151
|
Bonilauri A, Sangiuliano Intra F, Pugnetti L, Baselli G, Baglio F. A Systematic Review of Cerebral Functional Near-Infrared Spectroscopy in Chronic Neurological Diseases-Actual Applications and Future Perspectives. Diagnostics (Basel) 2020; 10:E581. [PMID: 32806516 PMCID: PMC7459924 DOI: 10.3390/diagnostics10080581] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The management of people affected by age-related neurological disorders requires the adoption of targeted and cost-effective interventions to cope with chronicity. Therapy adaptation and rehabilitation represent major targets requiring long-term follow-up of neurodegeneration or, conversely, the promotion of neuroplasticity mechanisms. However, affordable and reliable neurophysiological correlates of cerebral activity to be used throughout treatment stages are often lacking. The aim of this systematic review is to highlight actual applications of functional Near-Infrared Spectroscopy (fNIRS) as a versatile optical neuroimaging technology for investigating cortical hemodynamic activity in the most common chronic neurological conditions. METHODS We reviewed studies investigating fNIRS applications in Parkinson's Disease (PD), Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) as those focusing on motor and cognitive impairment in ageing and Multiple Sclerosis (MS) as the most common chronic neurological disease in young adults. The literature search was conducted on NCBI PubMed and Web of Science databases by PRISMA guidelines. RESULTS We identified a total of 63 peer-reviewed articles. The AD spectrum is the most investigated pathology with 40 articles ranging from the traditional monitoring of tissue oxygenation to the analysis of functional resting-state conditions or cognitive functions by means of memory and verbal fluency tasks. Conversely, applications in PD (12 articles) and MS (11 articles) are mainly focused on the characterization of motor functions and their association with dual-task conditions. The most investigated cortical area is the prefrontal cortex, since reported to play an important role in age-related compensatory mechanism and neurofunctional changes associated to these chronic neurological conditions. Interestingly, only 9 articles applied a longitudinal approach. CONCLUSION The results indicate that fNIRS is mainly employed for the cross-sectional characterization of the clinical phenotypes of these pathologies, whereas data on its utility for longitudinal monitoring as surrogate biomarkers of disease progression and rehabilitation effects are promising but still lacking.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
- Faculty of Education, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luigi Pugnetti
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| |
Collapse
|
152
|
Jiang J, Costanzo Mata AD, Lindner S, Zhang C, Charbon E, Wolf M, Kalyanov A. Image reconstruction for novel time domain near infrared optical tomography: towards clinical applications. BIOMEDICAL OPTICS EXPRESS 2020; 11:4723-4734. [PMID: 32923074 PMCID: PMC7449738 DOI: 10.1364/boe.398885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 05/04/2023]
Abstract
Near infrared optical tomography (NIROT) is an emerging modality that enables imaging the oxygenation of tissue, which is a biomarker of tremendous clinical relevance. Measuring in reflectance is usually required when NIROT is applied in clinical scenarios. Single photon avalanche diode (SPAD) array technology provides a compact solution for time domain (TD) NIROT to gain huge temporal and spatial information. This makes it possible to image complex structures in tissue. The main aim of this paper is to validate the wavelength normalization method for our new TD NIROT experimentally by exposing it to a particularly difficult challenge: the recovery of two inclusions at different depths. The proposed reconstruction algorithm aims to tackle systematic errors and other artifacts with known wavelength-dependent relation. We validated the device and reconstruction method experimentally on a silicone phantom with two inclusions: one at depth of 10 mm and the other at 15 mm. Despite this tough challenge for reflectance NIROT, the system was able to localize both inclusions accurately.
Collapse
Affiliation(s)
- Jingjing Jiang
- Biomedical Optics Research Laboratory, Dept. of Neonatology, University Hospital Zurich and University of Zurich, Switzerland
| | - Aldo Di Costanzo Mata
- Biomedical Optics Research Laboratory, Dept. of Neonatology, University Hospital Zurich and University of Zurich, Switzerland
| | - Scott Lindner
- Biomedical Optics Research Laboratory, Dept. of Neonatology, University Hospital Zurich and University of Zurich, Switzerland
- Advanced Quantum Architecture Laboratory, EPFL, 2002 Neuchâtel, Switzerland
| | - Chao Zhang
- Advanced Quantum Architecture Laboratory, EPFL, 2002 Neuchâtel, Switzerland
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory, EPFL, 2002 Neuchâtel, Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Dept. of Neonatology, University Hospital Zurich and University of Zurich, Switzerland
| | - Alexander Kalyanov
- Biomedical Optics Research Laboratory, Dept. of Neonatology, University Hospital Zurich and University of Zurich, Switzerland
| |
Collapse
|
153
|
Zhao H, Brigadoi S, Chitnis D, Vita ED, Castellaro M, Powell S, Everdell NL, Cooper RJ. A wide field-of-view, modular, high-density diffuse optical tomography system for minimally constrained three-dimensional functional neuroimaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:4110-4129. [PMID: 32923032 PMCID: PMC7449732 DOI: 10.1364/boe.394914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 05/09/2023]
Abstract
The ability to produce high-quality images of human brain function in any environment and during unconstrained movement of the subject has long been a goal of neuroimaging research. Diffuse optical tomography, which uses the intensity of back-scattered near-infrared light from multiple source-detector pairs to image changes in haemoglobin concentrations in the brain, is uniquely placed to achieve this goal. Here, we describe a new generation of modular, fibre-less, high-density diffuse optical tomography technology that provides exceptional sensitivity, a large dynamic range, a field-of-view sufficient to cover approximately one-third of the adult scalp, and also incorporates dedicated motion sensing into each module. Using in-vivo measures, we demonstrate a noise-equivalent power of 318 fW, and an effective dynamic range of 142 dB. We describe the application of this system to a novel somatomotor neuroimaging paradigm that involves subjects walking and texting on a smartphone. Our results demonstrate that wearable high-density diffuse optical tomography permits three-dimensional imaging of the human brain function during overt movement of the subject; images of somatomotor cortical activation can be obtained while subjects move in a relatively unconstrained manner, and these images are in good agreement with those obtained while the subjects remain stationary. The scalable nature of the technology we described here paves the way for the routine acquisition of high-quality, three-dimensional, whole-cortex diffuse optical tomography images of cerebral haemodynamics, both inside and outside of the laboratory environment, which has profound implications for neuroscience.
Collapse
Affiliation(s)
- Hubin Zhao
- DOT-HUB, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Sabrina Brigadoi
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Danial Chitnis
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, SE1 7EH, UK
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Samuel Powell
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nicholas L. Everdell
- DOT-HUB, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Robert J. Cooper
- DOT-HUB, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| |
Collapse
|
154
|
Algarawi M, Erkol H, Luk A, Ha S, Ünlü MB, Gulsen G, Nouizi F. Resolving tissue chromophore concentration at MRI resolution using multi-wavelength photo-magnetic imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:4244-4254. [PMID: 32923039 PMCID: PMC7449711 DOI: 10.1364/boe.397538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Photo-magnetic imaging (PMI) is an emerging optical imaging modality that showed great performance on providing absorption maps with high resolution and quantitative accuracy. As a multi-modality technology, PMI warms up the imaged object using a near infrared laser while temperature variation is measured using magnetic resonance imaging. By probing tissue at multiple wavelengths, concentration of the main tissue chromophores such as oxy- and deoxy-hemoglobin, lipid, and water are obtained then used to derive functional parameters such as total hemoglobin concentration and relative oxygen saturation. In this paper, we present a multi-wavelength PMI system that was custom-built to host five different laser wavelengths. After recovering the high-resolution absorption maps, a least-squared minimization process was used to resolve the different chromophore concentration. The performance of the system was experimentally tested on a phantom with two different dyes. Their concentrations were successfully assessed with high spatial resolution and average accuracy of nearly 80%.
Collapse
Affiliation(s)
- Maha Algarawi
- Center for Functional Onco-Imaging, University of California Irvine, CA 92697, USA
- Department of Physics and Astronomy, University of California Irvine, CA 92697, USA
| | - Hakan Erkol
- Department of Physics, Bogazici University, Istanbul, Turkey
| | - Alex Luk
- Center for Functional Onco-Imaging, University of California Irvine, CA 92697, USA
| | | | - Mehmet B. Ünlü
- Department of Physics, Bogazici University, Istanbul, Turkey
| | - Gultekin Gulsen
- Center for Functional Onco-Imaging, University of California Irvine, CA 92697, USA
- Department of Physics and Astronomy, University of California Irvine, CA 92697, USA
- Department of Radiological Sciences, University of California Irvine, CA 92697, USA
| | - Farouk Nouizi
- Center for Functional Onco-Imaging, University of California Irvine, CA 92697, USA
- Department of Radiological Sciences, University of California Irvine, CA 92697, USA
| |
Collapse
|
155
|
Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence. Nat Commun 2020; 11:3647. [PMID: 32686683 PMCID: PMC7371692 DOI: 10.1038/s41467-020-17469-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Efficient broadband infrared (IR) light-emitting diodes (LEDs) are needed for emerging applications that exploit near-IR spectroscopy, ranging from hand-held electronics to medicine. Here we report broadband IR luminescence, cooperatively originating from Eu2+ and Tb3+ dopants in CaS. This peculiar emission overlaps with the red Eu2+ emission, ranges up to 1200 nm (full-width-at-half-maximum of 195 nm) and is efficiently excited with visible light. Experimental evidence for metal-to-metal charge transfer (MMCT) luminescence is collected, comprising data from luminescence spectroscopy, microscopy and X-ray spectroscopy. State-of-the-art multiconfigurational ab initio calculations attribute the IR emission to the radiative decay of a metastable MMCT state of a Eu2+-Tb3+ pair. The calculations explain why no MMCT emission is found in the similar compound SrS:Eu,Tb and are used to anticipate how to fine-tune the characteristics of the MMCT luminescence. Finally, a near-IR LED for versatile spectroscopic use is manufactured based on the MMCT emission. Broadband near-infrared (IR) light-emitting diodes (LEDs) are desirable for smart devices and bio-imaging applications, but the efficiency is limited by the phosphor materials. The authors report broadband emission in Eu-Tb co-doped CaS due to metal-to-metal charge transfer between dopants, and build a broadband near-IR LED with output surpassing the state of the art.
