151
|
Lindborg BA, Brekke JH, Vegoe AL, Ulrich CB, Haider KT, Subramaniam S, Venhuizen SL, Eide CR, Orchard PJ, Chen W, Wang Q, Pelaez F, Scott CM, Kokkoli E, Keirstead SA, Dutton JR, Tolar J, O'Brien TD. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium. Stem Cells Transl Med 2016; 5:970-9. [PMID: 27177577 DOI: 10.5966/sctm.2015-0305] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. SIGNIFICANCE Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable.
Collapse
Affiliation(s)
- Beth A Lindborg
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Bioactive Regenerative Therapeutics, Inc., Two Harbors, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - John H Brekke
- Bioactive Regenerative Therapeutics, Inc., Two Harbors, Minnesota, USA
| | - Amanda L Vegoe
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Connor B Ulrich
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Kerri T Haider
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Sandhya Subramaniam
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott L Venhuizen
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Cindy R Eide
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul J Orchard
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weili Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Wang
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Francisco Pelaez
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Carolyn M Scott
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan A Keirstead
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy D O'Brien
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
152
|
Abstract
In this review, Meng et al. focus on recent developments in our understanding of the molecular actions of the core Hippo kinase cascade and discuss key open questions in Hippo pathway regulation and function. The Hippo pathway was initially identified in Drosophila melanogaster screens for tissue growth two decades ago and has been a subject extensively studied in both Drosophila and mammals in the last several years. The core of the Hippo pathway consists of a kinase cascade, transcription coactivators, and DNA-binding partners. Recent studies have expanded the Hippo pathway as a complex signaling network with >30 components. This pathway is regulated by intrinsic cell machineries, such as cell–cell contact, cell polarity, and actin cytoskeleton, as well as a wide range of signals, including cellular energy status, mechanical cues, and hormonal signals that act through G-protein-coupled receptors. The major functions of the Hippo pathway have been defined to restrict tissue growth in adults and modulate cell proliferation, differentiation, and migration in developing organs. Furthermore, dysregulation of the Hippo pathway leads to aberrant cell growth and neoplasia. In this review, we focus on recent developments in our understanding of the molecular actions of the core Hippo kinase cascade and discuss key open questions in the regulation and function of the Hippo pathway.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Toshiro Moroishi
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
153
|
Chen D, Sun Y, Deng CX, Fu J. Improving survival of disassociated human embryonic stem cells by mechanical stimulation using acoustic tweezing cytometry. Biophys J 2016; 108:1315-1317. [PMID: 25809245 DOI: 10.1016/j.bpj.2015.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/15/2014] [Accepted: 01/28/2015] [Indexed: 01/28/2023] Open
Abstract
Dissociation-induced apoptosis of human embryonic stem cells (hESCs) hampers their large-scale culture. Herein we leveraged the mechanosensitivity of hESCs and employed, to our knowledge, a novel technique, acoustic tweezing cytometry (ATC), for subcellular mechanical stimulation of disassociated single hESCs to improve their survival. By acoustically actuating integrin-bound microbubbles (MBs) to live cells, ATC increased the survival rate and cloning efficiency of hESCs by threefold. A positive correlation was observed between the increased hESC survival rate and total accumulative displacement of integrin-anchored MBs during ATC stimulation. ATC may serve as a promising biocompatible tool to improve hESC culture.
Collapse
Affiliation(s)
- Di Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Yubing Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
154
|
Tang Y, Liu L, Li J, Yu L, Severino FPU, Wang L, Shi J, Tu X, Torre V, Chen Y. Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers. J Mater Chem B 2016; 4:3305-3312. [PMID: 32263265 DOI: 10.1039/c6tb00351f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are differentiated into mature motor neurons by using a culture patch made of crosslinked monolayer gelatin nanofibers. Compared to the conventional culture dish method, the patch method is more effective for culture and differentiation of stem cells, because cells are supported by a net-like structure made of crosslinked monolayer nanofibers instead of a planar substrate. The pores of the net-like structure have sizes smaller than those of cells but large enough to minimize the exogenous cell-material contact and to increase the permeability as well as the efficiency of cell-cell interactions. As expected, the differentiated hiPSCs showed the up-regulation of the expression of neuron specific proteins and the signature of matured motor neurons, allowing plug-and-play with a commercial multi-electrode array for neuron spike recording.
Collapse
Affiliation(s)
- Yadong Tang
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Liu Z, Han X, Qin L. Recent Progress of Microfluidics in Translational Applications. Adv Healthc Mater 2016; 5:871-88. [PMID: 27091777 PMCID: PMC4922259 DOI: 10.1002/adhm.201600009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed.
Collapse
Affiliation(s)
- Zongbin Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
156
|
Downregulation of YAP-dependent Nupr1 promotes tumor-repopulating cell growth in soft matrices. Oncogenesis 2016; 5:e220. [PMID: 27089143 PMCID: PMC4848840 DOI: 10.1038/oncsis.2016.29] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022] Open
Abstract
Despite decades of significant progress in understanding the molecular mechanisms of malignant tumorigenic cells, it remains elusive what these tumorigenic cells are and what controls the growth of these malignant cells. Recently, we have mechanically selected and grown highly malignant and tumorigenic tumor-repopulating cells (TRCs), a small sub-population of cancer cells, by culturing single cancer cells in soft fibrin matrices. However, it is unclear what regulates TRC growth besides Sox2. Here we show that nuclear protein 1 (Nupr1), a protein independent of Sox2, is downregulated in TRCs of melanoma, ovarian cancer and breast cancer cultured in soft fibrin matrices. Nupr1 expression depends on nuclear translocation of YAP that is enriched at the Nupr1 promoter sites; YAP is controlled by Cdc42-mediated F-actin and Lats1 interactions. Nupr1 regulates tumor-suppressor p53 and negatively regulates Nestin and Tert that are independent of Sox2 and promote TRC growth. Silencing Nupr1 increases TRC growth and Nupr1 overexpression inhibits TRC growth in culture and in immune-competent mice. Our results suggest that Nupr1 is a suppressor of growth of highly tumorigenic TRCs and may have a critical role in cancer progression.
Collapse
|
157
|
Schulte C, Rodighiero S, Cappelluti MA, Puricelli L, Maffioli E, Borghi F, Negri A, Sogne E, Galluzzi M, Piazzoni C, Tamplenizza M, Podestà A, Tedeschi G, Lenardi C, Milani P. Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation. J Nanobiotechnology 2016; 14:18. [PMID: 26955876 PMCID: PMC4784317 DOI: 10.1186/s12951-016-0171-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/25/2016] [Indexed: 02/03/2023] Open
Abstract
Background Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood. Results Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes. Conclusion Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0171-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carsten Schulte
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Martino Alfredo Cappelluti
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Luca Puricelli
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Elisa Maffioli
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Francesca Borghi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Armando Negri
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Elisa Sogne
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Massimiliano Galluzzi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Claudio Piazzoni
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Alessandro Podestà
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Gabriella Tedeschi
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Cristina Lenardi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Paolo Milani
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| |
Collapse
|
158
|
Thompson R, Chan C. Signal transduction of the physical environment in the neural differentiation of stem cells. TECHNOLOGY 2016; 4:1-8. [PMID: 27785459 PMCID: PMC5077250 DOI: 10.1142/s2339547816400070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Neural differentiation is largely dependent on extracellular signals within the cell microenvironment. These extracellular signals are mainly in the form of soluble factors that activate intracellular signaling cascades that drive changes in the cell nucleus. However, it is becoming increasingly apparent that the physical microenvironment provides signals that can also influence lineage commitment and very low modulus surfaces has been repeatedly demonstrated to promote neurogenesis. The molecular mechanisms governing mechano-induced neural differentiation are still largely uncharacterized; however, a growing body of evidence indicates that physical stimuli can regulate known signaling cascades and transcription factors involved in neural differentiation. Understanding how the physical environment affects neural differentiation at the molecular level will enable research and design of materials that will eventually enhance neural stem cell (NSC) differentiation, homogeneity and specificity.
