nAChR-KO mice compared with WT mice. The α7nAChR-KO mice had increased collagen contents and vascular smooth muscle cells (VSMCs) amount. Moreover, the inflammation was significantly enhanced in the neointima of α7nAChR-KO mice relative to WT mice, evidenced by the increased expression of tumor necrosis factor-α/interleukin-1β, and macrophage infiltration. Meanwhile, the chemokines chemokine (C-C motif) ligand 2 and chemokine (CXC motif) ligand 2 expression was also augmented in the neointima of α7nAChR-KO mice compared with WT mice. Additionally, the depletion of superoxide dismutase (SOD) and reduced glutathione (GSH), and the upregulation of 3-nitrotyrosine, malondialdehyde and myeloperoxidase were more pronounced in neointima of α7nAChR-KO mice compared with WT mice. Accordingly, the protein expression of NADPH oxidase 1 (Nox1), Nox2 and Nox4, was also higher in neointima of α7nAChR-KO mice compared with WT mice. Finally, pharmacologically activation of CAP with a selective α7nAChR agonist PNU-282987, significantly reduced neointima formation, arterial inflammation and oxidative stress after vascular injury in C57BL/6 mice. In conclusion, our results demonstrate that α7nAChR-mediated CAP is a neuro-physiological mechanism that inhibits neointima formation after vascular injury via suppressing arterial inflammation and oxidative stress. Further, these results imply that targeting α7nAChR may be a promising interventional strategy for in-stent stenosis.
Collapse
|
157
|
Wang Y, Zhao D, Sheng J, Lu P. Local honokiol application inhibits intimal thickening in rabbits following carotid artery balloon injury. Mol Med Rep 2017; 17:1683-1689. [PMID: 29257208 PMCID: PMC5780111 DOI: 10.3892/mmr.2017.8076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 07/24/2017] [Indexed: 01/10/2023] Open
Abstract
Honokiol is a natural bioactive product with anti-tumor, anti-inflammatory, anti-oxidative, anti-angiogenic and neuroprotective properties. The present study aimed to investigate the effects of honokiol treatment on intimal thickening following vascular balloon injury. The current study determined that perivascular honokiol application reduced intimal thickening in rabbits 14 days after carotid artery injury, it may inhibit vascular smooth muscle cell (VSMCs) proliferation and reduce collagen deposition in local arteries. The findings of the presents study also suggested that honikiol may increase the mRNA expression levels of matrix metalloproteinase‑1 (MMP‑1), MMP‑2 and MMP‑9 and decrease tissue inhibitor of metalloproteinase‑1 (TIMP‑1) mRNA expression in the rabbit arteries. Additionally, perivascular honokiol application inhibited intimal thickening, possibly via inhibition of the phosphorylation of SMAD family member 2/3.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jing Sheng
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ping Lu
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
158
|
Zhou JM, Wang HM, Lv YZ, Wang ZZ, Xiao W. Anti-atherosclerotic effect of Longxuetongluo Capsule in high cholesterol diet induced atherosclerosis model rats. Biomed Pharmacother 2017; 97:793-801. [PMID: 29112932 DOI: 10.1016/j.biopha.2017.08.141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Chinese dragon's blood, the red resin of Dracaena cochinchinensis, one of the famous traditional medicines, has been used to promote blood circulation, disperse blood stasis, stop bleeding, relieve pain and muscle regeneration for thousands of years. The aims of this study were to evaluate the anti-atherosclerotic effect of Longxuetongluo Capsule (LTC), which made by total phenolic compounds of Chinese dragon's blood, in high cholesterol diet (HCD)-induced atherosclerosis model rats and explore the possible mechanism. Atherosclerosis rats were induced by administration of HCD for 4 weeks and treated with atorvastatin (2.08mg/kg/d) or various concentrations of LTC (81, 162 and 324mg/kg/d) for additional 4 weeks. Body weight (BW), lipid profiles, serum VCAM-1, ICAM-1, MCP-1, AST and ALT were then tested. Histopathological evaluation of aorta and liver were determined by hematoxylin and eosin staining. NF-κB expression in aorta was detected by Immunohistochemical staining. Meanwhile, the inhibition effects of LTC on the migration and proliferation and Intracellular Ca2+ levels induced by PDGF-BB were also evaluated in rat aortic smooth muscle cells (A7r5). The results demonstrated that LTC produced a significant anti-atherosclerotic activity in terms of reduction in serum lipids and lipoprotein profile, VCAM-1, ICAM-1, MCP-1, AST, ALT levels, and increase in HDL-c level compared to atherosclerotic group. Rats treated with LTC not only attenuated the pathological region and atheroma formation, but also reduced hepatic steatosis and inflammatory cell infiltration. Immunohistochemical analysis showed LTC reduced NF-κB expression in aorta. Furthermore, PDGF-BB induced proliferation and migration of A7r5 and intracellular calcium rise were also abrogated by LTC. The results indicate that LTC prevents atherosclerosis and fatty liver by controlling lipid metabolism, the underlying mechanism may attributed to its anti-inflammation activity, regulation of the vascular smooth muscle function and intracellular calcium signaling.
Collapse
Affiliation(s)
- J M Zhou
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - H M Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Y Z Lv
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Z Z Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - W Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China.
| |
Collapse
|
159
|
Jansen F, Zietzer A, Stumpf T, Flender A, Schmitz T, Nickenig G, Werner N. Endothelial microparticle-promoted inhibition of vascular remodeling is abrogated under hyperglycaemic conditions. J Mol Cell Cardiol 2017; 112:91-94. [DOI: 10.1016/j.yjmcc.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
160
|
Gao W, Zhao Y, Li X, Sun Y, Cai M, Cao W, Liu Z, Tong L, Cui G, Tang B. H 2O 2-responsive and plaque-penetrating nanoplatform for mTOR gene silencing with robust anti-atherosclerosis efficacy. Chem Sci 2017; 9:439-445. [PMID: 29629115 PMCID: PMC5868311 DOI: 10.1039/c7sc03582a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/27/2017] [Indexed: 01/09/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) that controls autophagy and lipid metabolism is pivotal for atherosclerosis initiation and progression. Although blocking the mTOR function with rapamycin and its analogs may stimulate autophagy and consequently attenuate lipid storage and atherosclerotic lesions, only limited success has been achieved in clinical applications due to the unsatisfactory efficacy and safety profiles. In this study, we engineered a cerium oxide nanowire (CeO2 NW)-based RNA interference (RNAi) oligonucleotide delivery nanoplatform for the effective silencing of mTOR and treatment of atherosclerosis. This nanoplatform is composed of the following three key components: (i) a stabilin-2-specific peptide ligand (S2P) to improve plaque targeting and penetration; (ii) polyethylene glycosylation (PEGylation) to extend in vivo circulation time; and (iii) a high aspect ratio CeO2 core to facilitate endosome escape and ensure "on-demand" release of the RNAi payloads through competitive coordination of cytosolic hydrogen peroxide (H2O2). Systemic administration of the nanoplatforms efficiently targeted stabilin-2-expressing plaque and suppressed mTOR expression, which significantly rescued the impaired autophagy and inhibited the atherosclerotic lesion progression in apolipoprotein E-deficient (ApoE-/-) mice fed with a high-fat diet. These results demonstrated that this H2O2-responsive and plaque-penetrating nanoplatform can be a potent and safe tool for gene therapy of atherosclerosis.
