151
|
Bioprofiling TS/A Murine Mammary Cancer for a Functional Precision Experimental Model. Cancers (Basel) 2019; 11:cancers11121889. [PMID: 31783695 PMCID: PMC6966465 DOI: 10.3390/cancers11121889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
The TS/A cell line was established in 1983 from a spontaneous mammary tumor arisen in an inbred BALB/c female mouse. Its features (heterogeneity, low immunogenicity and metastatic ability) rendered the TS/A cell line suitable as a preclinical model for studies on tumor-host interactions and for gene therapy approaches. The integrated biological profile of TS/A resulting from the review of the literature could be a path towards the description of a precision experimental model of mammary cancer.
Collapse
|
152
|
Mouse Models for Immunotherapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111800. [PMID: 31731753 PMCID: PMC6896030 DOI: 10.3390/cancers11111800] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is one of the dominant causes of cancer-related mortality, and the survival rate of liver cancer is among the lowest for all cancers. Immunotherapy for hepatocellular carcinoma (HCC) has yielded some encouraging results, but the percentage of patients responding to single-agent therapies remains low. Therefore, potential directions for improved immunotherapies include identifying new immune targets and checkpoints and customizing treatment procedures for individual patients. The development of combination therapies for HCC is also crucial and urgent and, thus, further studies are required. Mice have been utilized in immunotherapy research due to several advantages, for example, being low in cost, having high success rates for inducing tumor growth, and so on. Moreover, immune-competent mice are used in immunotherapy research to clarify the role that the immune system plays in cancer growth. In this review paper, the advantages and disadvantages of mouse models for immunotherapy, the equipment that are used for monitoring HCC, and the cell strains used for inducing HCC are reviewed.
Collapse
|
153
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
154
|
Migliorini D, Mason NJ, Posey AD. Keeping the Engine Running: The Relevance and Predictive Value of Preclinical Models for CAR-T Cell Development. ILAR J 2019; 59:276-285. [PMID: 31095687 DOI: 10.1093/ilar/ilz009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/03/2019] [Indexed: 12/24/2022] Open
Abstract
The cellular immunotherapy field has achieved important milestones in the last 30 years towards the treatment of a variety of cancers due to improvements in ex-vivo T cell manufacturing processes, the invention of synthetic T cell receptors, and advances in cellular engineering. Here, we discuss major preclinical models that have been useful for the validation of chimeric antigen receptor (CAR)-T cell therapies and also promising new models that will fuel future investigations towards success. However, multiple unanswered questions in the CAR-T cell field remain to be addressed that will require innovative preclinical models. Key challenges facing the field include premature immune rejection of universal CAR-T cells and the immune suppressive tumor microenvironment. Immune competent models that accurately recapitulate tumor heterogeneity, the hostile tumor microenvironment, and barriers to CAR-T cell homing, toxicity, and persistence are needed for further advancement of the field.
Collapse
Affiliation(s)
- Denis Migliorini
- University Hospital, Geneva, Switzerland; and Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy
| | - Nicola J Mason
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy, Philadelphia, PA
| | - Avery D Posey
- Department of Pathology and Laboratory Medicine, and Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy; and Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
155
|
Galassi C, Manic G, Musella M, Sistigu A, Vitale I. Assessment of IFN-γ and granzyme-B production by in "sitro" technology. Methods Enzymol 2019; 631:391-414. [PMID: 31948559 DOI: 10.1016/bs.mie.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor neantigens (TNAs) and tumor-associated antigens (TAAs) are crucial triggers of anticancer immune responses. Through major histocompatibility complex, such antigens activate T cells, which, by releasing interferon gamma (IFN-γ) and granzyme B (GRZB), act as crucial effectors against tumor onset and progression. However, in response to immune pressure, cancer cells use different strategies to favor the establishment of an immunosuppressive tumor microenvironment (TME). Elucidating the dynamics of tumor-host co-evolution provides novel opportunities for personalized cancer immunotherapies. The in sitro (in vitro+in situ) technology is an experimental approach involving the preparation of heterocellular cell suspensions from fresh tumors and their use in vitro. The in sitro experimental setup offers the possibility to (1) analyze immune-related parameters (e.g., quantification of cytokines released in the TME), (2) reveal the mechanism of action of drugs, and (3) unveil crucial cell-intrinsic and cell-extrinsic processes boosting anticancer immune responses. Nonetheless, the in sitro technology does not fully recapitulate the complexity of the tissue "in situ" nor models the patterns of infiltrating immune cell localization, and hence parallel experimentation should be scheduled. In this chapter we discuss in sitro technology to analyze and quantify IFN-γ and GRZB production by T cells either co-cultured with cancer cells in the presence of exogenous adjuvant stimuli (i.e., an antibody targeting the immune checkpoint programmed cell death protein 1, and recombinant calreticulin) and boosting with TAAs (i.e., the model SIINFEKL ovalbumin antigen). Specifically, we describe IFN-γ and GRZB quantification by flow cytometry, ELISA and ELISpot technologies.
Collapse
Affiliation(s)
- Claudia Galassi
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Martina Musella
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy; Department of Molecular Medicine, University "La Sapienza", Rome, Italy
| | - Antonella Sistigu
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy; Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Ilio Vitale
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy; Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy.
| |
Collapse
|
156
|
Alisjahbana A, Mohammad I, Gao Y, Evren E, Ringqvist E, Willinger T. Human macrophages and innate lymphoid cells: Tissue-resident innate immunity in humanized mice. Biochem Pharmacol 2019; 174:113672. [PMID: 31634458 DOI: 10.1016/j.bcp.2019.113672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Macrophages and innate lymphoid cells (ILCs) are tissue-resident cells that play important roles in organ homeostasis and tissue immunity. Their intricate relationship with the organs they reside in allows them to quickly respond to perturbations of organ homeostasis and environmental challenges, such as infection and tissue injury. Macrophages and ILCs have been extensively studied in mice, yet important species-specific differences exist regarding innate immunity between humans and mice. Complementary to ex-vivo studies with human cells, humanized mice (i.e. mice with a human immune system) offer the opportunity to study human macrophages and ILCs in vivo within their surrounding tissue microenvironments. In this review, we will discuss how humanized mice have helped gain new knowledge about the basic biology of these cells, as well as their function in infectious and malignant conditions. Furthermore, we will highlight active areas of investigation related to human macrophages and ILCs, such as their cellular heterogeneity, ontogeny, tissue residency, and plasticity. In the near future, we expect more fundamental discoveries in these areas through the combined use of improved humanized mouse models together with state-of-the-art technologies, such as single-cell RNA-sequencing and CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Imran Mohammad
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Elza Evren
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden.
| |
Collapse
|
157
|
Li J, Van Valkenburgh J, Hong X, Conti PS, Zhang X, Chen K. Small molecules as theranostic agents in cancer immunology. Theranostics 2019; 9:7849-7871. [PMID: 31695804 PMCID: PMC6831453 DOI: 10.7150/thno.37218] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
With further research into the molecular mechanisms and roles linking immune suppression and restraint of (pre)malignancies, immunotherapies have revolutionized clinical strategies in the treatment of cancer. However, nearly 70% of patients who received immune checkpoint therapeutics showed no response. Complementary and/or synergistic effects may occur when extracellular checkpoint antibody blockades combine with small molecules targeting intracellular signal pathways up/downstream of immune checkpoints or regulating the innate and adaptive immune response. After radiolabeling with radionuclides, small molecules can also be used for estimating treatment efficacy of immune checkpoint blockades. This review not only highlights some significant intracellular pathways and immune-related targets such as the kynurenine pathway, purinergic signaling, the kinase signaling axis, chemokines, etc., but also summarizes some attractive and potentially immunosuppression-related small molecule agents, which may be synergistic with extracellular immune checkpoint blockade. In addition, opportunities for small molecule-based theranostics in cancer immunology will be discussed.
Collapse
Affiliation(s)
- Jindian Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juno Van Valkenburgh
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Peter S. Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| |
Collapse
|
158
|
Kapp K, Volz B, Oswald D, Wittig B, Baumann M, Schmidt M. Beneficial modulation of the tumor microenvironment and generation of anti-tumor responses by TLR9 agonist lefitolimod alone and in combination with checkpoint inhibitors. Oncoimmunology 2019; 8:e1659096. [PMID: 31741757 PMCID: PMC6844329 DOI: 10.1080/2162402x.2019.1659096] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022] Open
Abstract
Activation of Toll-like receptor 9 (TLR9) is known to foster innate and adaptive immune responses and thus improve immune-mediated control of malignant disease. Lefitolimod is a potent TLR9 agonist without chemical modification developed for immunotherapeutic strategies. Modulation of the tumor microenvironment (TME) is a crucial requirement for the response to various immunotherapies: Immunogenic (“hot”) tumors, characterized by their T cell-infiltrated TME, respond better compared to non-immunogenic (“cold”) tumors. It has been speculated that the mode-of-action of lefitolimod provides the necessary signals for activation of immune cells, their differentiation into anti-tumor effector cells and their recruitment into the TME. We investigated the effect of lefitolimod on TME, and its potency to induce synergistic anti-tumor effects when combined with immune checkpoint inhibitory antibodies (CPI) in a murine model. Indeed, we could show that treatment with single-agent lefitolimod beneficially modulated the TME, via infiltration of activated CD8+ cells and a shift in the macrophage population toward M1 phenotype. The result was a pronounced anti-tumor effect correlated with the magnitude of infiltrated immune cells and tumor-specific T cell responses. In line with this, lefitolimod led to persistent anti-tumor memory in the EMT-6 model after tumor re-challenge. This was accompanied by an increase of tumor-specific T cell responses and cross-reactivity against different tumor cells. Lefitolimod clearly augmented the limited anti-tumor effect of the CPI anti-PD1 in an A20 and anti-PD-L1 in a CT26 model. These properties of potent immune surveillance reactivation render lefitolimod an ideal candidate as therapeutic agent for immuno-oncology, e.g. improving CPI strategies.
