151
|
Knight AM. B-cell acquisition of antigen: Sensing the surface. Eur J Immunol 2015; 45:1600-4. [PMID: 25929718 DOI: 10.1002/eji.201545684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 12/30/2022]
Abstract
B-cell antigen receptor (BCR) recognition and acquisition of antigen by B cells is the essential first step in the generation of effective antibody responses. As B-cell-mediated antigen presentation is also believed to play a significant role in the activation of CD4(+) Th-cell responses, considerable effort has focused on clarifying the nature of antigen/BCR interactions. Following earlier descriptions of interactions of soluble antigens with the BCR, it is now clear that B cells also recognize, physically extract and present antigens that are tethered to, or integral components of, the surfaces or extracellular matrix of other cells. In this issue of the European Journal of Immunology, Zeng et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] examine how the physical property or "stiffness" of the surface displaying antigens to B cells influences the B-cell response. This commentary reports that antigen tethered on "less stiff" surfaces induces increased B-cell activation and antibody responses. I then infer how "sensing the surface" by B cells may represent a new component of the immune system's ability to detect "damage," and how this understanding may influence approaches to clinical therapies where immune activity is either unwanted or desired.
Collapse
Affiliation(s)
- Andrew M Knight
- The Institute of Cellular Medicine, The Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
152
|
Wong EB, Soni C, Chan AY, Domeier PP, Shwetank, Abraham T, Limaye N, Khan TN, Elias MJ, Chodisetti SB, Wakeland EK, Rahman ZSM. B cell-intrinsic CD84 and Ly108 maintain germinal center B cell tolerance. THE JOURNAL OF IMMUNOLOGY 2015; 194:4130-43. [PMID: 25801429 DOI: 10.4049/jimmunol.1403023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/16/2015] [Indexed: 12/22/2022]
Abstract
Signaling lymphocyte activation molecules (SLAMs) play an integral role in immune regulation. Polymorphisms in the SLAM family receptors are implicated in human and mouse model of lupus disease. The lupus-associated, somatically mutated, and class-switched pathogenic autoantibodies are generated in spontaneously developed germinal centers (GCs) in secondary lymphoid organs. The role and mechanism of B cell-intrinsic expression of polymorphic SLAM receptors that affect B cell tolerance at the GC checkpoint are not clear. In this study, we generated several bacterial artificial chromosome-transgenic mice that overexpress C57BL/6 (B6) alleles of different SLAM family genes on an autoimmune-prone B6.Sle1b background. B6.Sle1b mice overexpressing B6-derived Ly108 and CD84 exhibit a significant reduction in the spontaneously developed GC response and autoantibody production compared with B6.Sle1b mice. These data suggest a prominent role for Sle1b-derived Ly108 and CD84 in altering the GC checkpoint. We further confirm that expression of lupus-associated CD84 and Ly108 specifically on GC B cells in B6.Sle1b mice is sufficient to break B cell tolerance, leading to an increase in autoantibody production. In addition, we observe that B6.Sle1b B cells have reduced BCR signaling and a lower frequency of B cell-T cell conjugates; the reverse is seen in B6.Sle1b mice overexpressing B6 alleles of CD84 and Ly108. Finally, we find a significant decrease in apoptotic GC B cells in B6.Sle1b mice compared with B6 controls. Our study establishes a central role for GC B cell-specific CD84 and Ly108 expression in maintaining B cell tolerance in GCs and in preventing autoimmunity.
Collapse
Affiliation(s)
- Eric B Wong
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Alice Y Chan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shwetank
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Thomas Abraham
- Department of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nisha Limaye
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Tahsin N Khan
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Melinda J Elias
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
153
|
Ortiz-Maldonado V, García-Morillo M, Delgado J. The biology behind PI3K inhibition in chronic lymphocytic leukaemia. Ther Adv Hematol 2015; 6:25-36. [PMID: 25642313 DOI: 10.1177/2040620714561581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositide 3'-kinase (PI3K) is a key component of both chronic active and tonic B-cell receptor-signalling pathways. As such, PI3K inhibitors have emerged as promising therapeutic agents for diverse lymphoid malignancies, particularly chronic lymphocytic leukaemia. Multiple in vitro experiments and clinical trials have shown efficacy of these agents across all prognostic subgroups with a favourable toxicity profile. Moreover, in vitro studies suggest that combinations with monoclonal antibodies and/or other immune strategies could enhance the effect of PI3K inhibition.
