151
|
Gupta R, Arkatkar T, Keck J, Koundinya GKL, Castillo K, Hobel S, Chambers JP, Yu JJ, Guentzel MN, Aigner A, Christenson LK, Arulanandam BP. Antigen specific immune response in Chlamydia muridarum genital infection is dependent on murine microRNAs-155 and -182. Oncotarget 2016; 7:64726-64742. [PMID: 27556515 PMCID: PMC5323111 DOI: 10.18632/oncotarget.11461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
Anti-chlamydial immunity involves efficient presentation of antigens (Ag) to effector cells resulting in Ag-specific immune responses. There is limited information on inherent underlying mechanisms regulating these events. Previous studies from our laboratory have established that select microRNAs (miRs) function as molecular regulators of immunity in Chlamydia muridarum (Cm) genital infection. In this report, we investigated immune cell type-specific miRs, i.e. miR-155 and -182, and the role in Ag-specific immunity. We observed significant up-regulation of miR-155 in C57BL/6 bone marrow derived dendritic cells (BMDC), and miR-182 in splenic Ag-specific CD4+ T-cells. Using mimics and inhibitors, we determined that miR-155 contributed to BMDC activation following Cm infection. Co-cultures of miR-155 over-expressed in BMDC and miR-182 over-expressed in Ag-specific CD4+ T-cells, or miR-155-/- BMDC with miR-182 inhibitor treated Ag-specific CD4+ T-cells, resulted in IFN-γ production comparable to Ag-specific CD4+ T-cells isolated from Cm infected mice. Additionally, miR-182 was significantly up-regulated in intranasally vaccinated mice protected against Cm infection. In vivo depletion of miR-182 resulted in reduction in Ag-specific IFN-γ and genital pathology in Cm infected mice. To the best of our knowledge, this is the first study to report an interaction of miR-155 (in Cm infected DC) and miR-182 (in CD4+ T-cell) resulting in Ag specific immune responses against genital Cm.
Collapse
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Tanvi Arkatkar
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jonathon Keck
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Gopala Krishna Lanka Koundinya
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Kevin Castillo
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Sabrina Hobel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, HärtelstraΔe, Leipzig, Germany
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, HärtelstraΔe, Leipzig, Germany
| | - Lane K. Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
152
|
Sherchand SP, Ibana JA, Zea AH, Quayle AJ, Aiyar A. The High-Risk Human Papillomavirus E6 Oncogene Exacerbates the Negative Effect of Tryptophan Starvation on the Development of Chlamydia trachomatis. PLoS One 2016; 11:e0163174. [PMID: 27658027 PMCID: PMC5033384 DOI: 10.1371/journal.pone.0163174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that requires specific essential nutrients from the host cell, one of which is the amino acid tryptophan. In this context interferon gamma (IFNγ) is the major host protective cytokine against chlamydial infections because it induces the expression of the host enzyme, indoleamine 2,3-dioxygenase 1, that degrades tryptophan, thereby restricting bacterial replication. The mechanism by which IFNγ acts has been dissected in vitro using epithelial cell-lines such as HeLa, HEp-2, or the primary-like endocervical cell-line A2EN. All these cell-lines express the high-risk human papillomavirus oncogenes E6 & E7. While screening cell-lines to identify those suitable for C. trachomatis co-infections with other genital pathogens, we unexpectedly found that tryptophan starvation did not completely block chlamydial development in cell-lines that were HR-HPV negative, such as C33A and 293. Therefore, we tested the hypothesis that HR-HPV oncogenes modulate the effect of tryptophan starvation on chlamydial development by comparing chlamydial development in HeLa and C33A cell-lines that were both derived from cervical carcinomas. Our results indicate that during tryptophan depletion, unlike HeLa, C33A cells generate sufficient intracellular tryptophan via proteasomal activity to permit C. trachomatis replication. By generating stable derivatives of C33A that expressed HPV16 E6, E7 or E6 & E7, we found that E6 expression alone was sufficient to convert C33A cells to behave like HeLa during tryptophan starvation. The reduced tryptophan levels in HeLa cells have a biological consequence; akin to the previously described effect of IFNγ, tryptophan starvation protects C. trachomatis from clearance by doxycycline in HeLa but not C33A cells. Curiously, when compared to the known Homo sapiens proteome, the representation of tryptophan in the HR-HPV E6 & E6AP degradome is substantially lower, possibly providing a mechanism that underlies the lowered intracellular free tryptophan levels in E6-expressing cells during starvation.
Collapse
Affiliation(s)
- Shardulendra P. Sherchand
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, Louisiana, 70112, United States of America
| | - Joyce A. Ibana
- Institute of Biology, University of the Philippines, Diliman, Quezon City, Philippines, PH, 1101
| | - Arnold H. Zea
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, Louisiana, 70112, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, Louisiana, 70112, United States of America
| | - Ashok Aiyar
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, Louisiana, 70112, United States of America
- * E-mail:
| |
Collapse
|
153
|
Inic-Kanada A, Stojanovic M, Marinkovic E, Becker E, Stein E, Lukic I, Djokic R, Schuerer N, Hegemann JH, Barisani-Asenbauer T. A Probiotic Adjuvant Lactobacillus rhamnosus Enhances Specific Immune Responses after Ocular Mucosal Immunization with Chlamydial Polymorphic Membrane Protein C. PLoS One 2016; 11:e0157875. [PMID: 27636704 PMCID: PMC5026373 DOI: 10.1371/journal.pone.0157875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022] Open
Abstract
Recent advances in the development of chlamydia vaccines, using live-attenuated or ultraviolet light-inactivated chlamydia, are paving the way for new possibilities to oppose the societal challenges posed by chlamydia-related diseases, such as blinding trachoma. An effective subunit vaccine would mitigate the risks associated with the use of a whole-cell vaccine. Our rationale for the design of an efficient subunit vaccine against Chlamydia trachomatis (Ct) is based on the membrane proteins involved in the initial Ct-host cell contact and on the route of immunization that mimics the natural infection process (i.e., via the ocular mucosa). The first aim of our study was to characterize the specific conjunctival and vaginal immune responses following eye drop immunization in BALB/c mice, using the N-terminal portion of the Ct serovar E polymorphic membrane protein C (N-PmpC) as the subunit vaccine antigen. Second, we aimed to examine the adjuvant properties of the probiotic Lactobacillus rhamnosus (LB) when formulated with N-PmpC. N-PmpC applied alone stimulated the production of N-PmpC- and Ct serovar B-specific antibodies in serum, tears and vaginal washes, whereas the combination with LB significantly enhanced these responses. The N-PmpC/LB combination initiated a T cell response characterized by an elevated percentage of CD25+ T cells and CD8+ effector T cells, enhanced CD4+ T-helper 1 skewing, and increased regulatory T cell responses. Together, these results show that eye drop vaccination with combined use of N-PmpC and a live probiotic LB stimulates specific cellular and humoral immune responses, not only locally in the conjunctiva but also in the vaginal mucosa, which could be a promising approach in Ct vaccine development.
Collapse
Affiliation(s)
- Aleksandra Inic-Kanada
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marijana Stojanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Elisabeth Becker
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Gebäude 25.02.U1, 40225, Düsseldorf, Germany
| | - Elisabeth Stein
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ivana Lukic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Radmila Djokic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Nadine Schuerer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes H. Hegemann
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Gebäude 25.02.U1, 40225, Düsseldorf, Germany
| | - Talin Barisani-Asenbauer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
154
|
Low N, Redmond S, Uusküla A, van Bergen J, Ward H, Andersen B, Götz H. Screening for genital chlamydia infection. Cochrane Database Syst Rev 2016; 9:CD010866. [PMID: 27623210 PMCID: PMC6457643 DOI: 10.1002/14651858.cd010866.pub2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Genital infections caused by Chlamydia trachomatis are the most prevalent bacterial sexually transmitted infection worldwide. Screening of sexually active young adults to detect and treat asymptomatic infections might reduce chlamydia transmission and prevent reproductive tract morbidity, particularly pelvic inflammatory disease (PID) in women, which can cause tubal infertility and ectopic pregnancy. OBJECTIVES To assess the effects and safety of chlamydia screening versus standard care on chlamydia transmission and infection complications in pregnant and non-pregnant women and in men. SEARCH METHODS We searched the Cochrane Sexually Transmitted Infections Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, CINAHL, DARE, PsycINFO and Web of Science electronic databases up to 14 February 2016, together with World Health Organization International Clinical Trials Registry (ICTRP) and ClinicalTrials.gov. We also handsearched conference proceedings, contacted trial authors and reviewed the reference lists of retrieved studies. SELECTION CRITERIA Randomised controlled trials (RCTs) in adult women (non-pregnant and pregnant) and men comparing a chlamydia screening intervention with usual care and reporting on a primary outcome (C. trachomatis prevalence, PID in women, epididymitis in men or incidence of preterm delivery). We included non-randomised controlled clinical trials if there were no RCTs for a primary outcome. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and assessed the risk of bias. We resolved disagreements by consensus or adjudication by a third reviewer. We described results in forest plots and conducted meta-analysis where appropriate using a fixed-effect model to estimate risk ratios (RR with 95% confidence intervals, CI) in intervention vs control groups. We conducted a pre-specified sensitivity analysis of the primary outcome, PID incidence, according to the risks of selection and detection bias. MAIN RESULTS We included six trials involving 359,078 adult women and men. One trial was at low risk of bias in all six specific domains assessed. Two trials examined the effect of multiple rounds of chlamydia screening on C. trachomatis transmission. A cluster-controlled trial in women and men in the general population in the Netherlands found no change in chlamydia test positivity after three yearly invitations (intervention 4.1% vs control 4.3%, RR 0.96, 95% CI 0.84 to 1.09, 1 trial, 317,304 participants at first screening invitation, low quality evidence). Uptake of the intervention was low (maximum 16%). A cluster-randomised trial in female sex workers in Peru found a reduction in chlamydia prevalence after four years (adjusted RR 0.72, 95% CI 0.54 to 0.98, 1 trial, 4465 participants, low quality evidence).Four RCTs examined the effect of chlamydia screening on PID in women 12 months after a single screening offer. In analysis of four trials according to the intention-to-treat principle, the risk of PID was lower in women in intervention than control groups, with little evidence of between-trial heterogeneity (RR 0.68, 95% CI 0.49 to 0.94, I2 7%, 4 trials, 21,686 participants, moderate quality evidence). In a sensitivity analysis, the estimated effect of chlamydia screening in two RCTs at low risk of detection bias (RR 0.80, 95% CI 0.55 to 1.17) was compatible with no effect and was lower than in two RCTs at high or unclear risk of detection bias (RR 0.42, 95% CI 0.22 to 0.83).The risk of epididymitis in men invited for screening, 12 months after a single screening offer, was 20% lower risk for epididymitis than in those not invited; the confidence interval was wide and compatible with no effect (RR 0.80, 95% CI 0.45 to 1.42, 1 trial, 14,980 participants, very low quality evidence).We found no RCTs of the effects of chlamydia screening in pregnancy and no trials that measured the harms of chlamydia screening. AUTHORS' CONCLUSIONS Evidence about the effects of screening on C. trachomatis transmission is of low quality because of directness and risk of bias. There is moderate quality evidence that detection and treatment of chlamydia infection can reduce the risk of PID in women at individual level. There is an absence of RCT evidence about the effects of chlamydia screening in pregnancy.Future RCTs of chlamydia screening interventions should determine the effects of chlamydia screening in pregnancy, of repeated rounds of screening on the incidence of chlamydia-associated PID and chlamydia reinfection in general and high risk populations.
