151
|
Wu J, Takeda T, Hoshino N, Akutagawa T. Mixed Columnar Assembly of Ferroelectric and Antiferroelectric Benzene Derivatives Bearing Multiple -CONHC 14H 29 Chains. J Phys Chem B 2020; 124:7067-7074. [PMID: 32667201 DOI: 10.1021/acs.jpcb.0c03365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The discotic hexagonal columnar (Colh) liquid crystalline phases of simple benzene derivatives bearing -CONHC14H29 chains at the 1-, 3-, and 5-positions (3BC) and 1-, 2-, 4-, and 5-positions (4BC) display ferroelectricity and antiferroelectricity, respectively. The phase transition behavior, molecular assembly structures, dielectric response, and ferroelectric properties of their mixed crystals [(3BC)1-x(4BC)x] were evaluated to clarify the nanoscaling effect on the collective inversion of the one-dimensional (1D) N-H···O═ hydrogen bonding interaction observed in the (3BC)∞ chain. A small quantity of 4BC doped into 3BC (x ≤ 0.03) maintained the ferroelectric polarization-electric field response (P-E) in the (3BC)1-x(4BC)x chains, where the antiferroelectric 4BC molecules in the ferroelectric 3BC column act as a pinning potential site for dipole inversion. On the contrary, a relatively large amount of 4BC doping (x ≥ 0.1) forms a domain separation state between the hydrogen-bonded (3BC)∞ and (4BC)∞ columns, in which the ferroelectric P-E hysteresis completely disappeared. The correlation length for the appearance of ferroelectricity in the 1D column was estimated to be ∼40 nm in the Colh liquid crystalline phase of 3BC.
Collapse
Affiliation(s)
- Jianyun Wu
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Norihisa Hoshino
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
152
|
Ai Y, Zeng YL, He WH, Huang XQ, Tang YY. Six-Fold Vertices in a Single-Component Organic Ferroelectric with Most Equivalent Polarization Directions. J Am Chem Soc 2020; 142:13989-13995. [DOI: 10.1021/jacs.0c06936] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Ai
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Wen-Hui He
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Xue-Qin Huang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| |
Collapse
|
153
|
Miyazaki T, Shoji Y, Ishiwari F, Kajitani T, Fukushima T. Design of a molecular memory element with an alternating circular array of dipolar rotors and rotation suppressors. Chem Sci 2020; 11:8388-8393. [PMID: 34123099 PMCID: PMC8163413 DOI: 10.1039/d0sc02836c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
As a new element for electric-field driven molecular memory, we developed a hexaarylbenzene derivative in which three difluorophenyl groups and three aryl groups as a dipolar rotor and a rotation suppressor, respectively, are alternately positioned on the central benzene core. This molecule has two rotational isomeric forms, both of which preserve their conformational states at room temperature but exhibit interconversion at high temperatures. Amorphous thin films fabricated from the hexaarylbenzene show a reversible change in surface potential by application of electric fields. A hexaarylbenzene derivative with an alternating circular array of dipolar rotors and rotation suppressors holds promise as a new element for electric-field driven molecular memory.![]()
Collapse
Affiliation(s)
- Takuya Miyazaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan .,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan .,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Takashi Kajitani
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan.,Materials Analysis Division, Open Facility Center, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan .,Japan Science and Technology Agency (JST), CREST 4-1-8 Hon-cho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
154
|
Priya K S, Kola L, Pal S, Biswas PP, Murugavel P. Physical vapor deposited organic ferroelectric diisopropylammonium bromide film and its self-powered photodetector characteristics. RSC Adv 2020; 10:25773-25779. [PMID: 35518576 PMCID: PMC9055340 DOI: 10.1039/d0ra03968c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/28/2020] [Indexed: 11/21/2022] Open
Abstract
Organic diisopropylammonium bromide (DIPAB) is a promising material with superior ferroelectric characteristics. However, the DIPAB continuous film, which is essential to explore its application potential, is challenging because its crystallization kinetics favors island-like microcrystalline growth. In this work, the continuous and uniform deposition of organic ferroelectric DIPAB film on a single crystalline Si(100) substrate is demonstrated by a thermal evaporation process. Structural and optical studies reveal that the film is c-axis oriented with an optical bandgap of 3.52 eV. The topographic image displays well-connected grain-like surface morphology with ∼2 nm roughness. The ferroelectric domain studies illustrate the in-plane orientation of the domains, which is in accordance with c-axis oriented film where polarization is along the in-plane b-axis. The phase and amplitude responses of the domains display hysteresis and butterfly characteristics, respectively and thereby endorse the ferroelectric nature of the film. Importantly, it is demonstrated that the DIPAB film exhibits remarkable self-powered UV-Vis photodetector characteristics with responsivity of 0.66 mA W-1 and detectivity of 2.20 × 109 Jones at 11.45 mW cm-2 light intensity. The fabricated DIPAB film reported in this work can widen its application potential in self-powered photodetector and other optoelectronic devices.
Collapse
Affiliation(s)
- Shanmuga Priya K
- Department of Physics, Indian Institute of Technology Madras Chennai-600036 India
| | - Lakshmi Kola
- Department of Physics, Indian Institute of Technology Madras Chennai-600036 India
| | - Subhajit Pal
- Department of Physics, Indian Institute of Technology Madras Chennai-600036 India
| | | | - P Murugavel
- Department of Physics, Indian Institute of Technology Madras Chennai-600036 India
| |
Collapse
|
155
|
Vijigiri V, Mandal S. Dipole-dipole interaction induced phases in hydrogen-bonded squaric acid crystal. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:285802. [PMID: 32120354 DOI: 10.1088/1361-648x/ab7ba1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the finite-temperature phase diagram of proton ordering of a quasi-two dimensional hydrogen-bonded system, namely the squaric acid crystal (H2C4O4) using quantum Monte Carlo. We take into account the four-spin plaquette interaction at the zeroth order followed by next nearest neighbor Ising interaction within a plaquette, dipole-dipole interaction and an external transverse magnetic field respectively. Using an improvised loop algorithm within the stochastic series expansion (SSE) quantum Monte Carlo method, we find two distinct phases as we increase the temperature and magnetic-field. One of the phase is the Πf, the phase with long range ferroelectric order and the other being an intermediate state with strong local correlations, i.e, a quantum liquid-like state Πql. The transition to Πf shows a very small anomalous peak in the specific heat with strong dependence of critical temperature on the strength of dipole-dipole interaction. The presence of the small peak is attributed to the absence of macroscopic degeneracy in the presence of dipole-dipole interaction and re-entrance of such degeneracy to some extent at small temperature. The work also discusses an intricate connection of quantum fluctuation and thermal fluctuation in the presence of competing interaction with entropic effects.