Collapse
Affiliation(s)
| | - Marcial García-Morillo
- Hospital Clínic, Department of Medical Oncology Calle Villarroel, 170 08036 Barcelona, Spain
| | - Julio Delgado
- Hospital Clínic, Department of Haematology Calle Villarroel, 170 08036 Barcelona, Spain
| |
Collapse
|
154
|
Mitrevski M, Marrapodi R, Camponeschi A, Cavaliere FM, Lazzeri C, Todi L, Visentini M. Intravenous Immunoglobulin and Immunomodulation of B-Cell - in vitro and in vivo Effects. Front Immunol 2015; 6:4. [PMID: 25657650 PMCID: PMC4302981 DOI: 10.3389/fimmu.2015.00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/06/2015] [Indexed: 12/30/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is used as replacement therapy in patients with antibody deficiencies and at higher dosages in immune-mediated disorders. Although different mechanisms have been described in vitro, the in vivo immunomodulatory effects of IVIG are poorly understood. Different studies have suggested that IVIG modulates B-cell functions as activation, proliferation, and apoptosis. Recently, it was shown that IVIG induces in vitro B-cell unresponsiveness similar to anergy. In accord with this, we recently reported that IVIG therapy in patients affected by common variable immunodeficiency (CVID) interferes in vivo with the B-cell receptor (BCR) signaling by increasing constitutive ERK activation and by reducing the phosphorylated ERK increment induced by BCR cross-linking. Moreover, we observed that IVIG induces in CVID patients an increase of circulating CD21(low) B-cells, an unusual population of anergic-like B-cells prone to apoptosis. Therefore, IVIG at replacement dose in vivo could prime B-cells to an anergic, apoptotic program. Here, we discuss these recent findings, which may improve our understanding of the immunomodulatory effects of IVIG, individualizing single involved molecules for more specific treatments.
Collapse
Affiliation(s)
- Milica Mitrevski
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| | - Ramona Marrapodi
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| | | | | | - Cristina Lazzeri
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| | - Laura Todi
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| | - Marcella Visentini
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
155
|
Nguyen TTT, Elsner RA, Baumgarth N. Natural IgM prevents autoimmunity by enforcing B cell central tolerance induction. THE JOURNAL OF IMMUNOLOGY 2015; 194:1489-502. [PMID: 25595791 DOI: 10.4049/jimmunol.1401880] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It is unclear why selective deficiency in secreted (s)IgM causes Ab-mediated autoimmunity. We demonstrate that sIgM is required for normal B cell development and selection. The CD5(+) B cells that were previously shown to accumulate in body cavities of sIgM(-/-) mice are not B-1a cells, but CD19(int), CD43(-), short-lived, BCR signaling-unresponsive anergic B-2 cells. Body cavity B-1 cells were >10-fold reduced, including VH11(+) and phosphotidylcholine-specific B-1a cells, whereas splenic B-1 cells were unaffected and marginal zone B cells increased. Follicular B cells had higher turnover rates, survived poorly after adoptive transfer, and were unresponsiveness to BCR stimulation in vitro. sIgM bound to B cell precursors and provided a positive signal to overcome a block at the pro/pre-B stage and during IgVH repertoire selection. Polyclonal IgM rescued B cell development and returned autoantibody levels to near normal. Thus, natural IgM deficiency causes primary autoimmune disease by altering B cell development, selection, and central tolerance induction.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616; Graduate Group in Immunology, University of California, Davis, Davis, CA 95616
| | - Rebecca A Elsner
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616; Microbiology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616; Graduate Group in Immunology, University of California, Davis, Davis, CA 95616; Microbiology Graduate Group, University of California, Davis, Davis, CA 95616; Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
| |
Collapse
|
156
|
Bürgler S, Gimeno A, Parente-Ribes A, Wang D, Os A, Devereux S, Jebsen P, Bogen B, Tjønnfjord GE, Munthe LA. Chronic lymphocytic leukemia cells express CD38 in response to Th1 cell-derived IFN-γ by a T-bet-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2014; 194:827-35. [PMID: 25505279 DOI: 10.4049/jimmunol.1401350] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a B cell malignancy associated with increased levels of inflammatory cytokines. Similarly, expression of CD38 on CLL cells correlates with CLL cell survival and proliferation, but the mechanisms that regulate CD38 expression and inflammatory cytokines remain unclear. We have recently demonstrated that patients have CLL-specific Th cells that support CLL proliferation. In this article, we show that CLL cells attract such Th cells, thereby establishing an Ag-dependent collaboration. Blocking