Collapse
Affiliation(s)
| | | | | | - Burghardt Wittig
- Mologen AG (advisor), Berlin, Germany.,MolBio2Math - Molecular Biology & Integral Biomathics, Berlin, Germany
| | | | | |
Collapse
|
159
|
Sica V, Bravo-San Pedro JM, Stoll G, Kroemer G. Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Int J Cancer 2019; 146:10-17. [PMID: 31396957 DOI: 10.1002/ijc.32616] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022]
Abstract
In contrast to prior belief, cancer cells require oxidative phosphorylation (OXPHOS) to strive, and exacerbated OXPHOS dependency frequently characterizes cancer stem cells, as well as primary or acquired resistance against chemotherapy or tyrosine kinase inhibitors. A growing arsenal of therapeutic agents is being designed to suppress the transfer of mitochondria from stromal to malignant cells, to interfere with mitochondrial biogenesis, to directly inhibit respiratory chain complexes, or to disrupt mitochondrial function in other ways. For the experimental treatment of cancers, OXPHOS inhibitors can be advantageously combined with tyrosine kinase inhibitors, as well as with other strategies to inhibit glycolysis, thereby causing a lethal energy crisis. Unfortunately, most of the preclinical data arguing in favor of OXPHOS inhibition have been obtained in xenograft models, in which human cancer cells are implanted in immunodeficient mice. Future studies on OXPHOS inhibitors should elaborate optimal treatment schedules and combination regimens that stimulate-or at least are compatible with-anticancer immune responses for long-term tumor control.
Collapse
Affiliation(s)
- Valentina Sica
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Team "Metabolism, Cancer & Immunity", équipe 11 labellisée par la Ligue contre le Cancer, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Team "Metabolism, Cancer & Immunity", équipe 11 labellisée par la Ligue contre le Cancer, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Gautier Stoll
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Team "Metabolism, Cancer & Immunity", équipe 11 labellisée par la Ligue contre le Cancer, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Team "Metabolism, Cancer & Immunity", équipe 11 labellisée par la Ligue contre le Cancer, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
160
|
Lévesque S, Le Naour J, Pietrocola F, Paillet J, Kremer M, Castoldi F, Baracco EE, Wang Y, Vacchelli E, Stoll G, Jolly A, De La Grange P, Zitvogel L, Kroemer G, Pol JG. A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunology 2019; 8:e1657375. [PMID: 31646107 PMCID: PMC6791453 DOI: 10.1080/2162402x.2019.1657375] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/16/2023] Open
Abstract
We have recently shown that chemotherapy with immunogenic cell death (ICD)-inducing agents can be advantageously combined with fasting regimens or caloric restriction mimetics (CRMs) to achieve superior tumor growth control via a T cell-dependent mechanism. Here, we show that the blockade of the CD11b-dependent extravasation of myeloid cells blocks such a combination effect as well. Based on the characterization of the myeloid and lymphoid immune infiltrates, including the expression pattern of immune checkpoint proteins (and noting a chemotherapy-induced overexpression of programmed death-ligand 1, PD-L1, on both cancer cells and leukocytes, as well as a reduced frequency of exhausted CD8+ T cells positive for programmed cell death 1 protein, PD-1), we then evaluated the possibility to combine ICD inducers, CRMs and targeting of the PD-1/PD-L1 interaction. While fasting or CRMs failed to improve tumor growth control by PD-1 blockade, ICD inducers alone achieved a partial sensitization to treatment with a PD-1-specific antibody. However, definitive cure of most of the tumor-bearing mice was only achieved by a tritherapy combining (i) ICD inducers exemplified by mitoxantrone and oxaliplatin, (ii) CRMs exemplified by hydroxycitrate and spermidine and substitutable for by fasting, and (iii) immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 interaction. Altogether, these results point to the possibility of synergistic interactions among distinct classes of anticancer agents.
Collapse
Affiliation(s)
- Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Julie Le Naour
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Federico Pietrocola
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Juliette Paillet
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Margerie Kremer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Francesca Castoldi
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Elisa E. Baracco
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Yan Wang
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Erika Vacchelli
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Gautier Stoll
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | | | | | - Laurence Zitvogel
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
161
|
Memon H, Patel BM. Immune checkpoint inhibitors in non-small cell lung cancer: A bird's eye view. Life Sci 2019; 233:116713. [DOI: 10.1016/j.lfs.2019.116713] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
|
162
|
Faithful preclinical mouse models for better translation to bedside in the field of immuno-oncology. Int J Clin Oncol 2019; 25:831-841. [PMID: 31407168 DOI: 10.1007/s10147-019-01520-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022]
Abstract
The success of immunotherapy using immune checkpoint inhibitors has changed the practice of cancer treatment tremendously. However, there are still many clinical challenges, such as drug resistance, predictive biomarker development, exploration of combination therapies, and prediction of immune-related adverse events in preclinical settings. To overcome these problems, it is essential to establish faithful preclinical mouse models that recapitulate the clinical features, molecular genetics, biological heterogeneity, and immune microenvironment of human cancers. Here we review the advantages and disadvantages of current preclinical mouse models, including syngeneic murine tumor cell lines, autochthonous tumor models, cancer cell line-derived xenografts, patient-derived-xenografts, and various kinds of immunologically humanized mice. We discuss how these models should be characterized and applied in preclinical settings, and how we should prepare preclinical studies for successful translation from bench to bedside.
Collapse
|
163
|
Huang X, Zhang Q, Lou Y, Wang J, Zhao X, Wang L, Zhang X, Li S, Zhao Y, Chen Q, Liang T, Bai X. USP22 Deubiquitinates CD274 to Suppress Anticancer Immunity. Cancer Immunol Res 2019; 7:1580-1590. [PMID: 31399419 DOI: 10.1158/2326-6066.cir-18-0910] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/08/2019] [Accepted: 08/05/2019] [Indexed: 11/16/2022]
Abstract
PD-1 (CD279)-PD-L1 (CD274) inhibitory signaling is critical for cancer immune evasion, and thus has become one of the major targets in anticancer immunotherapy. There are several studies that demonstrate the potent effects of posttranslational modifications of CD274 on immune inactivation and suppression, such as ubiquitination, phosphorylation, glycosylation, and palmitoylation. However, the regulatory mechanisms for CD274 deubiquitination are still largely unclear. Here, we identified ubiquitin-specific protease 22 (USP22) as a novel deubiquitinase of CD274. USP22 directly interacted with the C terminus of CD274, inducing its deubiquitination and stabilization. Across multiple cancer types, USP22 was highly expressed and frequently altered in liver cancer, closely correlating with poor prognosis of these patients. Genetic depletion of USP22 inhibited liver cancer growth in an immune system-dependent manner, increased tumor immunogenicity and tumor-infiltrating lymphocytes, and improved therapeutic efficacy of CD274-targeted immunotherapy and CDDP-based chemotherapy in mice. We demonstrate that targeting USP22 is a promising strategy to potentiate anticancer immunity for CD274-amplified cancer.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China. .,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, China
| | - Qi Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yu Lou
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Junli Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyu Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lin Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shanshan Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yulan Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China. .,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China. .,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
164
|
Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett 2019; 464:5-14. [PMID: 31404614 DOI: 10.1016/j.canlet.2019.08.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
The number of clinical protocols testing combined therapies including immune check-point inhibitors and platinum salts is currently increasing in lung cancer treatment, however preclinical studies and rationale are often lacking. Here, we evaluated the impact of cisplatin treatment on PD-L1 expression analyzing the clinicopathological characteristics of patients who received cisplatin-based neoadjuvant chemotherapy followed by surgery and showed that cisplatin-based induction treatment significantly increased PD-L1 staining in both tumor and immune cells from the microenvironment. Twenty-two patients exhibited positive PD-L1 staining variation after neoadjuvant chemotherapy; including 9 (23.1%) patients switching from <50% to ≥50% of stained tumor-cells. We also confirmed the up-regulation of PD-L1 by cisplatin, at both RNA and protein levels, in nude and immunocompetent mice bearing tumors grafted with A549, LNM-R, or LLC1 lung cancer cell lines. The combined administration of anti-PD-L1 antibodies (3 mg/kg) and cisplatin (1 mg/kg) to mice harboring lung carcinoma significantly reduced tumor growth compared to single agent treatments and controls. Overall, these results suggest that cisplatin treatment could synergize with PD-1/PD-L1 blockade to increase the clinical response, in particular through early and sustainable enhancement of PD-L1 expression.