Collapse
Affiliation(s)
- Nicola Low
- University of BernInstitute of Social and Preventive Medicine (ISPM)Finkenhubelweg 11BernSwitzerlandCH‐3012
| | - Shelagh Redmond
- University of BernInstitute of Social and Preventive Medicine (ISPM)Finkenhubelweg 11BernSwitzerlandCH‐3012
| | - Anneli Uusküla
- University of TartuDepartment of Public HealthTartuEstonia
| | - Jan van Bergen
- University of AmsterdamDepartment of General Practice and Family MedicineAmsterdamNetherlands
| | - Helen Ward
- Imperial College LondonDepartment of Infectious Disease EpidemiologyLondonUK
| | - Berit Andersen
- Department of Public Health ProgrammesSkovlyvej 1, 8930RandersDenmark
| | - Hannelore Götz
- Rotterdam‐Rijnmond Public Health ServiceDepartment of Infectious Disease ControlPO Box 700323000 LP RotterdamRotterdamNetherlands
| | | |
Collapse
|
155
|
Intravaginal Chlamydia trachomatis Challenge Infection Elicits TH1 and TH17 Immune Responses in Mice That Promote Pathogen Clearance and Genital Tract Damage. PLoS One 2016; 11:e0162445. [PMID: 27606424 PMCID: PMC5015975 DOI: 10.1371/journal.pone.0162445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/23/2016] [Indexed: 01/08/2023] Open
Abstract
While ascension of Chlamydia trachomatis into the upper genital tract of women can cause pelvic inflammatory disease and Fallopian tube damage, most infections elicit no symptoms or overt upper genital tract pathology. Consistent with this asymptomatic clinical presentation, genital C. trachomatis infection of women generates robust TH2 immunity. As an animal model that modeled this response would be invaluable for delineating bacterial pathogenesis and human host defenses, herein we explored if pathogen-specific TH2 immunity is similarly elicited by intravaginal (ivag) infection of mice with oculogenital C. trachomatis serovars. Analogous to clinical infection, ascension of primary C. trachomatis infection into the mouse upper genital tract produced no obvious tissue damage. Clearance of ivag challenge infection was mediated by interferon (IFN)-γ-producing CD4+ T cells, while IFN-γ signaling blockade concomitant with a single ivag challenge promoted tissue damage by enhancing Chlamydia-specific TH17 immunity. Likewise, IFN-γ and IL-17 signaling blockade or CD4+ T cell depletion eliminated the genital pathology produced in untreated controls by multiple ivag challenge infections. Conversely, we were unable to detect formation of pathogen-specific TH2 immunity in C. trachomatis-infected mice. Together, our work revealed C. trachomatis infection of mice generates TH1 and TH17 immune responses that promote pathogen clearance and immunopathological tissue damage. Absence of Chlamydia-specific TH2 immunity in these mice newly highlights the need to identify experimental models of C. trachomatis genital infection that more closely recapitulate the human host response.
Collapse
|
156
|
Hines CDG, Wang S, Meng X, Skinner JM, Heinrichs JH, Smith JG, Boddicker MA. MRI as a Novel In Vivo Approach for Assessing Structural Changes of Chlamydia Pathology in a Mouse Model. PLoS One 2016; 11:e0160055. [PMID: 27467585 PMCID: PMC4965011 DOI: 10.1371/journal.pone.0160055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
Chlamydia trachomatis is among the most prevalent of sexually transmitted diseases. While Chlamydia infection is a reportable event and screening has increased over time, enhanced surveillance has not resulted in a reduction in the rate of infections, and Chlamydia infections frequently recur. The development of a preventative vaccine for Chlamydia may be the only effective approach for reducing infection and the frequency of pathological outcomes. Current vaccine research efforts involve time consuming and/or invasive approaches for assessment of disease state, and MRI presents a clinically translatable method for assessing infection and related pathology both quickly and non-invasively. Longitudinal T2-weighted MRI was performed over 63 days on both control or Chlamydia muridarum challenged mice, either with or without elementary body (EB) immunization, and gross necropsy was performed on day 65. A scoring system was developed to assess the number of regions affected by Chlamydia pathology and was used to document pathology over time and at necropsy. The scoring system documented increasing incidence of pathology in the unimmunized and challenged mice (significantly greater compared to the control and EB immunized-challenged groups) by 21 days post-challenge. No differences between the unchallenged and EB immunized-challenged mice were observed. MRI scores at Day 63 were consistently higher than gross necropsy scores at Day 65, although two of the three groups of mice showed no significant differences between the two techniques. In this work we describe the application of MRI in mice for the potential evaluation of disease pathology and sequelae caused by C. muridarum infection and this technique’s potential for evaluation of vaccines for Chlamydia.
Collapse
Affiliation(s)
- Catherine D G Hines
- Department of Translational Imaging Biomarkers, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Shubing Wang
- Department of Biometrics Research, MRL (Rahway, NJ), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Xiangjun Meng
- Department of Translational Imaging Biomarkers, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Julie M Skinner
- Department of Vaccines Early Discovery, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jon H Heinrichs
- Global Project Leadership, Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Jeffrey G Smith
- Pharmaceutical Sciences Analytical Research & Development, Pfizer, Andover, Massachusetts, United States of America
| | - Melissa A Boddicker
- Department of Vaccines Early Discovery, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| |
Collapse
|
157
|
Wen Z, Boddicker MA, Kaufhold RM, Khandelwal P, Durr E, Qiu P, Lucas BJ, Nahas DD, Cook JC, Touch S, Skinner JM, Espeseth AS, Przysiecki CT, Zhang L. Recombinant expression of Chlamydia trachomatis major outer membrane protein in E. Coli outer membrane as a substrate for vaccine research. BMC Microbiol 2016; 16:165. [PMID: 27464881 PMCID: PMC4963994 DOI: 10.1186/s12866-016-0787-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022] Open
Abstract
Background Chlamydia trachomatis is a human pathogen which causes a number of pathologies, including genital tract infections in women that can result in tubal infertility. Prevention of infection and disease control might be achieved through vaccination; however, a safe, efficacious and cost-effective vaccine against C. trachomatis infection remains an unmet medical need. C. trachomatis major outer membrane protein (MOMP), a β-barrel integral outer membrane protein, is the most abundant antigen in the outer membrane of the bacterium and has been evaluated as a subunit vaccine candidate. Recombinant MOMP (rMOMP) expressed in E. coli cytoplasm forms inclusion bodies and rMOMP extracted from inclusion bodies results in a reduced level of protection compared to the native MOMP in a mouse challenge model. Results We sought to target the recombinant expression of MOMP to the E. coli outer membrane (OM). Successful surface expression was achieved with codon harmonization, utilization of low copy number vectors and promoters with moderate strength, suitable leader sequences and optimization of cell culture conditions. rMOMP was extracted from E. coli outer membrane, purified, and characterized biophysically. The OM expressed and purified rMOMP is immunogenic in mice and elicits antibodies that react to the native antigen, Chlamydia elementary body (EB). Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli outer membrane. The OM expressed and purified rMOMP elicits antibodies that react to the native antigen, Chlamydia EB, in a mouse immunogenicity model. Surface expression of MOMP could provide useful reagents for vaccine research, and the methodology could serve as a platform to produce other outer membrane proteins recombinantly.
Collapse
Affiliation(s)
- Zhiyun Wen
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Melissa A Boddicker
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Robin M Kaufhold
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Puneet Khandelwal
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Eberhard Durr
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Ping Qiu
- Translational Molecular Biomarkers (Rahway, NJ), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Bob J Lucas
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Debbie D Nahas
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - James C Cook
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Sinoeun Touch
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Julie M Skinner
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Amy S Espeseth
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Craig T Przysiecki
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Lan Zhang
- Infectious Diseases and Vaccines Discovery (West Point, PA), MRL, Merck & Co., Inc, Kenilworth, NJ, USA.
| |
Collapse
|
158
|
Tsai P, Hsu M, Huang C, Li S. Human Antibody and Antigen Response to INCA Antibody of Chlamydia Trachomatis. Int J Immunopathol Pharmacol 2016. [DOI: 10.1177/039463200702000118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The high prevalence of C. trachomatis worldwide has underscored the importance of identifying specific immunogenic antigens in facilitating diagnosis as well as vaccine development The aim of this study is to evaluate IncA antibody and antigen production in natural human infections. Our temporal expression study showed that IncA transcription and protein expression could be detected as early as 4 hours after the start of infection. Antibody responses could be detected in urine and genital swab samples from C. trachomatis-positive patients. It is especially interesting to note that the IncA antigen could be detected in urine. In conclusion, we have identified IncA as an important antigen in human. The potential applicability of the IncA antibody or antigen in the diagnosis as well as to vaccine development for C. trachomatis is also discussed.
Collapse
Affiliation(s)
- P.Y. Tsai
- Mycotic Diseases Laboratory, Research and Diagnostics Center, Centers for Disease Control, Taipei
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - M.C. Hsu
- Mycotic Diseases Laboratory, Research and Diagnostics Center, Centers for Disease Control, Taipei
| | - C.T. Huang
- Mycotic Diseases Laboratory, Research and Diagnostics Center, Centers for Disease Control, Taipei
| | - S.Y. Li
- Mycotic Diseases Laboratory, Research and Diagnostics Center, Centers for Disease Control, Taipei
| |
Collapse
|
159
|
Bulir DC, Liang S, Lee A, Chong S, Simms E, Stone C, Kaushic C, Ashkar A, Mahony JB. Immunization with chlamydial type III secretion antigens reduces vaginal shedding and prevents fallopian tube pathology following live C. muridarum challenge. Vaccine 2016; 34:3979-85. [PMID: 27325352 DOI: 10.1016/j.vaccine.2016.06.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/25/2016] [Accepted: 06/14/2016] [Indexed: 11/26/2022]
Abstract
Chlamydia trachomatis infections in women are often asymptomatic and if left untreated can lead to significant late sequelae including pelvic inflammatory disease and tubal factor infertility. Vaccine development efforts over the past three decades have been unproductive and there is no vaccine approved for use in humans. The existence of serologically distinct strains or serovars of C. trachomatis mandates a vaccine that will provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of both structural and effector proteins which is an essential virulence factor for infection and intracellular replication. In this study we evaluated a novel fusion protein antigen (BD584) which consists of three T3SS proteins from C. trachomatis (CopB, CopD, and CT584) as a potential chlamydial vaccine candidate. Intranasal immunization with BD584 elicited serum neutralizing antibodies that inhibited C. trachomatis infection in vitro. Following intravaginal challenge with C. muridarum, immunized mice had a 95% reduction in chlamydial shedding from the vagina at the peak of infection and cleared the infection sooner than control mice. Immunization with BD584 also reduced the rate of hydrosalpinx by 87.5% compared to control mice. Together, these results suggest that highly conserved proteins of the chlamydial T3SS may represent good candidates for a Chlamydia vaccine.