experiments performed in vitro as wells as in vivo, using a xenograft model, revealed that secretion of IFN-γ was a major mechanism by which CLL-specific Th cells increased CD38 on CLL cells. The expression of the transcription factor T-bet in peripheral blood CLL cells significantly correlated with CD38 expression, and transient transfection of CLL cells with T-bet resulted in T-bet(hi)CD38(hi) cells. Finally, chromatin immunoprecipitation experiments revealed that T-bet can bind to regulatory regions of the CD38 gene. These data suggest that CLL cells attract CLL-specific Th cells and initiate a positive feedback loop with upregulation of T-bet, CD38, and type 1 chemokines allowing further recruitment of Th cells and increased type 1 cytokine secretion. This insight provides a cellular and molecular mechanism that links the inflammatory signature observed in CLL pathogenesis with CD38 expression and aggressive disease and suggests that targeting the IFN-γ/IFN-γR/JAK/STAT/T-bet/CD38 pathway could play a role in the therapy of CLL.
Collapse
Affiliation(s)
- Simone Bürgler
- Centre for Immune Regulation, Department of Immunology, University of Oslo, Oslo University Hospital, NO-0424 Oslo, Norway; Department of Hematology, Oslo University Hospital, NO-0424 Oslo, Norway; Experimental Infectious Diseases and Cancer Research, University Children's Hospital Zürich, University of Zürich, CH-8008 Zurich, Switzerland;
| | - Aleix Gimeno
- Centre for Immune Regulation, Department of Immunology, University of Oslo, Oslo University Hospital, NO-0424 Oslo, Norway; Department of Hematology, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Anna Parente-Ribes
- Centre for Immune Regulation, Department of Immunology, University of Oslo, Oslo University Hospital, NO-0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Dong Wang
- Centre for Immune Regulation, Department of Immunology, University of Oslo, Oslo University Hospital, NO-0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Audun Os
- Centre for Immune Regulation, Department of Immunology, University of Oslo, Oslo University Hospital, NO-0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Stephen Devereux
- Department of Hematological Medicine, King's College London, London SE5 9RS, United Kingdom
| | - Peter Jebsen
- Department of Pathology, Oslo University Hospital, NO-0424 Oslo, Norway; and
| | - Bjarne Bogen
- Centre for Immune Regulation, Department of Immunology, University of Oslo, Oslo University Hospital, NO-0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, NO-0424 Oslo, Norway; K. G. Jebsen Centre for Influenza Vaccine Research, Department of Immunology, Oslo University Hospital, University of Oslo, NO-0424 Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Hematology, Oslo University Hospital, NO-0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, NO-0424 Oslo, Norway;
| | - Ludvig A Munthe
- Centre for Immune Regulation, Department of Immunology, University of Oslo, Oslo University Hospital, NO-0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, NO-0424 Oslo, Norway;
| |
Collapse
|
157
|
Krysov S, Steele AJ, Coelho V, Linley A, Sanchez Hidalgo M, Carter M, Potter KN, Kennedy B, Duncombe AS, Ashton-Key M, Forconi F, Stevenson FK, Packham G. Stimulation of surface IgM of chronic lymphocytic leukemia cells induces an unfolded protein response dependent on BTK and SYK. Blood 2014; 124:3101-9. [PMID: 25170122 PMCID: PMC4231419 DOI: 10.1182/blood-2014-04-567198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/17/2014] [Indexed: 12/18/2022] Open
Abstract
B-cell receptor (BCR) signaling plays a key role in the behavior of chronic lymphocytic leukemia (CLL). However, cellular consequences of signaling are incompletely defined. Here we explored possible links between BCR signaling and the unfolded protein response (UPR), a stress response pathway that can promote survival of normal and malignant cells. Compared with normal B cells, circulating CLL cells expressed increased, but variable, levels of UPR components. Higher expression of CHOP and XBP1 RNAs was associated with more aggressive disease. UPR activation appeared due to prior tissue-based antigenic stimulation because elevated expression of UPR components was detected within lymph node proliferation centers. Basal UPR activation also correlated closely with surface immunoglobulin M (sIgM) signaling capacity in vitro in both IGHV unmutated CLL and within mutated CLL. sIgM signaling increased UPR activation in vitro with responders showing increased expression of CHOP and XBP1 RNAs, and PERK and BIP proteins, but not XBP1 splicing. Inhibitors of BCR-associated kinases effectively prevented sIgM-induced UPR activation. Overall, this study demonstrates that sIgM signaling results in activation of some components the UPR in CLL cells. Modulation of the UPR may contribute to variable clinical behavior, and its inhibition may contribute to clinical responses to BCR-associated kinase inhibitors.