Collapse
Affiliation(s)
- Vikas Vijigiri
- Institute of Physics, Bhubaneswar-751005, Orissa, India. Homi Bhabha National Institute, Mumbai-400 094, Maharashtra, India
| | | |
Collapse
|
156
|
Kuramochi H, Aoyama G, Okajima H, Sakamoto A, Kanegawa S, Sato O, Takeuchi S, Tahara T. Femtosecond Polarization Switching in the Crystal of a [CrCo] Dinuclear Complex. Angew Chem Int Ed Engl 2020; 59:15865-15869. [DOI: 10.1002/anie.202004583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory RIKEN, and Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Current address: Research Center of Integrative Molecular Systems (CIMoS) Institute for Molecular Science 38 Nishigo-Naka, Myodaiji Okazaki 444-8585 Japan
| | - Genki Aoyama
- Department of Chemistry and Biological Science College of Science and Engineering Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Hajime Okajima
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Department of Chemistry and Biological Science College of Science and Engineering Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Akira Sakamoto
- Department of Chemistry and Biological Science College of Science and Engineering Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory RIKEN, and Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Material Science University of Hyogo 3-2-1 Kohto Kamigori Hyogo 678-1297 Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory RIKEN, and Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
| |
Collapse
|
157
|
Horiuchi S, Ishibashi S, Haruki R, Kumai R, Inada S, Aoyagi S. Metaelectric multiphase transitions in a highly polarizable molecular crystal. Chem Sci 2020; 11:6183-6192. [PMID: 32874515 PMCID: PMC7441576 DOI: 10.1039/d0sc01687j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
Metaelectric transition, i.e. an abrupt increase in polarization with an electric field is just a phase change phenomenon in dielectrics and attracts increasing interest for practical applications such as electrical energy storage and highly deformable transducers. Here we demonstrate that both field-induced metaelectric transitions and temperature-induced phase transitions occur successively on a crystal of highly polarizable bis-(1H-benzimidazol-2-yl)-methane (BI2C) molecules. In each molecule, two switchable polar subunits are covalently linked with each other. By changing the NH hydrogen location, the low- and high-dipole states of each molecule can be interconverted, turning on and off the polarization of hydrogen-bonded molecular ribbons. In the low-temperature phase III, the tetragonal crystal lattice comprises orthogonally crossed arrays of polar ribbons made up of a ladder-like hydrogen-bond network of fully polarized molecules. The single-step metaelectric transition from this phase III corresponds to the forced alignment of antiparallel dipoles typical of antiferroelectrics. By the transition to the intermediate-temperature phase II, the polarity is turned off for half of the ribbons so that the nonpolar and polar ribbons are orthogonal to each other. Considering also the ferroelastic-like crystal twinning, the doubled steps of metaelectric transitions observed in the phase II can be explained by the additional switching at different critical fields, by which the nonpolar ribbons undergo "metadielectric" molecular transformation restoring the strong polarization. This mechanism inevitably brings about exotic phase change phenomena transforming the multi-domain state of a homogeneous phase into an inhomogeneous (phase mixture) state.
Collapse
Affiliation(s)
- Sachio Horiuchi
- Research Institute for Advanced Electronics and Photonics (RIAEP) , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan
| | - Shoji Ishibashi
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat) , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568 , Japan
| | - Rie Haruki
- Condensed Matter Research Center (CMRC) and Photon Factory , Institute of Materials Structure Science , High Energy Accelerator Research Organization (KEK) , Tsukuba 305-0801 , Japan
| | - Reiji Kumai
- Condensed Matter Research Center (CMRC) and Photon Factory , Institute of Materials Structure Science , High Energy Accelerator Research Organization (KEK) , Tsukuba 305-0801 , Japan
| | - Satoshi Inada
- Research & Development Center , Ouchi Shinko Chemical Industrial Co., Ltd. , Sukagawa 962-0806 , Japan
| | - Shigenobu Aoyagi
- Research & Development Center , Ouchi Shinko Chemical Industrial Co., Ltd. , Sukagawa 962-0806 , Japan
| |
Collapse
|
158
|
Tani Y, Komura M, Ogawa T. Mechanoresponsive turn-on phosphorescence by a desymmetrization approach. Chem Commun (Camb) 2020; 56:6810-6813. [PMID: 32432246 DOI: 10.1039/d0cc01949f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The room-temperature phosphorescence (RTP) of metal-free organic crystals is normally quenched by mechanical stimulation. Herein, we demonstrate the opposite mechanoresponse of turn-on RTP. A desymmetrization of a C2-symmetric 1,2-diketone creates space for molecular motion in the crystal, quenching the RTP from the crystal while maintaining that from the amorphous solid.
Collapse
Affiliation(s)
- Yosuke Tani
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
159
|
Jakobsen VB, Trzop E, Gavin LC, Dobbelaar E, Chikara S, Ding X, Esien K, Müller‐Bunz H, Felton S, Zapf VS, Collet E, Carpenter MA, Morgan GG. Stress‐Induced Domain Wall Motion in a Ferroelastic Mn
3+
Spin Crossover Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vibe B. Jakobsen
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| | - Elzbieta Trzop
- Univ Rennes CNRS, IPR (Institut de Physique de Rennes)—UMR 6251 35000 Rennes France
| | - Laurence C. Gavin
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| | - Emiel Dobbelaar
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
- Current address: Technische Universität Kaiserslautern Kaiserslautern Germany
| | - Shalinee Chikara
- Department of Physics Auburn University Auburn AL 36849 USA
- Current address: National High Magnetic Field Lab at Florida State University Tallahassee FL USA
| | - Xiaxin Ding
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
- Current address: Idaho National Laboratory Idaho Falls ID USA
| | - Kane Esien
- Centre for Nanostructured Media School of Mathematics and Physics Queen's University of Belfast Belfast BT7 1NN, Northern Ireland UK
| | - Helge Müller‐Bunz
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| | - Solveig Felton
- Centre for Nanostructured Media School of Mathematics and Physics Queen's University of Belfast Belfast BT7 1NN, Northern Ireland UK
| | - Vivien S. Zapf
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Eric Collet
- Univ Rennes CNRS, IPR (Institut de Physique de Rennes)—UMR 6251 35000 Rennes France
| | - Michael A. Carpenter
- Department of Earth Sciences University of Cambridge Downing Street Cambridge CB2 3EQ UK
| | - Grace G. Morgan
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
160
|
Choi YS, Kim SK, Smith M, Williams F, Vickers ME, Elliott JA, Kar-Narayan S. Unprecedented dipole alignment in α-phase nylon-11 nanowires for high-performance energy-harvesting applications. SCIENCE ADVANCES 2020; 6:eaay5065. [PMID: 32577503 PMCID: PMC7286685 DOI: 10.1126/sciadv.aay5065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Dipole alignment in ferroelectric polymers is routinely exploited for applications in charge-based applications. Here, we present the first experimental realization of ideally ordered dipole alignment in α-phase nylon-11 nanowires. This is an unprecedented discovery as dipole alignment is typically only ever achieved in ferroelectric polymers using an applied electric field, whereas here, we achieve dipole alignment in as-fabricated nanowires of 'non-ferroelectric' α-phase nylon-11, an overlooked polymorph of nylon proposed 30 years ago but never practically realized. We show that the strong hydrogen bonding in α-phase nylon-11 serves to enhance the molecular ordering, resulting in exceptional intensity and thermal stability of surface potential. This discovery has profound implications for the field of triboelectric energy harvesting, as the presence of an enhanced surface potential leads to higher mechanical energy harvesting performance. Our approach therefore paves the way towards achieving robust, high-performance mechanical energy harvesters based on this unusual ordered phase of nylon-11.