Collapse
Affiliation(s)
- Ryan Thompson
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA
| | - Christina Chan
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA; Department of Chemical Engineering and Materials Science, East Lansing, Michigan 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
159
|
Bejoy J, Song L, Li Y. Wnt-YAP interactions in the neural fate of human pluripotent stem cells and the implications for neural organoid formation. Organogenesis 2016; 12:1-15. [PMID: 26901039 DOI: 10.1080/15476278.2016.1140290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have shown the ability to self-organize into different types of neural organoids (e.g., whole brain organoids, cortical spheroids, midbrain organoids etc.) recently. The extrinsic and intrinsic signaling elicited by Wnt pathway, Hippo/Yes-associated protein (YAP) pathway, and extracellular microenvironment plays a critical role in brain tissue morphogenesis. This article highlights recent advances in neural tissue patterning from hPSCs, in particular the role of Wnt pathway and YAP activity in this process. Understanding the Wnt-YAP interactions should provide us the guidance to predict and modulate brain-like tissue structure through the regulation of extracellular microenvironment of hPSCs.
Collapse
Affiliation(s)
- Julie Bejoy
- a Department of Chemical and Biomedical Engineering , FAMU-FSU College of Engineering, Florida State University , Tallahassee , FL , USA
| | - Liqing Song
- a Department of Chemical and Biomedical Engineering , FAMU-FSU College of Engineering, Florida State University , Tallahassee , FL , USA
| | - Yan Li
- a Department of Chemical and Biomedical Engineering , FAMU-FSU College of Engineering, Florida State University , Tallahassee , FL , USA
| |
Collapse
|
160
|
Hsiao C, Lampe M, Nillasithanukroh S, Han W, Lian X, Palecek SP. Human pluripotent stem cell culture density modulates YAP signaling. Biotechnol J 2016; 11:662-75. [PMID: 26766309 DOI: 10.1002/biot.201500374] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem cell (hPSC) density is an important factor in self-renewal and differentiation fates; however, the mechanisms through which hPSCs sense cell density and process this information in making cell fate decisions remain to be fully understood. One particular pathway that may prove important in density-dependent signaling in hPSCs is the Hippo pathway, which is regulated by cell-cell contact and mechanosensing through the cytoskeleton and has been linked to the maintenance of stem cell pluripotency. To probe regulation of Hippo pathway activity in hPSCs, we assessed whether Hippo pathway transcriptional activator YAP was differentially modulated by cell density. At higher cell densities, YAP phosphorylation and localization to the cytoplasm increased, which led to decreased YAP-mediated transcriptional activity. Furthermore, total YAP protein levels diminished at high cell density due to the phosphorylation-targeted degradation of YAP. Inducible shRNA knockdown of YAP reduced expression of YAP target genes and pluripotency genes. Finally, the density-dependent increase of neuroepithelial cell differentiation was mitigated by shRNA knockdown of YAP. Our results suggest a pivotal role of YAP in cell density-mediated fate decisions in hPSCs.
Collapse
Affiliation(s)
- Cheston Hsiao
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Michael Lampe
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Songkhun Nillasithanukroh
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Wenqing Han
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Xiaojun Lian
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Sean P Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA.
| |
Collapse
|
161
|
Abstract
Stem cells have the ability to self-renew and differentiate into specialized cell types, and, in the human body, they reside in specialized microenvironments called "stem cell niches." Although several niches have been described and studied in vivo, their functional replication in vitro is still incomplete. The in vitro culture of pluripotent stem cells may represent one of the most advanced examples in the effort to create an artificial or synthetic stem cell niche. A focus has been placed on the development of human stem cell microenvironments due to their significant clinical implications, in addition to the potential differences between animal and human cells. In this concise review we describe the advances in human pluripotent stem cell culture, and explore the idea that the knowledge gained from this model could be replicated to create synthetic niches for other human stem cell populations, which have proven difficult to maintain in vitro.
Collapse
|
162
|
Siedlik MJ, Varner VD, Nelson CM. Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods 2016; 94:4-12. [PMID: 26318086 PMCID: PMC4761538 DOI: 10.1016/j.ymeth.2015.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/23/2015] [Accepted: 08/25/2015] [Indexed: 01/28/2023] Open
Abstract
Mechanotransduction is often described in the context of force-induced changes in molecular conformation, but molecular-scale mechanical stimuli arise in vivo in the context of complex, multicellular tissue structures. For this reason, we highlight and review experimental methods for investigating mechanotransduction across multiple length scales. We begin by discussing techniques that probe the response of individual molecules to applied force. We then move up in length scale to highlight techniques aimed at uncovering how cells transduce mechanical stimuli into biochemical activity. Finally, we discuss approaches for determining how these stimuli arise in multicellular structures. We expect that future work will combine techniques across these length scales to provide a more comprehensive understanding of mechanotransduction.
Collapse
Affiliation(s)
- Michael J Siedlik
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Victor D Varner
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
163
|
Stukel JM, Willits RK. Mechanotransduction of Neural Cells Through Cell-Substrate Interactions. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:173-82. [PMID: 26669274 DOI: 10.1089/ten.teb.2015.0380] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurons and neural stem cells are sensitive to their mechanical and topographical environment, and cell-substrate binding contributes to this sensitivity to activate signaling pathways for basic cell functions. Many transmembrane proteins transmit signals into and out of the cell, including integrins, growth factor receptors, G-protein-coupled receptors, cadherins, cell adhesion molecules, and ion channels. Specifically, integrins are one of the main transmembrane proteins that transmit force across the cell membrane between a cell and its extracellular matrix, making them critical in the study of cell-material interactions. This review focuses on mechanotransduction, defined as the conversion of force a cell generates through cell-substrate bonds to a chemical signal, of neural cells. The chemical signals relay information via pathways through the cellular cytoplasm to the nucleus, where signaling events can affect gene expression. Pathways and the cellular response initiated by substrate binding are explored to better understand their effect on neural cells mechanotransduction. As the results of mechanotransduction affect cell adhesion, cell shape, and differentiation, knowledge regarding neural mechanotransduction is critical for most regenerative strategies in tissue engineering, where novel environments are developed to improve conduit design for central and peripheral nervous system repair in vivo.
Collapse
Affiliation(s)
- Jessica M Stukel
- Department of Biomedical Engineering, The University of Akron , Akron, Ohio
| | | |
Collapse
|
164
|
Das A, Fischer RS, Pan D, Waterman CM. YAP Nuclear Localization in the Absence of Cell-Cell Contact Is Mediated by a Filamentous Actin-dependent, Myosin II- and Phospho-YAP-independent Pathway during Extracellular Matrix Mechanosensing. J Biol Chem 2016; 291:6096-110. [PMID: 26757814 DOI: 10.1074/jbc.m115.708313] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
Cell-cell contact inhibition and the mechanical environment of cells have both been shown to regulate YAP nuclear localization to modulate cell proliferation. Changes in cellular contractility by genetic, pharmacological, and matrix stiffness perturbations regulate YAP nuclear localization. However, because contractility and F-actin organization are interconnected cytoskeletal properties, it remains unclear which of these distinctly regulates YAP localization. Here we show that in the absence of cell-cell contact, actomyosin contractility suppresses YAP phosphorylation at Ser(112), however, neither loss of contractility nor increase in YAP phosphorylation is sufficient for its nuclear exclusion. We find that actin cytoskeletal integrity is essential for YAP nuclear localization, and can override phosphoregulation or contractility-mediated regulation of YAP nuclear localization. This actin-mediated regulation is conserved during mechanotransduction, as substrate compliance increased YAP phosphorylation and reduced cytoskeletal integrity leading to nuclear exclusion of both YAP and Ser(P)(112)-YAP. These data provide evidence for two actin-mediated pathways for YAP regulation; one in which actomyosin contractility regulates YAP phosphorylation, and a second that involves cytoskeletal integrity-mediated regulation of YAP nuclear localization independent of contractility. We suggest that in non-contact inhibited cells, this latter mechanism may be important in low stiffness regimes, such as may be encountered in physiological environments.