Collapse
|
165
|
Meraz IM, Majidi M, Meng F, Shao R, Ha MJ, Neri S, Fang B, Lin SH, Tinkey PT, Shpall EJ, Morris J, Roth JA. An Improved Patient-Derived Xenograft Humanized Mouse Model for Evaluation of Lung Cancer Immune Responses. Cancer Immunol Res 2019; 7:1267-1279. [PMID: 31186248 PMCID: PMC7213862 DOI: 10.1158/2326-6066.cir-18-0874] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Human tumor xenograft models do not replicate the human immune system and tumor microenvironment. We developed an improved humanized mouse model, derived from fresh cord blood CD34+ stem cells (CD34+ HSC), and combined it with lung cancer cell line-derived human xenografts or patient-derived xenografts (Hu-PDX). Fresh CD34+ HSCs could reconstitute detectable mature human leukocytes (hCD45+) in mice at four weeks without the onset of graft-versus-host disease (GVHD). Repopulated human T cells, B cells, natural killer (NK) cells, dendritic cells (DC), and myeloid-derived suppressor cells (MDSC) increased in peripheral blood, spleen, and bone marrow over time. Although cultured CD34+ HSCs labeled with luciferase could be detected in mice, the cultured HSCs did not develop into mature human immune cells by four weeks, unlike fresh CD34+ HSCs. Ex vivo, reconstituted T cells, obtained from the tumor-bearing humanized mice, secreted IFNγ upon treatment with phorbol myristate acetate (PMA) or exposure to human A549 lung tumor cells and mediated antigen-specific CTL responses, indicating functional activity. Growth of engrafted PDXs and tumor xenografts was not dependent on the human leukocyte antigen status of the donor. Treatment with the anti-PD-1 checkpoint inhibitors pembrolizumab or nivolumab inhibited tumor growth in humanized mice significantly, and correlated with an increased number of CTLs and decreased MDSCs, regardless of the donor HLA type. In conclusion, fresh CD34+HSCs are more effective than their expanded counterparts in humanizing mice, and do so in a shorter time. The Hu-PDX model provides an improved platform for evaluation of immunotherapy.
Collapse
Affiliation(s)
- Ismail M Meraz
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feng Meng
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - RuPing Shao
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shinya Neri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peggy T Tinkey
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
166
|
Halbritter F, Farlik M, Schwentner R, Jug G, Fortelny N, Schnöller T, Pisa H, Schuster LC, Reinprecht A, Czech T, Gojo J, Holter W, Minkov M, Bauer WM, Simonitsch-Klupp I, Bock C, Hutter C. Epigenomics and Single-Cell Sequencing Define a Developmental Hierarchy in Langerhans Cell Histiocytosis. Cancer Discov 2019; 9:1406-1421. [PMID: 31345789 DOI: 10.1158/2159-8290.cd-19-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023]
Abstract
Langerhans cell histiocytosis (LCH) is a rare neoplasm predominantly affecting children. It occupies a hybrid position between cancers and inflammatory diseases, which makes it an attractive model for studying cancer development. To explore the molecular mechanisms underlying the pathophysiology of LCH and its characteristic clinical heterogeneity, we investigated the transcriptomic and epigenomic diversity in primary LCH lesions. Using single-cell RNA sequencing, we identified multiple recurrent types of LCH cells within these biopsies, including putative LCH progenitor cells and several subsets of differentiated LCH cells. We confirmed the presence of proliferative LCH cells in all analyzed biopsies using IHC, and we defined an epigenomic and gene-regulatory basis of the different LCH-cell subsets by chromatin-accessibility profiling. In summary, our single-cell analysis of LCH uncovered an unexpected degree of cellular, transcriptomic, and epigenomic heterogeneity among LCH cells, indicative of complex developmental hierarchies in LCH lesions. SIGNIFICANCE: This study sketches a molecular portrait of LCH lesions by combining single-cell transcriptomics with epigenome profiling. We uncovered extensive cellular heterogeneity, explained in part by an intrinsic developmental hierarchy of LCH cells. Our findings provide new insights and hypotheses for advancing LCH research and a starting point for personalizing therapy.See related commentary by Gruber et al., p. 1343.This article is highlighted in the In This Issue feature, p. 1325.
Collapse
Affiliation(s)
- Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Gunhild Jug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Schnöller
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Hanja Pisa
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Holter
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, St. Anna Kinderspital, Vienna, Austria
| | - Milen Minkov
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, Adolescent Medicine and Neonatology, Rudolfstiftung Hospital, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Caroline Hutter
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, St. Anna Kinderspital, Vienna, Austria
| |
Collapse
|
167
|
Ireson CR, Alavijeh MS, Palmer AM, Fowler ER, Jones HJ. The role of mouse tumour models in the discovery and development of anticancer drugs. Br J Cancer 2019; 121:101-108. [PMID: 31231121 PMCID: PMC6738037 DOI: 10.1038/s41416-019-0495-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Our understanding of cancer biology has increased substantially over the past 30 years. Despite this, and an increasing pharmaceutical company expenditure on research and development, the approval of novel oncology drugs during the past decade continues to be modest. In addition, the attrition of agents during clinical development remains high. This attrition can be attributed, at least in part, to the clinical development being underpinned by the demonstration of predictable efficacy in experimental models of human tumours. This review will focus on the range of models available for the discovery and development of anticancer drugs, from traditional subcutaneous injection of tumour cell lines to mice genetically engineered to spontaneously give rise to tumours. It will consider the best time to use the models, along with practical applications and shortcomings. Finally, and most importantly, it will describe how these models reflect the underlying cancer biology and how well they predict efficacy in the clinic. Developing a line of sight to the clinic early in a drug discovery project provides clear benefit, as it helps to guide the selection of appropriate preclinical models and facilitates the investigation of relevant biomarkers.
Collapse
Affiliation(s)
| | - Mo S Alavijeh
- Pharmidex Pharmaceutical Services, 14 Hanover Street, London, W1S 1YH, UK
| | - Alan M Palmer
- Reading School of Pharmacy, Whiteknights, Reading, RG6 6A, UK
| | - Emily R Fowler
- Pharmidex Pharmaceutical Services, 14 Hanover Street, London, W1S 1YH, UK.,Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, Scotland, UK
| | | |
Collapse
|
168
|
A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 2019; 175:313-326. [PMID: 30290139 DOI: 10.1016/j.cell.2018.09.035] [Citation(s) in RCA: 894] [Impact Index Per Article: 178.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022]
Abstract
Harnessing an antitumor immune response has been a fundamental strategy in cancer immunotherapy. For over a century, efforts have primarily focused on amplifying immune activation mechanisms that are employed by humans to eliminate invaders such as viruses and bacteria. This "immune enhancement" strategy often results in rare objective responses and frequent immune-related adverse events (irAEs). However, in the last decade, cancer immunotherapies targeting the B7-H1/PD-1 pathway (anti-PD therapy), have achieved higher objective response rates in patients with much fewer irAEs. This more beneficial tumor response-to-toxicity profile stems from distinct mechanisms of action that restore tumor-induced immune deficiency selectively in the tumor microenvironment, here termed "immune normalization," which has led to its FDA approval in more than 10 cancer indications and facilitated its combination with different therapies. In this article, we wish to highlight the principles of immune normalization and learn from it, with the ultimate goal to guide better designs for future cancer immunotherapies.
Collapse
|
169
|
Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela V, Casanova-Acebes M, Dhainaut M, Villacorta-Martin C, Singhi AD, Moghe A, von Felden J, Tal Grinspan L, Wang S, Kamphorst AO, Monga SP, Brown BD, Villanueva A, Llovet JM, Merad M, Lujambio A. β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov 2019. [PMID: 31186238 DOI: 10.1158/2159-8290.cd-19-0074.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PD-1 immune checkpoint inhibitors have produced encouraging results in patients with hepatocellular carcinoma (HCC). However, what determines resistance to anti-PD-1 therapies is unclear. We created a novel genetically engineered mouse model of HCC that enables interrogation of how different genetic alterations affect immune surveillance and response to immunotherapies. Expression of exogenous antigens in MYC;Trp53 -/- HCCs led to T cell-mediated immune surveillance, which was accompanied by decreased tumor formation and increased survival. Some antigen-expressing MYC;Trp53 -/- HCCs escaped the immune system by upregulating the β-catenin (CTNNB1) pathway. Accordingly, expression of exogenous antigens in MYC;CTNNB1 HCCs had no effect, demonstrating that β-catenin promoted immune escape, which involved defective recruitment of dendritic cells and consequently impaired T-cell activity. Expression of chemokine CCL5 in antigen-expressing MYC;CTNNB1 HCCs restored immune surveillance. Finally, β-catenin-driven tumors were resistant to anti-PD-1. In summary, β-catenin activation promotes immune escape and resistance to anti-PD-1 and could represent a novel biomarker for HCC patient exclusion. SIGNIFICANCE: Determinants of response to anti-PD-1 immunotherapies in HCC are poorly understood. Using a novel mouse model of HCC, we show that β-catenin activation promotes immune evasion and resistance to anti-PD-1 therapy and could potentially represent a novel biomarker for HCC patient exclusion.See related commentary by Berraondo et al., p. 1003.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pedro Molina-Sánchez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Maier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Sia
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Puigvehi
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Hospital del Mar, IMIM, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Verónica Miguela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - María Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maxime Dhainaut
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carlos Villacorta-Martin
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aatur D Singhi
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Akshata Moghe
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Johann von Felden
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lauren Tal Grinspan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shuang Wang
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian D Brown
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit and Pathology Department, IDIBAPS, Hospital Clínic, CIBERehd, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
170
|
Helmlinger G, Sokolov V, Peskov K, Hallow KM, Kosinsky Y, Voronova V, Chu L, Yakovleva T, Azarov I, Kaschek D, Dolgun A, Schmidt H, Boulton DW, Penland RC. Quantitative Systems Pharmacology: An Exemplar Model-Building Workflow With Applications in Cardiovascular, Metabolic, and Oncology Drug Development. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:380-395. [PMID: 31087533 PMCID: PMC6617832 DOI: 10.1002/psp4.12426] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Quantitative systems pharmacology (QSP), a mechanistically oriented form of drug and disease modeling, seeks to address a diverse set of problems in the discovery and development of therapies. These problems bring a considerable amount of variability and uncertainty inherent in the nonclinical and clinical data. Likewise, the available modeling techniques and related software tools are manifold. Appropriately, the development, qualification, application, and impact of QSP models have been similarly varied. In this review, we describe the progressive maturation of a QSP modeling workflow: a necessary step for the efficient, reproducible development and qualification of QSP models, which themselves are highly iterative and evolutive. Furthermore, we describe three applications of QSP to impact drug development; one supporting new indications for an approved antidiabetic clinical asset through mechanistic hypothesis generation, one highlighting efficacy and safety differentiation within the sodium‐glucose cotransporter‐2 inhibitor drug class, and one enabling rational selection of immuno‐oncology drug combinations.