Collapse
|
161
|
Wang Y, Han S, Liu X, Wu Z, Sun Z, Dey D, Li Y, Luo J. Exploring a lead-free organic-inorganic semiconducting hybrid with above-room-temperature dielectric phase transition. RSC Adv 2020; 10:17492-17496. [PMID: 35515591 PMCID: PMC9053409 DOI: 10.1039/c9ra09289g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
Recently, organic-inorganic hybrid lead halide perovskites have attracted great attention for optoelectronic applications, such as light-emitting diodes, photovoltaics and optoelectronics. Meanwhile, the flexible organic components of these compounds give rise to a large variety of important functions, such as dielectric phase transitions. However, those containing Pb are harmful to the environment in vast quantities. Herein, a lead-free organic-inorganic hybrid, (C6H14N)2BiCl5 (CHA; C6H14N+ is cyclohexylaminium), has been successfully developed. As expected, CHA exhibits an above-room-temperature solid phase transition at 325 K (T c), which was confirmed by the differential scanning calorimetry measurement and variable temperature single crystal X-ray diffraction analyses. Further analyses indicate the phase transition is mainly governed by the order-disorder transformation of organic cyclohexylaminium cations. Interestingly, during the process of phase transition, the dielectric constant (ε') of CHA shows an obvious step-like anomaly, which displays a low dielectric constant state below T c and a high dielectric constant state above T c. Furthermore, variable temperature conductivity combined with theoretical calculations demonstrate the notable semiconducting feature of CHA. It is believed that our work will provide useful strategies for exploring lead-free organic-inorganic semiconducting hybrid materials with above room temperature dielectric phase transitions.
Collapse
Affiliation(s)
- Yuyin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Zhenyue Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Dhananjay Dey
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Yaobin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
162
|
Macroscopic Polarization Change via Electron Transfer in a Valence Tautomeric Cobalt Complex. Nat Commun 2020; 11:1992. [PMID: 32332751 PMCID: PMC7181709 DOI: 10.1038/s41467-020-15988-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Polarization change induced by directional electron transfer attracts considerable attention owing to its fast switching rate and potential light control. Here, we investigate electronic pyroelectricity in the crystal of a mononuclear complex, [Co(phendiox)(rac-cth)](ClO4)·0.5EtOH (1·0.5EtOH, H2phendiox = 9, 10-dihydroxyphenanthrene, rac-cth = racemic 5, 5, 7, 12, 12, 14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane), which undergoes a two-step valence tautomerism (VT). Correspondingly, pyroelectric current exhibits double peaks in the same temperature domain with the polarization change consistent with the change in dipole moments during the VT process. Time-resolved Infrared (IR) spectroscopy shows that the photo-induced metastable state can be generated within 150 ps at 190 K. Such state can be trapped for tens of minutes at 7 K, showing that photo-induced polarization change can be realized in this system. These results directly demonstrate that a change in the molecular dipole moments induced by intramolecular electron transfer can introduce a macroscopic polarization change in VT compounds. Polarization change from directional electron transfer attracts considerable attention owing to its fast switching rate and potential light control. Here, the authors provide a proof-of-concept of electronic pyroelectricity induced by intramolecular electron transfer in the single crystal of a valence tautomeric compound.
Collapse
|
163
|
Song XJ, Zhang ZX, Chen XG, Zhang HY, Pan Q, Yao J, You YM, Xiong RG. Bistable State of Protons for Low-Voltage Memories. J Am Chem Soc 2020; 142:9000-9006. [DOI: 10.1021/jacs.0c02924] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xian-Jiang Song
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Xiao-Gang Chen
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Han-Yue Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| |
Collapse
|
164
|
Sui Y, Liu DS, Chen WT, Wang LJ, Ma YX, Lai HQ, Zhou YW, Wen HR. Organic-inorganic Hybrid ([BrCH 2 CH 2 N(CH 3 ) 3 ] + 2 [CdBr 4 ] 2- ) with Unusual Ferroelectric and Switchable Dielectric Bifunctional Properties over Different Temperature Range. Chem Asian J 2020; 15:1621-1626. [PMID: 32239798 DOI: 10.1002/asia.202000241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Indexed: 11/09/2022]
Abstract
Both ferroelectric and switchable dielectric behaviors are of great academic value and practical significance, but they usually exist alone. If combine the two properties into one compound, it will be more valuable in practical application. In this paper, quasi-spherical (2-bromoethyl) trimethylammonium cation was used to match with [CdBr4 ]2- anion, and a new organic-inorganic hybrid compound ([BrCH2 CH2 N(CH3 )3 ]+ 2 [CdBr4 ]2- , BETABCdBr) was obtained and carefully characterized. The results indicate that this compound undergoes two continuous reversible phase transition around 342 K and 390 K. It could respectively exhibit ferroelectric and switchable dielectric properties over different temperature range. This work may provide a new clue to explore new types of bifunctional phase transition smart materials to meet various application requirements.
Collapse
Affiliation(s)
- Yan Sui
- School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji'An, Jiangxi, 343009, P.R. China
| | - Dong-Sheng Liu
- School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji'An, Jiangxi, 343009, P.R. China
| | - Wen-Tong Chen
- School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji'An, Jiangxi, 343009, P.R. China
| | - Liang-Jun Wang
- School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji'An, Jiangxi, 343009, P.R. China
| | - Yu-Xiao Ma
- School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji'An, Jiangxi, 343009, P.R. China
| | - Hui-Qi Lai
- School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji'An, Jiangxi, 343009, P.R. China
| | - Yu-Wei Zhou
- School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji'An, Jiangxi, 343009, P.R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji'An, Jiangxi, 343009, P.R. China
| |
Collapse
|
165
|
Xu W, Han Z, Liu Y, Chen X, Li H, Ren L, Zhang Q, Wang Q. Composition Dependence of Microstructures and Ferroelectric Properties in Poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorodifluoroethylene) Terpolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenhan Xu
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhubing Han
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yang Liu
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xin Chen
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - He Li
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lulu Ren
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Qiming Zhang
- Department of Electrical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Qing Wang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
166
|
Sosa-Rivadeneyra MV, Vasquez-Ríos MG, Vargas-Olvera EC, Mendoza M, Varela-Caselis JL, Meza-León RL, Sánchez-Guadarrama MO, Höpfl H. Crystal structures of organic salts of chloranilic acid and 2,2′-bi(3-hydroxy-1,4-naphthoquinone) acting as proton donors to 4,4′-Bipyridine and 1,4-Diazabicyclo[2.2.2]octane: 3D networks with bifurcated N+-H···O−/O or N+-H···O/Cl synthons. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
167
|
Deng BB, Xu CC, Cheng TT, Yang YT, Hu YT, Wang P, He WH, Yang MJ, Liao WQ. Homochiral Nickel Nitrite ABX3 (X = NO2–) Perovskite Ferroelectrics. J Am Chem Soc 2020; 142:6946-6950. [DOI: 10.1021/jacs.0c02580] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bin-Bin Deng
- College of Chemistry, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Chu-Chu Xu
- College of Chemistry, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Ting-Ting Cheng
- College of Chemistry, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Yi-Ting Yang
- College of Chemistry, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Yan-Ting Hu
- College of Chemistry, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Pan Wang
- College of Chemistry, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Wen-Hui He
- College of Chemistry, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Meng-Juan Yang
- College of Chemistry, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Wei-Qiang Liao
- College of Chemistry, Nanchang University, Nanchang 330031, People’s Republic of China
| |
Collapse
|
168
|
Affiliation(s)
- Zongrui Wang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
169
|
Sahoo S, Ravindran TR, Rajaraman R, Srihari V, Pandey KK, Chandra S. Pressure-Induced Amorphization of Diisopropylammonium Perchlorate Studied by Raman Spectroscopy and X-ray Diffraction. J Phys Chem A 2020; 124:1993-2000. [PMID: 32039598 DOI: 10.1021/acs.jpca.9b11325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diisopropylammonium salts have drawn attention in recent years due to their room-temperature ferroelectric properties. Triclinic diisopropylammonium perchlorate (DIPAP) exhibits ferroelectricity at room temperature. We have carried out density functional theory calculations to assign the phonon modes in DIPAP. High-pressure Raman spectra of DIPAP are recorded up to ∼3 GPa. Discontinuity in the NH2 bending and stretching mode frequencies and the appearance of new bands at 0.7 GPa suggest a phase transition by a rearrangement in the hydrogen network. Broadening of lattice modes at 1.3-1.7 GPa indicates a loss of crystalline nature above 1.7 GPa. High-pressure synchrotron X-ray diffraction of DIPAP shows an isostructural phase transition at 0.6 GPa and confirms amorphization at 1.5 GPa that may lead to a loss of ferroelectricity above this pressure. The ambient phase becomes reversible after releasing the pressure. The bulk modulus of DIPAP is determined to be 16.5 GPa.