Collapse
Affiliation(s)
- David C Bulir
- M. G. DeGroote Institute for Infectious Disease Research, Canada; St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Steven Liang
- M. G. DeGroote Institute for Infectious Disease Research, Canada; St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Amanda Lee
- St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Sylvia Chong
- St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Elizabeth Simms
- St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Christopher Stone
- St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Charu Kaushic
- M. G. DeGroote Institute for Infectious Disease Research, Canada; Department of Pathology and Molecular Medicine, McMaster University, Canada
| | - Ali Ashkar
- M. G. DeGroote Institute for Infectious Disease Research, Canada; Department of Pathology and Molecular Medicine, McMaster University, Canada
| | - James B Mahony
- M. G. DeGroote Institute for Infectious Disease Research, Canada; Department of Pathology and Molecular Medicine, McMaster University, Canada; St. Joseph's Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| |
Collapse
|
160
|
Chlamydia trachomatis Genital Tract Infections: When Host Immune Response and the Microbiome Collide. Trends Microbiol 2016; 24:750-765. [PMID: 27320172 DOI: 10.1016/j.tim.2016.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 02/08/2023]
Abstract
Genital infections with Chlamydia trachomatis continue to be a major health problem worldwide. While some individuals clear their infection (presumed to be the result of an effective Th1/interferon-γ response), others develop chronic infections and some are prone to repeat infections. In females in particular, chronic asymptomatic infections are common and can lead to pelvic inflammatory disease and infertility. Recent studies suggest that the genital tract microbiota could be a significant factor and explain person-to-person variation in C. trachomatis infections. One hypothesis suggests that C. trachomatis can use its trpBA genes to rescue tryptophan from indole, which is a product of anaerobic members of the genital tract microbiota. Women with particular microbiota types, such as seen in bacterial vaginosis, have increased numbers of anaerobes, and this would enable the chlamydia in these individuals to overcome the host's interferon-γ attempts to eliminate it, resulting in more repeat and/or chronic infections.
Collapse
|
161
|
Rey-Ladino J, Ross AGP, Cripps AW. Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis. Hum Vaccin Immunother 2016; 10:2664-73. [PMID: 25483666 PMCID: PMC4977452 DOI: 10.4161/hv.29683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review examines the immunity, immunopathology, and contemporary problems of vaccine development against sexually transmitted Chlamydia trachomatis. Despite improved surveillance and treatment initiatives, the incidence of C. trachomatis infection has increased dramatically over the past 30 years in both the developed and developing world. Studies in animal models have shown that protective immunity to C. trachomatis is largely mediated by Th1 T cells producing IFN-γ which is needed to prevent dissemination of infection. Similar protection appears to develop in humans but in contrast to mice, immunity in humans may take years to develop. Animal studies and evidence from human infection indicate that immunity to C. trachomatis is accompanied by significant pathology in the upper genital tract. Although no credible evidence is currently available to indicate that autoimmunity plays a role, nevertheless, this underscores the necessity to design vaccines strictly based on chlamydial-specific antigens and to avoid those displaying even minimal sequence homologies with host molecules. Current advances in C. trachomatis vaccine development as well as alternatives for designing new vaccines for this disease are discussed. A novel approach for chlamydia vaccine development, based on targeting endogenous dendritic cells, is described.
Collapse
Affiliation(s)
- Jose Rey-Ladino
- a Department of Microbiology and Immunology; School of Medicine ; Alfaisal University ; Riyadh , Saudi Arabia
| | | | | |
Collapse
|
162
|
Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev 2016; 27:346-70. [PMID: 24696438 DOI: 10.1128/cmr.00105-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Collapse
|
163
|
Hu VH, Luthert PJ, Derrick T, Pullin J, Weiss HA, Massae P, Mtuy T, Makupa W, Essex D, Mabey DCW, Bailey RL, Holland MJ, Burton MJ. Immunohistochemical Analysis of Scarring Trachoma Indicates Infiltration by Natural Killer and Undefined CD45 Negative Cells. PLoS Negl Trop Dis 2016; 10:e0004734. [PMID: 27219121 PMCID: PMC4878762 DOI: 10.1371/journal.pntd.0004734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/03/2016] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The phenotype and function of immune cells infiltrating the conjunctiva in scarring trachoma have yet to be fully characterized. We assessed tissue morphology and immunophenotype of cellular infiltrates found in trachomatous scarring compared to control participants. METHODOLOGY Clinical assessments and conjunctival biopsy samples were obtained from 34 individuals with trachomatous scarring undergoing trichiasis surgery and 33 control subjects undergoing cataract or retinal detachment surgery. Biopsy samples were fixed in buffered formalin and embedded in paraffin wax. Hematoxylin and eosin (H&E) staining was performed for assessment of the inflammatory cell infiltrate. Immunohistochemical staining of single markers on individual sections was performed to identify cells expressing CD3 (T-cells), CD4 (helper T-cells), CD8 (suppressor/cytotoxic T-cells and Natural Killer, NK, cells), NCR1 (NK cells), CD20 (B-cells), CD45 (nucleated hematopoietic cells), CD56 (NK and T-cells), CD68 (macrophages/monocytes) and CD83 (mature dendritic cells). The degree of scarring was assessed histologically using cross-polarized light to visualize collagen fibres. PRINCIPLE FINDINGS Scarring, regardless of clinical inflammation, was associated with increased inflammatory cell infiltrates on H&E and CD45 staining. Scarring was also associated with increased CD8+ and CD56+ cells, but not CD3+ cells, suggestive of a NK cell infiltrate. This was supported by the presence of NCR1+ cells. There was some increase in CD20+ cells, but no evidence for increased CD4+, CD68+ or CD83+ cells. Numerous CD45 negative cells were also seen in the population of infiltrating inflammatory cells in scarred conjunctiva. Disorganization of the normal collagen architecture was strongly associated with clinical scarring. CONCLUSIONS/SIGNIFICANCE These data point to the infiltration of immune cells with a phenotype suggestive of NK cells in conjunctival trachomatous scarring. A large proportion of CD45 negative inflammatory cells were also present. Future work should seek to understand the stimuli leading to the recruitment of these cells and their role in progressive scarring.
Collapse
Affiliation(s)
- Victor H. Hu
- International Centre for Eye Health, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | | | - Tamsyn Derrick
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James Pullin
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Helen A. Weiss
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Tara Mtuy
- International Centre for Eye Health, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | | | - David Essex
- UCL Institute of Ophthalmology, London, United Kingdom
| | - David C. W. Mabey
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robin L. Bailey
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J. Burton
- International Centre for Eye Health, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| |
Collapse
|
164
|
Tifrea DF, Barta ML, Pal S, Hefty PS, de la Maza LM. Computational modeling of TC0583 as a putative component of the Chlamydia muridarum V-type ATP synthase complex and assessment of its protective capabilities as a vaccine antigen. Microbes Infect 2016; 18:245-53. [PMID: 26706820 PMCID: PMC7064150 DOI: 10.1016/j.micinf.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
Abstract
Numerous Chlamydia trachomatis proteins have been identified as potential subunit vaccines, of which the major outer-membrane protein (MOMP) has, so far, proven the most efficacious. Recently, subunit A of the V-type ATP synthase (ATPase; TC0582) complex was shown to elicit partial protection against infection. Computational modeling of a neighboring gene revealed a novel subunit of the V-type ATPase (TC0583). To determine if this newly identified subunit could induce protection and/or enhance the partial protection provided by subunit A alone, challenge studies were performed using a combination of these recombinant proteins. The TC0583 subunit alone and concurrently with TC0582, was used to vaccinate BALB/c mice utilizing CpG-1826 and Montanide ISA 720 VG as adjuvants. Vaccinated animals were challenged intranasally with Chlamydia muridarum and the course of the infection was followed. Mice immunized with individual antigens showed minimal alleviation of body weight reduction; however, mice immunized with TC0583 and TC0582 in combination, displayed weight loss levels close to those observed with MOMP. Importantly, immunization with a combination of recombinant subunit proteins reduced chlamydial inclusion forming units by approximately a log-fold. These protection levels support that, these highly conserved Chlamydia proteins, in combination with other antigens, may serve as potential vaccine candidates.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Michael L Barta
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Haworth Hall RM 8051, Lawrence, KS 66045, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Haworth Hall RM 8051, Lawrence, KS 66045, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
165
|
Li J, Dong X, Zhao L, Wang X, Wang Y, Yang X, Wang H, Zhao W. Natural killer cells regulate Th1/Treg and Th17/Treg balance in chlamydial lung infection. J Cell Mol Med 2016; 20:1339-51. [PMID: 27028780 PMCID: PMC4929289 DOI: 10.1111/jcmm.12821] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/30/2016] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cell is an important component in innate immunity, playing a critical role in bridging innate and adaptive immunity by modulating the function of other immune cells including T cells. In this study, we focused on the role of NK cells in regulating Th1/Treg and Th17/Treg balance during chlamydial lung infection. We found that NK cell‐depleted mice showed decreased Th1 and Th17 cells, which was correlated with reduced interferon‐γ, interleukin (IL)‐12, IL‐17 and IL‐22 production as well as T‐bet and receptor‐related orphan receptor gamma t expression compared with mice treated with the isotype control antibody. In contrast, NK cell depletion significantly increased Treg in cell number and related transcription factor (Foxp3) expression. The opposite trends of changes of Th1/Th17 and Treg led to significant reduction in the Th1/Treg and Th17/Treg ratios. The data implicate that NK cells play an important role in host defence against chlamydial lung infection, mainly through maintaining Th1/Treg and Th17/Treg balance.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiaojing Dong
- Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Lei Zhao
- Institute of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Wang
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yan Wang
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xi Yang
- Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Immunology and Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hong Wang
- Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Weiming Zhao
- Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
166
|
Yu H, Karunakaran KP, Jiang X, Brunham RC. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis. Expert Rev Vaccines 2016; 15:977-88. [PMID: 26938202 DOI: 10.1586/14760584.2016.1161510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chlamydia trachomatis is the most common preventable cause of tubal infertility in women. In high-income countries, despite public health control efforts, C. trachomatis case rates continue to rise. Most medium and low-income countries lack any Chlamydia control program; therefore, a vaccine is essential for the control of Chlamydia infections. A rationally designed Chlamydia vaccine requires understanding of the immunological correlates of protective immunity, pathological responses to this mucosal pathogen, identification of optimal vaccine antigens and selection of suitable adjuvant delivery systems that engender protective immunity. Fortunately, Chlamydia vaccinology is facilitated by genomic knowledge and by murine models that reproduce many of the features of human C. trachomatis infection. This article reviews recent progress in these areas with a focus on subunit vaccine development.