Collapse
|
156
|
Cheong D, Zhang F, Kim K, Reid A, Hanan C, Ding L, Yuan H. Task-Related Systemic Artifacts in Functional Near-Infrared Spectroscopy . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:948-951. [PMID: 33018141 DOI: 10.1109/embc44109.2020.9176366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) has the potential to become the next common noninvasive neuroimaging technique for routine clinical use. Compared to the current standard for neuroimaging, functional magnetic resonance imaging (fMRI), fNIRS boasts several advantages which increase its likelihood for clinical adoption. However, fNIRS suffers from an intrinsic interference from the superficial tissues, which the near-infrared light must penetrate before reaching the deeper cerebral cortex. Therefore, the removal of signals captured by SS channels has been proposed to attenuate the systematic interference. This study aimed to investigate the task-related systemic artefacts, in a high-density montage covering the sensorimotor cortex. We compared the association between LS and SS channels over the contralateral motor cortex which was activated by a hand clenching task, with that over the ipsilateral cortex where no task-related activation was expected. Our findings provide important guidelines regarding how to removal SS signals in a high-density whole-head montage.
Collapse
|
157
|
Sie EJ, Chen H, Saung EF, Catoen R, Tiecke T, Chevillet MA, Marsili F. High-sensitivity multispeckle diffuse correlation spectroscopy. NEUROPHOTONICS 2020; 7:035010. [PMID: 32995362 PMCID: PMC7519351 DOI: 10.1117/1.nph.7.3.035010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
Significance: Cerebral blood flow is an important biomarker of brain health and function as it regulates the delivery of oxygen and substrates to tissue and the removal of metabolic waste products. Moreover, blood flow changes in specific areas of the brain are correlated with neuronal activity in those areas. Diffuse correlation spectroscopy (DCS) is a promising noninvasive optical technique for monitoring cerebral blood flow and for measuring cortex functional activation tasks. However, the current state-of-the-art DCS adoption is hindered by a trade-off between sensitivity to the cortex and signal-to-noise ratio (SNR). Aim: We aim to develop a scalable method that increases the sensitivity of DCS instruments. Approach: We report on a multispeckle DCS (mDCS) approach that is based on a 1024-pixel single-photon avalanche diode (SPAD) camera. Our approach is scalable to > 100,000 independent speckle measurements since large-pixel-count SPAD cameras are becoming available, owing to the investments in LiDAR technology for automotive and augmented reality applications. Results: We demonstrated a 32-fold increase in SNR with respect to traditional single-speckle DCS. Conclusion: A mDCS system that is based on a SPAD camera serves as a scalable method toward high-sensitivity DCS measurements, thus enabling both high sensitivity to the cortex and high SNR.
Collapse
Affiliation(s)
- Edbert J. Sie
- Facebook Reality Labs Research, Menlo Park, California, United States
- Address all correspondence to Edbert J. Sie, ; Francesco Marsili,
| | - Hui Chen
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - E-Fann Saung
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Ryan Catoen
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Tobias Tiecke
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Mark A. Chevillet
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Francesco Marsili
- Facebook Reality Labs Research, Menlo Park, California, United States
- Address all correspondence to Edbert J. Sie, ; Francesco Marsili,
| |
Collapse
|
158
|
Yan W, Zheng K, Weng L, Chen C, Kiartivich S, Jiang X, Su X, Wang Y, Wang X. Bibliometric evaluation of 2000-2019 publications on functional near-infrared spectroscopy. Neuroimage 2020; 220:117121. [PMID: 32619709 DOI: 10.1016/j.neuroimage.2020.117121] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore and analyze research trends and frontiers on functional near-infrared spectroscopy (fNIRS) in the past 20 years and identify collaboration networks. fNIRS-related publications from 2000 to 2019 were retrieved from the Web of Science database. A total of 1727 publications satisfied the search criteria. Bibliometric visualization analysis of active authors, journals, institutions, countries, references, and keywords were conducted. The number of annual related publications remarkably increased over the years. Fallgatter published the largest number of fNIRS-related papers (83). Neuroimage not only had the largest number of papers published in the first 10 journals (157 articles) but also had the highest impact factor (IF, 2018 = 5.812). The University of Tubingen had the highest number of fNIRS-related publications in the past 20 years. The United States ranked first in terms of comprehensive influence in this field. In recent years, burst keywords (e.g., infant, social interaction, and older adult) and a series of references with citation burst provided clues on research frontiers.
Collapse
Affiliation(s)
- Wangwang Yan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Linman Weng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Changcheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Suparata Kiartivich
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China.
| |
Collapse
|
159
|
Olefir I, Ghazaryan A, Yang H, Malekzadeh-Najafabadi J, Glasl S, Symvoulidis P, O'Leary VB, Sergiadis G, Ntziachristos V, Ovsepian SV. Spatial and Spectral Mapping and Decomposition of Neural Dynamics and Organization of the Mouse Brain with Multispectral Optoacoustic Tomography. Cell Rep 2020; 26:2833-2846.e3. [PMID: 30840901 PMCID: PMC6403416 DOI: 10.1016/j.celrep.2019.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
In traditional optical imaging, limited light penetration constrains high-resolution interrogation to tissue surfaces. Optoacoustic imaging combines the superb contrast of optical imaging with deep penetration of ultrasound, enabling a range of new applications. We used multispectral optoacoustic tomography (MSOT) for functional and structural neuroimaging in mice at resolution, depth, and specificity unattainable by other neuroimaging modalities. Based on multispectral readouts, we computed hemoglobin gradient and oxygen saturation changes related to processing of somatosensory signals in different structures along the entire subcortical-cortical axis. Using temporal correlation analysis and seed-based maps, we reveal the connectivity between cortical, thalamic, and sub-thalamic formations. With the same modality, high-resolution structural tomography of intact mouse brain was achieved based on endogenous contrasts, demonstrating near-perfect matches with anatomical features revealed by histology. These results extend the limits of noninvasive observations beyond the reach of standard high-resolution neuroimaging, verifying the suitability of MSOT for small-animal studies.
Collapse
Affiliation(s)
- Ivan Olefir
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany
| | - Ara Ghazaryan
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Hong Yang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jaber Malekzadeh-Najafabadi
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Panagiotis Symvoulidis
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine of Charles University, 11636 Prague, Czech Republic
| | - George Sergiadis
- Department of Electrical and Computer Engineering, Aristotle University, 54124 Thessaloniki, Greece
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany.
| | - Saak V Ovsepian
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany; Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 25067 Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, 11636 Prague, Czech Republic.
| |
Collapse
|
160
|
Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020; 7:363-388. [PMID: 33251282 PMCID: PMC7678923 DOI: 10.1080/23328940.2020.1769006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.
Collapse
Affiliation(s)
- Juho Raiko
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|
161
|
Real-Time Dual-Wavelength Time-Resolved Diffuse Optical Tomography System for Functional Brain Imaging Based on Probe-Hosted Silicon Photomultipliers. SENSORS 2020; 20:s20102815. [PMID: 32429158 PMCID: PMC7287927 DOI: 10.3390/s20102815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/12/2023]
Abstract
Near-infrared diffuse optical tomography is a non-invasive photonics-based imaging technology suited to functional brain imaging applications. Recent developments have proved that it is possible to build a compact time-domain diffuse optical tomography system based on silicon photomultipliers (SiPM) detectors. The system presented in this paper was equipped with the same eight SiPM probe-hosted detectors, but was upgraded with six injection fibers to shine the sample at several points. Moreover, an automatic switch was included enabling a complete measurement to be performed in less than one second. Further, the system was provided with a dual-wavelength (670 nm and 820 nm) light source to quantify the oxy- and deoxy-hemoglobin concentration evolution in the tissue. This novel system was challenged against a solid phantom experiment, and two in-vivo tests, namely arm occlusion and motor cortex brain activation. The results show that the tomographic system makes it possible to follow the evolution of brain activation over time with a 1s-resolution.