Collapse
Affiliation(s)
- Shradhanjali Sahoo
- Materials Science Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu, India
| | - T R Ravindran
- Materials Science Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu, India
| | - R Rajaraman
- Materials Science Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu, India
| | - V Srihari
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - K K Pandey
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sharat Chandra
- Materials Science Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu, India
| |
Collapse
|
170
|
Liu Y, Wang Q. Ferroelectric Polymers Exhibiting Negative Longitudinal Piezoelectric Coefficient: Progress and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902468. [PMID: 32195083 PMCID: PMC7080546 DOI: 10.1002/advs.201902468] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/08/2019] [Indexed: 05/11/2023]
Abstract
Piezoelectric polymers are well-recognized to hold great promise for a wide range of flexible, wearable, and biocompatible applications. Among the known piezoelectric polymers, ferroelectric polymers represented by poly(vinylidene fluoride) and its copolymer poly(vinylidene fluoride-co-trifluoroethylene) possess the best piezoelectric coefficients. However, the physical origin of negative longitudinal piezoelectric coefficients occurring in the polymers remains elusive. To address this long-standing challenge, several theoretical models proposed over the past decades, which are controversial in nature, have been revisited and reviewed. It is concluded that negative longitudinal piezoelectric coefficients arise from the negative longitudinal electrostriction in the crystalline domain of the polymers, independent of amorphous and crystalline-amorphous interfacial regions. The crystalline origin of piezoelectricity offers unprecedented opportunities to improve electromechanical properties of polymers via structural engineering, i.e., design of morphotropic phase boundaries in ferroelectric polymers.
Collapse
Affiliation(s)
- Yang Liu
- Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Qing Wang
- Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
171
|
Wang Z, Yu F, Xie J, Zhao J, Zou Y, Wang Z, Zhang Q. Insights into the Control of Optoelectronic Properties in Mixed-Stacking Charge-Transfer Complexes. Chemistry 2020; 26:3578-3585. [PMID: 31774587 DOI: 10.1002/chem.201904901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Indexed: 11/10/2022]
Abstract
Although cocrystallization has provided a promising platform to develop new organic optoelectronic materials, it is still a big challenge to purposely design and achieve specific optoelectronic properties. Herein, a series of mixed-stacking cocrystals (TMFA, TMCA, and TMTQ) were designed and synthesized, and the regulatory effects of the acceptors on the co-assembly behavior, charge-transfer nature, energy-level structures, and optoelectronic characteristics were systematically investigated. The results demonstrate that it is feasible to achieve effective charge-transport tuning and photoresponse switching by carefully regulating the intermolecular charge transfer and energy orbitals. The inherent mechanisms underlying the change in these optoelectronic behaviors were analyzed in depth and elucidated to provide clear guidelines for future development of new optoelectronic materials. In addition, due to the excellent photoresponsive characteristics of TMCA, TMCA-based phototransistors were investigated with varying light wavelength and optical power, and TMCA shows the best performance among all reported cocrystals under UV illumination.
Collapse
Affiliation(s)
- Zongrui Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fei Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jian Xie
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zepeng Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
172
|
Takahashi Y, Takehisa M, Tanaka E, Harada J, Kumai R, Inabe T. Incorporating Spacer Molecules into the Tetrathiafulvalene- p-Chloranil Charge-Transfer Framework: Modulating the Neutral-Ionic Phase Transition. J Phys Chem Lett 2020; 11:1336-1342. [PMID: 31977223 DOI: 10.1021/acs.jpclett.9b03847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The charge-transfer (CT) tetrathiafulvalene-p-chloranil (TTF-CA) crystal, a representative functional organic electronic material, has been the subject of both basic and applied research. This material shows a neutral-ionic phase transition (NIPT) that induces drastic changes in its physical properties. Here, we use this crystal as a framework and demonstrate a method for modulating physical properties of TTF-CA. A number of multicomponent (ternary) CT crystals were obtained by crystallizing TTF-CA with a third molecular species. These complexes all contain molecular sheets formed with TTF-CA; however, the third molecules were differently inserted between these sheets as spacers to induce a variety of physical properties in the CT crystals. Some showed spacer-modified NIPT, while the transition to the ionic state was suppressed in one complex despite the presence of TTF-CA sheets, which indicates that spacer molecules can modulate the physical properties or functions of CT crystals.
Collapse
Affiliation(s)
- Yukihiro Takahashi
- Department of Chemistry , Faculty of Science, Hokkaido University , Sapporo 060-0810 , Japan
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | - Mika Takehisa
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | - Eri Tanaka
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | - Jun Harada
- Department of Chemistry , Faculty of Science, Hokkaido University , Sapporo 060-0810 , Japan
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | - Reiji Kumai
- Condensed Matter Research Center (CMRC) and Photon Factory, High Energy Accelerator Research Organization (KEK) , Institute of Materials Structure Science , Tsukuba 305-0801 , Japan
| | - Tamotsu Inabe
- Department of Chemistry , Faculty of Science, Hokkaido University , Sapporo 060-0810 , Japan
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| |
Collapse
|
173
|
Long J, Ivanov MS, Khomchenko VA, Mamontova E, Thibaud JM, Rouquette J, Beaudhuin M, Granier D, Ferreira RAS, Carlos LD, Donnadieu B, Henriques MSC, Paixão JA, Guari Y, Larionova J. Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium(III) complex. Science 2020; 367:671-676. [DOI: 10.1126/science.aaz2795] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/20/2019] [Indexed: 11/02/2022]
Abstract
Magnetoelectric (ME) materials combine magnetic and electric polarizabilities in the same phase, offering a basis for developing high-density data storage and spintronic or low-consumption devices owing to the possibility of triggering one property with the other. Such applications require strong interaction between the constitutive properties, a criterion that is rarely met in classical inorganic ME materials at room temperature. We provide evidence of a strong ME coupling in a paramagnetic ferroelectric lanthanide coordination complex with magnetostrictive phenomenon. The properties of this molecular material suggest that it may be competitive with inorganic magnetoelectrics.