Collapse
Affiliation(s)
- Sergey Krysov
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Andrew J Steele
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Vania Coelho
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Adam Linley
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Marina Sanchez Hidalgo
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Matthew Carter
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Kathleen N Potter
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Benjamin Kennedy
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Andrew S Duncombe
- Department of Haematology, Southampton General Hospital, Southampton, United Kingdom; and
| | - Margaret Ashton-Key
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom; Department of Cellular Pathology, Southampton General Hospital, Southampton, United Kingdom
| | - Francesco Forconi
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom; Department of Haematology, Southampton General Hospital, Southampton, United Kingdom; and
| | - Freda K Stevenson
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Graham Packham
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
158
|
Bergh AC, Evaldsson C, Pedersen LB, Geisler C, Stamatopoulos K, Rosenquist R, Rosén A. Silenced B-cell receptor response to autoantigen in a poor-prognostic subset of chronic lymphocytic leukemia. Haematologica 2014; 99:1722-30. [PMID: 25085355 PMCID: PMC4222481 DOI: 10.3324/haematol.2014.106054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/23/2014] [Indexed: 12/22/2022] Open
Abstract
Chronic lymphocytic leukemia B cells express auto/xeno antigen-reactive antibodies that bind to self-epitopes and resemble natural IgM antibodies in their repertoire. One of the antigenic structures recognized is oxidation-induced malonedialdehyde that is present on low-density lipoprotein, apoptotic blebs, and on certain microbes. The poor-prognostic stereotyped subset #1 (Clan I IGHV genes-IGKV1(D)-39) express IgM B-cell receptors that bind oxidized low-density lipoprotein. In this study, we have used for the first time this authentic cognate antigen for analysis of downstream B-cell receptor-signal transduction events, since it is more faithful to B-cell physiology than anti-IgM. Multivalent oxidized low-density lipoprotein showed specific binding to subset #1 IgM/IgD B-cell receptors, whereas native low-density lipoprotein did not. The antigen binding induced prompt receptor clustering followed by internalization. However, the receptor-signal transduction was silenced, revealing no Ca(2+) mobilization or cell-cycle entry, while phosphorylated extracellular-regulated kinase 1/2 basal levels were high and could not be elevated further by oxidized low-density lipoprotein. Interestingly, B-cell receptor responsiveness was recovered after 48-h culture in the absence of antigen in half of the cases. Toll-like receptor 9-ligand was found to breach the B-cell receptor-signaling incompetence in 5 of 12 cases pointing to intra-subset heterogeneity. Altogether, this study supports B-cell receptor unresponsiveness to cognate self-antigen on its own in poor-prognostic subset #1 chronic lymphocytic leukemia, indicating that these cells proliferate by other mechanisms that may override B-cell receptor silencing brought about in a context of self-tolerance/anergy. These novel findings have implications for the understanding of chronic lymphocytic leukemia pathobiology and therapy.