Collapse
Affiliation(s)
- Hong Yu
- a Vaccine Research Laboratory , University of British Columbia Centre for Disease Control , Vancouver , British Columbia , Canada
| | - Karuna P Karunakaran
- a Vaccine Research Laboratory , University of British Columbia Centre for Disease Control , Vancouver , British Columbia , Canada
| | - Xiaozhou Jiang
- a Vaccine Research Laboratory , University of British Columbia Centre for Disease Control , Vancouver , British Columbia , Canada
| | - Robert C Brunham
- a Vaccine Research Laboratory , University of British Columbia Centre for Disease Control , Vancouver , British Columbia , Canada
| |
Collapse
|
167
|
Gehre L, Gorgette O, Perrinet S, Prevost MC, Ducatez M, Giebel AM, Nelson DE, Ball SG, Subtil A. Sequestration of host metabolism by an intracellular pathogen. eLife 2016; 5:e12552. [PMID: 26981769 PMCID: PMC4829429 DOI: 10.7554/elife.12552] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/15/2016] [Indexed: 01/22/2023] Open
Abstract
For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.
Collapse
Affiliation(s)
- Lena Gehre
- Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| | - Olivier Gorgette
- Plate-forme de Microscopie Ultrastructurale, Imagopole, Institut Pasteur, Paris, France
| | - Stéphanie Perrinet
- Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| | | | - Mathieu Ducatez
- Unité de Glycobiologie Structurale et Fonctionnelle - CNRS UMR8576, Université de Lille, Lille, France
| | - Amanda M Giebel
- Department of Biology, Indiana University Bloomington, Bloomington, United States
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle - CNRS UMR8576, Université de Lille, Lille, France
| | - Agathe Subtil
- Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| |
Collapse
|
168
|
Käser T, Pasternak JA, Hamonic G, Rieder M, Lai K, Delgado-Ortega M, Gerdts V, Meurens F. Flow cytometry as an improved method for the titration of Chlamydiaceae and other intracellular bacteria. Cytometry A 2016; 89:451-60. [PMID: 26849001 DOI: 10.1002/cyto.a.22822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 11/10/2022]
Abstract
Chlamydiaceae is a family of intracellular bacteria causing a range of diverse pathological outcomes. The most devastating human diseases are ocular infections with C. trachomatis leading to blindness and genital infections causing pelvic inflammatory disease with long-term sequelae including infertility and chronic pelvic pain. In order to enable the comparison of experiments between laboratories investigating host-chlamydia interactions, the infectious titer has to be determined. Titer determination of chlamydia is most commonly performed via microscopy of host cells infected with a serial dilution of chlamydia. However, other methods including fluorescent ELISpot (Fluorospot) and DNA Chip Scanning Technology have also been proposed to enumerate chlamydia-infected cells. For viruses, flow cytometry has been suggested as a superior alternative to standard titration methods. In this study we compared the use of flow cytometry with microscopy and Fluorospot for the titration of C. suis as a representative of other intracellular bacteria. Titer determination via Fluorospot was unreliable, while titration via microscopy led to a linear read-out range of 16 - 64 dilutions and moderate reproducibility with acceptable standard deviations within and between investigators. In contrast, flow cytometry had a vast linear read-out range of 1,024 dilutions and the lowest standard deviations given a basic training in these methods. In addition, flow cytometry was faster and material costs were lower compared to microscopy. Flow cytometry offers a fast, cheap, precise, and reproducible alternative for the titration of intracellular bacteria like C. suis. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- T Käser
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - J A Pasternak
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - G Hamonic
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - M Rieder
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - K Lai
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - M Delgado-Ortega
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - V Gerdts
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - F Meurens
- Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, LUNAM Université, Oniris, Nantes, F-44307, France.,Epidemiology and Risk Analysis in Animal Health, CS 40706, INRA, UMR1300 Biology, Nantes, F-44307, France
| |
Collapse
|
169
|
Hodgson A, Wan F. Interference with nuclear factor kappaB signaling pathway by pathogen-encoded proteases: global and selective inhibition. Mol Microbiol 2016; 99:439-52. [PMID: 26449378 PMCID: PMC5003429 DOI: 10.1111/mmi.13245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 01/26/2023]
Abstract
Pathogens have evolved a myriad of ways to abrogate and manipulate the host response to infections. Of the various mechanisms involved, pathogen-encoded and sometimes host-encoded proteases are an important category of virulence factors that cause robust changes on the host response by targeting key proteins along signaling cascades. The nuclear factor kappaB (NF-κB) signaling pathway is a crucial regulatory mechanism for the cell, controlling the expression of survival, immune and proliferation genes. Proteases from pathogens of almost all types have been demonstrated to target and cleave members of the NF-κB signaling pathway at nearly every level. This review provides discussion of proteases targeting the most abundant NF-κB subunit, p65, and the impact of protease-mediated p65 cleavage on the immune responses and survival of the infected host cell. After examining various examples of protease interference, it becomes evident that the cleavage fragments produced by pathogen-driven proteolytic processing should be further characterized to determine whether they have novel and unique functions within the cell. The selective targeting of p65 and its effect on gene transcription reveals unique mechanisms by which pathogens acutely alter their microenvironment, and further research may open new opportunities for novel therapeutics to combat pathogens.
Collapse
Affiliation(s)
- Andrea Hodgson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
170
|
Cytokine profile in Nigerians with tubal infertility. Cent Eur J Immunol 2016; 41:101-6. [PMID: 27095929 PMCID: PMC4829812 DOI: 10.5114/ceji.2015.56969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Immune response to genital Chlamydia trachomatis infection is involved in both immunity and pathology. The cytokine profile during infection has been implicated in the disease outcome, either resolution or severe sequelae. Serum cytokines of Chlamydia positive Nigerian women with tubal infertility were assessed to determine their possible relationship with tubal occlusion. MATERIAL AND METHODS One hundred and fifty age-matched consenting women (100 fertile and 50 with tubal infertility) were recruited based on C. trachomatis antibody positivity and grouped into infertile Chlamydia positive (CTpos) women (n = 50), fertile Chlamydia positive women (n = 50) and fertile Chlamydia negative (CTneg) women as controls (n = 50). High vaginal swabs and endo-cervical swabs were collected for microscopy, culture and gram staining. Cytokines [transforming growth factor β1 (TGF-β1), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleukin (IL)-4, IL-10 and IL-17A] were estimated by ELISA in sera. Data were analyzed using ANOVA, χ (2) and Spearman's correlation at p = 0.05. RESULTS Lower IFN-γ levels were observed in infertile women compared to fertile women. Fertile CTneg women had significantly higher TNF-α, and TGF-β1 compared to fertile and infertile CTpos women, respectively. Lower IL-10 levels were seen in fertile CTpos women compared to the infertile CTpos group. Vaginal discharge was negatively correlated with TNF-α and IFN-γ and positively with IL-4 in Chlamydia positive women. CONCLUSIONS Chlamydia positive women with tubal infertility have higher IL-10 and lower IFN-γ levels than controls, which may contribute to their development of tubal pathology.
Collapse
|
171
|
Buckner LR, Amedee AM, Albritton HL, Kozlowski PA, Lacour N, McGowin CL, Schust DJ, Quayle AJ. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events. PLoS One 2016; 11:e0146663. [PMID: 26730599 PMCID: PMC4701475 DOI: 10.1371/journal.pone.0146663] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023] Open
Abstract
Chlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition.
Collapse
Affiliation(s)
- Lyndsey R. Buckner
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Angela M. Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Nedra Lacour
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States of America
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65201, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| |
Collapse
|
172
|
Murthy AK, Li W, Ramsey KH. Immunopathogenesis of Chlamydial Infections. Curr Top Microbiol Immunol 2016; 412:183-215. [PMID: 27370346 DOI: 10.1007/82_2016_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chlamydial infections lead to a number of clinically relevant diseases and induce significant morbidity in human populations. It is generally understood that certain components of the host immune response to infection also mediate such disease pathologies. A clear understanding of pathogenic mechanisms will enable us to devise better preventive and/or intervention strategies to mitigate the morbidity caused by these infections. Over the years, numerous studies have been conducted to explore the immunopathogenic mechanisms of Chlamydia-induced diseases of the eye, reproductive tract, respiratory tract, and cardiovascular systems. In this article, we provide an overview of the diseases caused by Chlamydia, animal models used to study disease pathology, and a historical context to the efforts to understand chlamydial pathogenesis. Furthermore, we discuss recent findings regarding pathogenesis, with an emphasis on the role of the adaptive immune response in the development of chlamydial disease sequelae. Finally, we summarize the key insights obtained from studies of chlamydial pathogenesis and avenues that remain to be explored in order to inform the next steps of vaccine development against chlamydial infections.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA.
| | - Weidang Li
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| |
Collapse
|
173
|
Poston TB, Darville T. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine. Curr Top Microbiol Immunol 2016; 412:217-237. [PMID: 27033698 DOI: 10.1007/82_2016_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women's healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
174
|
Khan SA, Polkinghorne A, Waugh C, Hanger J, Loader J, Beagley K, Timms P. Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine. Vaccine 2015; 34:775-82. [PMID: 26747718 DOI: 10.1016/j.vaccine.2015.12.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/15/2022]
Abstract
The development of a vaccine is a key strategy to combat the widespread and debilitating effects of chlamydial infection in koalas. One such vaccine in development uses recombinant chlamydial major outer membrane protein (rMOMP) as an antigen and has shown promising results in several koala trials. Previous chlamydial vaccine studies, primarily in the mouse model, suggest that both cell-mediated and antibody responses will be required for adequate protection. Recently, the important protective role of antibodies has been highlighted. In our current study, we conducted a detailed analysis of the antibody-mediated immune response in koalas that are either (a) naturally-infected, and/or (b) had received an rMOMP vaccine. Firstly, we observed that naturally-infected koalas had very low levels of Chlamydia pecorum-specific neutralising antibodies. A strong correlation between low IgG total titers/neutralising antibody levels, and higher C. pecorum infection load was also observed in these naturally-infected animals. In vaccinated koalas, we showed that the vaccine was able to boost the humoral immune response by inducing strong levels of C. pecorum-specific neutralising antibodies. A detailed characterisation of the MOMP epitope response was also performed in naturally-infected and vaccinated koalas using a PepScan epitope approach. This analysis identified unique sets of MOMP epitope antibodies between naturally-infected non-protected and diseased koalas, versus vaccinated koalas, with the latter group of animals producing a unique set of specific epitope-directed antibodies that we demonstrated were responsible for the in vitro neutralisation activity. Together, these results show the importance of antibodies in chlamydial infection and immunity following vaccination in the koala.