Collapse
Affiliation(s)
- Jérôme Long
- Institut Charles Gerhardt Montpellier, UMR 5253, Université de Montpellier, ENSCM, CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Maxim S. Ivanov
- CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
| | | | - Ekaterina Mamontova
- Institut Charles Gerhardt Montpellier, UMR 5253, Université de Montpellier, ENSCM, CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean-Marc Thibaud
- Institut Charles Gerhardt Montpellier, UMR 5253, Université de Montpellier, ENSCM, CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Jérôme Rouquette
- Institut Charles Gerhardt Montpellier, UMR 5253, Université de Montpellier, ENSCM, CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Mickaël Beaudhuin
- Institut Charles Gerhardt Montpellier, UMR 5253, Université de Montpellier, ENSCM, CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Dominique Granier
- Institut Charles Gerhardt Montpellier, UMR 5253, Université de Montpellier, ENSCM, CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Rute A. S. Ferreira
- Physics Department and CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luis D. Carlos
- Physics Department and CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Donnadieu
- Fédération de Recherche Chimie Balard–FR3105, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| | | | - José António Paixão
- CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Yannick Guari
- Institut Charles Gerhardt Montpellier, UMR 5253, Université de Montpellier, ENSCM, CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Joulia Larionova
- Institut Charles Gerhardt Montpellier, UMR 5253, Université de Montpellier, ENSCM, CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
174
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
175
|
Üngör Ö, Shatruk M. Transition metal complexes with fractionally charged TCNQ radical anions as structural templates for multifunctional molecular conductors. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
176
|
Huang CR, Luo X, Liao WQ, Tang YY, Xiong RG. An Above-Room-Temperature Molecular Ferroelectric: [Cyclopentylammonium] 2CdBr 4. Inorg Chem 2020; 59:829-836. [PMID: 31809026 DOI: 10.1021/acs.inorgchem.9b03098] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular ferroelectrics as alternatives to the conventional inorganic ferroelectrics have been greatly developed in past decades; many of these have been discovered and designed through various chemical means due to their structural adjustability. However, it is still a huge challenge to obtain high (above room temperature) Curie temperature (Tc) molecular ferroelectrics to meet the application requirements. Here, we present a new organic-inorganic hybrid molecular ferroelectric, [cyclopentylammonium]2CdBr4 (1), showing a moderate above-room-temperature Tc of 340.3 K. The mechanism of the ferroelectric phase transition from Pnam to Pna21 in 1 is ascribed to the order-disorder transition of both the organic cations and inorganic anions, affording a spontaneous polarization of 0.57 μC/cm2 for the ferroelectric phase. Using piezoresponse force microscopy (PFM), we clearly observed the antiparallel 180° stripe domains and realized the polarization switching, unambiguously establishing the existence of room-temperature ferroelectricity in the thin film. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.
Collapse
Affiliation(s)
- Chao-Ran Huang
- Key Laboratory of Organo-Phamaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou 341000 , People's Republic of China
| | - Xuzhong Luo
- Key Laboratory of Organo-Phamaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou 341000 , People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center , Nanchang University , Nanchang 330031 , People's Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center , Nanchang University , Nanchang 330031 , People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center , Nanchang University , Nanchang 330031 , People's Republic of China
| |
Collapse
|
177
|
Zhang J, Yao WW, Sang L, Pan XW, Wang XZ, Liu WL, Wang L, Ren XM. Multi-step structural phase transitions with novel symmetry breaking and inverse symmetry breaking characteristics in a [Ag 4I 6] 2- cluster hybrid crystal. Chem Commun (Camb) 2020; 56:462-465. [PMID: 31825446 DOI: 10.1039/c9cc08394d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a multi-step phase transition hybrid composed of (Pr-dabco)2Ag4I6 clusters (Pr-dabco+ = 1-propyl-1,4-diazabicyclo[2.2.2]octan-1-ium) has been prepared and characterized by microanalysis, IR and UV-vis spectroscopy, TG and DSC techniques, etc. This hybrid is thermally stable up to ∼486 K with five phases in the temperature region below 486 K. The phase transition shows symmetry breaking (SB) character between phases II (space group P21/c) and III (space group Pa3[combining macron]), while inverse symmetry breaking (ISB) between phases II and I (space group Pbca), and it is rather exceptional for matter to exhibit simultaneously SB and ISB nature in two successive phase transitions. Most importantly, each phase transition is associated with a dielectric anomaly, and phase V appears to be a plastic crystal with extra high ac conductivity (>10-2 S cm-1). Our work opens up new avenues to find a multi-phase transition material in silver halide hybrids.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Yao ZS, Tang Z, Tao J. Bistable molecular materials with dynamic structures. Chem Commun (Camb) 2020; 56:2071-2086. [DOI: 10.1039/c9cc09238b] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this Feature Article, we introduce how to manipulate the motion of electrons or molecules by external stimuli, to achieve switchable properties in molecule-based single crystals.
Collapse
Affiliation(s)
- Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Zheng Tang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| |
Collapse
|
179
|
Sugimoto T, Matsumoto Y. Orientational ordering in heteroepitaxial water ice on metal surfaces. Phys Chem Chem Phys 2020; 22:16453-16466. [DOI: 10.1039/d0cp01763a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sum frequency generation spectroscopy uncovers the orientational ordering in crystalline ice films of water grown on Pt(111) and Rh(111).
Collapse
Affiliation(s)
- Toshiki Sugimoto
- Department of Materials Molecular Science
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Japan
| | | |
Collapse
|
180
|
Hussain A, Sinha N, Joseph AJ, Goel S, Singh B, Bdikin I, Kumar B. Mechanical investigations on piezo-/ferrolectric maleic acid-doped triglycine sulphate single crystal using nanoindentation technique. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
181
|
Zhang ZX, Zhang T, Shi PP, Zhang WY, Ye Q, Fu DW. Exploring high-performance integration in a plastic crystal/film with switching and semiconducting behavior. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01498e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a room-temperature plastic crystal, (N,N-dimethylpiperidinium)3Bi2Cl9 can integrate semiconducting behavior and switchable properties into one single flexible material, making it a potential candidate in flexible multifunctional devices.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| | - Tie Zhang
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| | - Ping-Ping Shi
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| | - Wan-Ying Zhang
- Institute for Science and Applications of Molecular Ferroelectrics
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P.R. China
| | - Qiong Ye
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| |
Collapse
|
182
|
Ai Y, Wu DJ, Yang MJ, Wang P, He WH, Liao WQ. Highest-Tc organic enantiomeric ferroelectrics obtained by F/H substitution. Chem Commun (Camb) 2020; 56:7033-7036. [DOI: 10.1039/d0cc02547j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(R)- and (S)-(N,N-dimethyl-3-fluoropyrrolidinium) iodide show the highest phase transition temperature (Tc) of 470 K among enantiomeric ferroelectrics.
Collapse
Affiliation(s)
- Yong Ai
- College of Chemistry
- Nanchang University
- Nanchang 330031
- People's Republic of China
| | - Dong-Ji Wu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- People's Republic of China
| | - Meng-Juan Yang
- College of Chemistry
- Nanchang University
- Nanchang 330031
- People's Republic of China
| | - Pan Wang
- College of Chemistry
- Nanchang University
- Nanchang 330031
- People's Republic of China
| | - Wen-Hui He
- College of Chemistry
- Nanchang University
- Nanchang 330031
- People's Republic of China
| | - Wei-Qiang Liao
- College of Chemistry
- Nanchang University
- Nanchang 330031
- People's Republic of China
| |
Collapse
|
183
|
Xu J, Li X, Xiong J, Yuan C, Semin S, Rasing T, Bu XH. Halide Perovskites for Nonlinear Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806736. [PMID: 30883987 DOI: 10.1002/adma.201806736] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/20/2019] [Indexed: 05/04/2023]
Abstract
Halide perovskites provide an ideal platform for engineering highly promising semiconductor materials for a wide range of applications in optoelectronic devices, such as photovoltaics, light-emitting diodes, photodetectors, and lasers. More recently, increasing research efforts have been directed toward the nonlinear optical properties of halide perovskites because of their unique chemical and electronic properties, which are of crucial importance for advancing their applications in next-generation photonic devices. Here, the current state of the art in the field of nonlinear optics (NLO) in halide perovskite materials is reviewed. Halide perovskites are categorized into hybrid organic/inorganic and pure inorganic ones, and their second-, third-, and higher-order NLO properties are summarized. The performance of halide perovskite materials in NLO devices such as upconversion lasers and ultrafast laser modulators is analyzed. Several potential perspectives and research directions of these promising materials for nonlinear optics are presented.