Collapse
|
162
|
Kim JB, Phillips Z, Paik SH, Kang SY, Jeon NJ, Kim BJ, Kim BM. Cerebral hemodynamic monitoring of Parkinson's disease patients with orthostatic intolerance during head-up tilt test. NEUROPHOTONICS 2020; 7:025002. [PMID: 32411811 PMCID: PMC7202364 DOI: 10.1117/1.nph.7.2.025002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Significance: Monitoring of cerebral perfusion rather than blood pressure changes during a head-up tilt test (HUTT) is proposed to understand the pathophysiological effect of orthostatic intolerance (OI), including orthostatic hypotension (OH), in Parkinson's disease (PD) patients. Aim: We aim to characterize and distinguish the cerebral perfusion response to a HUTT for healthy controls (HCs) and PD patients with OI symptoms. Approach: Thirty-nine PD patients with OI symptoms [10 PD patients with OH (PD-OH) and 29 PD patients with normal HUTT results (PD-NOR)], along with seven HCs participated. A 108-channel diffuse optical tomography (DOT) system was used to reconstruct prefrontal oxyhemoglobin (HbO), deoxyhemoglobin (Hb), and total hemoglobin (HbT) changes during dynamic tilt (from supine to 70-deg tilt) and static tilt (remained tilted at 70 deg). Results: HCs showed rapid recovery of cerebral perfusion in the early stages of static tilt. PD-OH patients showed decreasing HbO and HbT during dynamic tilt, continuing into the static tilt period. The rate of HbO change from dynamic tilt to static tilt is the distinguishing feature between HCs and PD-OH patients. Accordingly, PD-NOR patients were subgrouped based on positive-rate and negative-rate of HbO change. PD patients with a negative rate of HbO change were more likely to report severe OI symptoms in the COMPASS questionnaire. Conclusions: Our findings showcase the usability of DOT for sensitive detection and quantification of autonomic dysfunction in PD patients with OI symptoms, even those with normal HUTT results.
Collapse
Affiliation(s)
- Jung Bin Kim
- Korea University Anam Hospital, Department of Neurology, Seoul, Republic of Korea
| | - Zephaniah Phillips
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Seung-ho Paik
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
- KLIEN Inc., Seoul Biohub, Seoul, Republic of Korea
| | - Shin-young Kang
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Nam-Joon Jeon
- Korea University Anam Hospital, Neurophysiology Laboratory, Seoul, Republic of Korea
| | - Byung-Jo Kim
- Korea University Anam Hospital, Department of Neurology, Seoul, Republic of Korea
- Korea University Anam Hospital, Brain Convergence Research Center, Seoul, Republic of Korea
| | - Beop-Min Kim
- Korea University Anam Hospital, Department of Neurology, Seoul, Republic of Korea
| |
Collapse
|
163
|
Performance assessment of high-density diffuse optical topography regarding source-detector array topology. PLoS One 2020; 15:e0230206. [PMID: 32208433 PMCID: PMC7092988 DOI: 10.1371/journal.pone.0230206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022] Open
Abstract
Recent advances in optical neuroimaging systems as a functional interface enhance our understanding of neuronal activity in the brain. High density diffuse optical topography (HD-DOT) uses multi-distance overlapped channels to improve the spatial resolution of images comparable to functional magnetic resonance imaging (fMRI). The topology of the source and detector (SD) array directly impacts the quality of the hemodynamic reconstruction in HD-DOT imaging modality. In this work, the effect of different SD configurations on the quality of cerebral hemodynamic recovery is investigated by presenting a simulation setup based on the analytical approach. Given that the SD arrangement determines the elements of the Jacobian matrix, we conclude that the more individual components in this matrix, the better the retrieval quality. The results demonstrate that the multi-distance multi-directional (MDMD) arrangement produces more unique elements in the Jacobian array. Consequently, the inverse problem can accurately retrieve the brain activity of diffuse optical topography data.
Collapse
|
164
|
Noah JA, Zhang X, Dravida S, Ono Y, Naples A, McPartland JC, Hirsch J. Real-Time Eye-to-Eye Contact Is Associated With Cross-Brain Neural Coupling in Angular Gyrus. Front Hum Neurosci 2020; 14:19. [PMID: 32116606 PMCID: PMC7016046 DOI: 10.3389/fnhum.2020.00019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/17/2020] [Indexed: 11/25/2022] Open
Abstract
Direct eye contact between two individuals is a salient social behavior known to initiate and promote interpersonal interaction. However, the neural processes that underlie these live interactive behaviors and eye-to-eye contact are not well understood. The Dynamic Neural Coupling Hypothesis presents a general theoretical framework proposing that shared interactive behaviors are represented by cross-brain signal coherence. Using functional near-infrared spectroscopy (fNIRS) adapted for hyper scanning, we tested this hypothesis specifically for neural mechanisms associated with eye-to-eye gaze between human participants compared to similar direct eye-gaze at a dynamic video of a face and predicted that the coherence of neural signals between the two participants during reciprocal eye-to-eye contact would be greater than coherence observed during direct eye-gaze at a dynamic video for those signals originating in social and face processing systems. Consistent with this prediction cross-brain coherence was increased for signals within the angular gyrus (AG) during eye-to-eye contact relative to direct eye-gaze at a dynamic face video (p < 0.01). Further, activity in the right temporal-parietal junction (TPJ) was increased in the real eye-to-eye condition (p < 0.05, FDR corrected). Together, these findings advance a functional and mechanistic understanding of the AG and cross-brain neural coupling associated with real-time eye-to-eye contact.
Collapse
Affiliation(s)
- J Adam Noah
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Xian Zhang
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Swethasri Dravida
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Adam Naples
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - James C McPartland
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Joy Hirsch
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
165
|
Imaging System Based on Silicon Photomultipliers and Light Emitting Diodes for Functional Near-Infrared Spectroscopy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We built a fiber-less prototype of an optical system with 156 channels each one consisting of an optode made of a silicon photomultiplier (SiPM) and a pair of light emitting diodes (LEDs) operating at 700 nm and 830 nm. The system uses functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) imaging of the cortical activity of the human brain at frequencies above 1 Hz. In this paper, we discuss testing and system optimization performed through measurements on a multi-layered optical phantom with mechanically movable parts that simulate near-infrared light scattering inhomogeneities. The baseline optical characteristics of the phantom are carefully characterized and compared to those of human tissues. Here we discuss several technical aspects of the system development, such as LED light output drift and its possible compensation, SiPM linearity, corrections of channel signal differences, and signal-to-noise ratio (SNR). We implement an imaging algorithm that investigates large phantom regions. Thanks to the use of SiPMs, very large source-to-detector distances are acquired with a high SNR and 2 Hz time resolution. The overall results demonstrate the high potentialities of a system based on SiPMs for fNIRS/DOT human brain imaging applications.
Collapse
|
166
|
Aihara T, Shimokawa T, Ogawa T, Okada Y, Ishikawa A, Inoue Y, Yamashita O. Resting-State Functional Connectivity Estimated With Hierarchical Bayesian Diffuse Optical Tomography. Front Neurosci 2020; 14:32. [PMID: 32082110 PMCID: PMC7005139 DOI: 10.3389/fnins.2020.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Resting-state functional connectivity (RSFC) has been generally assessed with functional magnetic resonance imaging (fMRI) thanks to its high spatial resolution. However, fMRI has several disadvantages such as high cost and low portability. In addition, fMRI may not be appropriate for people with metal or electronic implants in their bodies, with claustrophobia and who are pregnant. Diffuse optical tomography (DOT), a method of neuroimaging using functional near-infrared spectroscopy (fNIRS) to reconstruct three-dimensional brain activity images, offers a non-invasive alternative, because fNIRS as well as fMRI measures changes in deoxygenated hemoglobin concentrations and, in addition, fNIRS is free of above disadvantages. We recently proposed a hierarchical Bayesian (HB) DOT algorithm and verified its performance in terms of task-related brain responses. In this study, we attempted to evaluate the HB DOT in terms of estimating RSFC. In 20 healthy males (21-38 years old), 10 min of resting-state data was acquired with 3T MRI scanner or high-density NIRS on different days. The NIRS channels consisted of 96 long (29-mm) source-detector (SD) channels and 56 short (13-mm) SD channels, which covered bilateral frontal and parietal areas. There were one and two resting-state runs in the fMRI and fNIRS experiments, respectively. The reconstruction performances of our algorithm and the two currently prevailing algorithms for DOT were evaluated using fMRI signals as a reference. Compared with the currently prevailing algorithms, our HB algorithm showed better performances in both the similarity to fMRI data and inter-run reproducibility, in terms of estimating the RSFC.
Collapse
Affiliation(s)
- Takatsugu Aihara
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Takeaki Shimokawa
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Takeshi Ogawa
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Yuto Okada
- Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Akihiro Ishikawa
- Medical Systems Division, Research and Development Department, Shimadzu Corporation, Kyoto, Japan
| | - Yoshihiro Inoue
- Medical Systems Division, Research and Development Department, Shimadzu Corporation, Kyoto, Japan
| | - Okito Yamashita
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| |
Collapse
|
167
|
Fishell AK, Arbeláez AM, Valdés CP, Burns-Yocum TM, Sherafati A, Richter EJ, Torres M, Eggebrecht AT, Smyser CD, Culver JP. Portable, field-based neuroimaging using high-density diffuse optical tomography. Neuroimage 2020; 215:116541. [PMID: 31987995 DOI: 10.1016/j.neuroimage.2020.116541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Behavioral and cognitive tests in individuals who were malnourished as children have revealed malnutrition-related deficits that persist throughout the lifespan. These findings have motivated recent neuroimaging investigations that use highly portable functional near-infrared spectroscopy (fNIRS) instruments to meet the demands of brain imaging experiments in low-resource environments and enable longitudinal investigations of brain function in the context of long-term malnutrition. However, recent studies in healthy subjects have demonstrated that high-density diffuse optical tomography (HD-DOT) can significantly improve image quality over that obtained with sparse fNIRS imaging arrays. In studies of both task activations and resting state functional connectivity, HD-DOT is beginning to approach the data quality of fMRI for superficial cortical regions. In this work, we developed a customized HD-DOT system for use in malnutrition studies in Cali, Colombia. Our results evaluate the performance of the HD-DOT instrument for assessing brain function in a cohort of malnourished children. In addition to demonstrating portability and wearability, we show the HD-DOT instrument's sensitivity to distributed brain responses using a sensory processing task and measurements of homotopic functional connectivity. Task-evoked responses to the passive word listening task produce activations localized to bilateral superior temporal gyrus, replicating previously published work using this paradigm. Evaluating this localization performance across sparse and dense reconstruction schemes indicates that greater localization consistency is associated with a dense array of overlapping optical measurements. These results provide a foundation for additional avenues of investigation, including identifying and characterizing a child's individual malnutrition burden and eventually contributing to intervention development.