Collapse
Affiliation(s)
- Arupratan Das
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and the Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert S Fischer
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Duojia Pan
- the Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Clare M Waterman
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
165
|
Gao Y, Zhou B, Wu X, Gao X, Zeng X, Xie J, Wang C, Ye Z, Wan J, Wen W. Three Dimensional and Homogenous Single Cell Cyclic Stretch within a Magnetic Micropillar Array (mMPA) for a Cell Proliferation Study. ACS Biomater Sci Eng 2016; 2:65-72. [PMID: 33418644 DOI: 10.1021/acsbiomaterials.5b00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The physical properties of the extracellular matrix (ECM) are a key aspect of the cell microenvironment. A biological system is a highly dynamic organization. In our study, we designed and prepared a large area of magnetic PDMS elastomer micropillar array (mMPA) with robust and tunable movement for cell mechanics study. The rotational movement frequency of the micropillars could be precisely controlled by a home-built magnetic actuation apparatus. Cells cultured in the mMPA could be suspended in between two micropillars in a single level and exhibited a 3D structure. With the rotational movement of the micropillar, a homogeneous stretchable force could be applied to a single cell along it long axis with various frequencies. We exclusively studied the influence of dynamic properties of the micropillar movement on cell behaviors. We found that, by fixing the amplitude of the stretchable force, the frequency-based properties of the cell microenvironment could significantly change cell functions. The cell behaviors are dependent on the micropillar movement frequency and a transition from proliferation to apoptosis/death exhibited with the increment of the force application frequency.
Collapse
Affiliation(s)
- Yibo Gao
- Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bingpu Zhou
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoxiao Wu
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xinghua Gao
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiping Zeng
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiao Xie
- Soft Matter and Interdisciplinary Research Institute, College of Physics, Chongqing University, Chongqing, China
| | - Cong Wang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ziran Ye
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Wan
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Weijia Wen
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
166
|
Yan Y, Song L, Tsai AC, Ma T, Li Y. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor. Methods Mol Biol 2016; 1502:119-128. [PMID: 26837215 DOI: 10.1007/7651_2015_310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Yuanwei Yan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA.
| |
Collapse
|
167
|
Sart S, Yan Y, Li Y, Lochner E, Zeng C, Ma T, Li Y. Crosslinking of extracellular matrix scaffolds derived from pluripotent stem cell aggregates modulates neural differentiation. Acta Biomater 2016; 30:222-232. [PMID: 26577988 DOI: 10.1016/j.actbio.2015.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/12/2015] [Accepted: 11/10/2015] [Indexed: 01/20/2023]
Abstract
At various developmental stages, pluripotent stem cells (PSCs) and their progeny secrete a large amount of extracellular matrices (ECMs) which could interact with regulatory growth factors to modulate stem cell lineage commitment. ECMs derived from PSC can be used as unique scaffolds that provide broad signaling capacities to mediate cellular differentiation. However, the rapid degradation of ECMs can impact their applications as the scaffolds for in vitro cell expansion and in vivo transplantation. To address this issue, this study investigated the effects of crosslinking on the ECMs derived from embryonic stem cells (ESCs) and the regulatory capacity of the crosslinked ECMs on the proliferation and differentiation of reseeded ESC-derived neural progenitor cells (NPCs). To create different biological cues, undifferentiated aggregates, spontaneous embryoid bodies, and ESC-derived NPC aggregates were decellularized. The derived ECMs were crosslinked using genipin or glutaraldehyde to enhance the scaffold stability. ESC-derived NPC aggregates were reseeded on different ECM scaffolds and differential cellular compositions of neural progenitors, neurons, and glial cells were observed. The results indicate that ESC-derived ECM scaffolds affect neural differentiation through intrinsic biological cues and biophysical properties. These scaffolds have potential for in vitro cell culture and in vivo tissue regeneration study. STATEMENT OF SIGNIFICANCE Dynamic interactions of acellular extracellular matrices and stem cells are critical for lineage-specific commitment and tissue regeneration. Understanding the synergistic effects of biochemical, biological, and biophysical properties of acellular matrices would facilitate scaffold design and the functional regulation of stem cells. The present study assessed the influence of crosslinked embryonic stem cell-derived extracellular matrix on neural differentiation and revealed the synergistic interactions of various matrix properties. While embryonic stem cell-derived matrices have been assessed as tissue engineering scaffolds, the impact of crosslinking on the embryonic stem cell-derived matrices to modulate neural differentiation has not been studied. The results from this study provide novel knowledge on the interface of embryonic stem cell-derived extracellular matrix and neural aggregates. The findings reported in this manuscript are significant for stem cell differentiation toward the applications in stem cell-based drug screening, disease modeling, and cell therapies.
Collapse
|
168
|
Kim K, Ossipova O, Sokol SY. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells 2015; 33:674-85. [PMID: 25346532 DOI: 10.1002/stem.1877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/13/2014] [Accepted: 09/13/2014] [Indexed: 01/14/2023]
Abstract
Neural crest is a population of multipotent progenitor cells that form at the border of neural and non-neural ectoderm in vertebrate embryos, and undergo epithelial-mesenchymal transition and migration. According to the traditional view, the neural crest is specified in early embryos by signaling molecules including BMP, FGF, and Wnt proteins. Here, we identify a novel signaling pathway leading to neural crest specification, which involves Rho-associated kinase (ROCK) and its downstream target nonmuscle Myosin II. We show that ROCK inhibitors promote differentiation of human embryonic stem cells (hESCs) into neural crest-like progenitors (NCPs) that are characterized by specific molecular markers and ability to differentiate into multiple cell types, including neurons, chondrocytes, osteocytes, and smooth muscle cells. Moreover, inhibition of Myosin II was sufficient for generating NCPs at high efficiency. Whereas Myosin II has been previously implicated in the self-renewal and survival of hESCs, we demonstrate its role in neural crest development during ESC differentiation. Inhibition of this pathway in Xenopus embryos expanded neural crest in vivo, further indicating that neural crest specification is controlled by ROCK-dependent Myosin II activity. We propose that changes in cell morphology in response to ROCK and Myosin II inhibition initiate mechanical signaling leading to neural crest fates.
Collapse
Affiliation(s)
- Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
169
|
Newell-Litwa KA, Horwitz R, Lamers ML. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 2015; 8:1495-515. [PMID: 26542704 PMCID: PMC4728321 DOI: 10.1242/dmm.022103] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The actin motor protein non-muscle myosin II (NMII) acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.