Collapse
Affiliation(s)
- Shahneaz Ali Khan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4202, Bangladesh.
| | - Adam Polkinghorne
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558, Australia.
| | - Courtney Waugh
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558, Australia.
| | - Jon Hanger
- Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD 4510, Australia.
| | - Jo Loader
- Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD 4510, Australia.
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia.
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558, Australia.
| |
Collapse
|
175
|
Herweg JA, Rudel T. Interaction of Chlamydiae with human macrophages. FEBS J 2015; 283:608-18. [PMID: 26613554 DOI: 10.1111/febs.13609] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 11/28/2022]
Abstract
The phylum Chlamydiae contains several members that are well-known human pathogens, like Chlamydia trachomatis and C. pneumoniae. Establishing a chronic bacterial infection requires the active evasion of the host immune response. A major arm of the innate immune defence is constituted by macrophages, which fight infections by removing bacteria and triggering an adaptive immune response. However, some pathogenic Chlamydia infect and survive in macrophages at least for a certain period of time. Therefore, macrophages can serve as vehicles for the dissemination of bacterial infections from the primary infection site via the urogenital or respiratory tract to distant sites in the body. The capacity to infect macrophages seems to depend on the chlamydial strain and the source of macrophages. In vitro infections of macrophages with C. trachomatis, C. psittaci and C. pneumoniae reveal low efficiency of infection and progeny formation, as well as failure to develop mature inclusions. In contrast, the emerging pathogen, Simkania negevensis, actively replicates in macrophages. Here we summarize the current knowledge of the intracellular and molecular key mechanisms of C. trachomatis, C. pneumoniae and S. negevensis infections in human macrophages.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Biocenter, Department of Microbiology, University of Würzburg, Germany
| | - Thomas Rudel
- Biocenter, Department of Microbiology, University of Würzburg, Germany
| |
Collapse
|
176
|
Lorenzen E, Follmann F, Bøje S, Erneholm K, Olsen AW, Agerholm JS, Jungersen G, Andersen P. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis. Front Immunol 2015; 6:628. [PMID: 26734002 PMCID: PMC4679855 DOI: 10.3389/fimmu.2015.00628] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general.
Collapse
Affiliation(s)
- Emma Lorenzen
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| | - Sarah Bøje
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Karin Erneholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Weinreich Olsen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| | - Jørgen Steen Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| |
Collapse
|
177
|
Dutow P, Wask L, Bothe M, Fehlhaber B, Laudeley R, Rheinheimer C, Yang Z, Zhong G, Glage S, Klos A. An optimized, fast-to-perform mouse lung infection model with the human pathogenChlamydia trachomatisforin vivoscreening of antibiotics, vaccine candidates and modified host–pathogen interactions. Pathog Dis 2015; 74:ftv120. [DOI: 10.1093/femspd/ftv120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 11/13/2022] Open
|
178
|
Human and Pathogen Factors Associated with Chlamydia trachomatis-Related Infertility in Women. Clin Microbiol Rev 2015; 28:969-85. [PMID: 26310245 DOI: 10.1128/cmr.00035-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen worldwide. Infection can result in serious reproductive pathologies, including pelvic inflammatory disease, ectopic pregnancy, and infertility, in women. However, the processes that result in these reproductive pathologies have not been well defined. Here we review the evidence for the human disease burden of these chlamydial reproductive pathologies. We then review human-based evidence that links Chlamydia with reproductive pathologies in women. We present data supporting the idea that host, immunological, epidemiological, and pathogen factors may all contribute to the development of infertility. Specifically, we review the existing evidence that host and pathogen genotypes, host hormone status, age of sexual debut, sexual behavior, coinfections, and repeat infections are all likely to be contributory factors in development of infertility. Pathogen factors such as infectious burden, treatment failure, and tissue tropisms or ascension capacity are also potential contributory factors. We present four possible processes of pathology development and how these processes are supported by the published data. We highlight the limitations of the evidence and propose future studies that could improve our understanding of how chlamydial infertility in women occurs and possible future interventions to reduce this disease burden.
Collapse
|
179
|
Quantitative In Vivo Detection of Chlamydia muridarum Associated Inflammation in a Mouse Model Using Optical Imaging. Mediators Inflamm 2015; 2015:264897. [PMID: 26663988 PMCID: PMC4667028 DOI: 10.1155/2015/264897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/29/2015] [Indexed: 01/14/2023] Open
Abstract
Chlamydia trachomatis is a bacterial sexually transmitted disease with over 1.3 million cases reported to the CDC in 2010. While Chlamydia infection is easily treated with antibiotics, up to 70% of infections are asymptomatic and go untreated. The current mouse model relies on invasive upper genital tract gross pathology readouts at ~60-80 days postinfection. High throughput optical imaging through the use of biomarkers has been successfully used to quickly evaluate several disease processes. Here we evaluate Neutrophil Elastase 680 (Elastase680) for its ability to measure Chlamydia muridarum associated inflammation in live mice using fluorescence molecular tomography (FMT) and In Vivo Imaging System (IVIS). Optical imaging was able to distinguish with statistical significance between vaccinated and nonvaccinated mice as well as mock-challenged and challenged mice 2 weeks after challenge which was 9 weeks sooner than typical gross pathological assessment. Immunohistochemistry confirmed the presence of neutrophils and correlated well with both in vivo and ex vivo imaging. In this report we demonstrate that Elastase680 can be used as a molecular imaging biomarker for inflammation associated with chlamydial infection in a mouse model and that these biomarkers can significantly decrease the time for pathology evaluation and thus increase the rate of therapeutics discovery.
Collapse
|
180
|
Vasilevsky S, Stojanov M, Greub G, Baud D. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Virulence 2015; 7:11-22. [PMID: 26580416 DOI: 10.1080/21505594.2015.1111509] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pmps (Polymorphic Membrane Proteins) are a group of membrane bound surface exposed chlamydial proteins that have been characterized as autotransporter adhesins and are important in the initial phase of chlamydial infection. These proteins all contain conserved GGA (I, L, V) and FxxN tetrapeptide motifs in the N-terminal portion of each protein. All chlamydial species express Pmps. Even in the chlamydia-related bacteria Waddlia chondrophila, a Pmp-like adhesin has been identified, demonstrating the importance of Pmps in Chlamydiales biology. Chlamydial species vary in the number of pmp genes and their differentially regulated expression during the infectious cycle or in response to stress. Studies have also demonstrated that Pmps are able to induce innate immune functional responses in infected cells, including production of IL-8, IL-6 and MCP-1, by activating the transcription factor NF-κB. Human serum studies have indicated that although anti-Pmp specific antibodies are produced in response to a chlamydial infection, the response is variable depending on the Pmp protein. In C. trachomatis, PmpB, PmpC, PmpD and PmpI were the proteins eliciting the strongest immune response among adolescents with and without pelvic inflammatory disease (PID). In contrast, PmpA and PmpE elicited the weakest antibody response. Interestingly, there seems to be a gender bias for Pmp recognition with a stronger anti-Pmp reactivity in male patients. Furthermore, anti-PmpA antibodies might contribute to adverse pregnancy outcomes, at least among women with PID. In vitro studies indicated that dendritic cells infected with C. muridarum were able to present PmpG and PmpF on their MHC class II receptors and T cells were able to recognize the MHC class-II bound peptides. In addition, vaccination with PmpEFGH and Major Outer Membrane Protein (MOMP) significantly protected mice against a genital tract C. muridarum infection, suggesting that Pmps may be an important component of a multi-subunit chlamydial vaccine. Thus, Pmps might be important not only for the pathogenesis of chlamydial infection, but also as potential candidate vaccine proteins.
Collapse
Affiliation(s)
- Sam Vasilevsky
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Milos Stojanov
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Gilbert Greub
- b Center for Research on Intracellular Bacteria; Institute of Microbiology; Faculty of Biology and Medicine; University of Lausanne and University Hospital ; Lausanne , Switzerland
| | - David Baud
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| |
Collapse
|
181
|
Abstract
UNLABELLED Chlamydia trachomatis is an obligate intracellular bacterium that is a globally important human pathogen. The chlamydial plasmid is an attenuating virulence factor, but the molecular basis for attenuation is not understood. Chlamydiae replicate within a membrane-bound vacuole termed an inclusion, where they undergo a biphasic developmental growth cycle and differentiate from noninfectious into infectious organisms. Late in the developmental cycle, the fragile chlamydia-laden inclusion retains its integrity by surrounding itself with scaffolds of host cytoskeletal proteins. The ability of chlamydiae to developmentally free themselves from this cytoskeleton network is a fundamental virulence trait of the pathogen. Here, we show that plasmidless chlamydiae are incapable of disrupting their cytoskeletal entrapment and remain intracellular as stable mature inclusions that support high numbers of infectious organisms. By using deletion mutants of the eight plasmid-carried genes (Δpgp1 to Δpgp8), we show that Pgp4, a transcriptional regulator of multiple chromosomal genes, is required for exit. Exit of chlamydiae is dependent on protein synthesis and is inhibited by the compound C1, an inhibitor of the type III secretion system (T3S). Exit of plasmid-free and Δpgp4 organisms, which failed to lyse infected cells, was rescued by latrunculin B, an inhibitor of actin polymerization. Our findings describe a genetic mechanism of chlamydial exit from host cells that is dependent on an unknown pgp4-regulated chromosomal T3S effector gene. IMPORTANCE Chlamydia's obligate intracellular life style requires both entry into and exit from host cells. Virulence factors that function in exiting are unknown. The chlamydial inclusion is stabilized late in the infection cycle by F-actin. A prerequisite of chlamydial exit is its ability to disassemble actin from the inclusion. We show that chlamydial plasmid-free organisms, and also a plasmid gene protein 4 (pgp4) null mutant, do not disassociate actin from the inclusion and fail to exit cells. We further provide evidence that Pgp4-regulated exit is dependent on the chlamydial type III secretion system. This study is the first to define a genetic mechanism that functions in chlamydial lytic exit from host cells. The findings also have practical implications for understanding why plasmid-free chlamydiae are highly attenuated and have the ability to elicit robust protective immune responses.