Collapse
Affiliation(s)
- Andrew K Fishell
- Washington University School of Medicine, Division of Biology and Biomedical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO, USA
| | - Ana María Arbeláez
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO, USA
| | | | - Tracy M Burns-Yocum
- Indiana University, Department of Psychological and Brain Sciences, Bloomington, IN, USA
| | - Arefeh Sherafati
- Washington University School of Medicine, Division of Biology and Biomedical Sciences, St. Louis, MO, USA; Washington University, Department of Physics, St. Louis, MO, USA
| | - Edward J Richter
- Washington University, Electrical and Systems Engineering, St. Louis, MO, USA
| | | | - Adam T Eggebrecht
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Department of Pediatrics, St. Louis, MO, USA
| | - Christopher D Smyser
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Department of Pediatrics, St. Louis, MO, USA; Washington University School of Medicine, Department of Neurology, St. Louis, MO, USA
| | - Joseph P Culver
- Washington University School of Medicine, Division of Biology and Biomedical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO, USA; Washington University, Department of Physics, St. Louis, MO, USA; Washington University, Department of Biomedical Engineering, MO, St. Louis, USA.
| |
Collapse
|
168
|
Chiarelli AM, Giaconia GC, Perpetuini D, Greco G, Mistretta L, Rizzo R, Vinciguerra V, Romeo MF, Merla A, Fallica PG. Wearable, Fiber-less, Multi-Channel System for Continuous Wave Functional Near Infrared Spectroscopy Based on Silicon Photomultipliers Detectors and Lock-In Amplification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:60-66. [PMID: 31945845 DOI: 10.1109/embc.2019.8857206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Development and in-vivo validation of a Continuous Wave (CW) functional Near Infrared Spectroscopy (fNIRS) system is presented. The system is wearable, fiber-less, multi-channel (16×16, 256 channels) and expandable and it relies on silicon photomultipliers (SiPMs) for light detection. SiPMs are inexpensive, low voltage and resilient semiconductor light detectors, whose performances are analogous to photomultiplier tubes (PMTs). The advantage of SiPMs with respect to PMTs is that they allow direct contact with the scalp and avoidance of optical fibers. In fact, the coupling of SiPMs and light emitting diodes (LEDs) allows the transfer of the analog signals to and from the scalp through thin electric cables that greatly increase the system flexibility. Moreover, the optical probes, mechanically resembling electroencephalographic electrodes, are robust against motion artifacts. In order to increase the signal-to-noise-ratio (SNR) of the fNIRS acquisition and to decrease ambient noise contamination, a digital lock-in technique was implemented through LEDs modulation and SiPMs signal processing chain. In-vivo validation proved the system capabilities of detecting functional brain activity in the sensorimotor cortices. When compared to other state-of-the-art wearable fNIRS systems, the single photon sensitivity and dynamic range of SiPMs can exploit the long and variable interoptode distances needed for estimation of brain functional hemodynamics using CW-fNIRS.
Collapse
|
169
|
Zhang Q, Wang X, Tang Z, Wang Y. A K3ScSi2O7:Eu2+ based phosphor with broad-band NIR emission and robust thermal stability for NIR pc-LEDs. Chem Commun (Camb) 2020; 56:4644-4647. [DOI: 10.1039/d0cc01838d] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel K3ScSi2O7:Eu2+ based phosphor with broad-band NIR emission and robust thermal stability has been obtained.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
- Department of Materials Science
- School of Physical Science and Technology
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology
| | - Xicheng Wang
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
- Department of Materials Science
- School of Physical Science and Technology
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology
| | - Zuobin Tang
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
- Department of Materials Science
- School of Physical Science and Technology
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology
| | - Yuhua Wang
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
- Department of Materials Science
- School of Physical Science and Technology
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology
| |
Collapse
|
170
|
Tran AP, Yan S, Fang Q. Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models. NEUROPHOTONICS 2020; 7:015008. [PMID: 32118085 PMCID: PMC7035879 DOI: 10.1117/1.nph.7.1.015008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/05/2020] [Indexed: 05/04/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) has become an important research tool in studying human brains. Accurate quantification of brain activities via fNIRS relies upon solving computational models that simulate the transport of photons through complex anatomy. Aim: We aim to highlight the importance of accurate anatomical modeling in the context of fNIRS and propose a robust method for creating high-quality brain/full-head tetrahedral mesh models for neuroimaging analysis. Approach: We have developed a surface-based brain meshing pipeline that can produce significantly better brain mesh models, compared to conventional meshing techniques. It can convert segmented volumetric brain scans into multilayered surfaces and tetrahedral mesh models, with typical processing times of only a few minutes and broad utilities, such as in Monte Carlo or finite-element-based photon simulations for fNIRS studies. Results: A variety of high-quality brain mesh models have been successfully generated by processing publicly available brain atlases. In addition, we compare three brain anatomical models-the voxel-based brain segmentation, tetrahedral brain mesh, and layered-slab brain model-and demonstrate noticeable discrepancies in brain partial pathlengths when using approximated brain anatomies, ranging between - 1.5 % to 23% with the voxelated brain and 36% to 166% with the layered-slab brain. Conclusion: The generation and utility of high-quality brain meshes can lead to more accurate brain quantification in fNIRS studies. Our open-source meshing toolboxes "Brain2Mesh" and "Iso2Mesh" are freely available at http://mcx.space/brain2mesh.
Collapse
Affiliation(s)
- Anh Phong Tran
- Northeastern University, Department of Chemical Engineering, Boston, Massachusetts, United States
| | - Shijie Yan
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Address all correspondence to Qianqian Fang, E-mail:
| |
Collapse
|
171
|
Bejm K, Wojtkiewicz S, Sawosz P, Perdziak M, Pastuszak Z, Sudakou A, Guchek P, Liebert A. Influence of contrast-reversing frequency on the amplitude and spatial distribution of visual cortex hemodynamic responses. BIOMEDICAL OPTICS EXPRESS 2019; 10:6296-6312. [PMID: 31853401 PMCID: PMC6913388 DOI: 10.1364/boe.10.006296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Visual stimulation is one of the most commonly used paradigms for cerebral cortex function investigation. Experiments typically involve presenting to a volunteer a black-and-white checkerboard with contrast-reversing at a frequency of 4 to 16 Hz. The aim of the present study was to investigate the influence of the flickering frequency on the amplitude of changes in the concentration of oxygenated and deoxygenated hemoglobin. The hemoglobin concentrations were assessed with the use of a high resolution diffuse optical tomography method. Spatial distributions of changes in hemoglobin concentrations overlaying the visual cortex are shown for various stimuli frequencies. Moreover, the hemoglobin concentration changes obtained for different source-detector separations (from 1.5 to 5.4 cm) are presented. Our results demonstrate that the flickering frequency had a statistically significant effect on the induced oxyhemoglobin changes (p < 0,001). The amplitude of oxy hemoglobin concentration changes at a frequency of 8 Hz was higher in comparison with that measured at 4 Hz :[median(25th-75thpercentiles) 1.24 (0.94-1.71) vs. 0.92(0.73-1.28)µM, p < 0.001]; 12 Hz:[1.24 (0.94-1.71) vs. 1.04 (0.78-1.32) µM, p < 0.001]; and 16 Hz:[1.24 (0.94-1.71) vs. 1.15(0.87-1.48) µM, p < 0.001]. No significant differences were observed between the size of an area of activation for various frequencies. The demonstrated superiority of 8 Hz over other frequencies can advance understanding of visual stimulations and help guide future fNIRS protocols.
Collapse
Affiliation(s)
- Karolina Bejm
- Nalecz Institute of Biocybernetics and
Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Stanisław Wojtkiewicz
- Nalecz Institute of Biocybernetics and
Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and
Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Perdziak
- Department of Ophthalmology and Optometry
Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Vision Science and Optometry,
Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Zanna Pastuszak
- Department of Neurosurgery, Mossakowski
Medical Research Center Polish Academy of Sciences, Warsaw, Poland
| | - Aleh Sudakou
- Nalecz Institute of Biocybernetics and
Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Petro Guchek
- Nalecz Institute of Biocybernetics and
Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and
Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
172
|
Ando T, Nakamura T, Fujii T, Shiono T, Nakamura T, Suzuki M, Anzue-Satoi N, Narumi K, Watanabe H, Korenaga T, Okada E, Inoue Y. Non-contact acquisition of brain function using a time-extracted compact camera. Sci Rep 2019; 9:17854. [PMID: 31780759 PMCID: PMC6882904 DOI: 10.1038/s41598-019-54458-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
A revolution in functional brain imaging techniques is in progress in the field of neurosciences. Optical imaging techniques, such as high-density diffuse optical tomography (HD-DOT), in which source-detector pairs of probes are placed on subjects' heads, provide better portability than conventional functional magnetic resonance imaging (fMRI) equipment. However, these techniques remain costly and can only acquire images at up to a few measurements per square centimetre, even when multiple detector probes are employed. In this study, we demonstrate functional brain imaging using a compact and affordable setup that employs nanosecond-order pulsed ordinary laser diodes and a time-extracted image sensor with superimposition capture of scattered components. Our technique can simply and easily attain a high density of measurement points without requiring probes to be attached, and can directly capture two-dimensional functional brain images. We have demonstrated brain activity imaging using a phantom that mimics the optical properties of an adult human head, and with a human subject, have measured cognitive brain activation while the subject is solving simple arithmetical tasks.