Collapse
Affiliation(s)
- Karen A Newell-Litwa
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Marcelo L Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-010, Brazil
| |
Collapse
|
170
|
Kwak M, Han L, Chen JJ, Fan R. Interfacing Inorganic Nanowire Arrays and Living Cells for Cellular Function Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5600-10. [PMID: 26349637 PMCID: PMC4676807 DOI: 10.1002/smll.201501236] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/26/2015] [Indexed: 04/14/2023]
Abstract
Inorganic nanowires are among the most attractive functional materials, which have emerged in the past two decades. They have demonstrated applications in information technology and energy conversion, but their utility in biological or biomedical research remains relatively under-explored. Although nanowire-based sensors have been frequently reported for biomolecular detection, interfacing nanowire arrays and living mammalian cells for the direct analysis of cellular functions is a very recent endeavor. Cell-penetrating nanowires enabled effective delivery of biomolecules, electrical and optical stimulation and recording of intracellular signals over a long period of time. Non-penetrating, high-density nanowire arrays display rich interactions between the nanostructured substrate and the micro/nanoscale features of cell surfaces. Such interactions enable efficient capture of rare cells including circulating tumor cells and trafficking leukocytes from complex biospecimens. It also serves as a platform for probing cell traction force and neuronal guidance. The most recent advances in the field that exploits nanowire arrays (both penetrating and non-penetrating) to perform rapid analysis of cellular functions potentially for disease diagnosis and monitoring are reviewed.
Collapse
Affiliation(s)
- Minsuk Kwak
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Lin Han
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jonathan J. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA. Yale Cancer Center, New Haven, CT 06520, USA
| |
Collapse
|
171
|
Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 2015; 343:42-53. [PMID: 26524510 DOI: 10.1016/j.yexcr.2015.10.034] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022]
Abstract
Signalling from the extracellular matrix (ECM) is a fundamental cellular input that sustains proliferation, opposes cell death and regulates differentiation. Through integrins, cells perceive both the chemical composition and physical properties of the ECM. In particular, cell behaviour is profoundly influenced by the mechanical elasticity or stiffness of the ECM, which regulates the ability of cells to develop forces through their contractile actomyosin cytoskeleton and to mature focal adhesions. This mechanosensing ability affects fundamental cellular functions, such that alterations of ECM stiffness is nowadays considered not a simple consequence of pathology, but a causative input driving aberrant cell behaviours. We here discuss recent advances on how mechanical signals intersect nuclear transcription and in particular the activity of YAP/TAZ transcriptional coactivators, known downstream transducers of the Hippo pathway and important effectors of ECM mechanical cues.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, via Bassi 58/B, 35131 Padua, Italy.
| |
Collapse
|
172
|
Zhang K, Qi HX, Hu ZM, Chang YN, Shi ZM, Han XH, Han YW, Zhang RX, Zhang Z, Chen T, Hong W. YAP and TAZ Take Center Stage in Cancer. Biochemistry 2015; 54:6555-66. [PMID: 26465056 DOI: 10.1021/acs.biochem.5b01014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified and named through screening for mutations in Drosophila, and the core components of the Hippo pathway are highly conserved in mammals. In the Hippo pathway, MST1/2 and LATS1/2 regulate downstream transcription coactivators YAP and TAZ, which mainly interact with TEAD family transcription factors to promote tissue proliferation, self-renewal of normal and cancer stem cells, migration, and carcinogenesis. The Hippo pathway was initially thought to be quite straightforward; however, recent studies have revealed that YAP/TAZ is an integral part and a nexus of a network composed of multiple signaling pathways. Therefore, in this review, we will summarize the latest findings on events upstream and downstream of YAP/TAZ and the ways of regulation of YAP/TAZ. In addition, we also focus on the crosstalk between the Hippo pathway and other tumor-related pathways and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Hai-Xia Qi
- Department of Emergency Medicine, Tianjin Medical University General Hospital , 300052 Tianjin, China
| | - Zhi-Mei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ya-Nan Chang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Zhe-Min Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Xiao-Hui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ya-Wei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Rui-Xue Zhang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , 300020 Tianjin, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| |
Collapse
|
173
|
Chowdhury F, Li ITS, Leslie BJ, Doğanay S, Singh R, Wang X, Seong J, Lee SH, Park S, Wang N, Ha T. Single molecular force across single integrins dictates cell spreading. Integr Biol (Camb) 2015; 7:1265-1271. [PMID: 26143887 PMCID: PMC4593737 DOI: 10.1039/c5ib00080g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells' ability to sense and interpret mechanical signals from the extracellular milieu modulates the degree of cell spreading. Yet how cells detect such signals and activate downstream signaling at the molecular level remain elusive. Herein, we utilize tension gauge tether (TGT) platform to investigate the underlying molecular mechanism of cell spreading. Our data from both differentiated cells of cancerous and non-cancerous origin show that for the same stiff underlying glass substrates and for same ligand density it is the molecular forces across single integrins that ultimately determine cell spreading responses. Furthermore, by decoupling molecular stiffness and molecular tension we demonstrate that molecular stiffness has little influence on cell spreading. Our data provide strong evidence that links molecular forces at the cell-substrate interface to the degree of cell spreading.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Isaac T. S. Li
- Department of Physics and Center for Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Benjamin J. Leslie
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- Howard Hughes Medical Institute, Urbana, IL 61801, USA
| | - Sultan Doğanay
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Physics and Center for Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Rishi Singh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Xuefeng Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Physics and Center for Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Jihye Seong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Sang-Hak Lee
- Department of Physics and Center for Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Seongjin Park
- Department of Physics and Center for Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Ning Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 USA
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Taekjip Ha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Physics and Center for Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- Howard Hughes Medical Institute, Urbana, IL 61801, USA
| |
Collapse
|
174
|
Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential. Sci Rep 2015; 5:14218. [PMID: 26391588 PMCID: PMC4585749 DOI: 10.1038/srep14218] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/31/2015] [Indexed: 11/21/2022] Open
Abstract
In order to understand the mechanisms that guide cell fate decisions during early human development, we closely examined the differentiation process in adherent colonies of human embryonic stem cells (hESCs). Live imaging of the differentiation process reveals that cells on the outer edge of the undifferentiated colony begin to differentiate first and remain on the perimeter of the colony to eventually form a band of differentiation. Strikingly, this band is of constant width in all colonies, independent of their size. Cells at the edge of undifferentiated colonies show distinct actin organization, greater myosin activity and stronger traction forces compared to cells in the interior of the colony. Increasing the number of cells at the edge of colonies by plating small colonies can increase differentiation efficiency. Our results suggest that human developmental decisions are influenced by cellular environments and can be dictated by colony geometry of hESCs.
Collapse
|
175
|
Zhang Y, Gordon A, Qian W, Chen W. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Adv Healthc Mater 2015. [PMID: 26222885 DOI: 10.1002/adhm.201500351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Andrew Gordon
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| |
Collapse
|
176
|
Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int 2015; 2015:167025. [PMID: 26351461 PMCID: PMC4553184 DOI: 10.1155/2015/167025] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/07/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems.
Collapse
Affiliation(s)
| | - Egor Osidak
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Gamaleya Research Institute of Epidemiology and Microbiology Federal State Budgetary Institution, Ministry of Health of the Russian Federation, Gamalei 18, Moscow 123098, Russia
| | - Sergey Domogatsky
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Russian Cardiology Research and Production Center Federal State Budgetary Institution, Ministry of Health of the Russian Federation, 3 Cherepkovskaya 15, Moscow 21552, Russia
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
177
|
Ireland RG, Simmons CA. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications. Stem Cells 2015; 33:3187-96. [DOI: 10.1002/stem.2105] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ronald G. Ireland
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
| | - Craig A. Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
- Department of Mechanical and Industrial Engineering; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
178
|
Bonetti S, Pistone A, Brucale M, Karges S, Favaretto L, Zambianchi M, Posati T, Sagnella A, Caprini M, Toffanin S, Zamboni R, Camaioni N, Muccini M, Melucci M, Benfenati V. A lysinated thiophene-based semiconductor as a multifunctional neural bioorganic interface. Adv Healthc Mater 2015; 4:1190-202. [PMID: 25721438 DOI: 10.1002/adhm.201400786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Indexed: 11/08/2022]
Abstract
Lysinated molecular organic semiconductors are introduced as valuable multifunctional platforms for neural cells growth and interfacing. Cast films of quaterthiophene (T4) semiconductor covalently modified with lysine-end moieties (T4Lys) are fabricated and their stability, morphology, optical/electrical, and biocompatibility properties are characterized. T4Lys films exhibit fluorescence and electronic transport as generally observed for unsubstituted oligothiophenes combined to humidity-activated ionic conduction promoted by the charged lysine-end moieties. The Lys insertion in T4 enables adhesion of primary culture of rat dorsal root ganglion (DRG), which is not achievable by plating cells on T4. Notably, on T4Lys, the number on adhering neurons/area is higher and displays a twofold longer neurite length than neurons plated on glass coated with poly-l-lysine. Finally, by whole-cell patch-clamp, it is shown that the biofunctionality of neurons cultured on T4Lys is preserved. The present study introduces an innovative concept for organic material neural interface that combines optical and iono-electronic functionalities with improved biocompatibility and neuron affinity promoted by Lys linkage and the softness of organic semiconductors. Lysinated organic semiconductors could set the scene for the fabrication of simplified bioorganic devices geometry for cells bidirectional communication or optoelectronic control of neural cells biofunctionality.