Collapse
Affiliation(s)
- Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Biomedical Sciences , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Yujie Zhao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Biomedical Sciences , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Xiang Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Biomedical Sciences , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Yuhui Sun
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Biomedical Sciences , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Michelle Cai
- Faculty of Science , Western University , London , Ontario N6A5B7 , Canada
| | - Wenhua Cao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Biomedical Sciences , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Biomedical Sciences , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Biomedical Sciences , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Biomedical Sciences , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Biomedical Sciences , Shandong Normal University , Jinan 250014 , P. R. China .
| |
Collapse
|
161
|
Zhang Y, Zhang Y, Li W, Wang P, Gu R, Feng Y, Wei S, Peng K, Zhang Y, Su L, Wang Q, Li D, Yang D, Wong WT, Yang Y, Ma S. Uncoupling Protein 2 Inhibits Myointimal Hyperplasia in Preclinical Animal Models of Vascular Injury. J Am Heart Assoc 2017; 6:JAHA.117.006593. [PMID: 29025747 PMCID: PMC5721816 DOI: 10.1161/jaha.117.006593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Intracoronary stent restenosis, characterized by excessive smooth muscle cell (SMC) proliferation and myointimal hyperplasia, remains a clinical challenge. Mitochondrial membrane potential has been linked to the proliferative rate of SMCs. This study aimed to screen a critical gene regulating mitochondrial potential and to confirm its effects on myointimal formation in preclinical animal models. METHODS AND RESULTS We performed transcriptome screening for genes differentially expressed in ligated versus unligated mouse carotid arteries. We observed that uncoupling protein 2 gene (Ucp2) mRNA, encoding UCP2, was transiently upregulated during the first 3 days after ligation and then significantly downregulated from day 7 through day 21, during which time neointima formed remarkably. The UCP2 protein level also declined after day 7 of ligation. In ligated carotid arteries, Ucp2-/- mice, compared with wild-type littermates, exhibited accelerated myointimal formation, which was associated with increased superoxide production and can be attenuated by treatment with antioxidant 4-hydroxy-2,2,6,6-tetramethyl-piperidinoxyl (TEMPOL). Knockdown of UCP2 enhanced human aortic SMC migration and proliferation that can also be attenuated by TEMPOL, whereas UCP2 overexpression inhibited SMC migration and proliferation, along with decreased activity of nuclear factor-κB. Moreover, nuclear factor-κB inhibitor attenuated UCP2 knockdown-enhanced SMC proliferation. Adenovirus-mediated overexpression of UCP2 inhibited myointimal formation in balloon-injured carotid arteries of rats and rabbits and in-stent stenosis of porcine coronary arteries. Moreover, UCP2 overexpression also suppressed neointimal hyperplasia in cultured human saphenous vein ex vivo. CONCLUSIONS UCP2 inhibits myointimal hyperplasia after vascular injury, probably through suppressing nuclear factor-κB-dependent SMC proliferation and migration, rendering UCP2 a potential therapeutic target against restenosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yaolei Zhang
- Medical Central Laboratory, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Wei Li
- Medical Central Laboratory, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Rui Gu
- Medical Central Laboratory, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yaxing Feng
- Medical Central Laboratory, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Shujie Wei
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Ke Peng
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yunrong Zhang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Linan Su
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Qiang Wang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Shuangtao Ma
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China .,Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
162
|
Interferon Regulatory Factor 4 Inhibits Neointima Formation by Engaging Krüppel-Like Factor 4 Signaling. Circulation 2017; 136:1412-1433. [DOI: 10.1161/circulationaha.116.026046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 08/02/2017] [Indexed: 01/02/2023]
Abstract
Background:
The mechanisms underlying neointima formation remain unclear. Interferon regulatory factors (IRFs), which are key innate immune regulators, play important roles in cardiometabolic diseases. However, the function of IRF4 in arterial restenosis is unknown.
Methods:
IRF4 expression was first detected in human and mouse restenotic arteries. Then, the effects of IRF4 on neointima formation were evaluated with universal IRF4-deficient mouse and rat carotid artery injury models. We performed immunostaining to identify IRF4-expressing cells in the lesions. Smooth muscle cell (SMC)–specific IRF4-knockout (KO) and -transgenic (TG) mice were generated to evaluate the effects of SMC-IRF4 on neointima formation. We used microarray, bioinformatics analysis, and chromatin immunoprecipitation assay to identify the downstream signals of IRF4 and to verify the targets in vitro. We compared SMC-IRF4-KO/Krüppel-like factor 4 (KLF4)–TG mice with SMC-IRF4-KO mice and SMC-specific IRF4-TG/KLF4-KO mice with SMC-specific IRF4-TG mice to investigate whether the effect of IRF4 on neointima formation is KLF4-dependent. The effect of IRF4 on SMC phenotype switching was also evaluated.
Results:
IRF4 expression in both the human and mouse restenotic arteries is eventually downregulated. Universal IRF4 ablation potentiates neointima formation in both mice and rats. Immunostaining indicated that IRF4 was expressed primarily in SMCs in restenotic arteries. After injury, SMC-IRF4-KO mice developed a thicker neointima than control mice. This change was accompanied by increased SMC proliferation and migration. However, SMC-specific IRF4-TG mice exhibited the opposite phenotype, demonstrating that IRF4 exerts protective effects against neointima formation. The mechanistic study indicated that IRF4 promotes KLF4 expression by directly binding to its promoter. Genetic overexpression of KLF4 in SMCs largely reversed the neointima-promoting effect of IRF4 ablation, whereas ablation of KLF4 abolished the protective function of IRF4, indicating that the protective effects of IRF4 against neointima formation are KLF4-dependent. In addition, IRF4 promoted SMC dedifferentiation.
Conclusions:
IRF4 protects arteries against neointima formation by promoting the expression of KLF4 by directly binding to its promoter. Our findings suggest that this previously undiscovered IRF4-KLF4 axis plays a key role in vasculoproliferative pathology and may be a promising therapeutic target for the treatment of arterial restenosis.
Collapse
|
163
|
Kim J, Chakraborty S, Jayaprakasha GK, Muthuchamy M, Patil BS. Citrus nomilin down-regulates TNF-α-induced proliferation of aortic smooth muscle cells via apoptosis and inhibition of IκB. Eur J Pharmacol 2017; 811:93-100. [PMID: 28551013 DOI: 10.1016/j.ejphar.2017.05.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
Abstract
Nomilin is a bitter compound present in citrus and has been demonstrated as useful for various disease preventions through anti-proliferative, anti-inflammatory, and pro-apoptotic activities. Although in vitro disease models have shown that certain limonoids in the p38 mitogen-activated protein kinase signal cascade, the downstream signaling pathways remain unclear. In this study, the effects of nomilin on the proliferation and apoptotic pathways of human aortic smooth muscle cells (HASMCs) that forms the basis of progression of atherosclerotic diseases and restenosis was tested for the first time. The cellular uptake level and stability of nomilin were determined by high-performance liquid chromatography and high-resolution mass spectra. Pretreatment of HASMCs with nomilin stimulated extrinsic caspase-8, intrinsic caspase-9, and apoptotic caspase-3 and resulted in significant inhibition of TNF-α-induced proliferation. Additionally, results showed a decreased ratio of anti-apoptotic Bcl-2 protein to pro-apoptotic Bax (Bcl2/Bax), indicating mitochondrial dysfunction consistent with apoptosis. Furthermore, nomilin significantly decreased the phosphorylation of IκBα, an inhibitor of NF-κB and subsequently, reduced the downstream inflammatory signaling in TNF-α treated HASMCs. Our findings indicate that the anti-proliferative activity of nomilin on TNF-α-induced HASMCs results from apoptosis through a mitochondrial-dependent pathway and suppression of inflammatory signaling mediated through NF-κB.
Collapse
Affiliation(s)
- Jinhee Kim
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843-1114, USA
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA
| | - Mariappan Muthuchamy
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843-1114, USA.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA.
| |
Collapse
|
164
|
Janjic M, Pappa F, Karagkiozaki V, Gitas C, Ktenidis K, Logothetidis S. Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning. Int J Nanomedicine 2017; 12:6343-6355. [PMID: 28919738 PMCID: PMC5587164 DOI: 10.2147/ijn.s138261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study describes the development of drug-loaded nanofibrous scaffolds as a nanocoating for endovascular stents for the local and sustained delivery of rosuvastatin (Ros) and heparin (Hep) to injured artery walls after endovascular procedures via the electrospinning process. PURPOSE The proposed hybrid covered stents can promote re-endothelialization; improve endothelial function; reduce inflammatory reaction; inhibit neointimal hyperplasia of the injured artery wall, due to well-known pleiotropic actions of Ros; and prevent adverse events such as in-stent restenosis (ISR) and stent thrombosis (ST), through the antithrombotic action of Hep. METHODS Biodegradable nanofibers were prepared by dissolving cellulose acetate (AC) and Ros in N,N-dimethylacetamide (DMAc) and acetone-based solvents. The polymeric solution was electrospun (e-spun) into drug-loaded AC nanofibers onto three different commercially available stents (Co-Cr stent, Ni-Ti stent, and stainless steel stent), resulting in nonwoven matrices of submicron-sized fibers. Accordingly, Hep solution was further used for fibrous coating onto the engineered Ros-loaded stent. The functional encapsulation of Ros and Hep drugs into polymeric scaffolds further underwent physicochemical analysis. Morphological characterization took place via scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses, while scaffolds' wettability properties were obtained by contact angle (CA) measurements. RESULTS The morphology of the drug-loaded AC nanofibers was smooth, with an average diameter of 200-800 nm, and after CA measurement, we concluded to the superhydrophobic nature of the engineered scaffolds. In vitro release rates of the pharmaceutical drugs were determined using a high-performance liquid chromatography assay, which showed that after the initial burst, drug release was controlled slowly by the degradation of the polymeric materials. CONCLUSION These results imply that AC nanofibers encapsulated with Ros and Hep drugs have great potential in the development of endovascular grafts with anti-thrombogenic properties that can accelerate the re-endothelialization, reduce the neointimal hyperplasia and inflammatory reaction, and improve the endothelial function.