Collapse
Affiliation(s)
- Takamasa Ando
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan.
| | - Tatsuya Nakamura
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Toshiya Fujii
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Teruhiro Shiono
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Tasuku Nakamura
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Masato Suzuki
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Naomi Anzue-Satoi
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Kenji Narumi
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Hisashi Watanabe
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Tsuguhiro Korenaga
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Eiji Okada
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Yasunori Inoue
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| |
Collapse
|
173
|
Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nat Commun 2019; 10:5267. [PMID: 31748595 PMCID: PMC6868216 DOI: 10.1038/s41467-019-13293-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/01/2019] [Indexed: 11/08/2022] Open
Abstract
Near-infrared luminescent materials exhibit unique photophysical properties that make them crucial components in photonic, optoelectronic and biological applications. As broadband near infrared phosphors activated by transition metal elements are already widely reported, there is a challenge for next-generation materials discovery by introducing rare earth activators with 4f-5d transition. Here, we report an unprecedented phosphor K3LuSi2O7:Eu2+ that gives an emission band centered at 740 nm with a full-width at half maximum of 160 nm upon 460 nm blue light excitation. Combined structural and spectral characterizations reveal a selective site occupation of divalent europium in LuO6 and K2O6 polyhedrons with small coordination numbers, leading to the unexpected near infrared emission. The fabricated phosphor-converted light-emitting diodes have great potential as a non-visible light source. Our work provides the design principle of near infrared emission in divalent europium-doped inorganic solid-state materials and could inspire future studies to further explore near-infrared light-emitting diodes.
Collapse
|
174
|
Daly MJ, Chan H, Muhanna N, Akens MK, Wilson BC, Irish JC, Jaffray DA. Intraoperative cone-beam CT spatial priors for diffuse optical fluorescence tomography. ACTA ACUST UNITED AC 2019; 64:215007. [DOI: 10.1088/1361-6560/ab4917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
175
|
White BR, Padawer-Curry JA, Cohen AS, Licht DJ, Yodh AG. Brain segmentation, spatial censoring, and averaging techniques for optical functional connectivity imaging in mice. BIOMEDICAL OPTICS EXPRESS 2019; 10:5952-5973. [PMID: 31799057 PMCID: PMC6865125 DOI: 10.1364/boe.10.005952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 05/25/2023]
Abstract
Resting-state functional connectivity analysis using optical neuroimaging holds the potential to be a powerful bridge between mouse models of disease and clinical neurologic monitoring. However, analysis techniques specific to optical methods are rudimentary, and algorithms from magnetic resonance imaging are not always applicable to optics. We have developed visual processing tools to increase data quality, improve brain segmentation, and average across sessions with better field-of-view. We demonstrate improved performance using resting-state optical intrinsic signal from normal mice. The proposed methods increase the amount of usable data from neuroimaging studies, improve image fidelity, and should be translatable to human optical neuroimaging systems.
Collapse
Affiliation(s)
- Brian R. White
- Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia. 3401 Civic Center Blvd., Pediatric Cardiology - 8NW, Philadelphia, PA 19104, USA
| | - Jonah A. Padawer-Curry
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia. 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia. 3615 Civic Center Blvd., Abramson Research Center, Room 816-H, Philadelphia, PA 19104, USA
| | - Daniel J. Licht
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia. 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania. 3231 Walnut St., Philadelphia, PA 19104, USA
| |
Collapse
|
176
|
Farina A, Candeo A, Dalla Mora A, Bassi A, Lussana R, Villa F, Valentini G, Arridge S, D'Andrea C. Novel time-resolved camera based on compressed sensing. OPTICS EXPRESS 2019; 27:31889-31899. [PMID: 31684412 DOI: 10.1364/oe.27.031889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Time-resolved cameras with high temporal resolution (down to ps) enable a huge set of novel applications ranging from biomedicine and environmental science to material and device characterization. In this work, we propose, and experimentally validate, a novel detection scheme for time-resolved imaging based on a compressed sampling approach. The proposed scheme unifies into a single element all the required operations, i.e. space modulation, space integration and time-resolved detection, paving the way to dramatic cost reduction, performance improvement and ease of use.
Collapse
|
177
|
Putt SS, Wijeakumar S, Spencer JP. Prefrontal cortex activation supports the emergence of early stone age toolmaking skill. Neuroimage 2019; 199:57-69. [DOI: 10.1016/j.neuroimage.2019.05.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/01/2023] Open
|
178
|
Dragojević T, Vidal Rosas EE, Hollmann JL, Culver JP, Justicia C, Durduran T. High-density speckle contrast optical tomography of cerebral blood flow response to functional stimuli in the rodent brain. NEUROPHOTONICS 2019; 6:045001. [PMID: 31620545 PMCID: PMC6782685 DOI: 10.1117/1.nph.6.4.045001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/12/2019] [Indexed: 05/20/2023]
Abstract
Noninvasive, three-dimensional, and longitudinal imaging of cerebral blood flow (CBF) in small animal models and ultimately in humans has implications for fundamental research and clinical applications. It enables the study of phenomena such as brain development and learning and the effects of pathologies, with a clear vision for translation to humans. Speckle contrast optical tomography (SCOT) is an emerging optical method that aims to achieve this goal by directly measuring three-dimensional blood flow maps in deep tissue with a relatively inexpensive and simple system. High-density SCOT is developed to follow CBF changes in response to somatosensory cortex stimulation. Measurements are carried out through the intact skull on the rat brain. SCOT is able to follow individual trials in each brain hemisphere, where signal averaging resulted in comparable, cortical images to those of functional magnetic resonance images in spatial extent, location, and depth. Sham stimuli are utilized to demonstrate that the observed response is indeed due to local changes in the brain induced by forepaw stimulation. In developing and demonstrating the method, algorithms and analysis methods are developed. The results pave the way for longitudinal, nondestructive imaging in preclinical rodent models that can readily be translated to the human brain.
Collapse
Affiliation(s)
- Tanja Dragojević
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Address all correspondence to Tanja Dragojević, E-mail:
| | - Ernesto E. Vidal Rosas
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joseph L. Hollmann
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joseph P. Culver
- Washington University, School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University, Department of Physics, St. Louis, Missouri, United States
| | - Carles Justicia
- Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Department of Brain Ischemia and Neurodegeneration, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Àrea de Neurociències, Barcelona, Spain
| | - Turgut Durduran
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
179
|
Veesa JD, Dehghani H. Functional near infrared spectroscopy using spatially resolved data to account for tissue scattering: A numerical study and arm-cuff experiment. JOURNAL OF BIOPHOTONICS 2019; 12:e201900064. [PMID: 31169976 PMCID: PMC7065609 DOI: 10.1002/jbio.201900064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 05/12/2023]
Abstract
Functional Near-Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely-used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light-attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm-cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter.
Collapse
Affiliation(s)
- Joshua D. Veesa
- School of Computer ScienceUniversity of BirminghamBirminghamUK
| | - Hamid Dehghani
- School of Computer ScienceUniversity of BirminghamBirminghamUK
| |
Collapse
|
180
|
Schumacher FK, Steinborn C, Weiller C, Schelter BO, Reinhard M, Kaller CP. The impact of physiological noise on hemodynamic-derived estimates of directed functional connectivity. Brain Struct Funct 2019; 224:3145-3157. [DOI: 10.1007/s00429-019-01954-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/31/2019] [Indexed: 11/29/2022]
|
181
|
Huang C, Mazdeyasna S, Chen L, Abu Jawdeh EG, Bada HS, Saatman KE, Chen L, Yu G. Noninvasive noncontact speckle contrast diffuse correlation tomography of cerebral blood flow in rats. Neuroimage 2019; 198:160-169. [DOI: 10.1016/j.neuroimage.2019.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
|
182
|
Sudakou A, Wojtkiewicz S, Lange F, Gerega A, Sawosz P, Tachtsidis I, Liebert A. Depth-resolved assessment of changes in concentration of chromophores using time-resolved near-infrared spectroscopy: estimation of cytochrome-c-oxidase uncertainty by Monte Carlo simulations. BIOMEDICAL OPTICS EXPRESS 2019; 10:4621-4635. [PMID: 31565513 PMCID: PMC6757481 DOI: 10.1364/boe.10.004621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Time-resolved near-infrared spectroscopy (TR-NIRS) measurements can be used to recover changes in concentrations of tissue constituents ( Δ C ) by applying the moments method and the Beer-Lambert law. In this work we carried out the error propagation analysis allowing to calculate the standard deviations of uncertainty in estimation of the Δ C . Here, we show the process of choosing wavelengths for the evaluation of hemodynamic (oxy-, deoxyhemoglobin) and metabolic (cytochrome-c-oxidase (CCO)) responses within the brain tissue as measured with an in-house developed TR-NIRS multi-wavelength system, which measures at 16 consecutive wavelengths separated by 12.5 nm and placed between 650 and 950 nm. Data generated with Monte Carlo simulations on three-layered model (scalp, skull, brain) for wavelengths range from 650 to 950 nm were used to carry out the error propagation analysis for varying choices of wavelengths. For a detector with a spectrally uniform responsivity, the minimal standard deviation of the estimated changes in CCO within the brain layer, σ Δ C CCO brain = 0.40 µM, was observed for the 16 consecutive wavelengths from 725 to 912.5 nm. For realistic a detector model, i.e. the spectral responsivity characteristic is considered, the minimum, σ Δ C CCO brain = 0.47 µM, was observed at the 16 consecutive wavelengths from 688 to 875 nm. We introduce the method of applying the error propagation analysis to data as measured with spectral TR-NIRS systems to calculate uncertainty of recovery of tissue constituents concentrations.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
183
|
Optical measures of cerebral arterial stiffness are associated with white matter signal abnormalities and cognitive performance in normal aging. Neurobiol Aging 2019; 84:200-207. [PMID: 31500910 DOI: 10.1016/j.neurobiolaging.2019.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 05/29/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022]
Abstract
Decline in fluid abilities in normal aging is associated with increased white matter lesions, measured on T1-weighted images as white matter signal abnormalities (WMSAs). WMSAs are particularly evident in hypertensive older adults, suggesting vascular involvement. However, because hypertension is assessed systemically, the specific role of cerebral arterial stiffening in WMSAs has yet to be demonstrated. In 93 cognitively normal adults (aged 18-87 years), we used a novel method to measure cerebral arterial elasticity (pulse relaxation function [PReFx]) with diffuse optical tomography (pulse-DOT) and investigated its association with WMSAs, age, and cognition. PReFx was associated with WMSAs, with older adults with low PReFx showing the greatest WMSA burden. PReFx in brain regions perfused by the middle cerebral artery showed the largest associations with WMSAs and partially mediated the relationship between age and WMSAs. Finally, WMSAs partially mediated the relationship between PReFx and fluid but not crystallized abilities scores. Taken together, these findings suggest that loss of cerebral arterial elasticity is associated with cerebral white matter lesions and age-related cognitive decline.