Collapse
Affiliation(s)
- Simone Bonetti
- Consiglio Nazionale delle Ricerche (CNR); Istituto per lo Studio dei Materiali Nanostrutturati (ISMN); via Gobetti, 101 40129 Bologna Italy
| | - Assunta Pistone
- Consiglio Nazionale delle Ricerche (CNR); Istituto per lo Studio dei Materiali Nanostrutturati (ISMN); via Gobetti, 101 40129 Bologna Italy
- Consiglio Nazionale delle Ricerche (CNR); Istituto per la Sintesi Organica e la Fotoreattività (ISOF); via Gobetti, 101 40129 Bologna Italy
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche (CNR); Istituto per lo studio dei Materiali Nanostrutturati (ISMN); Area della Ricerca Roma1; Via Salaria km 29.3 00015 Monterotondo, Roma Italy
| | - Saskia Karges
- Consiglio Nazionale delle Ricerche (CNR); Istituto per lo Studio dei Materiali Nanostrutturati (ISMN); via Gobetti, 101 40129 Bologna Italy
| | - Laura Favaretto
- Consiglio Nazionale delle Ricerche (CNR); Istituto per la Sintesi Organica e la Fotoreattività (ISOF); via Gobetti, 101 40129 Bologna Italy
| | - Massimo Zambianchi
- Consiglio Nazionale delle Ricerche (CNR); Istituto per la Sintesi Organica e la Fotoreattività (ISOF); via Gobetti, 101 40129 Bologna Italy
| | - Tamara Posati
- Laboratory MIST E-R; Via Gobetti 101 40129 Bologna Italy
| | - Anna Sagnella
- Consiglio Nazionale delle Ricerche (CNR); Istituto per la Sintesi Organica e la Fotoreattività (ISOF); via Gobetti, 101 40129 Bologna Italy
- Laboratory MIST E-R; Via Gobetti 101 40129 Bologna Italy
| | - Marco Caprini
- Consiglio Nazionale delle Ricerche (CNR); Istituto per lo Studio dei Materiali Nanostrutturati (ISMN); via Gobetti, 101 40129 Bologna Italy
- Department of Pharmacy and BioTechnology; University of Bologna; Via S. Donato 19/2 40127 Bologna Italy
| | - Stefano Toffanin
- Consiglio Nazionale delle Ricerche (CNR); Istituto per lo Studio dei Materiali Nanostrutturati (ISMN); via Gobetti, 101 40129 Bologna Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche (CNR); Istituto per la Sintesi Organica e la Fotoreattività (ISOF); via Gobetti, 101 40129 Bologna Italy
| | - Nadia Camaioni
- Consiglio Nazionale delle Ricerche (CNR); Istituto per la Sintesi Organica e la Fotoreattività (ISOF); via Gobetti, 101 40129 Bologna Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche (CNR); Istituto per lo Studio dei Materiali Nanostrutturati (ISMN); via Gobetti, 101 40129 Bologna Italy
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche (CNR); Istituto per la Sintesi Organica e la Fotoreattività (ISOF); via Gobetti, 101 40129 Bologna Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche (CNR); Istituto per la Sintesi Organica e la Fotoreattività (ISOF); via Gobetti, 101 40129 Bologna Italy
| |
Collapse
|
179
|
Silva MM, Rodrigues AF, Correia C, Sousa MFQ, Brito C, Coroadinha AS, Serra M, Alves PM. Robust Expansion of Human Pluripotent Stem Cells: Integration of Bioprocess Design With Transcriptomic and Metabolomic Characterization. Stem Cells Transl Med 2015; 4:731-42. [PMID: 25979863 DOI: 10.5966/sctm.2014-0270] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED : Human embryonic stem cells (hESCs) have an enormous potential as a source for cell replacement therapies, tissue engineering, and in vitro toxicology applications. The lack of standardized and robust bioprocesses for hESC expansion has hindered the application of hESCs and their derivatives in clinical settings. We developed a robust and well-characterized bioprocess for hESC expansion under fully defined conditions and explored the potential of transcriptomic and metabolomic tools for a more comprehensive assessment of culture system impact on cell proliferation, metabolism, and phenotype. Two different hESC lines (feeder-dependent and feeder-free lines) were efficiently expanded on xeno-free microcarriers in stirred culture systems. Both hESC lines maintained the expression of stemness markers such as Oct-4, Nanog, SSEA-4, and TRA1-60 and the ability to spontaneously differentiate into the three germ layers. Whole-genome transcriptome profiling revealed a phenotypic convergence between both hESC lines along the expansion process in stirred-tank bioreactor cultures, providing strong evidence of the robustness of the cultivation process to homogenize cellular phenotype. Under low-oxygen tension, results showed metabolic rearrangement with upregulation of the glycolytic machinery favoring an anaerobic glycolysis Warburg-effect-like phenotype, with no evidence of hypoxic stress response, in contrast to two-dimensional culture. Overall, we report a standardized expansion bioprocess that can guarantee maximal product quality. Furthermore, the "omics" tools used provided relevant findings on the physiological and metabolic changes during hESC expansion in environmentally controlled stirred-tank bioreactors, which can contribute to improved scale-up production systems. SIGNIFICANCE The clinical application of human pluripotent stem cells (hPSCs) has been hindered by the lack of robust protocols able to sustain production of high cell numbers, as required for regenerative medicine. In this study, a strategy was developed for the expansion of human embryonic stem cells in well-defined culture conditions using microcarrier technology and stirred-tank bioreactors. The use of transcriptomic and metabolic tools allowed detailed characterization of the cell-based product and showed a phenotypic convergence between both hESC lines along the expansion process. This study provided valuable insights into the metabolic hallmarks of hPSC expansion and new information to guide bioprocess design and media optimization for the production of cells with higher quantity and improved quality, which are requisite for translation to the clinic.