Collapse
Affiliation(s)
- Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Xinyue Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Jianbo Xiong
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Chunqing Yuan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Sergey Semin
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Theo Rasing
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| |
Collapse
|
184
|
Chen XG, Song XJ, Zhang ZX, Li PF, Ge JZ, Tang YY, Gao JX, Zhang WY, Fu DW, You YM, Xiong RG. Two-Dimensional Layered Perovskite Ferroelectric with Giant Piezoelectric Voltage Coefficient. J Am Chem Soc 2019; 142:1077-1082. [PMID: 31851495 DOI: 10.1021/jacs.9b12368] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Piezoelectric sensors that can work under various conditions with superior performance are highly desirable with the arrival of the Internet of Things. For practical applications, a large piezoelectric voltage coefficient g and a high Curie temperature Tc are critical to the performance of piezoelectric sensors. Here, we report a two-dimensional perovskite ferroelectric (4-aminotetrahydropyran)2PbBr4 [(ATHP)2PbBr4] with a saturated polarization of 5.6 μC cm-2, high Tc of 503 K [above that of BaTiO3 (BTO, 393 K)], and extremely large g33 of 660.3 × 10-3 V m N-1 [much beyond that of Pb(Zr,Ti)O3 (PZT) ceramics (20 to 40 × 10-3 V m N-1), more than 2 times higher than that of poly(vinylidene fluoride) (PVDF, about 286.7 × 10-3 V m N-1)]. Combined with the advantages of molecular ferroelectrics, such as light weight, easy and environmentally friendly processing, and mechanical flexibility, (ATHP)2PbBr4 would be a competitive candidate for next-generation smart piezoelectric sensors in flexible devices, soft robotics, and biomedical devices.
Collapse
Affiliation(s)
- Xiao-Gang Chen
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , People's Republic of China
| | - Xian-Jiang Song
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , People's Republic of China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , People's Republic of China
| | - Peng-Fei Li
- Ordered Matter Science Research Center , Nanchang University , Nanchang 330031 , People's Republic of China
| | - Jia-Zhen Ge
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , People's Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center , Nanchang University , Nanchang 330031 , People's Republic of China
| | - Ji-Xing Gao
- Institute for Science and Applications of Molecular Ferroelectrics , Zhejiang Normal University , Jinhua 321004 , People's Republic of China
| | - Wan-Ying Zhang
- Institute for Science and Applications of Molecular Ferroelectrics , Zhejiang Normal University , Jinhua 321004 , People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics , Zhejiang Normal University , Jinhua 321004 , People's Republic of China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , People's Republic of China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , People's Republic of China.,Ordered Matter Science Research Center , Nanchang University , Nanchang 330031 , People's Republic of China
| |
Collapse
|
185
|
Yamamoto R, Minami Y, Hui JKH, Morikawa MA, Kimizuka N. Enhanced Electric Polarization and Polar Switching of Dipolar Aromatic Liquids Confined in Supramolecular Gel Networks. J Am Chem Soc 2019; 142:1424-1432. [PMID: 31880931 DOI: 10.1021/jacs.9b11276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ryosuke Yamamoto
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Minami
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Joseph K.-H. Hui
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masa-aki Morikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
186
|
Shi C, Ye L, Gong ZX, Ma JJ, Wang QW, Jiang JY, Hua MM, Wang CF, Yu H, Zhang Y, Ye HY. Two-Dimensional Organic-Inorganic Hybrid Rare-Earth Double Perovskite Ferroelectrics. J Am Chem Soc 2019; 142:545-551. [PMID: 31825221 DOI: 10.1021/jacs.9b11697] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a major branch of hybrid perovskites, two-dimensional (2D) hybrid double perovskites are expected to be ideal systems for exploring novel ferroelectric properties, because they can accommodate a variety of organic cations and allow diverse combinations of different metal elements. However, no 2D hybrid double perovskite ferroelectric has been reported since the discovery of halide double perovskites in the 1930s. Based on trivalent rare-earth ions and chiral organic cations, we have designed a new family of 2D rare-earth double perovskite ferroelectrics, A4MIMIII(NO3)8, where A is the organic cation, MI is the alkaline metal or ammonium ion, and MIII is the rare-earth ion. This is the first time that ferroelectricity is realized in 2D hybrid double perovskite systems. These ferroelectrics have achieved high-temperature ferroelectricity and photoluminescent properties. By varying the rare-earth ion, variable photoluminescent properties can be achieved. The results reveal that the 2D rare-earth double perovskite systems provide a promising platform for achieving multifunctional ferroelectricity.
Collapse
Affiliation(s)
- Chao Shi
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Le Ye
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Zhi-Xin Gong
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Jia-Jun Ma
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Qin-Wen Wang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Jia-Ying Jiang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Miao-Miao Hua
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Chang-Feng Wang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Hui Yu
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Yi Zhang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology , Ganzhou 341000 , P. R. China
| |
Collapse
|
187
|
Uskova NI, Charnaya EV, Podorozhkin DY, Baryshnikov SV, Milinskiy AY, Egorova IV. 13C NMR of DIPAC and DIPAB organic ferroelectrics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:505404. [PMID: 31480030 DOI: 10.1088/1361-648x/ab40eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The diisopropylammonium chloride (C6H16ClN, DIPAC) and diisopropylammonium bromide (C6H16BrN, DIPAB) molecular crystals are recently discovered ferroelectrics with sufficiently high spontaneous polarization and Curie temperature. We performed first studies of these crystals by 13C NMR. CP MAS spectra were collected within large temperature ranges covering the Curie points. The reconstructive phase transition from the initial orthorhombic P212121 structure of DIPAB to the monoclinic ferroelectric P21 structure leads to an abrupt alteration in the 13C spectrum. The 13C spectra for DIPAC and DIPAB in the ferroelectric P21 phase are quite similar with four lines at lower frequencies, which correspond to the CH3 groups, and two lines with close chemical shifts, which correspond to two CH groups. The transition into the paraphase leads to gradual reduction of the interline distances in the low-frequency quadruplet and in the doublet. The step-like changes in the interline frequency shifts at this transition indicating its first order. The analysis of the spectrum evolution in the paraphase shows that only a CH group lays in the reflection plane above the P21 → P21/m transition, while the second CH group only moves closer to the reflection plane upon further heating.