Collapse
Affiliation(s)
- Gabriel Helmlinger
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Boston, Massachusetts, USA
| | | | - Kirill Peskov
- M&S Decisions LLC, Moscow, Russia.,Computational Oncology Group, I.M. Sechenov First Moscow State Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Karen M Hallow
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.,Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | | | | | - Lulu Chu
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Boston, Massachusetts, USA
| | | | | | | | | | | | - David W Boulton
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Gaithersburg, Maryland, USA
| | - Robert C Penland
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Boston, Massachusetts, USA
| |
Collapse
|
171
|
Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela V, Casanova-Acebes M, Dhainaut M, Villacorta-Martin C, Singhi AD, Moghe A, von Felden J, Tal Grinspan L, Wang S, Kamphorst AO, Monga SP, Brown BD, Villanueva A, Llovet JM, Merad M, Lujambio A. β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov 2019; 9:1124-1141. [PMID: 31186238 DOI: 10.1158/2159-8290.cd-19-0074] [Citation(s) in RCA: 524] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
PD-1 immune checkpoint inhibitors have produced encouraging results in patients with hepatocellular carcinoma (HCC). However, what determines resistance to anti-PD-1 therapies is unclear. We created a novel genetically engineered mouse model of HCC that enables interrogation of how different genetic alterations affect immune surveillance and response to immunotherapies. Expression of exogenous antigens in MYC;Trp53 -/- HCCs led to T cell-mediated immune surveillance, which was accompanied by decreased tumor formation and increased survival. Some antigen-expressing MYC;Trp53 -/- HCCs escaped the immune system by upregulating the β-catenin (CTNNB1) pathway. Accordingly, expression of exogenous antigens in MYC;CTNNB1 HCCs had no effect, demonstrating that β-catenin promoted immune escape, which involved defective recruitment of dendritic cells and consequently impaired T-cell activity. Expression of chemokine CCL5 in antigen-expressing MYC;CTNNB1 HCCs restored immune surveillance. Finally, β-catenin-driven tumors were resistant to anti-PD-1. In summary, β-catenin activation promotes immune escape and resistance to anti-PD-1 and could represent a novel biomarker for HCC patient exclusion. SIGNIFICANCE: Determinants of response to anti-PD-1 immunotherapies in HCC are poorly understood. Using a novel mouse model of HCC, we show that β-catenin activation promotes immune evasion and resistance to anti-PD-1 therapy and could potentially represent a novel biomarker for HCC patient exclusion.See related commentary by Berraondo et al., p. 1003.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pedro Molina-Sánchez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Maier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Sia
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Puigvehi
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Hospital del Mar, IMIM, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Verónica Miguela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - María Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maxime Dhainaut
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carlos Villacorta-Martin
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aatur D Singhi
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Akshata Moghe
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Johann von Felden
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lauren Tal Grinspan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shuang Wang
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian D Brown
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit and Pathology Department, IDIBAPS, Hospital Clínic, CIBERehd, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
172
|
Pénzváltó Z, Chen JQ, Tepper CG, Davis RR, Silvestrini MT, Umeh-Garcia M, Sweeney C, Borowsky AD. A Syngeneic ErbB2 Mammary Cancer Model for Preclinical Immunotherapy Trials. J Mammary Gland Biol Neoplasia 2019; 24:149-162. [PMID: 30810966 PMCID: PMC6612594 DOI: 10.1007/s10911-019-09425-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
In order to develop a practical model of breast cancer, with in vitro and syngeneic, immune-intact, in vivo growth capacity, we established a primary cell line derived from a mammary carcinoma in the transgenic FVB/N-Tg(MMTV-ErbB2*)NDL2-5Mul mouse, referred to as "NDLUCD". The cell line is adapted to standard cell culture and can be transplanted into syngeneic FVB/N mice. The line maintains a stable phenotype over multiple in vitro passages and rounds of in vivo transplantation. NDLUCD tumors in FVB/N mice exhibit high expression of ErbB2 and ErbB3 and signaling molecules downstream of ErbB2. The syngeneic transplant tumors elicit an immune reaction in the adjacent stroma, detected and characterized using histology, immunophenotyping, and gene expression. NDLUCD cells also express PD-L1 in vivo and in vitro, and in vivo transplants are reactive to anti-immune checkpoint therapy with responses conducive to immunotherapy studies. This new NDLUCD cell line model is a practical alternative to the more commonly used 4T1 cells, and our previously described FVB/N-Tg(MMTV-PyVT)634Mul derived Met-1fvb2 and FVB/NTg(MMTV-PyVTY315F/Y322F) derived DB-7fvb2 cell lines. The NDLUCD cells have, so far, remained genetically and phenotypically stable over many generations, with consistent and reproducible results in immune intact preclinical cohorts.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma/drug therapy
- Carcinoma/genetics
- Carcinoma/immunology
- Carcinoma/pathology
- Cell Line, Tumor/transplantation
- Drug Screening Assays, Antitumor/methods
- Feasibility Studies
- Female
- Humans
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Primary Cell Culture
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Reproducibility of Results
Collapse
Affiliation(s)
- Zsófia Pénzváltó
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Jane Qian Chen
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Ryan R Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Matthew T Silvestrini
- Department of Biomedical Engineering, University of California at Davis, Sacramento, CA, USA
| | - Maxine Umeh-Garcia
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA.
| |
Collapse
|
173
|
Bedognetti D, Ceccarelli M, Galluzzi L, Lu R, Palucka K, Samayoa J, Spranger S, Warren S, Wong KK, Ziv E, Chowell D, Coussens LM, De Carvalho DD, DeNardo DG, Galon J, Kaufman HL, Kirchhoff T, Lotze MT, Luke JJ, Minn AJ, Politi K, Shultz LD, Simon R, Thórsson V, Weidhaas JB, Ascierto ML, Ascierto PA, Barnes JM, Barsan V, Bommareddy PK, Bot A, Church SE, Ciliberto G, De Maria A, Draganov D, Ho WS, McGee HM, Monette A, Murphy JF, Nisticò P, Park W, Patel M, Quigley M, Radvanyi L, Raftopoulos H, Rudqvist NP, Snyder A, Sweis RF, Valpione S, Zappasodi R, Butterfield LH, Disis ML, Fox BA, Cesano A, Marincola FM. Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop. J Immunother Cancer 2019; 7:131. [PMID: 31113486 PMCID: PMC6529999 DOI: 10.1186/s40425-019-0602-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor immunology has changed the landscape of cancer treatment. Yet, not all patients benefit as cancer immune responsiveness (CIR) remains a limitation in a considerable proportion of cases. The multifactorial determinants of CIR include the genetic makeup of the patient, the genomic instability central to cancer development, the evolutionary emergence of cancer phenotypes under the influence of immune editing, and external modifiers such as demographics, environment, treatment potency, co-morbidities and cancer-independent alterations including immune homeostasis and polymorphisms in the major and minor histocompatibility molecules, cytokines, and chemokines. Based on the premise that cancer is fundamentally a disorder of the genes arising within a cell biologic process, whose deviations from normality determine the rules of engagement with the host's response, the Society for Immunotherapy of Cancer (SITC) convened a task force of experts from various disciplines including, immunology, oncology, biophysics, structural biology, molecular and cellular biology, genetics, and bioinformatics to address the complexity of CIR from a holistic view. The task force was launched by a workshop held in San Francisco on May 14-15, 2018 aimed at two preeminent goals: 1) to identify the fundamental questions related to CIR and 2) to create an interactive community of experts that could guide scientific and research priorities by forming a logical progression supported by multiple perspectives to uncover mechanisms of CIR. This workshop was a first step toward a second meeting where the focus would be to address the actionability of some of the questions identified by working groups. In this event, five working groups aimed at defining a path to test hypotheses according to their relevance to human cancer and identifying experimental models closest to human biology, which include: 1) Germline-Genetic, 2) Somatic-Genetic and 3) Genomic-Transcriptional contributions to CIR, 4) Determinant(s) of Immunogenic Cell Death that modulate CIR, and 5) Experimental Models that best represent CIR and its conversion to an immune responsive state. This manuscript summarizes the contributions from each group and should be considered as a first milestone in the path toward a more contemporary understanding of CIR. We appreciate that this effort is far from comprehensive and that other relevant aspects related to CIR such as the microbiome, the individual's recombined T cell and B cell receptors, and the metabolic status of cancer and immune cells were not fully included. These and other important factors will be included in future activities of the taskforce. The taskforce will focus on prioritization and specific actionable approach to answer the identified questions and implementing the collaborations in the follow-up workshop, which will be held in Houston on September 4-5, 2019.