Collapse
Affiliation(s)
- Marta M Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana F Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudia Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos F Q Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
180
|
Ankam S, Lim CK, Yim EK. Actomyosin contractility plays a role in MAP2 expression during nanotopography-directed neuronal differentiation of human embryonic stem cells. Biomaterials 2015; 47:20-8. [DOI: 10.1016/j.biomaterials.2015.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/31/2014] [Accepted: 01/12/2015] [Indexed: 01/10/2023]
|
181
|
Farouz Y, Chen Y, Terzic A, Menasché P. Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation. Stem Cells 2015; 33:1021-35. [DOI: 10.1002/stem.1929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Yohan Farouz
- Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris; CNRS UMR; Paris France
- Sorbonne Paris Cité; Paris Descartes University; Paris France
- INSERM U970; Paris France
| | - Yong Chen
- Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris; CNRS UMR; Paris France
| | | | - Philippe Menasché
- Sorbonne Paris Cité; Paris Descartes University; Paris France
- INSERM U970; Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Department of Cardiovascular Surgery; Paris France
| |
Collapse
|
182
|
Narimatsu M, Samavarchi-Tehrani P, Varelas X, Wrana J. Distinct Polarity Cues Direct Taz/Yap and TGFβ Receptor Localization to Differentially Control TGFβ-Induced Smad Signaling. Dev Cell 2015; 32:652-6. [DOI: 10.1016/j.devcel.2015.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
183
|
Marino A, Filippeschi C, Mattoli V, Mazzolai B, Ciofani G. Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. NANOSCALE 2015; 7:2841-50. [PMID: 25519056 DOI: 10.1039/c4nr06500j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Living systems such as cells and tissues are extremely sensitive to their surrounding physico-chemical microenvironment. In the field of regenerative medicine and tissue engineering, the maintenance of culture conditions suitable for the formation of proliferation niches, for the self-renewal maintenance of stem cells, or for the promotion of a particular differentiation fate is an important issue that has been addressed using different strategies. A number of investigations suggests that a particular cell behavior can be in vitro resembled by mimicking the corresponding in vivo conditions. In this context, several biomimetic environments have been designed in order to control cell phenotypes and functions. In this review, we will analyze the most recent examples of the control of the in vitro physical micro/nano-environment by exploiting an innovative technique of high resolution 3D photolithography, the two-photon polymerization (2pp). The biomedical applications of this versatile and disruptive computer assisted design/manufacturing technology are very wide, and range from the fabrication of biomimetic and nanostructured scaffolds for tissue engineering and regenerative medicine, to the microfabrication of biomedical devices, like ossicular replacement prosthesis and microneedles.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | | | | | | | | |
Collapse
|
184
|
On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials 2015; 52:26-43. [PMID: 25818411 DOI: 10.1016/j.biomaterials.2015.01.078] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/24/2014] [Accepted: 01/28/2015] [Indexed: 12/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) provide promising resources for regenerating tissues and organs and modeling development and diseases in vitro. To fulfill their promise, the fate, function, and organization of hPSCs need to be precisely regulated in a three-dimensional (3D) environment to mimic cellular structures and functions of native tissues and organs. In the past decade, innovations in 3D culture systems with functional biomaterials have enabled efficient and versatile control of hPSC fate at the cellular level. However, we are just at the beginning of bringing hPSC-based regeneration and development and disease modeling to the tissue and organ levels. In this review, we summarize existing bioengineered culture platforms for controlling hPSC fate and function by regulating inductive mechanical and biochemical cues coexisting in the synthetic cell microenvironment. We highlight recent excitements in developing 3D hPSC-based in vitro tissue and organ models with in vivo-like cellular structures, interactions, and functions. We further discuss an emerging multifaceted mechanotransductive signaling network--with transcriptional coactivators YAP and TAZ at the center stage--that regulate fates and behaviors of mammalian cells, including hPSCs. Future development of 3D biomaterial systems should incorporate dynamically modulated mechanical and chemical properties targeting specific intracellular signaling events leading to desirable hPSC fate patterning and functional tissue formation in 3D.
Collapse
|
185
|
Zhang Z, He Q, Deng W, Chen Q, Hu X, Gong A, Cao X, Yu J, Xu X. Nasal ectomesenchymal stem cells: multi-lineage differentiation and transformation effects on fibrin gels. Biomaterials 2015; 49:57-67. [PMID: 25725555 DOI: 10.1016/j.biomaterials.2015.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 11/16/2022]
Abstract
Ectomesenchymal stem cells (EMSCs) are novel adult stem cells derived from the cranial neural crest. However, their stemness and multi-lineage differentiation potential on three-dimensional fibrin gels has not yet been explored. The objective of this study was to investigate induced differentiation of EMSCs on fibrin gels and their remodeling effects on the scaffolds during the induced differentiation process. The results indicated that CD133(+)/nestin(+)/CD44(+) EMSCs were extensively distributed in the lamina propria of the nasal mucosa. The passaged cells could be induced to differentiate to a greater degree into neurons, Schwann cells and osteoblasts on three-dimensional fibrin gels than on two-dimensional glass slides. More importantly, the induced Schwann cells and osteoblasts exerted channelized and calcified remodeling effects, respectively, on the fibrin gels. Thus, these reshaped scaffolds have desirable biological properties, such as good cell adhesion, biocompatibility and guidance over the cell behavior, providing a tissue-committed niche for specific tissue generation.
Collapse
Affiliation(s)
- Zhijian Zhang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, PR China
| | - Qinghua He
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Wenwen Deng
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Qian Chen
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, PR China
| | - Xinyuan Hu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, PR China
| | - Aihua Gong
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, PR China
| | - Xia Cao
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Jiangnan Yu
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Ximing Xu
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China.
| |
Collapse
|
186
|
Rashidian J, Le Scolan E, Ji X, Zhu Q, Mulvihill MM, Nomura D, Luo K. Ski regulates Hippo and TAZ signaling to suppress breast cancer progression. Sci Signal 2015; 8:ra14. [PMID: 25670202 DOI: 10.1126/scisignal.2005735] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ski, the transforming protein of the avian Sloan-Kettering retrovirus, inhibits transforming growth factor-β (TGF-β)/Smad signaling and displays both pro-oncogenic and anti-oncogenic activities in human cancer. Inhibition of TGF-β signaling is likely responsible for the pro-oncogenic activity of Ski. We investigated the mechanism(s) underlying the tumor suppressor activity of Ski and found that Ski suppressed the activity of the Hippo signaling effectors TAZ and YAP to inhibit breast cancer progression. TAZ and YAP are transcriptional coactivators that can contribute to cancer by promoting proliferation, tumorigenesis, and cancer stem cell expansion. Hippo signaling activates the the Lats family of kinases, which phosphorylate TAZ and YAP, resulting in cytoplasmic retention and degradation and inhibition of their transcriptional activity. We showed that Ski interacted with multiple components of the Hippo pathway to facilitate activation of Lats2, resulting in increased phosphorylation and subsequent degradation of TAZ. Ski also promoted the degradation of a constitutively active TAZ mutant that is not phosphorylated by Lats, suggesting the existence of a Lats2-independent degradation pathway. Finally, we showed that Ski repressed the transcriptional activity of TAZ by binding to the TAZ partner TEAD and recruiting the transcriptional co-repressor NCoR1 to the TEAD-TAZ complex. Ski effectively reversed transformation and epithelial-to-mesenchyme transition in cultured breast cancer cells and metastasis in TAZ-expressing xenografted tumors. Thus, Ski inhibited the function of TAZ through multiple mechanisms in human cancer cells.