Collapse
Affiliation(s)
- N I Uskova
- St. Petersburg State University, St. Petersburg 198504, Russia
| | | | | | | | | | | |
Collapse
|
188
|
Yin Z, Tian B, Zhu Q, Duan C. Characterization and Application of PVDF and Its Copolymer Films Prepared by Spin-Coating and Langmuir-Blodgett Method. Polymers (Basel) 2019; 11:E2033. [PMID: 31817985 PMCID: PMC6960743 DOI: 10.3390/polym11122033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(vinylidene fluoride) (PVDF) and its copolymers are key polymers, displaying properties such as flexibility and electroactive responses, including piezoelectricity, pyroelectricity, and ferroelectricity. In the past several years, they have been applied in numerous applications, such as memory, transducers, actuators, and energy harvesting and have shown thriving prospects in the ongoing research and commercialization process. The crystalline polymorphs of PVDF can present nonpolar α, ε phase and polar β, γ, and δ phases with different processing methods. The copolymers, such as poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), can crystallize directly into a phase analogous to the β phase of PVDF. Since the β phase shows the highest dipole moment among polar phases, many reproducible and efficient methods producing β-phase PVDF and its copolymer have been proposed. In this review, PVDF and its copolymer films prepared by spin-coating and Langmuir-Blodgett (LB) method are introduced, and relevant characterization techniques are highlighted. Finally, the development of memory, artificial synapses, and medical applications based on PVDF and its copolymers is elaborated.
Collapse
Affiliation(s)
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China; (Z.Y.); (C.D.)
| | | | | |
Collapse
|
189
|
Jiang H, Hu W. The Emergence of Organic Single-Crystal Electronics. Angew Chem Int Ed Engl 2019; 59:1408-1428. [PMID: 30927312 DOI: 10.1002/anie.201814439] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Organic semiconducting single crystals are perfect for both fundamental and application-oriented research due to the advantages of free grain boundaries, few defects, and minimal traps and impurities, as well as their low-temperature processability, high flexibility, and low cost. Carrier mobilities of greater than 10 cm2 V-1 s-1 in some organic single crystals indicate a promising application in electronic devices. The progress made, including the molecular structures and fabrication technologies of organic single crystals, is introduced and organic single-crystal electronic devices, including field-effect transistors, phototransistors, p-n heterojunctions, and circuits, are summarized. Organic two-dimensional single crystals, cocrystals, and large single crystals, together with some potential applications, are introduced. A state-of-the-art overview of organic single-crystal electronics, with their challenges and prospects, is also provided.
Collapse
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
190
|
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- School of Materials Science and Engineering Nanyang Technological University 639798 Singapore Singapur
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
191
|
Tang Z, Gao KG, Sun XF, Yang XM, Wu YZ, Gao ZR, Cai HL, Wu XS. High-Temperature Molecular Ferroelectric Tris(2-hydroxyethyl) Ammonium Bromide with Dielectric Relaxation. J Phys Chem Lett 2019; 10:6650-6655. [PMID: 31602977 DOI: 10.1021/acs.jpclett.9b02875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We obtained one new molecular ferroelectric material tris(2-hydroxyethyl) ammonium bromide (TAB) that crystallizes in aqueous solution at room temperature with a space group of R3m which belongs to ten polar space groups. There is a paraelectric-to-ferroelectric phase transition at 424 K (from hexagonal R3̅m to hexagonal R3m phase). Such a high transition temperature is close to that of diisopropylamine bromide (426 K) and higher than that of many other molecular ferroelectrics, such as triethylmethylammonium tetrabromoferrate(III) (360 K); some of the organic-inorganic perovskite ferroelectrics, such as (cyclohexylammonium)2PbBr4 (363 K); and some inorganic ferroelectrics, including BaTiO3 (393 K). The saturated polarization and the coercive field of TAB measured from the ferroelectric hysteresis loop are about 0.54 μC·cm-2 and 0.62 kV/cm, respectively. Given its superior performance, including high phase transition temperature, room-temperature ferroelectricity, small coercive electric field, and adjustable ladder-shaped dielectric constant, TAB will have many potential applications.
Collapse
Affiliation(s)
- Zheng Tang
- Collaborative Innovation Center of Advanced Microstructures, Laboratory of Solid State Microstructures & School of Physics , Nanjing University , Nanjing 210093 , People's Republic of China
| | - Kai-Ge Gao
- College of Physical Science and Technology , Yangzhou University , Yangzhou 225009 , People's Republic of China
| | - Xiao-Fan Sun
- Collaborative Innovation Center of Advanced Microstructures, Laboratory of Solid State Microstructures & School of Physics , Nanjing University , Nanjing 210093 , People's Republic of China
| | - Xing-Ming Yang
- Collaborative Innovation Center of Advanced Microstructures, Laboratory of Solid State Microstructures & School of Physics , Nanjing University , Nanjing 210093 , People's Republic of China
| | - Yi-Zhang Wu
- Collaborative Innovation Center of Advanced Microstructures, Laboratory of Solid State Microstructures & School of Physics , Nanjing University , Nanjing 210093 , People's Republic of China
| | - Zhang-Ran Gao
- Collaborative Innovation Center of Advanced Microstructures, Laboratory of Solid State Microstructures & School of Physics , Nanjing University , Nanjing 210093 , People's Republic of China
| | - Hong-Ling Cai
- Collaborative Innovation Center of Advanced Microstructures, Laboratory of Solid State Microstructures & School of Physics , Nanjing University , Nanjing 210093 , People's Republic of China
| | - X S Wu
- Collaborative Innovation Center of Advanced Microstructures, Laboratory of Solid State Microstructures & School of Physics , Nanjing University , Nanjing 210093 , People's Republic of China
| |
Collapse
|
192
|
Yu S, Wang Z, Liu S, Zhang H, Duan H. Molecular motion and dielectric relaxation in chloroplumbate hybrid crystal. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
193
|
Crystal Structure, Raman Spectroscopy and Dielectric Properties of New Semiorganic Crystals Based on 2-Methylbenzimidazole. CRYSTALS 2019. [DOI: 10.3390/cryst9110573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
New single crystals, based on 2-methylbenzimidazole (MBI), of MBI-phosphite (C16H24N4O7P2), MBI-phosphate-1 (C16H24N4O9P2), and MBI-phosphate-2 (C8H16N2O9P2) were obtained by slow evaporation method from a mixture of alcohol solution of MBI crystals and water solution of phosphorous or phosphoric acids. Crystal structures and chemical compositions were determined by single crystal X-ray diffraction (XRD) analysis and confirmed by XRD of powders and elemental analysis. Raman spectroscopy of new crystals evidences the presence in crystals of MBI-, H3PO3-, or H3PO4- and water molecules. Dielectric properties of crystals reveal strong increase and low frequency dispersion of dielectric constant and losses at heating, indicating the appearance of proton conductivity. At low temperatures in MBI-phosphate-2, an increase of dielectric constant analogous to quantum paraelectric state is observed.
Collapse
|
194
|
Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat Commun 2019; 10:4535. [PMID: 31628311 PMCID: PMC6800420 DOI: 10.1038/s41467-019-12391-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/06/2019] [Indexed: 11/18/2022] Open
Abstract
Poly(vinylidene fluoride)-based dielectric materials are prospective candidates for high power density electric storage applications because of their ferroelectric nature, high dielectric breakdown strength and superior processability. However, obtaining a polar phase with relaxor-like behavior in poly(vinylidene fluoride), as required for high energy storage density, is a major challenge. To date, this has been achieved using complex and expensive synthesis of copolymers and terpolymers or via irradiation with high-energy electron-beam or γ-ray radiations. Herein, a facile process of pressing-and-folding is proposed to produce β-poly(vinylidene fluoride) (β-phase content: ~98%) with relaxor-like behavior observed in poly(vinylidene fluoride) with high molecular weight > 534 kg mol−1, without the need of any hazardous gases, solvents, electrical or chemical treatments. An ultra-high energy density (35 J cm−3) with a high efficiency (74%) is achieved in a pressed-and-folded poly(vinylidene fluoride) (670-700 kg mol−1), which is higher than that of other reported polymer-based dielectric capacitors to the best of our knowledge. Dielectric materials are candidates for electric high power density energy storage applications, but fabrication is challenging. Here the authors report a pressing-and-folding processing of a dielectric with relaxor-like behavior, leading to high energy density in a polymer-based dielectric capacitor.