Collapse
MESH Headings
- Autoantigens/immunology
- B7-2 Antigen/metabolism
- Calcium/metabolism
- Cell Cycle
- Gene Silencing
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin J-Chains/genetics
- Immunoglobulin M/biosynthesis
- Immunoglobulin M/immunology
- Immunoglobulin Variable Region/genetics
- Interleukin-10/biosynthesis
- Interleukin-2 Receptor alpha Subunit/metabolism
- Interleukin-6/biosynthesis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Ligands
- Lipoproteins, LDL/metabolism
- Protein Binding
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Toll-Like Receptor 9/metabolism
Collapse
Affiliation(s)
- Ann-Charlotte Bergh
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Chamilly Evaldsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | - Kostas Stamatopoulos
- Department of Hematology and HCT Unit G. Papanicolaou Hospital, Thessaloniki, Greece Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
159
|
|
160
|
Aas-Hanssen K, Funderud A, Thompson KM, Bogen B, Munthe LA. Idiotype-specific Th cells support oligoclonal expansion of anti-dsDNA B cells in mice with lupus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2691-8. [PMID: 25127856 DOI: 10.4049/jimmunol.1400640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is marked by a Th cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions and hypergammaglobulinemia. The specificity of Th cells in lupus remains unclear, but B cell Ids have been suggested. A hallmark is the presence of anti-dsDNA, mutated IgG autoantibodies with a preponderance of arginines in CDR3 of the Ig variable H chain (IgVH). B cells can present V region-derived Id peptides on their MHC class II molecules to Id-specific Th cells. We show that Id-specific Th cells support the proliferation of anti-dsDNA Id(+) B cells in mice suffering from systemic autoimmune disease with SLE-like features. Mice developed marked clonal expansions of B cells; half of the IgVH sequences were clonally related. Anti-dsDNA B cells made up 40% of B cells in end-stage disease. The B cells expressed mutated IgVH with multiple arginines in CDR3. Hence, Id-driven T cell-B cell collaboration supported the production of classical anti-dsDNA Abs, recapitulating the characteristics of such Abs in SLE. The results support the concept that Id-specific Th cells may trigger the development of SLE and suggest that manipulation of the Id-specific T cell repertoire could play a role in treatment.
Collapse
Affiliation(s)
- Kristin Aas-Hanssen
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| | - Ane Funderud
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| | - Keith M Thompson
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| | - Bjarne Bogen
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and K.G. Jebsen Centre for Influenza Vaccine Research, Department of Immunology, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway
| | - Ludvig A Munthe
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| |
Collapse
|
161
|
Visentini M, Marrapodi R, Conti V, Mitrevski M, Camponeschi A, Lazzeri C, Carbonari M, Catizone A, Quinti I, Fiorilli M. Dysregulated extracellular signal-regulated kinase signaling associated with impaired B-cell receptor endocytosis in patients with common variable immunodeficiency. J Allergy Clin Immunol 2014; 134:401-10. [PMID: 24792875 DOI: 10.1016/j.jaci.2014.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by B-cell dysfunction and, in a subgroup, by expansion of CD21(low) B cells. The CD21(low) B cells display defects in early B-cell receptor (BCR) signaling resembling those of anergic B cells. OBJECTIVE We sought to investigate whether B cells from patients with CVID, like anergic B cells, have defects in extracellular signal-regulated kinase (ERK) phosphorylation and in endocytic trafficking of the BCR. METHODS Using flow cytometry, we evaluated phosphorylated ERK (pERK) expression and internalization of cross-linked BCR in B-cell subsets. The localization of internalized BCR to lysosome-associated membrane protein 1-positive late endosomes was evaluated with confocal microscopy. RESULTS Constitutive pERK levels were increased in naive and IgM(+) memory B cells of patients with CVID compared with those of healthy donors, whereas the pERK increment induced by BCR cross-linking was relatively reduced. Intravenous immunoglobulin administration enhanced these anomalies, but they appeared to be intrinsic to B cells from patients with CVID. Cross-linking-induced BCR endocytosis was decreased in the IgM(+) memory B cells, especially in those with a CD21(low) phenotype, but not in the naive B cells of patients with CVID with CD21(low) expansion. Internalized BCR localized normally to late endosomes. Pharmacologic inhibition of ERK phosphorylation suppressed BCR endocytosis in B cells of healthy patients and those with CVID. CONCLUSIONS The B cells of patients with CVID with CD21(low) B-cell expansion resemble anergic B cells based on high constitutive pERK expression. The IgM(+) memory B cells of these patients, especially those that are CD21(low), have a defect in BCR endocytosis seemingly caused by dysregulated ERK signaling.