Collapse
Affiliation(s)
- Juliet Rashidian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erwan Le Scolan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaodan Ji
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qingwei Zhu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Melinda M Mulvihill
- Department of Nutritional Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel Nomura
- Department of Nutritional Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
187
|
Sun J, Zhang L, Wang J, Feng Q, Liu D, Yin Q, Xu D, Wei Y, Ding B, Shi X, Jiang X. Tunable Rigidity of (Polymeric Core)-(Lipid Shell) Nanoparticles for Regulated Cellular Uptake. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1402-7. [PMID: 0 DOI: 10.1002/adma.201404788] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/24/2014] [Indexed: 05/20/2023]
Affiliation(s)
- Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for NanoScience and Technology; Beijing 100190 P. R. China
| | - Lu Zhang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for NanoScience and Technology; Beijing 100190 P. R. China
| | - Jiuling Wang
- State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Qiang Feng
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for NanoScience and Technology; Beijing 100190 P. R. China
| | - Dingbin Liu
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for NanoScience and Technology; Beijing 100190 P. R. China
| | - Qifang Yin
- State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Dongyan Xu
- Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong; Shatin, N.T. Hong Kong SAR China
| | - Yujie Wei
- State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Baoquan Ding
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for NanoScience and Technology; Beijing 100190 P. R. China
| | - Xinghua Shi
- State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for NanoScience and Technology; Beijing 100190 P. R. China
| |
Collapse
|
188
|
Mao B, Gao Y, Bai Y, Yuan Z. Hippo signaling in stress response and homeostasis maintenance. Acta Biochim Biophys Sin (Shanghai) 2015; 47:2-9. [PMID: 25476206 DOI: 10.1093/abbs/gmu109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Co-ordination of cell proliferation, differentiation, and apoptosis maintains tissue development and homeostasis under normal or stress conditions. Recently, the highly conserved Hippo signaling pathway, discovered in Drosophila melanogaster and mammalian system, has been implicated as a key regulator of organ size control. Importantly, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to maintain homeostasis at the cellular and organic levels. The mutation or deregulation of the key components in the pathway will result in degenerative disorder, developmental defects, or tumorigenesis. The purpose of this review is to summarize the recent findings and discuss how Hippo pathway responds to cellular stress and regulates early development events, tissue homeostasis as well as tumorigenesis.
Collapse
Affiliation(s)
- Beibei Mao
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhao Gao
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujie Bai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zengqiang Yuan
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
189
|
Walters NJ, Gentleman E. Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomater 2015; 11:3-16. [PMID: 25266503 PMCID: PMC5833939 DOI: 10.1016/j.actbio.2014.09.038] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/22/2014] [Accepted: 09/22/2014] [Indexed: 12/26/2022]
Abstract
The role of soluble messengers in directing cellular behaviours has been recognized for decades. However, many cellular processes, including adhesion, migration and stem cell differentiation, are also governed by chemical and physical interactions with non-soluble components of the extracellular matrix (ECM). Among other effects, a cell's perception of nanoscale features such as substrate topography and ligand presentation, and its ability to deform the matrix via the generation of cytoskeletal tension play fundamental roles in these cellular processes. As a result, many biomaterials-based tissue engineering and regenerative medicine strategies aim to harness the cell's perception of substrate stiffness and nanoscale features to direct particular behaviours. However, since cell-ECM interactions vary considerably between two-dimensional (2-D) and three-dimensional (3-D) models, understanding their influence over normal and pathological cell responses in 3-D systems that better mimic the in vivo microenvironment is essential to translate such insights efficiently into medical therapies. This review summarizes the key findings in these areas and discusses how insights from 2-D biomaterials are being used to examine cellular behaviours in more complex 3-D hydrogel systems, in which not only matrix stiffness, but also degradability, plays an important role, and in which defining the nanoscale ligand presentation presents an additional challenge.
Collapse
Affiliation(s)
- Nick J Walters
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8LD, UK
| | - Eileen Gentleman
- Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
190
|
Kodaka M, Hata Y. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2015; 72:285-306. [PMID: 25266986 PMCID: PMC11113917 DOI: 10.1007/s00018-014-1742-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified as the signaling that controls organ size in Drosophila, with the core architecture conserved in mammals. In the mammalian Hippo pathway, mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) regulate transcriptional co-activators, Yes-associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ). The Hippo pathway was initially thought to be quite straightforward; however, the identification of additional components has revealed its inherent complexity. Regulation of YAP1 and TAZ is not always dependent on MST1/2 and LATS1/2. MST1/2 and LATS1/2 play various YAP1/TAZ-independent roles, while YAP1 and TAZ cross-talk with other signaling pathways. In this review we focus on YAP1 and TAZ and discuss their regulation, function, and the consequences of their dysregulation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| |
Collapse
|
191
|
Moraes C, Labuz JM, Shao Y, Fu J, Takayama S. Supersoft lithography: candy-based fabrication of soft silicone microstructures. LAB ON A CHIP 2015; 15:3760-5. [PMID: 26245893 PMCID: PMC4550510 DOI: 10.1039/c5lc00722d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 2B2, Canada
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC, MI 48109-2800, USA
| | - Joseph M. Labuz
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC, MI 48109-2800, USA
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC, MI 48109-2800, USA
- Macromolecular science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| |
Collapse
|
192
|
Chen W, Shao Y, Li X, Zhao G, Fu J. Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom. NANO TODAY 2014; 9:759-784. [PMID: 25883674 PMCID: PMC4394389 DOI: 10.1016/j.nantod.2014.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During embryogenesis and tissue maintenance and repair in an adult organism, a myriad of stem cells are regulated by their surrounding extracellular matrix (ECM) enriched with tissue/organ-specific nanoscale topographical cues to adopt different fates and functions. Attributed to their capability of self-renewal and differentiation into most types of somatic cells, stem cells also hold tremendous promise for regenerative medicine and drug screening. However, a major challenge remains as to achieve fate control of stem cells in vitro with high specificity and yield. Recent exciting advances in nanotechnology and materials science have enabled versatile, robust, and large-scale stem cell engineering in vitro through developments of synthetic nanotopographical surfaces mimicking topological features of stem cell niches. In addition to generating new insights for stem cell biology and embryonic development, this effort opens up unlimited opportunities for innovations in stem cell-based applications. This review is therefore to provide a summary of recent progress along this research direction, with perspectives focusing on emerging methods for generating nanotopographical surfaces and their applications in stem cell research. Furthermore, we provide a review of classical as well as emerging cellular mechano-sensing and -transduction mechanisms underlying stem cell nanotopography sensitivity and also give some hypotheses in regard to how a multitude of signaling events in cellular mechanotransduction may converge and be integrated into core pathways controlling stem cell fate in response to extracellular nanotopography.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiang Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
193
|
Gaspar P, Tapon N. Sensing the local environment: actin architecture and Hippo signalling. Curr Opin Cell Biol 2014; 31:74-83. [PMID: 25259681 DOI: 10.1016/j.ceb.2014.09.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 12/26/2022]
Abstract
The Hippo network is a major conserved growth suppressor pathway that participates in organ size control during development and prevents tumour formation during adult homeostasis. Recent evidence has implicated the actin cytoskeleton as a link between tissue architecture and Hippo signalling. In this review, we will consider the evidence and models proposed for the regulation of Hippo signalling by actin dynamics and structure. We cover aspects of signalling regulation by mechanotransduction, cytoskeletal tethering and the spatial reorganization of signalling components. We also examine the physiological and pathological contexts in which these mechanisms are relevant.
Collapse
Affiliation(s)
- Pedro Gaspar
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Apartado 14, 2780-156 Oeiras, Portugal
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
194
|
Nam KH, Jamilpour N, Mfoumou E, Wang FY, Zhang DD, Wong PK. Probing mechanoregulation of neuronal differentiation by plasma lithography patterned elastomeric substrates. Sci Rep 2014; 4:6965. [PMID: 25376886 PMCID: PMC4223667 DOI: 10.1038/srep06965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/22/2014] [Indexed: 01/14/2023] Open
Abstract
Cells sense and interpret mechanical cues, including cell-cell and cell-substrate interactions, in the microenvironment to collectively regulate various physiological functions. Understanding the influences of these mechanical factors on cell behavior is critical for fundamental cell biology and for the development of novel strategies in regenerative medicine. Here, we demonstrate plasma lithography patterning on elastomeric substrates for elucidating the influences of mechanical cues on neuronal differentiation and neuritogenesis. The neuroblastoma cells form neuronal spheres on plasma-treated regions, which geometrically confine the cells over two weeks. The elastic modulus of the elastomer is controlled simultaneously by the crosslinker concentration. The cell-substrate mechanical interactions are also investigated by controlling the size of neuronal spheres with different cell seeding densities. These physical cues are shown to modulate with the formation of focal adhesions, neurite outgrowth, and the morphology of neuroblastoma. By systematic adjustment of these cues, along with computational biomechanical analysis, we demonstrate the interrelated mechanoregulatory effects of substrate elasticity and cell size. Taken together, our results reveal that the neuronal differentiation and neuritogenesis of neuroblastoma cells are collectively regulated via the cell-substrate mechanical interactions.