Collapse
|
184
|
Fishell AK, Burns-Yocum TM, Bergonzi KM, Eggebrecht AT, Culver JP. Mapping brain function during naturalistic viewing using high-density diffuse optical tomography. Sci Rep 2019; 9:11115. [PMID: 31366956 PMCID: PMC6668456 DOI: 10.1038/s41598-019-45555-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023] Open
Abstract
Naturalistic stimuli, such as movies, more closely recapitulate "real life" sensory processing and behavioral demands relative to paradigms that rely on highly distilled and repetitive stimulus presentations. The rich complexity inherent in naturalistic stimuli demands an imaging system capable of measuring spatially distributed brain responses, and analysis tools optimized for unmixing responses to concurrently presented features. In this work, the combination of passive movie viewing with high-density diffuse optical tomography (HD-DOT) is developed as a platform for naturalistic brain mapping. We imaged healthy young adults during free viewing of a feature film using HD-DOT and observed reproducible, synchronized cortical responses across a majority of the field-of-view, most prominently in hierarchical cortical areas related to visual and auditory processing, both within and between individuals. In order to more precisely interpret broad patterns of cortical synchronization, we extracted visual and auditory features from the movie stimulus and mapped the cortical responses to the features. The results demonstrate the sensitivity of HD-DOT to evoked responses during naturalistic viewing, and that feature-based decomposition strategies enable functional mapping of naturalistic stimulus processing, including human-generated speech.
Collapse
Affiliation(s)
- Andrew K Fishell
- Washington University School of Medicine, Division of Biology and Biomedical Sciences, St. Louis, USA
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, USA
| | - Tracy M Burns-Yocum
- Indiana University, Department of Psychological and Brain Sciences, Bloomington, USA
| | - Karla M Bergonzi
- University of Pennsylvania, Department of Anesthesia and Critical Care, Philadelphia, USA
- University of Pennsylvania, Department of Physics, Philadelphia, USA
| | - Adam T Eggebrecht
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, USA
| | - Joseph P Culver
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, USA.
- Washington University, Department of Physics, St. Louis, USA.
- Washington University, Department of Biomedical Engineering, St. Louis, USA.
| |
Collapse
|
185
|
Chiarelli AM, Low KA, Maclin EL, Fletcher MA, Kong TS, Zimmerman B, Tan CH, Sutton BP, Fabiani M, Gratton G. The Optical Effective Attenuation Coefficient as an Informative Measure of Brain Health in Aging. PHOTONICS 2019; 6. [PMID: 32377515 PMCID: PMC7202715 DOI: 10.3390/photonics6030079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aging is accompanied by widespread changes in brain tissue. Here, we hypothesized that head tissue opacity to near-infrared light provides information about the health status of the brain’s cortical mantle. In diffusive media such as the head, opacity is quantified through the Effective Attenuation Coefficient (EAC), which is proportional to the geometric mean of the absorption and reduced scattering coefficients. EAC is estimated by the slope of the relationship between source–detector distance and the logarithm of the amount of light reaching the detector (optical density). We obtained EAC maps across the head in 47 adults (age range 18–75 years), using a high-density dual-wavelength optical system. We correlated regional and global EAC measures with demographic, neuropsychological, structural and functional brain data. Results indicated that EAC values averaged across wavelengths were strongly associated with age-related changes in cortical thickness, as well as functional and neuropsychological measures. This is likely because the EAC largely depends on the thickness of the sub-arachnoid cerebrospinal fluid layer, which increases with cortical atrophy. In addition, differences in EAC values between wavelengths were correlated with tissue oxygenation and cardiorespiratory fitness, indicating that information about cortical health can be derived non-invasively by quantifying the EAC.
Collapse
Affiliation(s)
- Antonio M. Chiarelli
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Neuroscience, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.M.C.); (M.F.); (G.G.)
| | - Kathy A. Low
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Edward L. Maclin
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark A. Fletcher
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tania S. Kong
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Benjamin Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chin Hong Tan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Psychology, Nanyang Technological University, Singapore 639818, Singapore
- Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore
| | - Bradley P. Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Correspondence: (A.M.C.); (M.F.); (G.G.)
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Correspondence: (A.M.C.); (M.F.); (G.G.)
| |
Collapse
|
186
|
Doulgerakis M, Eggebrecht AT, Dehghani H. High-density functional diffuse optical tomography based on frequency-domain measurements improves image quality and spatial resolution. NEUROPHOTONICS 2019; 6:035007. [PMID: 31482102 PMCID: PMC6702521 DOI: 10.1117/1.nph.6.3.035007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/30/2019] [Indexed: 05/18/2023]
Abstract
Measurements of dynamic near-infrared (NIR) light attenuation across the human head together with model-based image reconstruction algorithms allow the recovery of three-dimensional spatial brain activation maps. Previous studies using high-density diffuse optical tomography (HD-DOT) systems have reported improved image quality over sparse arrays. These HD-DOT systems incorporated multidistance overlapping continuous wave measurements that only recover differential intensity attenuation. We investigate the potential improvement in reconstructed image quality due to the additional incorporation of phase shift measurements, which reflect the time-of-flight of the measured NIR light, within the tomographic reconstruction from high-density measurements. To evaluate image reconstruction with and without the additional phase information, we simulated point spread functions across a whole-scalp field of view in 24 subject-specific anatomical models using an experimentally derived noise model. The addition of phase information improves the image quality by reducing localization error by up to 59% and effective resolution by up to 21% as compared to using the intensity attenuation measurements alone. Furthermore, we demonstrate that the phase data enable images to be resolved at deeper brain regions where intensity data fail, which is further supported by utilizing experimental data from a single subject measurement during a retinotopic experiment.
Collapse
Affiliation(s)
- Matthaios Doulgerakis
- University of Birmingham, School of Computer Science, Birmingham, England, United Kingdom
| | - Adam T. Eggebrecht
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, England, United Kingdom
- Address all correspondence to Hamid Dehghani, E-mail:
| |
Collapse
|
187
|
Lu W, Duan J, Orive-Miguel D, Herve L, Styles IB. Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:2684-2707. [PMID: 31259044 PMCID: PMC6583327 DOI: 10.1364/boe.10.002684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 05/18/2023]
Abstract
Total variation (TV) is a powerful regularization method that has been widely applied in different imaging applications, but is difficult to apply to diffuse optical tomography (DOT) image reconstruction (inverse problem) due to unstructured discretization of complex geometries, non-linearity of the data fitting and regularization terms, and non-differentiability of the regularization term. We develop several approaches to overcome these difficulties by: i) defining discrete differential operators for TV regularization using both finite element and graph representations; ii) developing an optimization algorithm based on the alternating direction method of multipliers (ADMM) for the non-differentiable and non-linear minimization problem; iii) investigating isotropic and anisotropic variants of TV regularization, and comparing their finite element (FEM)- and graph-based implementations. These approaches are evaluated on experiments on simulated data and real data acquired from a tissue phantom. Our results show that both FEM and graph-based TV regularization is able to accurately reconstruct both sparse and non-sparse distributions without the over-smoothing effect of Tikhonov regularization and the over-sparsifying effect of L1 regularization. The graph representation was found to out-perform the FEM method for low-resolution meshes, and the FEM method was found to be more accurate for high-resolution meshes.