Collapse
Affiliation(s)
- Milka Janjic
- Department of Physics, Laboratory for Thin Films – Nanosystems and Nanometrology, University of Thessaloniki
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Foteini Pappa
- Department of Physics, Laboratory for Thin Films – Nanosystems and Nanometrology, University of Thessaloniki
| | - Varvara Karagkiozaki
- Department of Physics, Laboratory for Thin Films – Nanosystems and Nanometrology, University of Thessaloniki
| | - Christakis Gitas
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kiriakos Ktenidis
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios Logothetidis
- Department of Physics, Laboratory for Thin Films – Nanosystems and Nanometrology, University of Thessaloniki
| |
Collapse
|
165
|
Xie N, Chen M, Dai R, Zhang Y, Zhao H, Song Z, Zhang L, Li Z, Feng Y, Gao H, Wang L, Zhang T, Xiao RP, Wu J, Cao CM. SRSF1 promotes vascular smooth muscle cell proliferation through a Δ133p53/EGR1/KLF5 pathway. Nat Commun 2017; 8:16016. [PMID: 28799539 PMCID: PMC5561544 DOI: 10.1038/ncomms16016] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Though vascular smooth muscle cell (VSMC) proliferation underlies all cardiovascular hyperplastic disorders, our understanding of the molecular mechanisms responsible for this cellular process is still incomplete. Here we report that SRSF1 (serine/arginine-rich splicing factor 1), an essential splicing factor, promotes VSMC proliferation and injury-induced neointima formation. Vascular injury in vivo and proliferative stimuli in vitro stimulate SRSF1 expression. Mice lacking SRSF1 specifically in SMCs develop less intimal thickening after wire injury. Expression of SRSF1 in rat arteries enhances neointima formation. SRSF1 overexpression increases, while SRSF1 knockdown suppresses the proliferation and migration of cultured human aortic and coronary arterial SMCs. Mechanistically, SRSF1 favours the induction of a truncated p53 isoform, Δ133p53, which has an equal proliferative effect and in turn transcriptionally activates Krüppel-like factor 5 (KLF5) via the Δ133p53-EGR1 complex, resulting in an accelerated cell-cycle progression and increased VSMC proliferation. Our study provides a potential therapeutic target for vascular hyperplastic disease. The hyperproliferation of vascular smooth muscle cells underlies many vascular diseases. Here Xie et al. show that the splicing factor SRSF1 is an endogenous stimulator of human and mouse aortic smooth muscle cell proliferation via the Δ133p53/EGR1/KLF5 signalling axis, identifying potential therapeutic targets for vascular proliferative disorders.
Collapse
Affiliation(s)
- Ning Xie
- Capital Institute of Pediatrics, Beijing 100020, China.,Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Min Chen
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Rilei Dai
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Yan Zhang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Hanqing Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhiming Song
- Department of Cardiology, Peking University, Third Hospital, Beijing 100191, China
| | - Lufeng Zhang
- Department of Cardiology, Peking University, Third Hospital, Beijing 100191, China
| | - Zhenyan Li
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Yuanqing Feng
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Hua Gao
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Li Wang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Jianxin Wu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Chun-Mei Cao
- Capital Institute of Pediatrics, Beijing 100020, China.,Institute of Molecular Medicine, Peking University, Beijing 100871, China.,Research Center on Pediatric Development and Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
166
|
Greco CT, Akins RE, Epps TH, Sullivan MO. Attenuation of Maladaptive Responses in Aortic Adventitial Fibroblasts through Stimuli-Triggered siRNA Release from Lipid-Polymer Nanocomplexes. ADVANCED BIOSYSTEMS 2017; 1:1700099. [PMID: 29392169 PMCID: PMC5788321 DOI: 10.1002/adbi.201700099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid-siRNA assemblies are modified with photo-responsive polymers to enable spatiotemporally-controlled silencing of interleukin 1 beta (IL1β) and cadherin 11 (CDH11), two genes that are essential drivers of maladaptive responses in human aortic adventitial fibroblasts (AoAFs). These hybrid nanocomplexes address the critical challenge of locally mitigating fibrotic actions that lead to the high rates of vascular graft failures. In particular, the lipid-polymer formulations provide potent silencing of IL1β and CDH11 that is precisely modulated by a photo-release stimulus. Moreover, a dynamic modeling framework is used to design a multi-dose siRNA regimen that sustains knockdown of both genes over clinically-relevant timescales. Multi-dose suppression illuminates a cooperative role for IL1β and CDH11 in pathogenic adventitial remodeling and is directly linked to desirable functional outcomes. Specifically, myofibroblast differentiation and cellular proliferation, two of the primary hallmarks of fibrosis, are significantly attenuated by IL1β silencing. Meanwhile, the effects of CDH11 siRNA treatment on differentiation become more pronounced at higher cell densities characteristic of constrictive adventitial remodeling in vivo. Thus, this work offers a unique formulation design for photo-responsive gene suppression in human primary cells and establishes a new dosing method to satisfy the critical need for local attenuation of fibrotic responses in the adventitium surrounding vascular grafts.
Collapse
Affiliation(s)
- Chad T Greco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Robert E Akins
- Department of Biomedical Research, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
167
|
Chemaly ER, Troncone L, Lebeche D. SERCA control of cell death and survival. Cell Calcium 2017; 69:46-61. [PMID: 28747251 DOI: 10.1016/j.ceca.2017.07.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022]
Abstract
Intracellular calcium (Ca2+) is a critical coordinator of various aspects of cellular physiology. It is increasingly apparent that changes in cellular Ca2+ dynamics contribute to the regulation of normal and pathological signal transduction that controls cell growth and survival. Aberrant perturbations in Ca2+ homeostasis have been implicated in a range of pathological conditions, such as cardiovascular diseases, diabetes, tumorigenesis and steatosis hepatitis. Intracellular Ca2+ concentrations are therefore tightly regulated by a number of Ca2+ handling enzymes, proteins, channels and transporters located in the plasma membrane and in Ca2+ storage organelles, which work in concert to fine tune a temporally and spatially precise Ca2+ signal. Chief amongst them is the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA) which actively re-accumulates released Ca2+ back into the SR/ER, therefore maintaining Ca2+ homeostasis. There are at least 14 different SERCA isoforms encoded by three ATP2A1-3 genes whose expressions are species- and tissue-specific. Altered SERCA expression and activity results in cellular malignancy and induction of ER stress and ER stress-associated apoptosis. The role of SERCA misregulation in the control of apoptosis in various cell types and disease setting with prospective therapeutic implications is the focus of this review. Ca2+ is a double edge sword for both life as well as death, and current experimental evidence supports a model in which Ca2+ homeostasis and SERCA activity represent a nodal point that controls cell survival. Pharmacological or genetic targeting of this axis constitutes an incredible therapeutic potential to treat different diseases sharing similar biological disorders.
Collapse
Affiliation(s)
- Elie R Chemaly
- Division of Nephrology and Hypertension, Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Luca Troncone
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Diabetes, Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Graduate School of Biological Sciences, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
168
|
Daniel JM, Dutzmann J, Brunsch H, Bauersachs J, Braun-Dullaeus R, Sedding DG. Systemic application of sirolimus prevents neointima formation not via a direct anti-proliferative effect but via its anti-inflammatory properties. Int J Cardiol 2017; 238:79-91. [DOI: 10.1016/j.ijcard.2017.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/06/2017] [Accepted: 03/12/2017] [Indexed: 01/15/2023]
|
169
|
Proprotein convertase furin/PCSK3 and atherosclerosis: New insights and potential therapeutic targets. Atherosclerosis 2017; 262:163-170. [DOI: 10.1016/j.atherosclerosis.2017.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022]
|
170
|
Serum Amyloid A Induces a Vascular Smooth Muscle Cell Phenotype Switch through the p38 MAPK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642873 PMCID: PMC5469989 DOI: 10.1155/2017/4941379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is an important pathological condition which is accompanied by a vascular smooth muscle cell (VSMC) phenotype switch toward a synthetic phenotype. As an acute-phase protein, Serum Amyloid A (SAA) is thought to have a close relationship to atherosclerosis development. However, no study has investigated the direct effect of SAA on the VSMC phenotype switch, as well as the underlying mechanisms. The purpose of our study was to explore the effect of SAA on the VSMC phenotype switch and the potential mechanisms involved. In our study, we found that SAA induced the VSMC phenotype switch which reduced expression of the smooth muscle cell (SMC) marker and enhanced expression of the matrix synthesis related marker. The proliferative ability of VSMCs was also increased by SAA treatment. Furthermore, our research found that SAA activated the ERK1/2 and p38 MAPK signaling pathways. Finally, by applying the ERK1/2 and p38 inhibitors, U0126 and SB203580, we demonstrated that the SAA-induced VSMC phenotype switch was p38-dependent. Taken together, these results indicated that SAA may play an important role in promoting the VSMC phenotype switch through the p38 MAPK signaling pathway.