Collapse
Affiliation(s)
| | | | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | | | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Stefani Spranger
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MT, USA
| | | | - Kwok-Kin Wong
- Perlmutter Cancer Center, New York Langone Health, New York, NY, USA
| | - Elad Ziv
- University of California, San Francisco, San Francisco, CA, USA
| | - Diego Chowell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Daniel D De Carvalho
- Department of Medical Biophysics, Princess Margaret Cancer Centre University Health Network, University of Toronto, Toronto, Canada
| | - David G DeNardo
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Howard L Kaufman
- Massachusetts General Hospital, Boston, MA, USA and Replimune, Inc., Woburn, MA, USA
| | - Tomas Kirchhoff
- Perlmutter Comprehensive Cancer Center, New York University School of Medicine, New York University Langone Health New York, New York, NY, USA
| | - Michael T Lotze
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andy J Minn
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | - Adrian Bot
- Kite, a Gilead Company, Santa Monica, CA, USA
| | | | | | - Andrea De Maria
- Università degli Studi di Genova and Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | | - Winson S Ho
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Primary Children's Hospital, University of Utah, Salt Lake City, UT, USA
| | - Heather M McGee
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | | | - Paola Nisticò
- IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Wungki Park
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Laszlo Radvanyi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Sara Valpione
- CRUK Manchester Institute and The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, OR, USA
| | | | | |
Collapse
|
174
|
de Leve S, Wirsdörfer F, Jendrossek V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front Immunol 2019; 10:698. [PMID: 31024543 PMCID: PMC6460721 DOI: 10.3389/fimmu.2019.00698] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine is a potent endogenous immunosuppressive mediator critical to the maintenance of homeostasis in various normal tissues including the lung. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (CD73) that catabolize ATP to adenosine. An acute CD73-dependent increase of adenosine in normal tissues mostly exerts tissue protective functions whereas chronically increased adenosine-levels in tissues exposed to DNA damaging chemotherapy or radiotherapy promote pathologic remodeling processes and fibrosis for example in the skin and the lung. Importantly, cancer cells also express CD73 and high CD73 expression in the tumor tissue has been linked to poor overall survival and recurrence free survival in patients suffering from breast and ovarian cancer. CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cancer cells. In addition, adenosine can promote tumor intrinsic or therapy-induced immune escape by various mechanisms that dampen the immune system. Consequently, modulating CD73 or cancer-derived adenosine in the tumor microenvironment emerges as an attractive novel therapeutic strategy to limit tumor progression, improve antitumor immune responses, avoid therapy-induced immune deviation, and potentially limit normal tissue toxicity. However, the role of CD73/adenosine signaling in the tumor and normal tissue responses to radiotherapy and its use as therapeutic target to improve the outcome of radiotherapy approaches is less understood. The present review will highlight the dual role of CD73 and adenosine in tumor and tissue responses to radiotherapy with a special focus to the lung. It will also discuss the potential benefits and risks of pharmacologic modulation of the CD73/adenosine system to increase the therapeutic gain of radiotherapy or combined radioimmunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
175
|
cRGD target liposome delivery system promoted immunogenic cell death through enhanced anticancer potency of a thymidine conjugate under UVA activation as a cancer vaccine. Eur J Med Chem 2019; 167:499-509. [DOI: 10.1016/j.ejmech.2019.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|
176
|
Naphthyl quinoxaline thymidine conjugate is a potent anticancer agent post UVA activation and elicits marked inhibition of tumor growth through vaccination. Eur J Med Chem 2019; 171:255-264. [PMID: 30925340 DOI: 10.1016/j.ejmech.2019.03.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
Abstract
Anticancer anthracyclines are cytotoxic drugs that can induce antitumor immune response as a secondary effect through immunogenic cell death (ICD) mechanism. However, the immunogenic potency is quite limited, possibly due to that these chemotherapeutic agents are not specifically developed as ICD inducers. Thus, new drug entities through studies focusing on enhanced ICD induction would significantly promote antitumor immune response in the vaccination application. We report here a naphthyl quinoxaline thymidine conjugate as a new class of cytotoxic compounds that effectively induced in vivo antitumor activity through the vaccination application. Synthesized naphthyl quinoxaline conjugates were weak fluorescent thymidine analog yet exhibited a pronounced anticancer activity in the low nanomolar range post UVA activation. The potent activity of naphthyl conjugate was able to induce the marked detection of ICD markers including ATP and HMGB1 extracellular and calreticulin intracellularly at 2 h post UVA activation. Most importantly, mice vaccinated with cells treated with naphthyl conjugate plus UVA exhibited complete tumor growth inhibition in the tumor challenge study, and the induced immunogenic inhibition was much more effective than that of mitoxantrone anthracycline drug. All these results demonstrate the high potential of naphthyl quinoxaline conjugate for the cancer cell vaccine against tumor.
Collapse
|
177
|
Merlot AM, Kalinowski DS, Kovacevic Z, Jansson PJ, Sahni S, Huang MLH, Lane DJ, Lok H, Richardson DR. Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Curr Med Chem 2019; 26:302-322. [DOI: 10.2174/0929867324666170705120809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
Metals are vital cellular elements necessary for multiple indispensable biological processes of living organisms, including energy transduction and cell proliferation. Interestingly, alterations in metal levels and also changes in the expression of proteins involved in metal metabolism have been demonstrated in a variety of cancers. Considering this and the important role of metals for cell growth, the development of drugs that sequester metals has become an attractive target for the development of novel anti-cancer agents. Interest in this field has surged with the design and development of new generations of chelators of the thiosemicarbazone class. These ligands have shown potent anticancer and anti-metastatic activity in vitro and in vivo. Due to their efficacy and safe toxicological assessment, some of these agents have recently entered multi-center clinical trials as therapeutics for advanced and resistant tumors. This review highlights the role and changes in homeostasis of metals in cancer and emphasizes the pre-clinical development and clinical assessment of metal ion-binding agents, namely, thiosemicarbazones, as antitumor agents.
Collapse
Affiliation(s)
- Angelica M. Merlot
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Danuta S. Kalinowski
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Patric J. Jansson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Michael L.-H. Huang
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Darius J.R. Lane
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Hiu Lok
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| |
Collapse
|
178
|
Bailey KL, Carlson MA. Porcine Models of Pancreatic Cancer. Front Oncol 2019; 9:144. [PMID: 30915276 PMCID: PMC6423062 DOI: 10.3389/fonc.2019.00144] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/20/2019] [Indexed: 01/29/2023] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related deaths in both men and women. The 5-year survival rate for metastatic pancreatic cancer is only 8%. There remains a need for improved early diagnosis and therapy for pancreatic cancer. Murine models are the current standard for preclinical study of pancreatic cancer. However, mice may not accurately reflect human biology because of a variety of differences between the two species. Remarkably, only 5-8% of anti-cancer drugs that have emerged from preclinical studies and entered clinical studies have ultimately been approved for clinical use. The cause of this poor approval rate is multi-factorial, but may in part be due to use of murine models that have limited accuracy with respect to human disease. Murine models also have limited utility in the development of diagnostic or interventional technology that require a human-sized model. So, at present, there remains a need for improved animal models of pancreatic cancer. The rationale for a porcine model of pancreatic cancer is (i) to enable development of diagnostic/therapeutic devices for which murine models have limited utility; and (ii) to have a highly predictive preclinical model in which anti-cancer therapies can be tested and optimized prior to a clinical trial. Recently, pancreatic tumors were induced in transgenic Oncopigs and porcine pancreatic ductal cells were transformed that contain oncogenic KRAS and p53-null mutations. Both techniques to induce pancreatic tumors in pigs are undergoing further refinement and expansion. The Oncopig currently is commercially available, and it is conceivable that other porcine models of pancreatic cancer may be available for general use in the near future.
Collapse
Affiliation(s)
- Katie L. Bailey
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mark A. Carlson
- Department of Surgery and Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States,Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States,*Correspondence: Mark A. Carlson
| |
Collapse
|
179
|
Hong E, Dobrovolskaia MA. Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Adv Drug Deliv Rev 2019; 141:3-22. [PMID: 29339144 DOI: 10.1016/j.addr.2018.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Cancer is a complex systemic disorder that affects many organs and tissues and arises from the altered function of multiple cellular and molecular mechanisms. One of the systems malfunctioning in cancer is the immune system. Restoring and improving the ability of the immune system to effectively recognize and eradicate cancer is the main focus of immunotherapy, a topic which has garnered recent and significant interest. The initial excitement about immunotherapy, however, has been challenged by its limited efficacy in certain patient populations and the development of adverse effects such as therapeutic resistance and autoimmunity. At the same time, a number of advances in the field of nanotechnology have sought to address the challenges faced by modern immunotherapeutics and allow these therapeutic strategies to realize their full potential. This endeavour requires an understanding of not only the immunological barriers in cancer but also the mechanisms by which modern technologies and immunotherapeutics modulate the function of the immune system. Herein, we summarize the major barriers relevant to cancer immunotherapy and review current progress in addressing these obstacles using various approaches and clinically approved therapies. We then discuss the remaining challenges and how they can be addressed by nanotechnology. We lay out translational considerations relevant to the therapies described and propose a framework for the development of next-generation nanotechnology-enabled immunotherapies.
Collapse
|
180
|
Human macrophages survive and adopt activated genotypes in living zebrafish. Sci Rep 2019; 9:1759. [PMID: 30741975 PMCID: PMC6370805 DOI: 10.1038/s41598-018-38186-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
The inflammatory response, modulated both by tissue resident macrophages and recruited monocytes from peripheral blood, plays a critical role in human diseases such as cancer and neurodegenerative disorders. Here, we sought a model to interrogate human immune behavior in vivo. We determined that primary human monocytes and macrophages survive in zebrafish for up to two weeks. Flow cytometry revealed that human monocytes cultured at the physiological temperature of the zebrafish survive and differentiate comparable to cohorts cultured at human physiological temperature. Moreover, key genes that encode for proteins that play a role in tissue remodeling were also expressed. Human cells migrated within multiple tissues at speeds comparable to zebrafish macrophages. Analysis of gene expression of in vivo educated human macrophages confirmed expression of activated macrophage phenotypes. Here, human cells adopted phenotypes relevant to cancer progression, suggesting that we can define the real time immune modulation of human tumor cells during the establishment of a metastatic lesion in zebrafish.