Collapse
|
182
|
Abstract
PURPOSE The human pathogen Chlamydia trachomatis is worldwide the leading cause of bacterial sexually transmitted disease. Nasal or vaginal nucleic acid vaccination is a promising strategy for controlling genital Chlamydia trachomatis infections. Since naked nucleic acids are generally not efficiently taken up by cells, they are often complexed with carriers that facilitate their intracellular delivery. METHODS In the current study, we screened a variety of commonly used non-viral gene delivery carriers for their ability to transfect newborn pig tracheal cells. The effect of aerosolization on the physicochemical properties and transfection efficiency of the complexes was also evaluated in vitro. Subsequently, a pilot experiment was performed in which the selected complexes were aerosolized in the vaginal tract of pigs. RESULTS Both mRNA and pDNA containing lipofectamine and ADM70 complexes showed promise for protein expression in vitro, before and after aerosolization. In vivo, only lipofectamine/pDNA complexes resulted in high protein expression levels 24 h following aerosolization. This correlates to the unexpected observation that the presence of vaginal mucus increases the efficiency of lipofectamine/pDNA complexes 3-fold, while the efficiency of lipofectamine/mRNA complexes and ADM70/mRNA and ADM70/pDNA complexes decreased. CONCLUSIONS As aerosolization was an easy and effective method to deliver complexes to the vaginal tract of pigs, we believe this application technique has future potential for both vaginal and perhaps nasal vaccination using non-viral gene delivery vectors.
Collapse
|
183
|
Remaut K, De Clercq E, Andries O, Rombouts K, Van Gils M, Cicchelero L, Vandenbussche I, Van Praet S, Benito JM, Fernandéz JMG, Sanders N, Vanrompay D. Aerosolized Non-viral Nucleic Acid Delivery in the Vaginal Tract of Pigs. Pharm Res 2015; 33:384-94. [DOI: 10.1007/s11095-015-1796-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022]
|
184
|
Pal S, Tatarenkova OV, de la Maza LM. A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge. Immunology 2015; 146:432-43. [PMID: 26423798 DOI: 10.1111/imm.12520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023] Open
Abstract
C3H/HeN female mice were vaccinated with native Chlamydia muridarum major outer membrane protein (MOMP), using Montanide+CpG or Alum+CpG as adjuvants. Negative control groups were immunized with ovalbumin (OVA) and the same adjuvants. As positive control, mice were inoculated intranasally with live Chlamydia. Mice were challenged in the ovarian bursa with 10(5) C. muridarum inclusion forming units. Six weeks after the genital challenge the animals were caged with male mice and monitored for pregnancy. Mice vaccinated with MOMP+Montanide+CpG developed high levels of C. muridarum-specific antibodies, with a high IgG2a/IgG1 ratio and neutralizing titres. Animals immunized using Alum+CpG had low antibody levels. Cellular immune responses were significantly higher in mice vaccinated with MOMP and Montanide+CpG, but not with Alum+CpG, when compared with negative controls. Following the genital challenge, only 20% (4/20) of mice vaccinated with MOMP+CpG+Montanide had positive vaginal cultures whereas 100% (9/9) of mice immunized with MOMP+CpG+Alum had positive cultures. Of the positive control animals inoculated with live Chlamydia only 15% (3/20) had positive vaginal cultures. In contrast, 100% (20/20) of mice immunized with OVA+CpG+Montanide, or minimal essential medium, had positive cultures. Following mating, 80% (16/20) of mice vaccinated with MOMP+CpG+Montanide, and 85% (17/20) of animals inoculated intranasally with live C. muridarum carried embryos in both uterine horns. No protection against infertility was observed in mice immunized with MOMP and CpG+Alum or OVA. In conclusion, this is the first time that a subunit vaccine has been shown to elicit a protective immune response in the highly susceptible C3H/HeN strain of mice against an upper genital challenge.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA, USA
| | - Olga V Tatarenkova
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
185
|
Lorenzen E, Follmann F, Jungersen G, Agerholm JS. A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection. Vet Res 2015; 46:116. [PMID: 26411309 PMCID: PMC4586017 DOI: 10.1186/s13567-015-0241-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/11/2015] [Indexed: 03/16/2023] Open
Abstract
Sexually transmitted diseases constitute major health issues and their prevention and treatment continue to challenge the health care systems worldwide. Animal models are essential for a deeper understanding of the diseases and the development of safe and protective vaccines. Currently a good predictive non-rodent model is needed for the study of genital chlamydia in women. The pig has become an increasingly popular model for human diseases due to its close similarities to humans. The aim of this review is to compare the porcine and human female genital tract and associated immune system in the perspective of genital Chlamydia infection. The comparison of women and sows has shown that despite some gross anatomical differences, the structures and proportion of layers undergoing cyclic alterations are very similar. Reproductive hormonal cycles are closely related, only showing a slight difference in cycle length and source of luteolysing hormone. The epithelium and functional layers of the endometrium show similar cyclic changes. The immune system in pigs is very similar to that of humans, even though pigs have a higher percentage of CD4(+)/CD8(+) double positive T cells. The genital immune system is also very similar in terms of the cyclic fluctuations in the mucosal antibody levels, but differs slightly regarding immune cell infiltration in the genital mucosa - predominantly due to the influx of neutrophils in the porcine endometrium during estrus. The vaginal flora in Göttingen Minipigs is not dominated by lactobacilli as in humans. The vaginal pH is around 7 in Göttingen Minipigs, compared to the more acidic vaginal pH around 3.5-5 in women. This review reveals important similarities between the human and porcine female reproductive tracts and proposes the pig as an advantageous supplementary model of human genital Chlamydia infection.
Collapse
Affiliation(s)
- Emma Lorenzen
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Frank Follmann
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark.
| | - Jørgen S Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
186
|
Liechty ER, Bergin IL, Bassis CM, Chai D, LeBar W, Young VB, Bell JD. The levonorgestrel-releasing intrauterine system is associated with delayed endocervical clearance of Chlamydia trachomatis without alterations in vaginal microbiota. Pathog Dis 2015; 73:ftv070. [PMID: 26371177 DOI: 10.1093/femspd/ftv070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/11/2022] Open
Abstract
Progestin-based contraception may impact women's susceptibility to sexually transmitted infection. We evaluated the effect of the levonorgestrel intrauterine system (LNG-IUS) on cervical persistence of Chlamydia trachomatis (CT) in a baboon model. Female olive baboons (Papio anubis) with or without an LNG-IUS received CT or sham inoculations. CT was detected in cervical epithelium with weekly nucleic acid amplification testing (NAAT) and culture. Presence of the LNG-IUS was associated with prolonged persistence of CT. Median time to post-inoculation clearance of CT as detected by NAAT was 10 weeks (range 7-12) for animals with an LNG-IUS and 3 weeks (range 0-12) for non-LNG-IUS animals (P = 0.06). Similarly, median time to post-inoculation clearance of CT by culture was 9 weeks (range 3-12) for LNG-IUS animals and 1.5 weeks (range 0-10) for non-LNG-IUS animals (P = 0.04). We characterized the community structure of the vaginal microbiota with the presence of the LNG-IUS to determine if alterations in CT colonization dynamics were associated with changes in vaginal commensal bacteria. Vaginal swabs were collected weekly for microbiome analysis. Endocervical CT infection was not correlated with alterations in the vaginal microbiota. Together, these results suggest that LNG-IUS may facilitate CT endocervical persistence through a mechanism distinct from vaginal microbial alterations.
Collapse
Affiliation(s)
- Emma R Liechty
- Unit for Laboratory Animal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Christine M Bassis
- Department of Internal Medicine Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Chai
- Institute for Primate Research, Nairobi, Kenya
| | - William LeBar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vincent B Young
- Department of Internal Medicine Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, USA Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason D Bell
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
187
|
Cerny KL, Van Fleet M, Slepenkin A, Peterson EM, Bridges PJ. Differential Expression of mRNA Encoding Cytokines and Chemokines in the Reproductive Tract after Infection of Mice with Chlamydia trachomatis. ACTA ACUST UNITED AC 2015; 4. [PMID: 26779389 PMCID: PMC4712740 DOI: 10.4172/2161-038x.1000152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection with Chlamydia trachomatis targets epithelial cells within the genital tract which respond by secreting chemokines and cytokines. Persistent inflammation can lead to fibrosis, tubal infertility and/or ectopic pregnancy; many infections are asymptomatic. Most studies have investigated the inflammatory response in the initial stages of infection, less is known about the later stages of infection, especially with a low, potentially asymptomatic, bacterial load. Our objective was to determine the inflammatory mediators involved in clearance of low-grade infection and the potential involvement in chronic inflammation. Six to eight week old C3H/HeJ mice were pretreated with 2.5 mg medroxyprogesterone acetate on day -10 and -3 before infection. Mice (n=3 for 28 d, n=3 for 35 d) were infected with 5 × 102 inclusion-forming units of C. trachomatis, serovar D; vaginal cultures were obtained weekly to monitor infection. Control mice (n=3 for 28 d, n=3 for 35 d) were sham infected. Mice were killed on day 28 (experiment 1) and day 35 (experiment 2) post-infection and vaginal tissue, uterine horns and oviducts collected for analysis of mRNAs encoding inflammatory cytokines and chemokines. Total RNA was isolated and a superarray analysis performed using mouse Cytokines and Chemokines PCR arrays (Qiagen, Valencia, CA). Statistical differences in gene expression were determined using a paired Students t-test. At 28 days after infection, the expression of mRNA encoding 6, 35 and 3 inflammatory genes differed from controls in vaginal, uterine and oviductal tissues, respectively (P<0.05). At 35 days after infection, the expression of mRNA encoding 16, 38 and 14 inflammatory genes differed from controls in vaginal, uterine and oviductal tissues, respectively (P<0.05). Understanding the mechanisms involved in the inflammatory response at later stages of infection should aid in the development of treatment options that minimize the development of asymptomatic, chronic inflammation-induced infertility.