Collapse
|
171
|
Guo T, Chai X, Liu Q, Peng W, Peng Z, Cai Y. Downregulation of P16 promotes cigarette smoke extract-induced vascular smooth muscle cell proliferation via preventing G1/S phase transition. Exp Ther Med 2017; 14:214-220. [PMID: 28672917 PMCID: PMC5488496 DOI: 10.3892/etm.2017.4468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/09/2016] [Indexed: 12/24/2022] Open
Abstract
The proliferation of vascular smooth muscle cells (VSMCs) serves an important role in cigarette smoking-associated vascular diseases; however, the underlying mechanisms responsible for this remain unclear. The aim of the present study was to elucidate the role of P16 in cigarette smoke extract (CSE)-induced VSMC proliferation and the underlying mechanism responsible. Human aortic smooth muscle cells (HAOSMCs) were exposed to CSE, and an MTT assay and flow cytometry were performed to evaluate cell proliferation and cell cycle distribution. Western blotting was conducted to examine protein expression and bisulfite genomic sequencing polymerase chain reaction was used to determine the methylation status of the P16 promoter CpG island. It was demonstrated that treatment with CSE significantly promoted the proliferation of HAOSMCs in a concentration- and time-dependent manner and induced a downregulation in P16 expression (all P<0.05). A luciferase reporter gene assay data demonstrated that CSE treatment induced hypermethylation of the P16 promoter, which led to a significant decrease in its transcriptional activity and significantly reduced P16 protein expression in HAOSMCs (both P<0.01). Furthermore, P16 downregulation induced a significant increase in the expression of cyclin-dependent kinase (CDK) 4, CDK6 and phosphorylated retinoblastoma (p-Rb) protein (all P<0.001) and significantly increased the ratio of cells in S phase in CSE-treated HAOSMCs (P<0.001). Overexpression of P16 inhibited CSE-induced cell proliferation through inducing cell cycle arrest in G1 phase (P<0.001), and led to decreased levels of CDK4 (P<0.01), CDK6 (P<0.01) and p-Rb (P<0.001) in HASMCs. The results of the present study therefore demonstrate that P16 may be associated with the CSE-induced proliferation of VSMCs, suggesting that P16 serves a role in the development of cigarette smoke-associated vascular diseases.
Collapse
Affiliation(s)
- Tao Guo
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wen Peng
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhenyu Peng
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuzhong Cai
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
172
|
Sukhovershin RA, Toledano Furman NE, Tasciotti E, Trachtenberg BH. Local Inhibition of Macrophage and Smooth Muscle Cell Proliferation to Suppress Plaque Progression. Methodist Debakey Cardiovasc J 2017; 12:141-145. [PMID: 27826367 DOI: 10.14797/mdcj-12-3-141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a complex process responsible for a major burden of cardiovascular morbidity and mortality. Macrophages and smooth muscle cells (SMCs) are abundant within atherosclerotic plaques. This review discusses the role of macrophages and SMCs in plaque progression and provides an overview of nanoparticle-based approaches and other current methods for local targeting of atherosclerotic plaques.
Collapse
Affiliation(s)
| | | | | | - Barry H Trachtenberg
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
173
|
Hu T, Yang C, Fu M, Yang J, Du R, Ran X, Yin T, Wang G. Cytotoxic effects of docetaxel as a candidate drug of drug-eluting stent on human umbilical vein endothelial cells and the signaling pathway of cell migration inhibition, adhesion delay and shape change. Regen Biomater 2017; 4:167-178. [PMID: 28596914 PMCID: PMC5458539 DOI: 10.1093/rb/rbx010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023] Open
Abstract
Docetaxel (DTX), a paclitaxel analogue, can efficiently inhibit proliferation of vascular smooth muscle cells and has broadly been used as an antiangiogenesis drug. However, as a candidate drug of drug-eluting stent, the effects of DTX on human umbilical vein endothelial cells (HUVECs) are still not well understood. Herein, we investigated the effects of DTX on proliferation, apoptosis, adhesion, migration and morphology of HUVECs in vitro. We found that DTX had the cytostatic and cytotoxic effects at low and high concentrations, respectively. DTX could inhibit the proliferation and migration of HUVECs, induce HUVECs apoptosis, delay HUVECs adhesion and decrease spreading area and aspect ratio of individual cells. The signaling pathway that DTX led to the migration inhibition, adhesion delay and shape change of HUVECs is the VE-cadherin mediated integrin β1/FAK/ROCK signaling pathway. The study will provide a theoretical basis for the clinical application of DTX.
Collapse
Affiliation(s)
- Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chun Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Meiling Fu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jiali Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Rolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaolin Ran
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Correspondence address. Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China. Tel: +86(0)23-65112675; Fax: +86(0)23-65112507; E-mail:
| |
Collapse
|
174
|
Jiang ZQ, Zhou YL, Chen X, Li LY, Liang SY, Lin S, Shu MQ. Different effects of neuropeptide Y on proliferation of vascular smooth muscle cells via regulation of Geminin. Mol Cell Biochem 2017; 433:205-211. [PMID: 28386846 DOI: 10.1007/s11010-017-3028-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/01/2017] [Indexed: 12/19/2022]
Abstract
The proliferation-promoting effect of neuropeptide Y (NPY) always functions in low-serum-cultured vascular smooth muscle cells (VSMCs), and the phenotypic switch of VSMCs is regulated by concentrations of serum. Whether the property of the NPY proliferative effect in VSMCs relies on phenotype of VSMCs is unclear. We aimed to explore the role of NPY on proliferation of different VSMC phenotypes in the pathogenesis of atherosclerosis. By stimulating A10 cells with 200 nM NPY in 0.5 or 10% serum, 3H-thymidine and 5-ethynyl-2'-deoxyuridine (EdU) and CCK8 measurements were used to detect VSMC proliferation. RT-PCR and Flow cytometry were performed to detect the factors involved in different properties of the NPY proliferative effect in VSMCs. Instead of facilitating proliferation, NPY had no significant effect on the growth of VSMCs when cultured in 10% serum (VSMCs stayed at synthetic states). The underlying mechanism may be involved in down-regulation of Y1 receptor (P < 0.05 vs. Vehicle) and up-regulation of Geminin (P < 0.05 vs. Vehicle) in 10% serum-cultured VSMCs co-incubated with 200 nM NPY. Besides, modulation of Geminin was effectively blocked by the Y1 receptor antagonist. The stimulation of NPY on proliferation of VSMCs could be a double-edged sword in the development of atherosclerosis and thus provides new knowledge for therapy of atherosclerosis.
Collapse
Affiliation(s)
- Zhou-Qin Jiang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - You-Li Zhou
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Xia Chen
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Lin-Yu Li
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Shi-Yu Liang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China. .,School of Health Science, IIIawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Mao-Qin Shu
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China.
| |
Collapse
|
175
|
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32:126-140. [PMID: 28202623 PMCID: PMC5337830 DOI: 10.1152/physiol.00031.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.
Collapse
Affiliation(s)
- Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
176
|
Shanahan CM, Furmanik M. Endoplasmic Reticulum Stress in Arterial Smooth Muscle Cells: A Novel Regulator of Vascular Disease. Curr Cardiol Rev 2017; 13:94-105. [PMID: 27758694 PMCID: PMC5440785 DOI: 10.2174/1573403x12666161014094738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/24/2016] [Accepted: 10/06/2016] [Indexed: 01/27/2023] Open
Abstract
Cardiovascular disease continues to be the leading cause of death in industrialised societies. The idea that the arterial smooth muscle cell (ASMC) plays a key role in regulating many vascular pathologies has been gaining importance, as has the realisation that not enough is known about the pathological cellular mechanisms regulating ASMC function in vascular remodelling. In the past decade endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been recognised as a stress response underlying many physiological and pathological processes in various vascular cell types. Here we summarise what is known about how ER stress signalling regulates phenotypic switching, trans/dedifferentiation and apoptosis of ASMCs and contributes to atherosclerosis, hypertension, aneurysms and vascular calcification.