Collapse
|
181
|
Saglam-Metiner P, Gulce-Iz S, Biray-Avci C. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment. Gene 2019; 686:203-212. [DOI: 10.1016/j.gene.2018.11.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/04/2018] [Accepted: 11/17/2018] [Indexed: 01/03/2023]
|
182
|
Gut microbiome and cancer immunotherapy. Cancer Lett 2019; 447:41-47. [PMID: 30684593 DOI: 10.1016/j.canlet.2019.01.015] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Microbiome is becoming crucial in that the balance between human health and disease can be mediated by the gut microbiome. The gut microbiome can modulate the host immune system both locally and systemically. Cancer immunotherapy has emerged as a promising way in the treatment of patients with cancer. Accumulating evidence supports that microbiome affects the therapeutic efficacy of cancer immunotherapy, particularly immune checkpoint inhibitors. Here, we discuss the mutual relationship among gut microbiome, cancer, immunity, and cancer immunotherapy, with a focus on immunotherapy. Also, we briefly introduce the relevant challenges that affect the therapeutic efficacy and present the possible solutions.
Collapse
|
183
|
Nishida-Aoki N, Gujral TS. Emerging approaches to study cell-cell interactions in tumor microenvironment. Oncotarget 2019; 10:785-797. [PMID: 30774780 PMCID: PMC6366828 DOI: 10.18632/oncotarget.26585] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 01/19/2023] Open
Abstract
Cell-cell interactions are of crucial importance for tissue formation, homeostasis, regeneration processes, and immune response. Recent studies underlined contribution of cell-cell interaction in tumor microenvironment (TME) for tumor progression and metastasis. Cancer cells modify the host cells to tumor-supportive traits, and the modified host cells contribute to tumor progression by interacting with cancer cells and further modifying other normal cells. However, the complex interaction networks of cancer cells and host cells remained largely unknown. Recent advances in high throughput microscopy and single cells-based molecular analyses have unlocked a new era for studying cell-cell interactions in the complex tissue microenvironment at the resolution of a single cell. Here, we review various model systems and emerging experimental approaches that are used to study cell-cell interactions focusing on the studies of TME. We discuss strengths and weaknesses of each model system and each experimental approach, and how upcoming approaches can solve current fundamental questions of cell-cell interactions in TME.
Collapse
Affiliation(s)
- Nao Nishida-Aoki
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Taranjit S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
184
|
Wernitznig D, Kiakos K, Del Favero G, Harrer N, Machat H, Osswald A, Jakupec MA, Wernitznig A, Sommergruber W, Keppler BK. First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics 2019; 11:1044-1048. [DOI: 10.1039/c9mt00051h] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ICD enhances antigenicity from dying cancer cells, which leads to antitumor immunity. We show for the first time that a ruthenium-complex induces the ICD signature in a 3D model.
Collapse
Affiliation(s)
- Debora Wernitznig
- Department of Inorganic Chemistry and Research Cluster ‘Translational Cancer Therapy Research’
- Faculty of Chemistry
- University of Vienna
- Vienna
- Austria
| | - Konstantinos Kiakos
- Department of Inorganic Chemistry and Research Cluster ‘Translational Cancer Therapy Research’
- Faculty of Chemistry
- University of Vienna
- Vienna
- Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology
- Faculty of Chemistry
- University of Vienna
- Vienna
- Austria
| | | | | | | | - Michael A. Jakupec
- Department of Inorganic Chemistry and Research Cluster ‘Translational Cancer Therapy Research’
- Faculty of Chemistry
- University of Vienna
- Vienna
- Austria
| | | | | | - Bernhard K. Keppler
- Department of Inorganic Chemistry and Research Cluster ‘Translational Cancer Therapy Research’
- Faculty of Chemistry
- University of Vienna
- Vienna
- Austria
| |
Collapse
|
185
|
Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations. J Transl Med 2019; 99:93-106. [PMID: 30353130 PMCID: PMC6524955 DOI: 10.1038/s41374-018-0137-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
The lack of consensus on bone marrow (BM) and splenic immune cell profiles in preclinical mouse strains complicates comparative analysis across different studies. Although studies have documented relative distribution of immune cells from peripheral blood in mice, similar studies for BM and spleen from naïve mice are lacking. In an effort to establish strain- and gender-specific benchmarks for distribution of various immune cell subtypes in these organs, we performed immunophenotypic analysis of BM cells and splenocytes from both genders of three commonly used murine strains (C57BL/6NCr, 129/SvHsd, and BALB/cAnNCr). Total neutrophils and splenic macrophages were significantly higher in C57BL/6NCr, whereas total B cells were lower. Within C57BL/6NCr female mice, BM B cells were elevated with respect to the males whereas splenic mDCs and splenic neutrophils were reduced. Within BALB/cAnNCr male mice, BM CD4+ Tregs were elevated with respect to the other strains. Furthermore, in male BALB/cAnNCr mice, NK cells were elevated with respect to the other strains in both BM and spleen. Splenic CD4+ Tregs and splenic CD8+ T cells were reduced in male BALB/c mice in comparison to female mice. Bone marrow CD4+ T cells and mDCs were significantly increased in 129/SvHsd whereas splenic CD8+ T cells were reduced. In general, males exhibited higher immature myeloid cells, macrophages, and NK cells. To our knowledge, this study provides a first attempt to systematically establish organ-specific benchmarks on immune cells in studies involving these mouse strains.
Collapse
|
186
|
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019; 19:9-31. [PMID: 30532012 PMCID: PMC6749995 DOI: 10.1038/s41568-018-0081-9] [Citation(s) in RCA: 663] [Impact Index Per Article: 132.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is a major global health problem, as it is the leading cause of cancer-related deaths worldwide. Major advances in the identification of key mutational alterations have led to the development of molecularly targeted therapies, whose efficacy has been limited by emergence of resistance mechanisms. US Food and Drug Administration (FDA)-approved therapies targeting angiogenesis and more recently immune checkpoints have reinvigorated enthusiasm in elucidating the prognostic and pathophysiological roles of the tumour microenvironment in lung cancer. In this Review, we highlight recent advances and emerging concepts for how the tumour-reprogrammed lung microenvironment promotes both primary lung tumours and lung metastasis from extrapulmonary neoplasms by contributing to inflammation, angiogenesis, immune modulation and response to therapies. We also discuss the potential of understanding tumour microenvironmental processes to identify biomarkers of clinical utility and to develop novel targeted therapies against lung cancer.
Collapse
Affiliation(s)
- Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey L Port
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashish Saxena
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brendon Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Timothy McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
187
|
Challenges in Stratifying the Molecular Variability of Patient-Derived Colon Tumor Xenografts. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2954208. [PMID: 30662905 PMCID: PMC6313970 DOI: 10.1155/2018/2954208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 01/14/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in Europe and a leading cause of death worldwide. Patient-derived xenograft (PDX) models maintain complex intratumoral biology and heterogeneity and therefore remain the platform of choice for translational drug discovery. In this study, we implanted 37 primary CRC tumors and five CRC cell lines into NU/J mice to develop xenograft models. Primary tumors and established xenografts were histologically assessed and surveyed for genetic variants and gene expression using a panel of 409 cancer-related genes and RNA-seq, respectively. More than half of CRC tumors (20 out of 37, 54%) developed into a PDX. Histological assessment confirmed that PDX grading, stromal components, inflammation, and budding were consistent with those of the primary tumors. DNA sequencing identified an average of 0.14 variants per gene per sample. The percentage of mutated variants in PDXs increased with successive passages, indicating a decrease in clonal heterogeneity. Gene Ontology analyses of 4180 differentially expressed transcripts (adj. p value < 0.05) revealed overrepresentation of genes involved in cell division and catabolic processes among the transcripts upregulated in PDXs; downregulated transcripts were associated with GO terms related to extracellular matrix organization, immune responses, and angiogenesis. Neither a transcriptome-based consensus molecular subtype (CMS) classifier nor three other predictors reliably matched PDX molecular subtypes with those of the primary tumors. In sum, both genetic and transcriptomic profiles differed between donor tumors and PDXs, likely as a consequence of subclonal evolution at the early phase of xenograft development, making molecular stratification of PDXs challenging.
Collapse
|
188
|
Xu YXZ, Mishra S. Obesity-Linked Cancers: Current Knowledge, Challenges and Limitations in Mechanistic Studies and Rodent Models. Cancers (Basel) 2018; 10:E523. [PMID: 30567335 PMCID: PMC6316427 DOI: 10.3390/cancers10120523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
The worldwide prevalence of obesity has doubled during the last 50 years, and according to the World Obesity Federation, one third of the people on Earth will be obese by the year 2025. Obesity is described as a chronic, relapsing and multifactorial disease that causes metabolic, biomechanical, and psychosocial health consequences. Growing evidence suggests that obesity is a risk factor for multiple cancer types and rivals smoking as the leading preventable cause for cancer incidence and mortality. The epidemic of obesity will likely generate a new wave of obesity-related cancers with high aggressiveness and shortened latency. Observational studies have shown that from cancer risk to disease prognosis, an individual with obesity is consistently ranked worse compared to their lean counterpart. Mechanistic studies identified similar sets of abnormalities under obesity that may lead to cancer development, including ectopic fat storage, altered adipokine profiles, hormone fluctuations and meta-inflammation, but could not explain how these common mechanisms produce over 13 different cancer types. A major hurdle in the mechanistic underpinning of obesity-related cancer is the lack of suitable pre-clinical models that spontaneously develop obesity-linked cancers like humans. Current approaches and animal models fall short when discerning the confounders that often coexist in obesity. In this mini-review, we will briefly survey advances in the different obesity-linked cancers and discuss the challenges and limitations in the rodent models employed to study their relationship. We will also provide our perspectives on the future of obesity-linked cancer research.