Collapse
Affiliation(s)
- Katheryn L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - Maranda Van Fleet
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - Anatoly Slepenkin
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Ellena M Peterson
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
188
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
189
|
Shekhar S, Peng Y, Gao X, Joyee AG, Wang S, Bai H, Zhao L, Yang J, Yang X. NK cells modulate the lung dendritic cell-mediated Th1/Th17 immunity during intracellular bacterial infection. Eur J Immunol 2015. [PMID: 26222048 DOI: 10.1002/eji.201445390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum-infected NK-cell-depleted mice (NK-LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham-treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN-γ) and Th17 (IL-17), but higher levels of Th2 (IL-4), cytokines. Consistently, NK-LDCs were less efficient in directing C. muridarum-specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4(+) T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL-12p70, IL-6, and IL-23 by LDCs. The neutralization of IFN-γ in the culture decreased the production of IL-12p70 by LDCs, whereas the blockade of TNF-α resulted in diminished IL-6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ying Peng
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaoling Gao
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Antony G Joyee
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hong Bai
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lei Zhao
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
190
|
Silva J, Cerqueira F, Medeiros R. Y chromosome DNA in cervicovaginal self-collected samples of childbearing age women: Implications for epitheliotropic sexually transmitted infections? Life Sci 2015; 139:62-8. [PMID: 26281916 DOI: 10.1016/j.lfs.2015.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/19/2015] [Accepted: 07/28/2015] [Indexed: 11/15/2022]
Abstract
AIMS Assuming a possible association between Y chromosome (Yc)-DNA and sexually transmitted infection (STI) transmission rate, could Yc-DNA be related to an increased prevalence of Human Papillomavirus (HPV), Herpes Simplex Virus (HSV-1/2) and Chlamydia trachomatis (CT)? Could Yc-DNA be used to validate self-reported condom use and sexual behaviors? MAIN METHODS Cervicovaginal (CV) self-collected samples of 612 Portuguese women at childbearing age were tested for Yc, HPV, HSV-1/2 and CT by polymerase chain reaction (PCR). KEY FINDINGS The prevalence of Yc, HPV, CT and HSV-2 was 4.9%, 17.6%, 11.6% and 2.8%, respectively. There was a statistically significant trend for increased Yc-DNA prevalence in HPV positive samples [odds ratio (OR) 2.35, 95% confidence interval (CI) 1.03-5.31] and oral contraceptive (OC) use (OR 4.73, 95% CI 1.09-20.44). A protective effect of condom use was observed in Yc-DNA detection (OR 0.40, 95% CI 0.18-0.89). No statistically significant difference was found between Yc-DNA, CT and HSV-2 infection. HPV infection risk increased with age (>20 years), young age at first sexual intercourse (FSI) (≤18 years), >1 lifetime sexual partner (LSP) and OC use. Risk factors for CT infection were young age (≤20 years) and young age at FSI (≤18 years). HSV-2 infection risk increased with age (>20 years) and >1 LSP. SIGNIFICANCE Considering the prevalence of HPV and CT in Yc positive samples, we hypothesize a current infection due to recent sexual activity. The study of Yc PCR may add information as (i) a predictor of STI transmission and (ii) an indicative biomarker to validate self-reported condom use.
Collapse
Affiliation(s)
- Jani Silva
- Molecular Oncology GRP and Viral Pathology - IC, Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research centre, Fernando Pessoa University, Porto, Portugal; LPCC, Research Department, Portuguese League Against Cancer (LPPC-NRN), Portugal
| | - Fátima Cerqueira
- FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research centre, Fernando Pessoa University, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology GRP and Viral Pathology - IC, Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal; FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research centre, Fernando Pessoa University, Porto, Portugal; LPCC, Research Department, Portuguese League Against Cancer (LPPC-NRN), Portugal.
| |
Collapse
|
191
|
Teng Y, Kong N, Tu W. Optimizing strategies for population-based chlamydia infection screening among young women: an age-structured system dynamics approach. BMC Public Health 2015; 15:639. [PMID: 26162374 PMCID: PMC4498533 DOI: 10.1186/s12889-015-1975-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/25/2015] [Indexed: 11/27/2022] Open
Abstract
Background Chlamydia infection (CT) is one of the most commonly reported sexually transmitted diseases. It is often referred to as a “silent” disease with the majority of infected people having no symptoms. Without early detection, it can progress to serious reproductive and other health problems. Economical identification of asymptomatically infected is a key public health challenge. Increasing evidence suggests that CT infection risk varies over the range of adolescence. Hence, age-dependent screening strategies with more frequent testing for certain age groups of higher risk may be cost-saving in controlling the disease. Methods We study the optimization of age-dependent screening strategies for population-based chlamydia infection screening among young women. We develop an age-structured compartment model for CT natural progress, screening, and treatment. We apply parameter optimization on the resultant PDE-based system dynamical models with the objective of minimizing the total care spending, including screening and treatment costs during the program period and anticipated costs of treating the sequelae afterwards). For ease of practical implementation, we also search for the best screening initiation age for strategies with a constant screening frequency. Results The optimal age-dependent strategies identified outperform the current CDC recommendations both in terms of total care spending and disease prevalence at the termination of the program. For example, the age-dependent strategy that allows monthly screening rate changes can save about 5 % of the total spending. Our results suggest early initiation of CT screening is likely beneficial to the cost saving and prevalence reduction. Finally, our results imply that the strategy design may not be sensitive to accurate quantification of the age-specific CT infection risk if screening initiation age and screening rate are the only decisions to make. Conclusions Our research demonstrates the potential economic benefit of age-dependent screening strategy design for population-based screening programs. It also showcases the applicability of age-structured system dynamical modeling to infectious disease control with increasing evidence on the age differences in infection risk. The research can be further improved with consideration of the difference between first-time infection and reinfection, as well as population heterogeneity in sexual partnership.
Collapse
Affiliation(s)
- Yu Teng
- Futures Institute, 41-A New London Tpke, Glastonbury, Connecticut, 06033, USA.
| | - Nan Kong
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr, West Lafayette, Indiana, 47907, USA.
| | - Wanzhu Tu
- Department of Biostatistics, Indiana University School of Medicine, 410 West 10th St, Suite 3000, Indianapolis, Indiana, 46202, USA.
| |
Collapse
|
192
|
Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, Perro M, Vrbanac VD, Tager AM, Shi J, Yethon JA, Farokhzad OC, Langer R, Starnbach MN, von Andrian UH. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 2015; 348:aaa8205. [PMID: 26089520 DOI: 10.1126/science.aaa8205] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genital Chlamydia trachomatis (Ct) infection induces protective immunity that depends on interferon-γ-producing CD4 T cells. By contrast, we report that mucosal exposure to ultraviolet light (UV)-inactivated Ct (UV-Ct) generated regulatory T cells that exacerbated subsequent Ct infection. We show that mucosal immunization with UV-Ct complexed with charge-switching synthetic adjuvant particles (cSAPs) elicited long-lived protection in conventional and humanized mice. UV-Ct-cSAP targeted immunogenic uterine CD11b(+)CD103(-) dendritic cells (DCs), whereas UV-Ct accumulated in tolerogenic CD11b(-)CD103(+) DCs. Regardless of vaccination route, UV-Ct-cSAP induced systemic memory T cells, but only mucosal vaccination induced effector T cells that rapidly seeded uterine mucosa with resident memory T cells (T(RM) cells). Optimal Ct clearance required both T(RM) seeding and subsequent infection-induced recruitment of circulating memory T cells. Thus, UV-Ct-cSAP vaccination generated two synergistic memory T cell subsets with distinct migratory properties.
Collapse
Affiliation(s)
- Georg Stary
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Olive
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar F Radovic-Moreno
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Gondek
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Alvarez
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela A Basto
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mario Perro
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir D Vrbanac
- The Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew M Tager
- The Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Langer
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael N Starnbach
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
193
|
Gupta R, Wali S, Yu JJ, Chambers JP, Zhong G, Murthy AK, Bakar SA, Guentzel MN, Arulanandam BP. In vivo whole animal body imaging reveals colonization of Chlamydia muridarum to the lower genital tract at early stages of infection. Mol Imaging Biol 2015; 16:635-41. [PMID: 24723309 DOI: 10.1007/s11307-014-0732-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE The leading cause of sexually transmitted bacterial infection is Chlamydia trachomatis. The aim of this study is to investigate the early events in colonization of this bacterium within the murine genital tract. PROCEDURES An in vivo animal body imaging technology was used to track fluorophore labeled C. muridarum elementary bodies (EBs) inoculated intravaginally in C57BL/6 mice during the first 24 h of infection. RESULTS Ascension of viable EBs was observed (1) to be localized to the lower regions of the murine genital tract within the first 24 h post challenge and (2) was dose independent during this early exposure period. Molecular detection revealed enhanced bacterial load in lower regions of the genital tract with increasing bacterial load in the upper region beginning 12 h post inoculation. CONCLUSION This study provides additional insight into chlamydial colonization in the murine genital tract during the first 12-24 h following inoculation.
Collapse
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Nunes A, Gomes JP, Karunakaran KP, Brunham RC. Bioinformatic Analysis of Chlamydia trachomatis Polymorphic Membrane Proteins PmpE, PmpF, PmpG and PmpH as Potential Vaccine Antigens. PLoS One 2015; 10:e0131695. [PMID: 26131720 PMCID: PMC4488443 DOI: 10.1371/journal.pone.0131695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis is the most important infectious cause of infertility in women with important implications in public health and for which a vaccine is urgently needed. Recent immunoproteomic vaccine studies found that four polymorphic membrane proteins (PmpE, PmpF, PmpG and PmpH) are immunodominant, recognized by various MHC class II haplotypes and protective in mouse models. In the present study, we aimed to evaluate genetic and protein features of Pmps (focusing on the N-terminal 600 amino acids where MHC class II epitopes were mapped) in order to understand antigen variation that may emerge following vaccine induced immune selection. We used several bioinformatics platforms to study: i) Pmps' phylogeny and genetic polymorphism; ii) the location and distribution of protein features (GGA(I, L)/FxxN motifs and cysteine residues) that may impact pathogen-host interactions and protein conformation; and iii) the existence of phase variation mechanisms that may impact Pmps' expression. We used a well-characterized collection of 53 fully-sequenced strains that represent the C. trachomatis serovars associated with the three disease groups: ocular (N=8), epithelial-genital (N=25) and lymphogranuloma venereum (LGV) (N=20). We observed that PmpF and PmpE are highly polymorphic between LGV and epithelial-genital strains, and also within populations of the latter. We also found heterogeneous representation among strains for GGA(I, L)/FxxN motifs and cysteine residues, suggesting possible alterations in adhesion properties, tissue specificity and immunogenicity. PmpG and, to a lesser extent, PmpH revealed low polymorphism and high conservation of protein features among the genital strains (including the LGV group). Uniquely among the four Pmps, pmpG has regulatory sequences suggestive of phase variation. In aggregate, the results suggest that PmpG may be the lead vaccine candidate because of sequence conservation but may need to be paired with another protective antigen (like PmpH) in order to prevent immune selection of phase variants.