Collapse
Affiliation(s)
- Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Malgorzata Furmanik
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| |
Collapse
|
177
|
Lee JJ, Lee JH, Gu MJ, Han JH, Cho WK, Ma JY. Agastache rugosa Kuntze extract, containing the active component rosmarinic acid, prevents atherosclerosis through up-regulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27KIP1. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
178
|
Guo X, Chen SY. Dedicator of Cytokinesis 2 in Cell Signaling Regulation and Disease Development. J Cell Physiol 2017; 232:1931-1940. [DOI: 10.1002/jcp.25512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Xia Guo
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
179
|
Jansen F, Stumpf T, Proebsting S, Franklin BS, Wenzel D, Pfeifer P, Flender A, Schmitz T, Yang X, Fleischmann BK, Nickenig G, Werner N. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. J Mol Cell Cardiol 2017; 104:43-52. [PMID: 28143713 DOI: 10.1016/j.yjmcc.2016.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation is of importance in the pathogenesis of vascular diseases such as restenosis or atherosclerosis. Endothelial microparticles (EMPs) regulate function and phenotype of target endothelial cells (ECs), but their influence on VSMC biology is unknown. We aim to investigate the role of EMPs in the regulation of vascular smooth muscle cell (VSMC) proliferation and vascular remodeling. METHODS AND RESULTS Systemic treatment of mice with EMPs after vascular injury reduced neointima formation in vivo. In vitro, EMP uptake in VSMCs diminished VSMC proliferation and migration, both pivotal steps in neointima formation. To explore the underlying mechanisms, Taqman microRNA-array was performed and miR-126-3p was identified as the predominantly expressed miR in EMPs. Confocal microscopy revealed an EMP-mediated miR-126 transfer into recipient VSMCs. Expression of miR-126 target protein LRP6, regulating VSMC proliferation, was reduced in VSMCs after EMP treatment. Importantly, genetic regulation of miR-126 in EMPs showed a miR-126-dependent inhibition of LRP6 expression, VSMC proliferation and neointima formation in vitro and in vivo, suggesting a crucial role of miR-126 in EMP-mediated neointima formation reduction. Finally, analysis of miR-126 expression in circulating MPs in 176 patients with coronary artery disease revealed a reduced PCI rate in patients with high miR-126 expression level, supporting a central role for MP-incorporated miR-126 in vascular remodelling. CONCLUSION EMPs reduce VSMC proliferation, migration and subsequent neointima formation by delivering functional miR-126 into recipient VSMCs.
Collapse
Affiliation(s)
- Felix Jansen
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Tobias Stumpf
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Sebastian Proebsting
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Bernardo S Franklin
- Department of Innate Immunity, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Philipp Pfeifer
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Anna Flender
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Theresa Schmitz
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Xiaoyan Yang
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, USA
| | - Bernd K Fleischmann
- Institute of Physiology I, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany.
| |
Collapse
|
180
|
Okon I, Ding Y, Zou MH. Ablation of Interferon Regulatory Factor 3 Promotes the Stability of Atherosclerotic Plaques. Hypertension 2017; 69:407-408. [PMID: 28115512 DOI: 10.1161/hypertensionaha.116.08486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Imoh Okon
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA
| | - Ye Ding
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA
| | - Ming-Hui Zou
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA.
| |
Collapse
|
181
|
Enhanced Rb/E2F and TSC/mTOR Pathways Induce Synergistic Inhibition in PDGF-Induced Proliferation in Vascular Smooth Muscle Cells. PLoS One 2017; 12:e0170036. [PMID: 28076433 PMCID: PMC5226788 DOI: 10.1371/journal.pone.0170036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/27/2016] [Indexed: 02/04/2023] Open
Abstract
Platelet-derived growth factor (PDGF) plays an essential role in proliferation of vascular smooth muscle cells (VSMCs). The Rb/E2F and TSC/mTOR pathways contribute to the proliferation of VSMCs, but its exact roles in PDGF-induced proliferation are unclear. In this study, we demonstrated the roles of Rb/E2F and TSC/mTOR pathways in PDGF-induced proliferation in VSMCs. We found that PDGF stimulates the activity of E2F and mTOR pathways, and knockdown of either Rb or TSC2 increases PDGF-induced proliferation in VSMCs. More interestingly, we revealed that enhancing both E2F and mTOR activity leads to synergistic inhibition of PDGF-induced proliferation in VSMCs. We further identified that the synergistic inhibition effect is caused by the induced oxidative stress. Summarily, these data suggest the important regulations of Rb/E2F and TSC/mTOR pathways in PDGF-induced proliferation in VSMCs, and also present a promising way to limit deregulated proliferation by PDGF induction in VSMCs.
Collapse
|
182
|
Activation of Protein Kinase G (PKG) Reduces Neointimal Hyperplasia, Inhibits Platelet Aggregation, and Facilitates Re-endothelialization. Sci Rep 2016; 6:36979. [PMID: 27833146 PMCID: PMC5105062 DOI: 10.1038/srep36979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/24/2016] [Indexed: 12/04/2022] Open
Abstract
In spite of its great success in reducing restenosis, drug-eluting stent (DES) has unfavorable aspects such as stent thrombosis and delayed re-endothelialization. We examined the effects of PKG activation by Exisulind on neointimal formation, platelet aggregation, and re-endothelialization. Exisulind significantly reduced VSMCs viability, cell cycle progression, migration, and neointimal hyperplasia after vascular injury in rat carotid arteries. Interestingly, in contrast to the effect on VSMC viability, Exisulind did not reduce the viability of endothelial cells. Increased PKG activity by Exisulind inhibited PDGF-stimulated phenotype change of VSMCs from a contractile to a synthetic form. Conversely, the use of PKG inhibitor or gene transfer of dominant-negative PKG reversed the effects of Exisulind, resulting in the increased viability of VSMCs and neointimal formation. In addition, Exisulind facilitated the differentiation of peripheral blood mononuclear cells to endothelial lineage via PKG pathway, while inhibiting to VSMCs lineage, which was correlated with the enhanced re-endothelialization in vivo. Finally, Exisulind reduced platelet aggregation, which was mediated via PKG activation. This study demonstrated that Exisulind inhibits neointimal formation and platelet aggregation while increasing re-endothelialization via PKG pathway. These findings suggest that Exisulind could be a promising candidate drug of DES for the prevention of restenosis without other complications.
Collapse
|
183
|
Tang R, Zhang G, Chen SY. Smooth Muscle Cell Proangiogenic Phenotype Induced by Cyclopentenyl Cytosine Promotes Endothelial Cell Proliferation and Migration. J Biol Chem 2016; 291:26913-26921. [PMID: 27821588 DOI: 10.1074/jbc.m116.741967] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) are in close contact with blood vessels. SMC phenotypes can be altered during pathological vascular remodeling. However, how SMC phenotypes affect EC properties remains largely unknown. In this study, we found that PDGF-BB-induced synthetic SMCs suppressed EC proliferation and migration while exhibiting increased expression of anti-angiogenic factors, such as endostatin, and decreased pro-angiogenic factors, including CXC motif ligand 1 (CXCL1). Cyclopentenyl cytosine (CPEC), a CTP synthase inhibitor that has been reported previously to inhibit SMC proliferation and injury-induced neointima formation, induced SMC redifferentiation. Interestingly, CPEC-conditioned SMC culture medium promoted EC proliferation and migration because of an increase in CXCL1 along with decreased endostatin production in SMCs. Addition of recombinant endostatin protein or blockade of CXCL1 with a neutralizing antibody suppressed the EC proliferation and migration induced by CPEC-conditioned SMC medium. Mechanistically, CPEC functions as a cytosine derivate to stimulate adenosine receptors A1 and A2a, which further activate downstream cAMP and Akt signaling, leading to the phosphorylation of cAMP response element binding protein and, consequently, SMC redifferentiation. These data provided proof of a novel concept that synthetic SMC exhibits an anti-angiogenic SMC phenotype, whereas contractile SMC shows a pro-angiogenic phenotype. CPEC appears to be a potent stimulator for switching the anti-angiogenic SMC phenotype to the pro-angiogenic phenotype, which may be essential for CPEC to accelerate re-endothelialization for vascular repair during injury-induced vascular wall remodeling.