Collapse
Affiliation(s)
- Wenqi Lu
- School of Computer Science, University of Birmingham,
UK
| | - Jinming Duan
- School of Computer Science, University of Birmingham,
UK
| | - David Orive-Miguel
- CEA, LETI, MINATEC Campus, F-38054 Grenoble,
France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble,
France
| | - Lionel Herve
- CEA, LETI, MINATEC Campus, F-38054 Grenoble,
France
| | - Iain B. Styles
- School of Computer Science, University of Birmingham,
UK
| |
Collapse
|
188
|
Snyder AZ, Bauer AQ. Mapping Structure-Function Relationships in the Brain. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:510-521. [PMID: 30528965 PMCID: PMC6488459 DOI: 10.1016/j.bpsc.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
Abstract
Mapping the structural and functional connectivity of the brain is a major focus of systems neuroscience research and will help to identify causally important changes in neural circuitry responsible for behavioral dysfunction. Several methods for examining brain activity in humans have been extended to rodent and monkey models in which molecular and genetic manipulations exist for linking to human disease. In this review, which is part of a special issue focused on bridging brain connectivity information across species and spatiotemporal scales, we address mapping brain activity and neural connectivity in rodents using optogenetics in conjunction with either functional magnetic resonance imaging or optical intrinsic signal imaging. We chose to focus on these techniques because they are capable of reporting spontaneous or evoked hemodynamic activity most closely linked to human neuroimaging studies. We discuss the capabilities and limitations of blood-based imaging methods, usage of optogenetic techniques to map neural systems in rodent models, and other powerful mapping techniques for examining neural connectivity over different spatial and temporal scales. We also discuss implementing strategies for mapping brain connectivity in humans with both basic and clinical applications, and conclude with how cross-species mapping studies can be utilized to influence preclinical imaging studies and clinical practices alike.
Collapse
Affiliation(s)
- Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
189
|
Abstract
The global population is ageing at an accelerating speed. The ability to perform working memory tasks together with rapid processing becomes increasingly difficult with increases in age. With increasing national average life spans and a rise in the prevalence of age-related disease, it is pertinent to discuss the unique perspectives that can be gained from imaging the aged brain. Differences in structure, function, blood flow, and neurovascular coupling are present in both healthy aged brains and in diseased brains and have not yet been explored to their full depth in contemporary imaging studies. Imaging methods ranging from optical imaging to magnetic resonance imaging (MRI) to newer technologies such as photoacoustic tomography each offer unique advantages and challenges in imaging the aged brain. This paper will summarize first the importance and challenges of imaging the aged brain and then offer analysis of potential imaging modalities and their representative applications. The potential breakthroughs in brain imaging are also envisioned.
Collapse
Affiliation(s)
- Hannah Humayun
- Photoacoustic Imaging Laboratory, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Junjie Yao
- Photoacoustic Imaging Laboratory, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
190
|
Jackson ES, Wijeakumar S, Beal DS, Brown B, Zebrowski P, Spencer JP. A fNIRS Investigation of Speech Planning and Execution in Adults Who Stutter. Neuroscience 2019; 406:73-85. [DOI: 10.1016/j.neuroscience.2019.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023]
|
191
|
Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Hutter MA, Deán-Ben XL, Shoham S, Razansky D. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat Biomed Eng 2019; 3:392-401. [PMID: 30992553 PMCID: PMC6825512 DOI: 10.1038/s41551-019-0372-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/19/2019] [Indexed: 01/25/2023]
Abstract
Efforts to scale neuroimaging towards the direct visualization of mammalian brain-wide neuronal activity have faced major challenges. Although high-resolution optical imaging of the whole brain in small animals has been achieved ex vivo, the real-time and direct monitoring of large-scale neuronal activity remains difficult, owing to the performance gap between localized, largely invasive, optical microscopy of rapid, cellular-resolved neuronal activity and whole-brain macroscopy of slow haemodynamics and metabolism. Here, we demonstrate both ex vivo and non-invasive in vivo functional optoacoustic (OA) neuroimaging of mice expressing the genetically encoded calcium indicator GCaMP6f. The approach offers rapid, high-resolution three-dimensional snapshots of whole-brain neuronal activity maps using single OA excitations, and of stimulus-evoked slow haemodynamics and fast calcium activity in the presence of strong haemoglobin background absorption. By providing direct neuroimaging at depths and spatiotemporal resolutions superior to optical fluorescence imaging, functional OA neuroimaging bridges the gap between functional microscopy and whole-brain macroscopy.
Collapse
Affiliation(s)
- Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Oleksiy Degtyaruk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Benedict Mc Larney
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Rebling
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Magdalena Anastasia Hutter
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Xosé Luís Deán-Ben
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Shy Shoham
- Tech4Health Institute, New York University Langone Health, New York, NY, USA.
- Neuroscience Institute, New York University Langone Health, New York, NY, USA.
- Department of Ophthalmology, New York University Langone Health, New York, NY, USA.
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany.
- Faculty of Medicine, Technical University of Munich, Munich, Germany.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
192
|
Wheelock MD, Culver JP, Eggebrecht AT. High-density diffuse optical tomography for imaging human brain function. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:051101. [PMID: 31153254 PMCID: PMC6533110 DOI: 10.1063/1.5086809] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/14/2019] [Indexed: 05/08/2023]
Abstract
This review describes the unique opportunities and challenges for noninvasive optical mapping of human brain function. Diffuse optical methods offer safe, portable, and radiation free alternatives to traditional technologies like positron emission tomography or functional magnetic resonance imaging (fMRI). Recent developments in high-density diffuse optical tomography (HD-DOT) have demonstrated capabilities for mapping human cortical brain function over an extended field of view with image quality approaching that of fMRI. In this review, we cover fundamental principles of the diffusion of near infrared light in biological tissue. We discuss the challenges involved in the HD-DOT system design and implementation that must be overcome to acquire the signal-to-noise necessary to measure and locate brain function at the depth of the cortex. We discuss strategies for validation of the sensitivity, specificity, and reliability of HD-DOT acquired maps of cortical brain function. We then provide a brief overview of some clinical applications of HD-DOT. Though diffuse optical measurements of neurophysiology have existed for several decades, tremendous opportunity remains to advance optical imaging of brain function to address a crucial niche in basic and clinical neuroscience: that of bedside and minimally constrained high fidelity imaging of brain function.
Collapse
Affiliation(s)
- Muriah D. Wheelock
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
193
|
Rojiani R, Zhang X, Noah A, Hirsch J. Communication of emotion via drumming: dual-brain imaging with functional near-infrared spectroscopy. Soc Cogn Affect Neurosci 2019; 13:1047-1057. [PMID: 30215809 PMCID: PMC6204489 DOI: 10.1093/scan/nsy076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Nonverbal communication of emotion is essential to human interaction and relevant to many clinical applications, yet it is an understudied topic in social neuroscience. Drumming is an ancient nonverbal communication modality for expression of emotion that has not been previously investigated in this context. We investigate the neural response to live, natural communication of emotion via drumming using a novel dual-brain neuroimaging paradigm. Hemodynamic signals were acquired using whole-head functional near-infrared spectroscopy (fNIRS). Dyads of 36 subjects participated in two conditions, drumming and talking, alternating between 'sending' (drumming or talking to partner) and 'receiving' (listening to partner) in response to emotionally salient images from the International Affective Picture System. Increased frequency and amplitude of drum strikes was behaviorally correlated with higher arousal and lower valence measures and neurally correlated with temporoparietal junction (TPJ) activation in the listener. Contrast comparisons of drumming greater than talking also revealed neural activity in right TPJ. Together, findings suggest that emotional content communicated by drumming engages right TPJ mechanisms in an emotionally and behaviorally sensitive fashion. Drumming may provide novel, effective clinical approaches for treating social-emotional psychopathology.
Collapse
Affiliation(s)
| | | | | | - Joy Hirsch
- Department of Psychiatry.,Department of Neuroscience.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT.,Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
194
|
Schytz HW, Amin FM, Selb J, Boas DA. Non-invasive methods for measuring vascular changes in neurovascular headaches. J Cereb Blood Flow Metab 2019; 39:633-649. [PMID: 28782410 PMCID: PMC6446419 DOI: 10.1177/0271678x17724138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular changes during spontaneous headache attacks have been studied over the last 30 years. The interest in cerebral vessels in headache research was initially due to the hypothesis of cerebral vessels as the pain source. Here, we review the knowledge gained by measuring the cerebral vasculature during spontaneous primary headache attacks with the use of single photon emission tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRA) and transcranial Doppler (TCD). Furthermore, the use of near-infrared spectroscopy in headache research is reviewed. Existing TCD studies of migraine and other headache disorders do not provide solid evidence for cerebral blood flow velocity changes during spontaneous attacks of migraine headache. SPECT studies have clearly shown cortical vascular changes following migraine aura and the differences between migraine with aura compared to migraine without aura. PET studies have shown focal activation in brain structures related to headache, but whether the changes are specific to different primary headaches have yet to be demonstrated. MR angiography has shown precise changes in large cerebral vessels during spontaneous migraine without aura attacks. Future development in more precise imaging methods may further elucidate the pathophysiological mechanisms in primary headaches.