Collapse
Affiliation(s)
- Yang Xin Zi Xu
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Suresh Mishra
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
189
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
190
|
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018; 32:1267-1284. [PMID: 30275043 PMCID: PMC6169832 DOI: 10.1101/gad.314617.118] [Citation(s) in RCA: 1230] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, Gonzelez et al. provide an update of recent accomplishments, unifying concepts, and futures challenges to study tumor-associated immune cells, with an emphasis on metastatic carcinomas. The presence of inflammatory immune cells in human tumors raises a fundamental question in oncology: How do cancer cells avoid the destruction by immune attack? In principle, tumor development can be controlled by cytotoxic innate and adaptive immune cells; however, as the tumor develops from neoplastic tissue to clinically detectable tumors, cancer cells evolve different mechanisms that mimic peripheral immune tolerance in order to avoid tumoricidal attack. Here, we provide an update of recent accomplishments, unifying concepts, and future challenges to study tumor-associated immune cells, with an emphasis on metastatic carcinomas.
Collapse
Affiliation(s)
- Hugo Gonzalez
- Department of Anatomy, the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| | - Catharina Hagerling
- Department of Anatomy, the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| | - Zena Werb
- Department of Anatomy, the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
191
|
Galluzzi L, Kroemer G. Potent immunosuppressive effects of the oncometabolite R-2-hydroxyglutarate. Oncoimmunology 2018; 7:e1528815. [PMID: 30524910 DOI: 10.1080/2162402x.2018.1528815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 08/30/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Somatic gain-of-function mutations in isocitrate dehydrogenase (NADP(+)) 1, cytosolic (IDH1) or isocitrate dehydrogenase (NADP(+)) 2, mitochondrial (IDH2) are bona fide oncogenic drivers of acute myeloid leukemia and glioma because the neomorphic enzymes catalyze the synthesis of R-2-hydroxylutarate (R-2-HG), an oncometabolite with robust epigenetic effects. Recent data indicate that R-2-HG released by malignant cells can accumulate in the extracellular space and be taken up by T lymphocytes, ultimately compromising their capacity to mediate anticancer immune responses. Thus, R-2-HG drives oncogenesis and tumor progression not only as a cancer cell-autonomous epigenetic modifier, but also as an immunosuppressive metabolite. Chemical inhibitors of mutant IDH1 and IDH2, which currently are under clinical evaluation, may therefore mediate dual anticancer effects by targeting cancer cells and, at the same time, relieving R-2-HG-mediated immunosuppression.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, US.,Sandra and Edward Meyer Cancer Center, New York, US.,Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Université Pierre et Marie Curie, Paris, France.,Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, U1138, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Center of Systems Medicine, Chinese Academy of Medical Science, Suzhou, China
| |
Collapse
|
192
|
Zhao Y, Shuen TWH, Toh TB, Chan XY, Liu M, Tan SY, Fan Y, Yang H, Lyer SG, Bonney GK, Loh E, Chang KTE, Tan TC, Zhai W, Chan JKY, Chow EKH, Chee CE, Lee GH, Dan YY, Chow PKH, Toh HC, Lim SG, Chen Q. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. Gut 2018; 67:1845-1854. [PMID: 29602780 PMCID: PMC6145285 DOI: 10.1136/gutjnl-2017-315201] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/07/2018] [Accepted: 03/17/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE As the current therapeutic strategies for human hepatocellular carcinoma (HCC) have been proven to have limited effectiveness, immunotherapy becomes a compelling way to tackle the disease. We aim to provide humanised mouse (humice) models for the understanding of the interaction between human cancer and immune system, particularly for human-specific drug testing. DESIGN Patient-derived xenograft tumours are established with type I human leucocyte antigen matched human immune system in NOD-scid Il2rg-/- (NSG) mice. The longitudinal changes of the tumour and immune responses as well as the efficacy of immune checkpoint inhibitors are investigated. RESULTS Similar to the clinical outcomes, the human immune system in our model is educated by the tumour and exhibits exhaustion phenotypes such as a significant declination of leucocyte numbers, upregulation of exhaustion markers and decreased the production of human proinflammatory cytokines. Notably, cytotoxic immune cells decreased more rapidly compared with other cell types. Tumour infiltrated T cells have much higher expression of exhaustion markers and lower cytokine production compared with peripheral T cells. In addition, tumour-associated macrophages and myeloid-derived suppressor cells are found to be highly enriched in the tumour microenvironment. Interestingly, the tumour also changes gene expression profiles in response to immune responses by upregulating immune checkpoint ligands. Most importantly, in contrast to the NSG model, our model demonstrates both therapeutic and side effects of immune checkpoint inhibitors pembrolizumab and ipilimumab. CONCLUSIONS Our work provides a model for immune-oncology study and a useful parallel-to-human platform for anti-HCC drug testing, especially immunotherapy.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xue Ying Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hechuan Yang
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shridhar Ganpathi Lyer
- Division of Hepatobiliary and Liver Transplantation Surgery, National University Health System, Singapore
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary and Liver Transplantation Surgery, National University Health System, Singapore
| | - Eva Loh
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore
| | - Thiam Chye Tan
- Department of Obstetrics and Gynaecology, KK Women’s and Children’s Hospital, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore
- Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Cheng Ean Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Guan Huei Lee
- Division of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Division of Surgical Oncology, National Cancer Center Singapore, Singapore
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Seng Gee Lim
- Division of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
193
|
Abstract
Over the past six decades the inflation-adjusted cost to bring a new drug to market has been increasing constantly and doubles every 9 years - now reaching in excess of $2.5 billion. Overall, the likelihood of FDA approval for a drug (any disease indication) that has entered phase I clinical trials is a mere 9.6%, with the approval rate for oncology far below average at only 5.1%. Lack of efficacy or toxicity is often not revealed until the later stages of clinical trials, despite promising preclinical data. This indicates that the current in vitro systems for drug screening need to be improved for better predictability of in vivo outcomes. Microphysiological systems (MPS), or bioengineered 3D microfluidic tissue and organ constructs that mimic physiological and pathological processes in vitro, can be leveraged across preclinical research and clinical trial stages to transform drug development and clinical management for a range of diseases. Here we review the current state-of-the-art in 3D tissue-engineering models developed for cancer research, with a focus on tumor-on-a-chip, or tumor chip, models. From our viewpoint, tumor chip systems can advance innovative medicine to ameliorate the high failure rates in anti-cancer drug development and clinical treatment.
Collapse
Affiliation(s)
- Stephanie J Hachey
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
194
|
Roque-Lima B, Roque CCDTA, Begnami MD, Peresi P, Lima ENP, Mello CALD, Coimbra FJ, Chojniak R, Goss Santos T. Development of patient-derived orthotopic xenografts from metastatic colorectal cancer in nude mice. J Drug Target 2018; 27:943-949. [PMID: 30088428 DOI: 10.1080/1061186x.2018.1509983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Liver metastasis is the major cause of death for patients with colorectal cancer. Despite treatment with surgery and chemotherapy, patient outcomes are quite unfavourable. Thus, there is an urgent need to develop new treatment strategies with the associated establishment of good animal models. Metastatic disease can be modelled using patient-derived orthotopic xenografts, which accurately replicate intra-tumoral heterogeneity so that various chemotherapeutic agents can be tested on individual tumours to aid in clinical decision-making. The objective of this study was to develop metastatic colorectal tumours in athymic nude mice by implanting fresh tumour fragments into mouse liver parenchyma. Metastatic tumours were successfully propagated in mice following transplantation from human patients, then serially implanted in second and third-generation mice. Morphologic and immunohistochemical characteristics indicate that xenografts recreate the tumour architecture and mismatch repair gene expression for MLH1, MSH2, MSH1, and PMS2. After tumour implantation during the first passage, the time of tumour growth decreased without loss of tumour identity. Post-transplantation lymphoproliferative disease was observed in one case. This pilot study was successful in establishing the institutional PDX preclinical platform to study new therapeutic strategies, disease progression biomarkers, and treatment responsiveness.