Collapse
Affiliation(s)
- Rui Tang
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Gui Zhang
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
184
|
Jang SP, Oh JG, Kang DH, Kang JY, Kang SW, Hajjar RJ, Park WJ. A Decoy Peptide Targeted to Protein Phosphatase 1 Attenuates Degradation of SERCA2a in Vascular Smooth Muscle Cells. PLoS One 2016; 11:e0165569. [PMID: 27792751 PMCID: PMC5085086 DOI: 10.1371/journal.pone.0165569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/13/2016] [Indexed: 01/14/2023] Open
Abstract
Neointimal growth in the injured vasculature is largely facilitated by the proliferation of vascular smooth muscle cells (VSMC), which associates with reduced sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) activity. The gene transfer-mediated restoration of the SERCA2a level thus attenuates neointimal growth and VSMC proliferation. We previously reported that a peptide targeted to protein phosphatase 1, ψPLB-SE, normalizes SERCA2a activity in cardiomyocytes. In this study, we found that ψPLB-SE attenuated neointimal growth in balloon-injured rat carotid arteries, and the proliferation and migration of VSMC cultured in high-serum media (synthetic conditions). In parallel, ψPLB-SE inhibited the degradation of SERCA2a in the injured carotid arteries and VSMC under synthetic conditions. The calpain inhibitor MDL28170 also attenuated SERCA2a degradation and VSMC proliferation under synthetic conditions, indicating that calpain degrades SERCA2a. The Ca2+ ionophore A23187 induced SERCA2a degradation in VSMC, which was blocked by either ψPLB-SE or MDL28170. Additionally, ψPLB-SE normalized the cytosolic Ca2+ level in VSMC that was increased by either A23187 or synthetic stimulation. Collectively, these data indicate that ψPLB-SE corrects the abnormal Ca2+ handling by activating SERCA2a, which further protects SERCA2a from calpain-dependent degradation in VSMC. We conclude that ψPLB-SE may form the basis of a therapeutic strategy for vascular proliferative disorders.
Collapse
Affiliation(s)
- Seung Pil Jang
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States of America
| | - Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Ju Young Kang
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Roger J. Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States of America
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail:
| |
Collapse
|
185
|
Yang SW, Hennessy RR, Khosla S, Lennon R, Loeffler D, Sun T, Liu Z, Park KH, Wang FL, Lerman LO, Lerman A. Circulating osteogenic endothelial progenitor cell counts: new biomarker for the severity of coronary artery disease. Int J Cardiol 2016; 227:833-839. [PMID: 27836295 DOI: 10.1016/j.ijcard.2016.10.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND There is increasing evidence implying that the early and functionally highly active circulating endothelial progenitor cell (CEPC) phenotype (CD34-/CD133+/KDR+) with osteogenic potential (OCN+) might link between vascular atherosclerotic calcification and mechanisms of bone metabolism. We sought to evaluate the early OCN+ CEPC counts as an independent biomarker for the severity of coronary artery disease (CAD). METHODS Peripheral blood samples were drawn from 593 patients undergoing clinically indicated coronary angiography. CAD severity was assessed by the presence of significant coronary artery stenosis (CAS) as well as an ordinal categorical variable. Subjects were followed for all-cause death over a median follow-up of 40months. RESULTS OCN+ early CEPC counts (square-root transformed) were independently associated with the presence of significant CAS [odds ratio (OR) per standard deviation (SD) increment: 1.389, 95% confidence interval [CI]: 1.131 to 1.707, p=0.002). Similar association was observed with an increase in levels of CAS (OR: 1.353, 95% CI: 1.157 to 1.582, p<0.001). There was a weak tendency between OCN+ early CEPC counts and all-cause mortality (p=0.090), whereas the highest decile of OCN+ early CEPC counts had a 2.991-fold increased risk of all-cause death (p=0.047). CONCLUSIONS We demonstrate for the first time an independent, significant, and strong correlation between OCN+ early CEPC counts and CAD severity. Additionally, very high numbers of OCN+ early CEPC tend to be linked to the risk of all-cause mortality.
Collapse
Affiliation(s)
- Shi-Wei Yang
- Department of Cardiovascular Diseases, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA; 12(th) Ward, Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, China; Atherosclerosis Research Center, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China; The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing 100029, China
| | - Rebecca R Hennessy
- Department of Cardiovascular Diseases, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Department of Endocrinology, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA
| | - Ryan Lennon
- Department of Biomedical Statistics, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA
| | - Darrell Loeffler
- Department of Cardiovascular Diseases, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA
| | - Tao Sun
- Department of Cardiovascular Diseases, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA
| | - Zhi Liu
- Department of Cardiovascular Diseases, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA
| | - Kyoung-Ha Park
- Department of Cardiovascular Diseases, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA
| | - Fei-Long Wang
- Department of Cardiovascular Diseases, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA
| | - Lilach O Lerman
- Department of Nephrology and Hypertension, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic and College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
186
|
Subbotin VM. Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. Drug Discov Today 2016; 21:1578-1595. [DOI: 10.1016/j.drudis.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
|
187
|
De Mello W. Intracellular renin increases the inward calcium current in smooth muscle cells of mesenteric artery of SHR. Implications for hypertension and vascular remodeling. Peptides 2016; 84:36-43. [PMID: 27545826 DOI: 10.1016/j.peptides.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED The influence of intracellular renin on the inward calcium current in isolated smooth muscle cells from SHR mesenteric arteries was investigated. Measurements of calcium current were performed using the whole cell configuration of pCLAMP. The results indicated that: 1) renin (100nM) dialyzed into smooth muscle cells, increased the inward calcium current; 2) verapamil (10-9M) administered to the bath inhibited the effect of renin on the inward calcium current; 3) concurrently with the increase of calcium current a depolarization of 6.8+/-2.1mV (n=16)(P<0.05) was found in cells dialyzed with renin; 4) intracellular dialysis of renin (100nM) into smooth muscle cells isolated from mesenteric arteries of normal Wystar Kyoto rats showed no significant change on calcium current; 5) aliskiren (10-9M) dialyzed into the cell together with renin (100nM) abolished the effect of the enzyme on the calcium current in SHR; 6) Ang II (100nM) dialyzed into the smooth muscle cell from mesenteric artery of SHR in absence of renin, decreased the calcium current-an effect greatly reduced by valsartan (10-9M) added to the cytosol; 7) administration of renin (100nM) plus angiotensinogen (100nM) into the cytosol of muscles cells from SHR rats reduced the inward calcium current; 8) extracellular administration of Ang II (100nM) increased the inward calcium current in mesenteric arteries of SHR. CONCLUSIONS intracellular renin in vascular resistance vessels from SHR due to internalization or expression, contributes to the regulation of vascular tone and control of peripheral resistance-an effect independently of Ang II. Implications for hypertension and vascular remodeling are discussed.
Collapse
Affiliation(s)
- Walmor De Mello
- School of Medicine, Medical Sciences Campus, UPR, San Juan, PR 00936, USA.
| |
Collapse
|
188
|
Daniel JM, Reichel CA, Schmidt-Woell T, Dutzmann J, Zuchtriegel G, Krombach F, Herold J, Bauersachs J, Sedding DG, Kanse SM. Factor VII-activating protease deficiency promotes neointima formation by enhancing leukocyte accumulation. J Thromb Haemost 2016; 14:2058-2067. [PMID: 27431088 DOI: 10.1111/jth.13417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 07/01/2016] [Indexed: 01/08/2023]
Abstract
Essentials Factor VII-activating protease (FSAP) is a plasma protease involved in vascular processes. Neointima formation was investigated after vascular injury in FSAP-/- mice. The neointimal lesion size and the accumulation of macrophages were increased in FSAP-/- mice. This was due to an increased activity of the chemokine (C-C motif) ligand 2 (CCL2). SUMMARY Background Factor VII-activating protease (FSAP) is a multifunctional circulating plasma serine protease involved in thrombosis and vascular remodeling processes. The Marburg I single-nucleotide polymorphism (MI-SNP) in the FSAP-coding gene is characterized by low proteolytic activity, and is associated with increased rates of stroke and carotid stenosis in humans. Objectives To determine whether neointima formation after vascular injury is increased in FSAP-/- mice. Methods and Results The neointimal lesion size and the proliferation of vascular smooth muscle cells (VSMCs) were significantly enhanced in FSAP-/- mice as compared with C57BL/6 control mice after wire-induced injury of the femoral artery. Accumulation of leukocytes and macrophages was increased within the lesions of FSAP-/- mice at day 3 and day 14. Quantitative zymography demonstrated enhanced activity of gelatinases/matrix metalloproteinase (MMP)-2 and MMP-9 within the neointimal lesions of FSAP-/- mice, and immunohistochemistry showed particular costaining of MMP-9 with accumulating leukocytes. Using intravital microscopy, we observed that FSAP deficiency promoted the intravascular adherence and the subsequent transmigration of leukocytes in vivo in response to chemokine ligand 2 (CCL2). CCL2 expression was increased in FSAP-/- monocytes but not in the vessel wall. There was no difference in the expression of platelet-derived growth factor (PDGF-BB). Conclusions FSAP deficiency causes an increase in CCL2 expression and CCL2-mediated infiltration of leukocytes into the injured vessel, thereby promoting SMC proliferation and migration by the activation of leukocyte-derived gelatinases. These results provide a possible explanation for the observed association of the loss-of-function MI-SNP with vascular proliferative diseases.