Collapse
Affiliation(s)
- Marcella Visentini
- Department of Clinical Immunology, Sapienza University of Rome, Rome, Italy
| | - Ramona Marrapodi
- Department of Clinical Immunology, Sapienza University of Rome, Rome, Italy
| | - Valentina Conti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Milica Mitrevski
- Department of Clinical Immunology, Sapienza University of Rome, Rome, Italy
| | | | - Cristina Lazzeri
- Department of Clinical Immunology, Sapienza University of Rome, Rome, Italy
| | - Maurizio Carbonari
- Department of Clinical Immunology, Sapienza University of Rome, Rome, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Fiorilli
- Department of Clinical Immunology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
162
|
Decalf J, Godinho-Silva C, Fontinha D, Marques S, Simas JP. Establishment of murine gammaherpesvirus latency in B cells is not a stochastic event. PLoS Pathog 2014; 10:e1004269. [PMID: 25079788 PMCID: PMC4117635 DOI: 10.1371/journal.ppat.1004269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/10/2014] [Indexed: 12/21/2022] Open
Abstract
Murid γ-herpesvirus-4 (MuHV-4) promotes polyclonal B cell activation and establishes latency in memory B cells via unclear mechanisms. We aimed at exploring whether B cell receptor specificity plays a role in B cell susceptibility to viral latency and how this is related to B cell activation. We first observed that MuHV-4-specific B cells represent a minority of the latent population, and to better understand the influence of the virus on non-MuHV-4 specific B cells we used the SWHEL mouse model, which produce hen egg lysozyme (HEL)-specific B cells. By tracking HEL+ and HEL− B cells, we showed that in vivo latency was restricted to HEL− B cells while the two populations were equally sensitive to the virus in vitro. Moreover, MuHV-4 induced two waves of B cell activation. While the first wave was characterized by a general B cell activation, as shown by HEL+ and HEL− B cells expansion and upregulation of CD69 expression, the second wave was restricted to the HEL− population, which acquired germinal center (GC) and plasma cell phenotypes. Antigenic stimulation of HEL+ B cells led to the development of HEL+ GC B cells where latent infection remained undetectable, indicating that MuHV-4 does not benefit from acute B cell responses to establish latency in non-virus specific B cells but relies on other mechanisms of the humoral response. These data support a model in which the establishment of latency in B cells by γ-herpesviruses is not stochastic in terms of BCR specificity and is tightly linked to the formation of GCs. Murid γ-herpesvirus-4 (MuHV-4) is a good model to study infectious mononucleosis in mice, in which the virus ultimately establishes life-long latency in B cells. Whereas several viral proteins have been shown to modulate B cell behavior, in the present study we aimed at clarifying the parameters that dictate the establishment of viral latency from the B cell perspective. Indeed, the B cell repertoire is highly diverse and it remains unknown whether latency takes place randomly in B cells. To study this question, we isolated latently infected B cells in which we observed a low frequency of virus-specific B cells, suggesting that viral latency is not restricted to this population. To better understand MuHV-4 influence on non-virus specific B cells, we then followed the fate of B cells specific for a foreign antigen, hen egg lysozyme (HEL). While in vitro experiments showed that HEL-specific B cells could be acutely infected by MuHV-4, these cells were resistant to MuHV-4 latent infection in vivo. These results suggest that while establishment of γ-herpesvirus latency is not restricted to virus-specific B cells, it does not take place randomly in B cells and relies on mechanisms that remain to be identified.
Collapse
Affiliation(s)
- Jérémie Decalf
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cristina Godinho-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
163
|
Lyubchenko T, Zerbe GO. B cell receptor signaling-based index as a biomarker for the loss of peripheral immune tolerance in autoreactive B cells in rheumatoid arthritis. PLoS One 2014; 9:e102128. [PMID: 25057856 PMCID: PMC4109936 DOI: 10.1371/journal.pone.0102128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
This study examines the loss of peripherally induced B cell immune tolerance in Rheumatoid arthritis (RA) and establishes a novel signaling-based measure of activation in a subset of autoreactive B cells - the Induced tolerance status index (ITSI). Naturally occurring naïve autoreactive B cells can escape the “classical” tolerogenic mechanisms of clonal deletion and receptor editing, but remain peripherally tolerized through B cell receptor (BCR) signaling inhibition (postdevelopmental “receptor tuning” or anergy). ITSI is a statistical index that numerically determines the level of homology between activation patterns of BCR signaling intermediaries in B cells that are either tolerized or activated by auto antigen exposure, and thus quantifies the level of peripheral immune tolerance. The index is based on the logistic regression analysis of phosphorylation levels in a panel of BCR signaling proteins. Our results demonstrate a new approach to identifying autoreactive B cells based on their BCR signaling features.