Collapse
Affiliation(s)
- Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P. Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Karuna P. Karunakaran
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, Canada
| | - Robert C. Brunham
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, Canada
- * E-mail:
| |
Collapse
|
195
|
Arkatkar T, Gupta R, Li W, Yu JJ, Wali S, Neal Guentzel M, Chambers JP, Christenson LK, Arulanandam BP. Murine MicroRNA-214 regulates intracellular adhesion molecule (ICAM1) gene expression in genital Chlamydia muridarum infection. Immunology 2015; 145:534-42. [PMID: 25865776 DOI: 10.1111/imm.12470] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
The hallmark of chlamydial infection is the development of upper genital pathology in the form of hydrosalpinx and oviduct and/or tubal dilatation. Although molecular events leading to genital tissue presentation and cellular architectural remodelling are unclear, early-stage host immune responses are believed to contribute to these long-term sequelae. Recently, we reported the contribution of selected infection-associated microRNAs (miRs) in the generation of host immunity at early-stage infection (day 6 after intravaginal Chlamydia muridarum challenge in C57BL/6 mice). In this report, we describe the contribution of an infection-associated microRNA, i.e. miR-214, to host immunity. Chlamydia muridarum infection in the C57BL/6 mouse genital tract significantly down-regulated miR-214 while up-regulating intracellular adhesion molecule 1 (ICAM1) gene expression. These in vivo observations were confirmed by establishing direct regulation of ICAM-1 by miR-214 in ex vivo genital cell cultures in the presence of miR-214 mimic and inhibitor. Because, ICAM-1 contributes to recruitment of neutrophils following infection, we also demonstrated that alteration of ICAM1 by miR-214 in interleukin-17A-deficient (IL-17A(-/-) ) mice correlated with reduction of neutrophils infiltrating genital tissue at day 6 after challenge. Additionally, these early-stage events resulted in significantly decreased genital pathology in IL-17A(-/-) mice compared with C57BL/6 mice. This report provides evidence for early-stage regulation of ICAM1 by microRNAs, resulting in reduction of genital pathology associated with chlamydial infection.
Collapse
Affiliation(s)
- Tanvi Arkatkar
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Weidang Li
- Department of Pathology, Midwestern University, Downers Grove, IL, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Shradha Wali
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - James P Chambers
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
196
|
Käser T, Cnudde T, Hamonic G, Rieder M, Pasternak JA, Lai K, Tikoo SK, Wilson HL, Meurens F. Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis. Vet Immunol Immunopathol 2015; 166:95-107. [PMID: 26103808 DOI: 10.1016/j.vetimm.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/23/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023]
Abstract
Human ocular Chlamydia trachomatis infections can lead to trachoma, the major cause of infectious blindness worldwide. Trachoma control strategies are very helpful but logistically challenging, and a trachoma vaccine is needed but not available. Pigs are a valuable large animal model for various immunological questions and could facilitate the study of human ocular chlamydial infections. In addition, a recent study identified the zoonotic potential of Chlamydia suis, the natural pathogen of pigs. In terms of the One Health Initiative, understanding the host-pathogen-interactions and finding a vaccine for porcine chlamydia infections would also benefit human health. Thus, we infected the porcine retinal cell line VIDO R1 with C. suis and analyzed the chlamydial life cycle and the innate immune response of the infected cells. Our results indicate that C. suis completes its life cycle in VIDO R1 cells within 48 h, comparable to C. trachomatis in humans. C. suis infection of VIDO R1 cells led to increased levels of various innate immune mediators like pathogen recognition receptors, cytokines and chemokines including IL6, TNFα, and MMP9, also most relevant in human C. trachomatis infections. These results illustrate the first steps in the host-pathogen-interactions of ocular C. suis infections in pigs and show their similarity to C. trachomatis infections in humans, justifying further testing of pigs as an animal model for human trachoma.
Collapse
Affiliation(s)
- Tobias Käser
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Thomas Cnudde
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Meghanne Rieder
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - J Alex Pasternak
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Ken Lai
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Suresh K Tikoo
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - François Meurens
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307 Nantes, France; INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France.
| |
Collapse
|
197
|
Shekhar S, Joyee AG, Yang X. Dynamics of NKT-Cell Responses to Chlamydial Infection. Front Immunol 2015; 6:233. [PMID: 26029217 PMCID: PMC4432794 DOI: 10.3389/fimmu.2015.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/30/2015] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells have gained great attention owing to their critical functional roles in immunity to various pathogens. In this review, we provide an overview of the current knowledge on the role of NKT cells in host defense against and pathogenesis due to Chlamydia, which is an intracellular bacterial pathogen that poses a threat to the public health worldwide. Accumulating evidence has demonstrated that NKT cells, particularly invariant NKT (iNKT) cells, play a crucial role in host defense against chlamydial infections, especially in C. pneumoniae infection. iNKT cells can promote type-1 protective responses to C. pneumoniae by inducing enhanced production of IL-12 by dendritic cells (DCs), in particular CD8α+ DCs, which promote the differentiation of naive T cells into protective IFN-γ-producing Th1/Tc1 type CD4+/CD8+ T cells. This iNKT-cell-mediated modulation of DC function is largely dependent upon CD40–CD40L interaction, IFN-γ production, and cell-to-cell contact. In addition, iNKT cells modulate the function of natural killer cells. NKT cells may be also involved in the pathogenesis of some chlamydial diseases by inducing different patterns of cytokine production. A better understanding of NKT-cell biology will enable us to rationally design prophylactic and therapeutic tools to combat infectious diseases.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Antony George Joyee
- Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada ; Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| |
Collapse
|
198
|
Karunakaran KP, Yu H, Jiang X, Chan Q, Moon KM, Foster LJ, Brunham RC. Outer membrane proteins preferentially load MHC class II peptides: implications for a Chlamydia trachomatis T cell vaccine. Vaccine 2015; 33:2159-66. [PMID: 25738816 PMCID: PMC4390527 DOI: 10.1016/j.vaccine.2015.02.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 02/03/2023]
Abstract
CD4 T cell immune responses such as interferon-γ and tumor necrosis factor-α secretion are necessary for Chlamydia immunity. We used an immunoproteomic approach in which Chlamydia trachomatis and Chlamydia muridarum-derived peptides presented by MHC class II molecules on the surface of infected dendritic cells (DCs) were identified by tandem mass spectrometry using bone marrow derived DCs (BMDCs) from mice of different MHC background. We first compared the C. muridarum immunoproteome in C3H mice to that previously identified in C57BL/6 mice. Fourteen MHC class II binding peptides from 11 Chlamydia proteins were identified from C3H infected BMDCs. Two C. muridarum proteins overlapped between C3H and C57B/6 mice and both were polymorphic membrane proteins (Pmps) which presented distinct class II binding peptides. Next we studied DCs from C57BL/6 mice infected with the human strain, C. trachomatis serovar D. Sixty MHC class II binding peptides derived from 27 C. trachomatis proteins were identified. Nine proteins were orthologous T cell antigens between C. trachomatis and C. muridarum and 2 of the nine were Pmps which generated MHC class II binding epitopes at distinct sequences within the proteins. As determined by antigen specific splenocyte responses outer membrane proteins PmpF, -G and -H and the major outer membrane protein (MOMP) were antigenic in mice previously infected with C. muridarum or C. trachomatis. Furthermore a recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with MOMP formulated with a Th1 polarizing adjuvant significantly accelerated (p<0.001) clearance in the C57BL/6 mice C. trachomatis transcervical infection model. We conclude that Chlamydia outer membrane proteins are important T cell antigens useful in the development of a C. trachomatis subunit vaccine.
Collapse
Affiliation(s)
- Karuna P Karunakaran
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Hong Yu
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Xiaozhou Jiang
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Queenie Chan
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Robert C Brunham
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, BC, Canada.
| |
Collapse
|
199
|
Dirks JAMC, Wolffs PFG, Dukers-Muijrers NHTM, Brink AATP, Speksnijder AGCL, Hoebe CJPA. Chlamydia trachomatis load in population-based screening and STI-clinics: implications for screening policy. PLoS One 2015; 10:e0121433. [PMID: 25826298 PMCID: PMC4380475 DOI: 10.1371/journal.pone.0121433] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
Objectives If the Chlamydia trachomatis (CT) bacterial load is higher in high-risk populations than in the general population, this negatively affects the efficacy of CT screening incentives. In the largest retrospective study to date, we investigated the CT load in specimens collected from 2 cohorts: (1) attendants of a sexually transmitted infection (STI)-clinic and (2) participants of the Dutch population-based screening (PBS). Methods CT load was determined using quantitative PCR in CT-positive male urine and female cervicovaginal swabs. CT loads were converted into tertiles. Using multinominal logistic regression, independent association of cohort, symptoms, risk behaviour and human cell count on load were assessed. Results CT loads were determined in 889 CT-positives from PBS (n = 529; 71.8% female) and STI-clinics (n = 360; 61.7% female). In men, STI-clinic-cohort, human cell count and urethral discharge were positively associated with CT load. In women, PBS-cohort and cell count were positively associated with CT load. Both cohorts had the same range in CT load. Conclusions The general population has a similar range of bacterial CT load as a high-risk population, but a different distribution for cohort and gender, highlighting the relevance of population-based CT-screening. When CT loads are similar, possibly the chances of transmission and sequelae are too.
Collapse
Affiliation(s)
- Jeanne A. M. C. Dirks
- Department of Medical Microbiology, Maastricht University Medical Center, School of Public Health and Primary Care, Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands
| | - Petra F. G. Wolffs
- Department of Medical Microbiology, Maastricht University Medical Center, School of Public Health and Primary Care, Maastricht, The Netherlands
- * E-mail:
| | - Nicole H. T. M. Dukers-Muijrers
- Department of Medical Microbiology, Maastricht University Medical Center, School of Public Health and Primary Care, Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands
| | - Antoinette A. T. P. Brink
- Department of Medical Microbiology, Maastricht University Medical Center, School of Public Health and Primary Care, Maastricht, The Netherlands
| | | | - Christian J. P. A. Hoebe
- Department of Medical Microbiology, Maastricht University Medical Center, School of Public Health and Primary Care, Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands
| |
Collapse
|
200
|
Olsen AW, Follmann F, Erneholm K, Rosenkrands I, Andersen P. Protection Against Chlamydia trachomatis Infection and Upper Genital Tract Pathological Changes by Vaccine-Promoted Neutralizing Antibodies Directed to the VD4 of the Major Outer Membrane Protein. J Infect Dis 2015; 212:978-89. [PMID: 25748320 DOI: 10.1093/infdis/jiv137] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/26/2015] [Indexed: 01/01/2023] Open
Abstract
The VD4 region from the Chlamydia trachomatis major outer membrane protein contains important neutralizing B-cell epitopes of relevance for antibody-mediated protection against genital tract infection. We developed a multivalent vaccine construct based on VD4s and their surrounding constant segments from serovars D, E, and F. Adjuvanted with cationic liposomes, this construct promoted strong immune responses to serovar-specific epitopes, the conserved LNPTIAG epitope and neutralized serovars D, E, and F. Vaccinated mice were protected against challenge, with protection defined as reduced bacterial numbers in vagina and prevention of pathological changes in the upper genital tract. Adoptive transfer of serum and T-cell depletion experiments demonstrated a dominant role for antibodies and CD4(+) T cells in the protective immune response. Integrating a multivalent VD4 construct into the sequence of the major outer membrane protein resulted in a protective and broadly neutralizing vaccine. Our findings emphasize the important role of antibodies in protection against Chlamydia trachomatis.
Collapse
Affiliation(s)
- Anja W Olsen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut
| | - Frank Follmann
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut
| | - Karin Erneholm
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ida Rosenkrands
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut
| | - Peter Andersen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut
| |
Collapse
|