Collapse
Affiliation(s)
- J-M Daniel
- Department of Biochemistry, Justus-Liebig-Universität Giessen, Giessen, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - C A Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Schmidt-Woell
- Department of Biochemistry, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - J Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - G Zuchtriegel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - F Krombach
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - J Herold
- Department of Cardiology, Angiology and Pneumology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - D G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - S M Kanse
- Department of Biochemistry, Justus-Liebig-Universität Giessen, Giessen, Germany.
- Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
189
|
Jain M, Zellweger M, Frobert A, Valentin J, van den Bergh H, Wagnières G, Cook S, Giraud MN. Intra-Arterial Drug and Light Delivery for Photodynamic Therapy Using Visudyne®: Implication for Atherosclerotic Plaque Treatment. Front Physiol 2016; 7:400. [PMID: 27672369 PMCID: PMC5018500 DOI: 10.3389/fphys.2016.00400] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Photodynamic therapy (PDT), which is based on the activation of photosensitizers with light, can be used to reduce plaque burden. We hypothesized that intra-arterial photosensitizer administration and photo-activation will lead to high and rapid accumulation within the plaque with reduced systemic adverse effects. Thus, this "intra-arterial" PDT would be expected to have less side effects and due to the short time involved would be compatible with percutaneous coronary interventions. AIM We characterized the dose-dependent uptake and efficacy of intra-arterial PDT using Liposomal Verteporfin (Visudyne®), efficient for cancer-PDT but not tested before for PDT of atherosclerosis. METHODS AND RESULTS Visudyne® (100, 200, and 500 ng/ml) was perfused for 5-30 min in atherosclerotic aorta isolated from ApoE(-/-) mice. The fluorescence Intensity (FI) after 15 min of Visudyne® perfusion increased with doses of 100 (FI-5.5 ± 1.8), 200 (FI-31.9 ± 1.9) or 500 ng/ml (FI-42.9 ± 1.2). Visudyne® (500 ng/ml) uptake also increased with the administration time from 5 min (FI-9.8 ± 2.5) to 10 min (FI-23.3 ± 3.0) and 15 min (FI-42.9 ± 3.4) before reaching saturation at 30 min (FI-39.3 ± 2.4) contact. Intra-arterial PDT (Fluence: 100 and 200 J/cm(2), irradiance-334 mW/cm(2)) was applied immediately after Visudyne® perfusion (500 ng/ml for 15 min) using a cylindrical light diffuser coupled to a diode laser (690 nm). PDT led to an increase of ROS (Dihydroethidium; FI-6.9 ± 1.8, 25.3 ± 5.5, 43.4 ± 13.9) and apoptotic cells (TUNEL; 2.5 ± 1.6, 41.3 ± 15.3, 58.9 ± 6%), mainly plaque macrophages (immunostaining; 0.3 ± 0.2, 37.6 ± 6.4, 45.3 ± 5.4%) respectively without laser irradiation, or at 100 and 200 J/cm(2). Limited apoptosis was observed in the medial wall (0.5 ± 0.2, 8.5 ± 4.7, 15.3 ± 12.7%). Finally, Visudyne®-PDT was found to be associated with reduced vessel functionality (Myogram). CONCLUSION We demonstrated that sufficient accumulation of Visudyne® within plaque could be achieved in short-time and therefore validated the feasibility of local intravascular administration of photosensitizer. Intra-arterial Visudyne®-PDT preferentially affected plaque macrophages and may therefore alter the dynamic progression of plaque development.
Collapse
Affiliation(s)
- Manish Jain
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| | - Matthieu Zellweger
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Aurélien Frobert
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| | - Jérémy Valentin
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| | - Hubert van den Bergh
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Georges Wagnières
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Stéphane Cook
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| | - Marie-Noelle Giraud
- Cardiology, Department of Medicine, University and Hospital of Fribourg Fribourg, Switzerland
| |
Collapse
|
190
|
Hwang JS, Ham SA, Yoo T, Lee WJ, Paek KS, Lee CH, Seo HG. Sirtuin 1 Mediates the Actions of Peroxisome Proliferator-Activated Receptor δ on the Oxidized Low-Density Lipoprotein-Triggered Migration and Proliferation of Vascular Smooth Muscle Cells. Mol Pharmacol 2016; 90:522-529. [PMID: 27573670 DOI: 10.1124/mol.116.104679] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) has been implicated in vascular pathophysiology. However, its functions in atherogenic changes of the vascular wall have not been fully elucidated. PPARδ activated by GW501516 (2-[2-methyl-4-[[4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl]methylsulfanyl]phenoxy]acetic acid) significantly inhibited the migration and proliferation of vascular smooth muscle cells (VSMCs) triggered by oxidized low-density lipoprotein (oxLDL). These GW501516-mediated effects were significantly reversed by PPARδ-targeting small-interfering RNA (siRNA), indicating that PPARδ is involved in the action of GW501516. The antiproliferative effect of GW501516 was directly linked to cell cycle arrest at the G0/G1 to S phase transition, which was followed by the down-regulation of cyclin-dependent kinase 4 along with increased levels of p21 and p53. In VSMCs treated with GW501516, the expression of sirtuin 1 (SIRT1) mRNA and protein was time-dependently increased. This GW501516-mediated up-regulation of SIRT1 expression was also demonstrated even in the presence of oxLDL. In addition, GW501516-dependent inhibition of oxLDL-triggered migration and proliferation of VSMCs was almost completely abolished in the presence of SIRT1-targeting siRNA. These effects of GW501516 on oxLDL-triggered phenotypic changes of VSMCs were also demonstrated via activation or inhibition of SIRT1 activity by resveratrol or sirtinol, respectively. Finally, gain or loss of SIRT1 function imitated the action of PPARδ on oxLDL-triggered migration and proliferation of VSMCs. Taken together, these observations indicate that PPARδ-dependent up-regulation of SIRT1 contributes to the antiatherogenic activities of PPARδ by suppressing the migration and proliferation of VSMCs linked to vascular diseases such as restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Sun Ah Ham
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Taesik Yoo
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Won Jin Lee
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Kyung Shin Paek
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Chi-Ho Lee
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Han Geuk Seo
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| |
Collapse
|
191
|
Saito Y, Noguchi N. Oxidized Lipoprotein as a Major Vessel Cell Proliferator in Oxidized Human Serum. PLoS One 2016; 11:e0160530. [PMID: 27483438 PMCID: PMC4970716 DOI: 10.1371/journal.pone.0160530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/19/2016] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress is correlated with the incidence of several diseases such as atherosclerosis and cancer, and oxidized biomolecules have been determined as biomarkers of oxidative stress; however, the detailed molecular relationship between generated oxidation products and the promotion of diseases has not been fully elucidated. In the present study, to clarify the role of serum oxidation products in vessel cell proliferation, which is related to the incidence of atherosclerosis and cancer, the major vessel cell proliferator in oxidized human serum was investigated. Oxidized human serum was prepared by free radical exposure, separated using gel chromatography, and then each fraction was added to several kinds of vessel cells including endothelial cells and smooth muscle cells. It was found that a high molecular weight fraction in oxidized human serum specifically induced vessel cell proliferation. Oxidized lipids were contained in this high molecular weight fraction, while cell proliferation activity was not observed in oxidized lipoprotein-deficient serum. Oxidized low-density lipoproteins induced vessel cell proliferation in a concentration-dependent manner. Taken together, these results indicate that oxidized lipoproteins containing lipid oxidation products function as a major vessel cell proliferator in oxidized human serum. These findings strongly indicate the relevance of determination of oxidized lipoproteins and lipid oxidation products in the diagnosis of vessel cell proliferation-related diseases such as atherosclerosis and cancer.