Collapse
Affiliation(s)
- Henrik W Schytz
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Faisal M Amin
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Juliette Selb
- 2 Department of Radiology, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - David A Boas
- 2 Department of Radiology, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
195
|
Shimokawa T, Ishii T, Takahashi Y, Mitani Y, Mifune H, Chubachi S, Satoh M, Oba Y, Adachi K, Sugawara S, Yamashita O. Development of multi-directional functional near-infrared spectroscopy system for human neuroimaging studies. BIOMEDICAL OPTICS EXPRESS 2019; 10:1393-1404. [PMID: 30891354 PMCID: PMC6420293 DOI: 10.1364/boe.10.001393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Multi-directional measurement using multi-directional light sources and multi-directional photodetectors drastically increases the amount of observation data without increasing the number of optical probes. In this study, we developed a novel multi-directional functional near-infrared spectroscopy (fNIRS) system for human neuroimaging studies. We tested our system by measuring the cortical hemodynamic changes of a single subject during a motor task and compared them with the same subject's functional magnetic resonance imaging (fMRI) data. We detected the direction-dependent fNIRS signals that originate from the cortical hemodynamic changes that are consistent with the fMRI data.
Collapse
Affiliation(s)
- Takeaki Shimokawa
- ATR Neural Information Analysis Laboratories, Kyoto 619-0288, Japan
- These authors contributed equally to this work
| | - Toshihiro Ishii
- Research and Development Division, RICOH Company Ltd., Miyagi 981-1241, Japan
- These authors contributed equally to this work
| | - Yoichiro Takahashi
- Research and Development Division, RICOH Company Ltd., Miyagi 981-1241, Japan
| | - Yuki Mitani
- Research and Development Division, RICOH Company Ltd., Miyagi 981-1241, Japan
| | - Hironobu Mifune
- Research and Development Division, RICOH Company Ltd., Miyagi 981-1241, Japan
| | - Sunao Chubachi
- Research and Development Division, RICOH Company Ltd., Miyagi 981-1241, Japan
| | - Masaki Satoh
- Research and Development Division, RICOH Company Ltd., Miyagi 981-1241, Japan
| | - Yoshihiro Oba
- Research and Development Division, RICOH Company Ltd., Miyagi 981-1241, Japan
| | - Kazuhiko Adachi
- Research and Development Division, RICOH Company Ltd., Miyagi 981-1241, Japan
| | - Satoru Sugawara
- Research and Development Division, RICOH Company Ltd., Miyagi 981-1241, Japan
| | - Okito Yamashita
- ATR Neural Information Analysis Laboratories, Kyoto 619-0288, Japan
| |
Collapse
|
196
|
Chiarelli AM, Mahmoudzadeh M, Low KA, Maclin EL, Kongolo G, Goudjil S, Fabiani M, Wallois F, Gratton G. Assessment of cerebrovascular development and intraventricular hemorrhages in preterm infants with optical measures of the brain arterial pulse wave. J Cereb Blood Flow Metab 2019; 39:466-480. [PMID: 28949275 PMCID: PMC6421243 DOI: 10.1177/0271678x17732694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/29/2017] [Accepted: 08/21/2017] [Indexed: 12/25/2022]
Abstract
Preterm infants (born at 24-34 weeks of gestational age) suffer from a high incidence of neurological complications. Cerebrovascular lesions (intraventricular hemorrhages, IVH, and ischemic injury) due to the immaturity of the vascular system and its inability to adapt to the extra-uterine environment are the major causes of adverse neurological outcomes. We investigated the feasibility of assessing cerebrovascular status in preterm infants using a novel non-invasive optical procedure, pulse-DOT, usable within the incubator. Pulse-DOT, validated in adults, provides estimates of cerebral arterial status based on optical measurements of the pulse wave. These measurements are taken with a high-density optode montage and provide accurate spatial and temporal information. We found that two pulse parameters (pulse relaxation function, PReFx, and pulse rise time, PRT) in the investigated frontotemporal region, correlated with infant's age at recording, indexing cerebrovascular development. Moreover, PRT differentiated infants with and without concurrent IVH (sensitivity = 100%, specificity = 70%). These values are at least as high as those of the resistivity index obtained with transcranial Doppler of the middle cerebral artery, the current clinical method of choice for investigating arterial elasticity in preterm infants. This makes pulse-DOT a promising tool for investigating cerebrovascular risk factors and related pathologies in preterm infants.
Collapse
Affiliation(s)
- Antonio M Chiarelli
- Beckman Institute, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Mahdi Mahmoudzadeh
- Institut National de la Santé et de la Recherche Médicale (INSERM), GRAMFC, Université de Picardie Jules Verne, Amiens, France
- Service de Réanimation Néonatale, CHU Amiens, Amiens, France
| | - Kathy A Low
- Beckman Institute, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Edward L Maclin
- Beckman Institute, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Guy Kongolo
- Institut National de la Santé et de la Recherche Médicale (INSERM), GRAMFC, Université de Picardie Jules Verne, Amiens, France
- Service de Réanimation Néonatale, CHU Amiens, Amiens, France
| | - Sabrina Goudjil
- Institut National de la Santé et de la Recherche Médicale (INSERM), GRAMFC, Université de Picardie Jules Verne, Amiens, France
- Service de Réanimation Néonatale, CHU Amiens, Amiens, France
| | - Monica Fabiani
- Beckman Institute, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Psychology Department, University of Illinois at Urbana Champaign, Champaign, IL, USA
| | - Fabrice Wallois
- Institut National de la Santé et de la Recherche Médicale (INSERM), GRAMFC, Université de Picardie Jules Verne, Amiens, France
- Service d’Explorations Fonctionnelles du Système Nerveux Pédiatrique, CHU Amiens, Amiens, France
| | - Gabriele Gratton
- Beckman Institute, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Psychology Department, University of Illinois at Urbana Champaign, Champaign, IL, USA
| |
Collapse
|
197
|
Zhang F, Roeyers H. Exploring brain functions in autism spectrum disorder: A systematic review on functional near-infrared spectroscopy (fNIRS) studies. Int J Psychophysiol 2019; 137:41-53. [DOI: 10.1016/j.ijpsycho.2019.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
198
|
Althobaiti M, Vavadi H, Zhu Q. An Automated Preprocessing Method for Diffuse Optical Tomography to Improve Breast Cancer Diagnosis. Technol Cancer Res Treat 2019; 17:1533033818802791. [PMID: 30278830 PMCID: PMC6170968 DOI: 10.1177/1533033818802791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ultrasound-guided diffuse optical tomography is a noninvasive imaging technique for breast cancer diagnosis and treatment monitoring. The technique uses a handheld probe capable of providing measurements of multiple wavelengths in a few seconds. These measurements are used to estimate optical absorptions of lesions and calculate the total hemoglobin concentration. Any measurement errors caused by low signal to noise ratio data and/or movements during data acquisition would reduce the accuracy of reconstructed total hemoglobin concentration. In this article, we introduce an automated preprocessing method that combines data collected from multiple sets of lesion measurements of 4 optical wavelengths to detect and correct outliers in the perturbation. Two new measures of correlation between each pair of wavelength measurements and a wavelength consistency index of all reconstructed absorption maps are introduced. For phantom and patients' data without evidence of measurement errors, the correlation coefficient between each pair of wavelength measurements was above 0.6. However, for patients with measurement errors, the correlation coefficient was much lower. After applying the correction method to 18 patients' data with measurement errors, the correlation has improved and the wavelength consistency index is in the same range as the cases without wavelength-dependent measurement errors. The results show an improvement in classification of malignant and benign lesions.
Collapse
Affiliation(s)
- Murad Althobaiti
- 1 Biomedical Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hamed Vavadi
- 2 Biomedical Engineering Department, University of Connecticut, Mansfield, CT, USA
| | - Quing Zhu
- 3 Biomedical Engineering Department, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
199
|
Portable Near-Infrared Technologies and Devices for Noninvasive Assessment of Tissue Hemodynamics. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:3750495. [PMID: 30891170 PMCID: PMC6390246 DOI: 10.1155/2019/3750495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Tissue hemodynamics, including the blood flow, oxygenation, and oxygen metabolism, are closely associated with many diseases. As one of the portable optical technologies to explore human physiology and assist in healthcare, near-infrared diffuse optical spectroscopy (NIRS) for tissue oxygenation measurement has been developed for four decades. In recent years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been emerging as a portable tool for tissue blood flow measurement. In this article, we briefly describe the basic principle and algorithms for static NIRS and dynamic NIRS (i.e., DCS). Then, we elaborate on the NIRS instrumentation, either commercially available or custom-made, as well as their applications to physiological studies and clinic. The extension of NIRS/DCS from spectroscopy to imaging was depicted, followed by introductions of advanced algorithms that were recently proposed. The future prospective of the NIRS/DCS and their feasibilities for routine utilization in hospital is finally discussed.
Collapse
|
200
|
Wang B, Pan T, Zhang Y, Liu D, Jiang J, Zhao H, Gao F. A Kalman-based tomographic scheme for directly reconstructing activation levels of brain function. OPTICS EXPRESS 2019; 27:3229-3246. [PMID: 30732347 DOI: 10.1364/oe.27.003229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In functional near-infrared spectroscopy (fNIRS), the conventional indirect approaches first separately recover the spatial distribution of the changes in the optical properties at every time point, and then extract the activation levels by a time-course analysis process at every site. In the tomographic implementation of fNIRS, i.e., diffuse optical tomography (DOT), these approaches not only suffer from the ill-posedness of the optical inversions and error propagation between the two successive steps, but also fail to achieve satisfactory temporal resolution due to the requirement for a complete data set. To cope with the above adversities of the indirect approaches, we propose herein a direct approach to tomographically reconstructing the activation levels by incorporating a Kalman scheme. Dynamic simulative and phantom experiments were conducted for the performance validation of the proposed approach, demonstrating its potentials to improve the calculated images and to relax the speed limitation of the instruments.
Collapse
|