Collapse
Affiliation(s)
- Ki-Hwan Nam
- 1] Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85721, USA [2] Centre for Analytical Instrumentation Development, The Korea Basic Science Institute, Deajeon305-806, Korea
| | - Nima Jamilpour
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Etienne Mfoumou
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Fei-Yue Wang
- The Key Laboratory for Complex Systems and Intelligence Science, The Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona. 85721, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
195
|
Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Natl Acad Sci U S A 2014; 111:13805-10. [PMID: 25201954 DOI: 10.1073/pnas.1415330111] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Physical stimuli can act in either a synergistic or antagonistic manner to regulate cell fate decisions, but it is less clear whether insoluble signals alone can direct human pluripotent stem (hPS) cell differentiation into specialized cell types. We previously reported that stiff materials promote nuclear localization of the Yes-associated protein (YAP) transcriptional coactivator and support long-term self-renewal of hPS cells. Here, we show that even in the presence of soluble pluripotency factors, compliant substrata inhibit the nuclear localization of YAP and promote highly efficient differentiation of hPS cells into postmitotic neurons. In the absence of neurogenic factors, the effective substrata produce neurons rapidly (2 wk) and more efficiently (>75%) than conventional differentiation methods. The neurons derived from substrate induction express mature markers and possess action potentials. The hPS differentiation observed on compliant surfaces could be recapitulated on stiff surfaces by adding small-molecule inhibitors of F-actin polymerization or by depleting YAP. These studies reveal that the matrix alone can mediate differentiation of hPS cells into a mature cell type, independent of soluble inductive factors. That mechanical cues can override soluble signals suggests that their contributions to early tissue development and lineage commitment are profound.
Collapse
|
196
|
Yang K, Jung H, Lee HR, Lee JS, Kim SR, Song KY, Cheong E, Bang J, Im SG, Cho SW. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS NANO 2014; 8:7809-7822. [PMID: 25050736 DOI: 10.1021/nn501182f] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Various biophysical and biochemical factors are important for determining the fate of neural stem cells (NSCs). Among biophysical signals, topographical stimulation by micro/nanopatterns has been applied to control NSC differentiation. In this study, we developed a hierarchically patterned substrate (HPS) platform that can synergistically enhance the differentiation of human NSCs (hNSCs) by simultaneously providing microscale and nanoscale spatial controls to facilitate the alignment of the cytoskeleton and the formation of focal adhesions. The multiscale HPS was fabricated by combining microgroove patterns (groove size: 1.5 μm), prepared by a conventional photolithographic process, and nanopore patterns (pore diameter: 10 nm), prepared from cylinder-forming block copolymer thin films. The hNSCs grown on the HPS exhibited not only a highly aligned, elongated morphology, but also a greatly enhanced differentiation into neuronal and astrocyte lineages, compared to hNSCs on a flat substrate (FS) or single-type patterned substrates [microgroove patterned substrate (MPS) and nanopore patterned substrate (NPS)]. Interestingly, the application of the HPS directed hNSC differentiation toward neurons rather than astrocytes. The expression of focal adhesion proteins in hNSCs was also significantly increased on the HPS compared to the FS, MPS, and NPS, likely a result of the presence of more focal contact points provided by nanopore structures. Inhibition of both β1 integrin-mediated binding and the intracellular Rho-associated protein kinase pathway of hNSCs eliminated the beneficial effects of the HPS on focal adhesion formation and actin filament alignment, which subsequently reduced hNSC differentiation. More importantly, hNSCs on the HPS differentiated into functional neurons exhibiting sodium currents and action potentials. The multiscale, hierarchically patterned topography would be useful for the design of functional biomaterial scaffolds to potentiate NSC therapeutic efficacy.
Collapse
|
197
|
Sun Y, Fu J. Harnessing mechanobiology of human pluripotent stem cells for regenerative medicine. ACS Chem Neurosci 2014; 5:621-3. [PMID: 24898476 DOI: 10.1021/cn5001155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent advances in human pluripotent stem cells (hPSCs) open new doors for therapeutics of motor neuron (MN)-associated neurodegenerative diseases. However, the MN differentiation process is not yet completely understood. In this Viewpoint, we stress the concept of designing synthetic cell culture surfaces with precisely controlled mechanical properties (such as rigidity) to improve the efficiency of MN differentiation from hPSCs. Emerging evidence strongly supports the potent role of mechanobiology in controlling stem cell fate. Leveraging the intrinsic mechanosensitive properties of hPSCs in conjunction with a synthetic elastomeric micropost array system, we have recently demonstrated significantly improved MN differentiation from hPSCs. Mechanotransduction mechanisms of hPSCs are an unexplored territory and likely involve coordination and cross-regulations of multiple targets and pathways including cell surface receptors, signaling transduction molecules, and nuclear proteins. We envision that research in hPSCs for MN degenerative diseases will benefit from accumulating knowledge of mechanobiology of hPSCs.
Collapse
Affiliation(s)
- Yubing Sun
- Department of Mechanical Engineering and ‡Department
of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianping Fu
- Department of Mechanical Engineering and ‡Department
of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
198
|
Motor Neuron Differentiation from Pluripotent Stem Cells and Other Intermediate Proliferative Precursors that can be Discriminated by Lineage Specific Reporters. Stem Cell Rev Rep 2014; 11:194-204. [DOI: 10.1007/s12015-014-9541-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
199
|
O'Connor JW, Gomez EW. Biomechanics of TGFβ-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clin Transl Med 2014; 3:23. [PMID: 25097726 PMCID: PMC4114144 DOI: 10.1186/2001-1326-3-23] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/02/2014] [Indexed: 12/18/2022] Open
Abstract
Fibrosis, a disease that results in loss of organ function, contributes to a significant number of deaths worldwide and sustained fibrotic activation has been suggested to increase the risk of developing cancer in a variety of tissues. Fibrogenesis and tumor progression are regulated in part through the activation and activity of myofibroblasts. Increasing evidence links myofibroblasts found within fibrotic lesions and the tumor microenvironment to a process termed epithelial-mesenchymal transition (EMT), a phenotypic change in which epithelial cells acquire mesenchymal characteristics. EMT can be stimulated by soluble signals, including transforming growth factor (TGF)-β, and recent studies have identified a role for mechanical cues in directing EMT. In this review, we describe the role that EMT plays in fibrogenesis and in the progression of cancer, with particular emphasis placed on biophysical signaling mechanisms that control the EMT program. We further describe specific TGFβ-induced intracellular signaling cascades that are affected by cell- and tissue-level mechanics. Finally, we highlight the implications of mechanical induction of EMT on the development of treatments and targeted intervention strategies for fibrosis and cancer.
Collapse
Affiliation(s)
- Joseph W O'Connor
- Department of Chemical Engineering, The Pennsylvania State University, 204 Fenske Laboratory, 16802 University Park, PA, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, 204 Fenske Laboratory, 16802 University Park, PA, USA ; Department of Biomedical Engineering, The Pennsylvania State University, 16802 University Park, PA, USA
| |
Collapse
|
200
|
Janson IA, Putnam AJ. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J Biomed Mater Res A 2014; 103:1246-58. [PMID: 24910444 DOI: 10.1002/jbm.a.35254] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 12/15/2022]
Abstract
Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cues can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells' responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors. We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design.
Collapse
Affiliation(s)
- Isaac A Janson
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| | | |
Collapse
|