Collapse
Affiliation(s)
- Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0321, Japan
- * E-mail:
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0321, Japan
| |
Collapse
|
192
|
Proatherosclerotic Effect of the α1-Subunit of Soluble Guanylyl Cyclase by Promoting Smooth Muscle Phenotypic Switching. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2220-2231. [DOI: 10.1016/j.ajpath.2016.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/25/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022]
|
193
|
Lee JJ, Lee JH, Cho WK, Han JH, Ma JY. Herbal composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra prevents atherosclerosis by upregulating p27 (Kip1) expression. Altern Ther Health Med 2016; 16:253. [PMID: 27465365 PMCID: PMC4964310 DOI: 10.1186/s12906-016-1224-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/15/2016] [Indexed: 12/30/2022]
Abstract
Background Kiom-18 is a novel composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra. Curcuma longa and Glycyrrhiza glabra, which are traditional medicines in Asia, have been reported to demonstrate preventive effects against atherosclerosis; however, they have not yet been developed into functional atherosclerosis treatments. We therefore studied the anti-atherosclerotic effects and possible molecular mechanisms of Kiom-18 using vascular smooth muscle cells (VSMCs). Methods To assess the anti-proliferative effect of Kiom-18 in vitro, we performed thymidine incorporation, cell cycle progression, immunoblotting and immunofluorescence assays in VSMCs stimulated by platelet derived-growth factor (PDGF)-BB. In addition, we used LDLr knockout mice to identify the effects of Kiom-18 as a preliminary result in an atherosclerosis animal model. Results Kiom-18 inhibited platelet-derived growth factor (PDGF)-BB-stimulated-VSMC proliferation and DNA synthesis. Additionally, Kiom-18 arrested the cell cycle transition of G0/G1 stimulated by PDGF-BB and its cell cycle-related proteins. Correspondingly, the level of p27kip1 expression was upregulated in the presence of the Kiom-18 extract. Moreover, in an atherosclerosis animal model of LDLr knockout mice, Kiom-18 extract showed a preventive effect for the formation of atherosclerotic plaque and suppressed body weight, fat weight, food treatment efficiency, neutrophil count, and triglyceride level. Conclusions These results indicate that Kiom-18 exerts anti-atherosclerotic effects by inhibiting VSMC proliferation via G0/G1 arrest, which upregulates p27Kip1 expression.
Collapse
|
194
|
Irisin reverses platelet derived growth factor-BB-induced vascular smooth muscle cells phenotype modulation through STAT3 signaling pathway. Biochem Biophys Res Commun 2016; 479:139-145. [PMID: 27416763 DOI: 10.1016/j.bbrc.2016.07.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/09/2016] [Indexed: 01/16/2023]
Abstract
Vascular smooth muscle cells (VSMCs) phenotype modulation toward a synthetic phenotype is the main cause of cardiovascular disease. As a newly discovered myokine, Irisin is thought to be a promising candidate for the treatment of metabolic disturbances, as well as cardiovascular disease. However, no evidence has been shown for the direct effect of Irisin on VSMCs phenotype modulation and its underling mechanisms. The aim of this study was to explore the effect of Irisin on VSMCs phenotype modulation and the mechanisms involved. In the present study, it was found that Irisin restored the PDGF-BB-induced VSMCs phenotype modulation which exhibited down-regulation of smooth muscle cells (SMC) expression and up-regulation of matrix synthesis related marker expression, as well as proliferative phenotype. Moreover, our research demonstrated that Irisin further activated STAT3 signaling pathways. Finally, by applying an STAT3 inhibitor, WP1066, we revealed the roles of STAT3 in the PDGF-BB-induced VSMCs phenotype modulation when they were treated with Irisin. Taken together, these results demonstrated that Irisin may play a crucial role in regulating VSMCs phenotype modulation via the STAT3 signaling pathway.
Collapse
|
195
|
Qiao Y, Tang C, Wang Q, Wang D, Yan G, Zhu B. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation. Biochem Biophys Res Commun 2016; 477:774-780. [PMID: 27387235 DOI: 10.1016/j.bbrc.2016.06.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 06/26/2016] [Indexed: 12/15/2022]
Abstract
Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K(+) channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.
Collapse
Affiliation(s)
- Yong Qiao
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China.
| | - Qingjie Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| | - Boqian Zhu
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
196
|
Sun Y, Zhao Z, Hou L, Xiao Y, Qin F, Yan J, Zhou J, Jing Z. The regulatory role of smooth muscle 22 on the proliferation of aortic smooth muscle cells participates in the development of aortic dissection. J Vasc Surg 2016; 66:875-882. [PMID: 27320219 DOI: 10.1016/j.jvs.2016.02.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/12/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to determine the role of smooth muscle 22 (SM22) in aortic dissection (AD) vascular remodeling and its regulatory mechanism on vascular smooth muscle cell function. METHODS Seven patients who underwent surgery for AD with no genetic predisposition and seven organ donors who died from nonvascular diseases were selected. In each aorta sample, the levels of SM22 were detected using immunohistochemistry and Western blot analysis. We inhibited the expression of SM22 with the application of RNA interference in human aortic smooth muscle cells (HASMCs). Cell-counting Kit-8 (Dojindo, Kumamoto, Japan) analyses were used to detect HASMC proliferation. Furthermore, the intracellular calcium concentration was detected using Rhod-2/AM (Dojindo) staining. RESULTS SM22 was significantly downregulated in the media of AD samples compared with controls (P < .05). In an in vitro study, downregulation of SM22 can significantly promote HASMC proliferation. Our research further revealed that cells treated with nifedipine can inhibit the promoter activity of SM22 downregulation on HASMC proliferation. Intracellular calcium concentration was a significantly varied during the process. CONCLUSIONS SM22 regulates HASMC function activity through intracellular calcium. It presents a downregulation in AD, which might play a potential role in vascular remodeling of AD.
Collapse
Affiliation(s)
- Yudong Sun
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhiqing Zhao
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lewei Hou
- Department of General Surgery, No. 454 Hospital of PLA, Nanjing, China
| | - Yu Xiao
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feng Qin
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junyi Yan
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
197
|
Lin CF, Huang HL, Peng CY, Lee YC, Wang HP, Teng CM, Pan SL. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis. Toxicol Appl Pharmacol 2016; 305:194-202. [PMID: 27312871 DOI: 10.1016/j.taap.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/17/2016] [Accepted: 06/08/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. METHODS Cell proliferation was determined using [(3)H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. RESULTS TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. CONCLUSION The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Chao-Feng Lin
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Han-Li Huang
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chieh-Yu Peng
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Biotechnology in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Po Wang
- College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Che-Ming Teng
- College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shiow-Lin Pan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 10031, Taiwan.
| |
Collapse
|
198
|
Enho Mutations Causing Low Adropin: A Possible Pathomechanism of MPO-ANCA Associated Lung Injury. EBioMedicine 2016; 9:324-335. [PMID: 27333037 PMCID: PMC4972533 DOI: 10.1016/j.ebiom.2016.05.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022] Open
Abstract
Background Myeloperoxidase (MPO) anti-neutrophil cytoplasm autoantibody (ANCA)-associated vasculitis commonly causes life-threatening pulmonary alveolar hemorrhage or fibrosis. Only a limited number of candidate gene variants have been explored, but hitherto, are not widely confirmed. In the present study, we investigated the importance of energy homeostasis associated gene (Enho) mutations and adropin deficiency in the development of MPO-ANCA associated lung injury. Methods We analyzed the peripheral blood mononuclear cells from 152 unrelated patients and 220 population-matched healthy individuals for genetic variations in Enho. Functional studies with adropin knockout (AdrKO) on C57BL/6J mice were also performed. Findings Sequencing revealed six patients with p.Ser43Thr and that five patients shared Cys56Trp amino acid substitution in Enho. Serum concentration of adropin was significantly lower in patients than that of the healthy subjects (P < 0.0001), especially those with Enho mutations. In vivo, homo- and heterozygous carriers of the null adropin allele exhibited MPO-ANCA associated pulmonary alveolar hemorrhage as compared to wild-type mice. AdrKO mice exhibit reduced eNOS (Ser1177) and Akt1 (Ser473) phosphorylation and loss of Treg cells. Interpretation Our findings indicate that the presence of Enho mutations or adropin-deficiency is a probable molecular basis for the initial events triggered in MPO-ANCA associated lung injury. Enho mutations result in adropin deficiency. Adropin deficiency cause MPO-ANCA-related pulmonary hemorrhage or lung fibrosis. Adropin knockout (AdrKO) mice exhibit reduced eNOS (Ser1177) and Akt1 (Ser473) phosphorylation and loss of Treg cells in lung tissue. PR3-AAV and MPO-AAV may be the two independent disease subtypes and have their different susceptibility genes.
Collapse
|
199
|
|
200
|
Lim SS, Kook SH, Lee JC. COMP-Ang1 enhances DNA synthesis and cell cycle progression in human periodontal ligament cells via Tie2-mediated phosphorylation of PI3K/Akt and MAPKs. Mol Cell Biochem 2016; 416:157-68. [DOI: 10.1007/s11010-016-2704-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
|