Collapse
|
195
|
Lengyel J, Wang X, Choi ES, Besara T, Schönemann R, Ramakrishna SK, Holleman J, Blockmon AL, Hughey KD, Liu T, Hudis J, Beery D, Balicas L, McGill SA, Hanson K, Musfeldt JL, Siegrist T, Dalal NS, Shatruk M. Antiferroelectric Phase Transition in a Proton-Transfer Salt of Squaric Acid and 2,3-Dimethylpyrazine. J Am Chem Soc 2019; 141:16279-16287. [PMID: 31550144 DOI: 10.1021/jacs.9b04473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A proton-transfer reaction between squaric acid (H2sq) and 2,3-dimethylpyrazine (2,3-Me2pyz) results in crystallization of a new organic antiferroelectric (AFE), (2,3-Me2pyzH+)(Hsq-)·H2O (1), which possesses a layered structure. The structure of each layer can be described as partitioned into strips lined with methyl groups of the Me2pyzH+ cations and strips featuring extensive hydrogen bonding between the Hsq- anions and water molecules. Variable-temperature dielectric measurements and crystal structures determined through a combination of single-crystal X-ray and neutron diffraction reveal an AFE ordering at 104 K. The phase transition is driven by ordering of protons within the hydrogen-bonded strips. Considering the extent of proton transfer, the paraelectric (PE) state can be formulated as (2,3-Me2pyzH+)2(Hsq23-)(H5O2+), whereas the AFE phase can be described as (2,3-Me2pyzH+)(Hsq-)(H2O). The structural transition caused by the localization of protons results in the change in color from yellow in the PE state to colorless in the AFE state. The occurrence and mechanism of the AFE phase transition have been also confirmed by heat capacity measurements and variable-temperature infrared and Raman spectroscopy. This work demonstrates a potentially promising approach to the design of new electrically ordered materials by engineering molecule-based crystal structures in which hydrogen-bonding interactions are intentionally partitioned into quasi-one-dimensional regions.
Collapse
Affiliation(s)
- Jeff Lengyel
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Eun Sang Choi
- National High Magnetic Field Laboratory , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Tiglet Besara
- National High Magnetic Field Laboratory , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Rico Schönemann
- National High Magnetic Field Laboratory , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Sanath Kumar Ramakrishna
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States.,National High Magnetic Field Laboratory , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Jade Holleman
- National High Magnetic Field Laboratory , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States.,Department of Physics , Florida State University , 77 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Avery L Blockmon
- Department of Chemistry , University of Tennessee , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| | - Kendall D Hughey
- Department of Chemistry , University of Tennessee , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| | - Tianhan Liu
- Department of Physics , Florida State University , 77 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Jacob Hudis
- Department of Physics , Florida State University , 77 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Drake Beery
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Luis Balicas
- National High Magnetic Field Laboratory , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States.,Department of Physics , Florida State University , 77 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Stephen A McGill
- National High Magnetic Field Laboratory , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Janice L Musfeldt
- Department of Chemistry , University of Tennessee , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States.,Department of Physics , University of Tennessee , 1408 Circle Drive , Knoxville , Tennessee 37996 , United States
| | - Theo Siegrist
- National High Magnetic Field Laboratory , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States.,Department of Chemical and Biomedical Engineering , FAMU-FSU College of Engineering , Tallahassee , Florida 32310 , United States
| | - Naresh S Dalal
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States.,National High Magnetic Field Laboratory , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| |
Collapse
|
196
|
Wang B, Ma D, Zhao H, Long L, Zheng L. Room Temperature Lead-Free Multiaxial Inorganic–Organic Hybrid Ferroelectric. Inorg Chem 2019; 58:13953-13959. [DOI: 10.1021/acs.inorgchem.9b01793] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Dangwu Ma
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Haixia Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Lasheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Lansun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
197
|
Jiang X, Duan HB, Jellen MJ, Chen Y, Chung TS, Liang Y, Garcia-Garibay MA. Thermally Activated Transient Dipoles and Rotational Dynamics of Hydrogen-Bonded and Charge-Transferred Diazabicyclo [2.2.2]Octane Molecular Rotors. J Am Chem Soc 2019; 141:16802-16809. [DOI: 10.1021/jacs.9b07518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xing Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hai-Bao Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- School of Environmental Science, Nanjing Xiao Zhuang University, Nanjing, Jiangsu 211171, P. R. China
| | - Marcus J. Jellen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yu Chen
- Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Tim S. Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yong Liang
- Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Miguel A. Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
198
|
Beldjoudi Y, Narayanan A, Roy I, Pearson TJ, Cetin MM, Nguyen MT, Krzyaniak MD, Alsubaie FM, Wasielewski MR, Stupp SI, Stoddart JF. Supramolecular Tessellations by a Rigid Naphthalene Diimide Triangle. J Am Chem Soc 2019; 141:17783-17795. [PMID: 31526001 DOI: 10.1021/jacs.9b08758] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ashwin Narayanan
- Department of Medicine and Simpson-Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | | | | | | | | | | | - Fehaid M. Alsubaie
- Joint Center of Excellence in Integrated Nanosystems, King Abdulaziz City for Science and Technology, Riyadh 11442, Kingdom of Saudi Arabia
| | | | - Samuel I. Stupp
- Department of Medicine and Simpson-Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - J. Fraser Stoddart
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
199
|
Zhang JJ, Guan J, Dong S, Yakobson BI. Room-Temperature Ferroelectricity in Group-IV Metal Chalcogenide Nanowires. J Am Chem Soc 2019; 141:15040-15045. [PMID: 31482706 DOI: 10.1021/jacs.9b03201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The realization of low-dimensional ferroelectrics is both fundamentally intriguing and practically appealing, to be used in nanoscale devices. Here, GeS and SnS nanowires are predicted to be one-dimensional (1D) ferroelectrics with inversion symmetry spontaneously broken by soft optical modes. Despite the low dimensionality, the estimated Curie point for GeS nanowires is above room temperature, benefiting experimental detection and suggesting realistic applications. To this end, further aspects of these 1D ferroelectrics are also examined, revealing the domain wall localization, switchable carrier mobility, and practically effective shieling by confining the nanowires inside the carbon nanotubes, all together potentially useful for nanoscale ferroelectric devices of broad interest.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- School of Physics , Southeast University , Nanjing 211189 , China
| | - Jie Guan
- School of Physics , Southeast University , Nanjing 211189 , China
| | - Shuai Dong
- School of Physics , Southeast University , Nanjing 211189 , China
| | | |
Collapse
|
200
|
Nitisha, Venkatakrishnan P. Accessing [ g]-Face π-Expanded Fluorescent Coumarins by Scholl Cyclization. J Org Chem 2019; 84:10679-10689. [PMID: 31429564 DOI: 10.1021/acs.joc.9b01223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
[g]-Face π-expanded coumarins are synthesized by employing the Scholl cyclization method. These new arene-annulated dipolar coumarins display interesting absorption and fluorescent properties. The large Stokes shifts, tuneable fluorescent quantum yields, and high photostability reveal promise in bioimaging application.
Collapse
Affiliation(s)
- Nitisha
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600036 , Tamil Nadu , India
| | | |
Collapse
|