Collapse
Affiliation(s)
- Bruno Roque-Lima
- a International Research Center, A.C. Camargo Cancer Center , São Paulo , Brazil
| | | | - Maria Dirlei Begnami
- b Department of Anatomic Pathology, A.C. Camargo Cancer Center , São Paulo , Brazil
| | - Patricia Peresi
- b Department of Anatomic Pathology, A.C. Camargo Cancer Center , São Paulo , Brazil
| | | | | | | | - Rubens Chojniak
- f Department of Imaging, A.C. Camargo Cancer Center , São Paulo , Brazil
| | - Tiago Goss Santos
- a International Research Center, A.C. Camargo Cancer Center , São Paulo , Brazil
| |
Collapse
|
195
|
Morton JJ, Keysar SB, Perrenoud L, Chimed TS, Reisinger J, Jackson B, Le PN, Nieto C, Gomez K, Miller B, Gao D, Somerset H, Wang XJ, Jimeno A. Dual use of hematopoietic and mesenchymal stem cells enhances engraftment and immune cell trafficking in an allogeneic humanized mouse model of head and neck cancer. Mol Carcinog 2018; 57:1651-1663. [PMID: 30129680 DOI: 10.1002/mc.22887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
Abstract
In this report, we describe in detail the evolving procedures to optimize humanized mouse cohort generation, including optimal conditioning, choice of lineage for engraftment, threshold for successful engraftment, HNSCC tumor implantation, and immune and stroma cell analyses. We developed a dual infusion protocol of human hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stem cells (MSCs), leading to incremental human bone marrow engraftment, and exponential increase in mature peripheral human immune cells, and intratumor homing that includes a more complete lineage reconstitution. Additionally, we have identified practical rules to predict successful HSPC/MSC expansion, and a peripheral human cell threshold associated with bone marrow engraftment, both of which will optimize cohort generation and management. The tremendous advances in immune therapy in cancer have made the need for appropriate and standardized models more acute than ever, and therefore, we anticipate that this manuscript will have an immediate impact in cancer-related research. The need for more representative tools to investigate the human tumor microenvironment (TME) has led to the development of humanized mouse models. However, the difficulty of immune system engraftment and minimal human immune cell infiltration into implanted xenografts are major challenges. We have developed an improved method for generating mismatched humanized mice (mHM), using a dual infusion of human HSPCs and MSCs, isolated from cord blood and expanded in vitro. Engraftment with both HSPCs and MSCs produces mice with almost twice the percentage of human immune cells in their bone marrow, compared to mice engrafted with HSPCs alone, and yields 9- to 38-fold higher levels of mature peripheral human immune cells. We identified a peripheral mHM blood human B cell threshold that predicts an optimal degree of mouse bone marrow humanization. When head and neck squamous cell carcinoma (HNSCC) tumors are implanted on the flanks of HSPC-MSC engrafted mice, human T cells, B cells, and macrophages infiltrate the stroma of these tumors at 2- to 8-fold higher ratios. In dually HSPC-MSC engrafted mice we also more frequently observed additional types of immune cells, including regulatory T cells, cytotoxic T cells, and MDSCs. Higher humanization was associated with in vivo response to immune-directed therapy. The complex immune environment arising in tumors from dually HSPC-MSC engrafted mice better resembles that of the originating patient's tumor, suggesting an enhanced capability to accurately recapitulate a human TME.
Collapse
Affiliation(s)
- John J Morton
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Loni Perrenoud
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Julie Reisinger
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Brian Jackson
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Cera Nieto
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Karina Gomez
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Dexiang Gao
- Department of Biostatistics and Informatics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, School of Medicine, University of Colorado, Aurora, Colorado.,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
196
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
197
|
Li HD, Cuevas I, Zhang M, Lu C, Alam MM, Fu YX, You MJ, Akbay EA, Zhang H, Castrillon DH. Polymerase-mediated ultramutagenesis in mice produces diverse cancers with high mutational load. J Clin Invest 2018; 128:4179-4191. [PMID: 30124468 PMCID: PMC6118636 DOI: 10.1172/jci122095] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022] Open
Abstract
Mutations underlie all cancers, and their identification and study are the foundation of cancer biology. We describe what we believe to be a novel approach to mutagenesis and cancer studies based on the DNA polymerase ε (POLE) ultramutator phenotype recently described in human cancers, in which a single amino acid substitution (most commonly P286R) in the proofreading domain results in error-prone DNA replication. We engineered a conditional PoleP286R allele in mice. PoleP286R/+ embryonic fibroblasts exhibited a striking mutator phenotype and immortalized more efficiently. PoleP286R/+ mice were born at Mendelian ratios but rapidly developed lethal cancers of diverse lineages, yielding the most cancer-prone monoallelic model described to date, to our knowledge. Comprehensive whole-genome sequencing analyses showed that the cancers were driven by high base substitution rates in the range of human cancers, overcoming a major limitation of previous murine cancer models. These data establish polymerase-mediated ultramutagenesis as an efficient in vivo approach for the generation of diverse animal cancer models that recapitulate the high mutational loads inherent to human cancers.
Collapse
Affiliation(s)
- Hao-Dong Li
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Ileana Cuevas
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Musi Zhang
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Changzheng Lu
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Md Maksudul Alam
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Yang-Xin Fu
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - M. James You
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Esra A. Akbay
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - He Zhang
- Lyda Hill Department of Bioinformatics, UTSW Medical Center, Dallas, Texas, USA
| | - Diego H. Castrillon
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
198
|
Clohessy JG, Pandolfi PP. The Mouse Hospital and Its Integration in Ultra-Precision Approaches to Cancer Care. Front Oncol 2018; 8:340. [PMID: 30211119 PMCID: PMC6122291 DOI: 10.3389/fonc.2018.00340] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Precision medicine holds real promise for the treatment of cancer. Adapting therapeutic strategies so patients receive individualized treatment protocols, will transform how diseases like cancer are managed. Already, molecular profiling technologies have provided unprecedented capacity to characterize tumors, yet the ability to translate this to actionable outcome in the clinic is limited. To enable real time translation of personalized therapeutic approaches to patient care in a co-clinical manner will require the adoption and integration of approaches that facilitate modeling of patient disease. The Mouse Hospital represents an approach that is ideally suited to pre- and co-clinical evaluation of novel therapeutic strategies for clinical care. Patient derived xenograft (PDX) technologies and in situ tumor modeling approaches using genetically engineered mouse models (GEMMs) already have a proven capacity to mimic human tumor responses, and their application can deliver invaluable insights into appropriate clinical approaches for individual patients by mirroring human clinical trials using a Co-Clinical Trial project and Mouse Hospital infrastructure. Additionally, the integration of the Mouse Hospital with other emerging technologies for the application of precision medicines, including organoid technologies, provides a platform that enables medical centers to truly reap the benefits that precision medicine has to offer.
Collapse
Affiliation(s)
- John G Clohessy
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
199
|
Spyridopoulou K, Aindelis G, Lampri E, Giorgalli M, Lamprianidou E, Kotsianidis I, Tsingotjidou A, Pappa A, Kalogirou O, Chlichlia K. Improving the Subcutaneous Mouse Tumor Model by Effective Manipulation of Magnetic Nanoparticles-Treated Implanted Cancer Cells. Ann Biomed Eng 2018; 46:1975-1987. [PMID: 30076502 DOI: 10.1007/s10439-018-2107-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
Murine tumor models have played a fundamental role in the development of novel therapeutic interventions and are currently widely used in translational research. Specifically, strategies that aim at reducing inter-animal variability of tumor size in transplantable mouse tumor models are of particular importance. In our approach, we used magnetic nanoparticles to label and manipulate colon cancer cells for the improvement of the standard syngeneic subcutaneous mouse tumor model. Following subcutaneous injection on the scruff of the neck, magnetically-tagged implanted cancer cells were manipulated by applying an external magnetic field towards localized tumor formation. Our data provide evidence that this approach can facilitate the formation of localized tumors of similar shape, reducing thereby the tumor size's variability. For validating the proof-of-principle, a low-dose of 5-FU was administered in small animal groups as a representative anticancer therapy. Under these experimental conditions, the 5-FU-induced tumor growth inhibition was statistically significant only after the implementation of the proposed method. The presented approach is a promising strategy for studying accurately therapeutic interventions in subcutaneous experimental solid tumor models allowing for the detection of statistically significant differences between smaller experimental groups.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Evangeli Lampri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Maria Giorgalli
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece.
| |
Collapse
|
200
|
Buqué A, Galluzzi L. Modeling Tumor Immunology and Immunotherapy in Mice. Trends Cancer 2018; 4:599-601. [PMID: 30149876 DOI: 10.1016/j.trecan.2018.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Figure 1. Main Applications of Mouse Models for Tumor Immunology and Immunotherapy. Immunodeficient mice xenografted with human cancer cell lines have been at the foundation of in vivo cancer research for several decades, providing ground for the regulatory approval of multiple chemotherapeutics and targeted anticancer agents, but are intrinsically unsuitable for studying tumor immunology and immunotherapy. Similarly, patient-derived xenografts (PDXs) established in immunodeficient mice are not subjected to immunosurveillance by the host, although (depending on the protocol employed for PDX generation) some components of the patient's immune system may also be transferred to the mouse and be active, at least for some time. Considerable efforts are being devoted to the generation of humanized mice to circumvent these limitations. The establishment of PDXs in immunodeficient mice that are also engrafted with matched patient-derived peripheral blood mononuclear cells (PBMCs) is also being investigated as a means to screen for the efficacy of (immuno)therapeutic agents in support of clinical decision making. Mouse cancer cell lines grafted subcutaneously or orthotopically in immunocompetent syngeneic hosts have been instrumental for the development of a variety of immunotherapeutics, as well as for the discovery that conventional anticancer regimens, including some forms of chemotherapy and radiation therapy, can trigger tumor-targeting immune responses. Carcinogen-driven tumors established in immunocompetent versus immunodeficient animals were critical in the early days of modern tumor immunology, as they enabled the discovery of natural anticancer immunosurveillance. Moreover, they allow for investigating the immunological versus non-immunological efficacy of anticancer (immuno)therapeutics in the context of natural immunoediting, clinically relevant immunobiological heterogeneity, and high mutation load. Transgene-driven tumors have generated in-depth insights into the crosstalk between oncogenic drivers and the tumor microenvironment, in both its immunological and non-immunological components. Each of these models is associated with specific advantages and disadvantages (see Key Facts). Figure 2. Key Features of Mouse Models for Tumor Immunology and Immunotherapy. Key parameters that should be taken into careful consideration when choosing the most appropriate mouse model for the study of tumor immunology and immunotherapy include not only the immunological competence of the host (which is influenced by strain, sex, and age) and its immunological compatibility with malignant cells (which is dictated by strain), but also the mutational load of the latter, their immunological history (previous immunoediting), proliferative potential, propensity for neovascularization and metastatic dissemination, as well as their ability to generate an immunostimulatory versus immunosuppressive microenvironment. Inoculation site is also an important parameter to keep under consideration (not shown). The precise objective of each study dictates which specific combination of such features should be preferred.
Collapse
Affiliation(s)
- Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, 10065 NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, 10065 NY, USA; Sandra and Edward Meyer Cancer Center, New York, 10065 NY, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| |
Collapse
|