Collapse
MESH Headings
- Adult
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Autoantigens/genetics
- Autoantigens/immunology
- Autoimmunity
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Biomarkers/metabolism
- Clonal Anergy/genetics
- Clonal Deletion/genetics
- Female
- Gene Expression Regulation
- Humans
- Logistic Models
- Lymphocyte Activation
- Male
- Middle Aged
- Peripheral Tolerance/genetics
- Phosphorylation
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Severity of Illness Index
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Taras Lyubchenko
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| | - Gary O. Zerbe
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, Colorado, United States of America
| |
Collapse
|
164
|
Integrin CD11b negatively regulates BCR signalling to maintain autoreactive B cell tolerance. Nat Commun 2014; 4:2813. [PMID: 24264377 DOI: 10.1038/ncomms3813] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022] Open
Abstract
A variant of the integrin-α-M (CD11b) gene has been linked to the pathogenesis of systemic lupus erythematosus. However, how this genotype results in the lupus phenotype is not fully understood. Here we show that autoreactive B cells lacking CD11b exhibit a hyperproliferative response to B cell receptor (BCR) crosslinking and enhanced survival. In vivo engagement of BCR in CD11b-deficient mice leads to increased autoAb production and kidney Ig deposition. In addition, CD11b-deficient autoreactive B cells have decreased tyrosine phosphorylation including Lyn and CD22 with decreased phosphatase SHP-1 recruitment but increased calcium influx. Results obtained using B cells transfected with the wild type or rs1143679 lupus-associated variant of CD11b suggest that this mutation completely abrogates the regulatory effect of CD11b on BCR signalling. This is through disruption of CD22-CD11b direct binding. These results reveal a previously unrecognized role of CD11b in maintaining autoreactive B cell tolerance.
Collapse
|
165
|
Packham G, Krysov S, Allen A, Savelyeva N, Steele AJ, Forconi F, Stevenson FK. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. Haematologica 2014; 99:1138-48. [PMID: 24986876 PMCID: PMC4077074 DOI: 10.3324/haematol.2013.098384] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/09/2023] Open
Abstract
Biologists and clinicians agree that the B-cell receptor influences the behavior of chronic lymphocytic leukemia, and promising new drugs are aimed at receptor-associated kinases. Engagement of surface immunoglobulin by antigen is a key driver of malignant cells with outcome influenced by the nature of the cell, the level of stimulation and the microenvironment. Analysis of surface immunoglobulin-mediated signaling in the two major disease subsets defined by IGHV mutational status reveals bifurcation of responses toward proliferation or anergy. Mutated chronic lymphocytic leukemia, generally of relatively good prognosis, is mainly, but not exclusively, driven towards anergy in vivo. In contrast, unmutated chronic lymphocytic leukemia shows less evidence for anergy in vivo retaining more responsiveness to surface immunoglobulin M-mediated signaling, possibly explaining increased tumor progression. Expression and function of surface immunoglobulin M in unmutated chronic lymphocytic leukemia appear rather homogeneous, but mutated chronic lymphocytic leukemia exhibits a highly heterogeneous profile that may relate to further variable clinical behavior within this subset. Anergy should increase susceptibility to apoptosis but, in leukemic cells, this may be countered by overexpression of the B-cell lymphoma-2 survival protein. Maintained anergy spreads to chemokines and adhesion molecules, restraining homing and migration. However, anergy is not necessarily completely benign, being able to reverse and regenerate surface immunoglobulin M-mediated responses. A two-pronged attack on proliferative and anti-apoptotic pathways may succeed. Increased understanding of how chronic lymphocytic leukemia cells are driven to anergy or proliferation should reveal predictive biomarkers of progression and of likely response to kinase inhibitors, which could assist therapeutic decisions.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens/metabolism
- Apoptosis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Proliferation
- Clonal Anergy/immunology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Graham Packham
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Serge Krysov
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Alex Allen
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Natalia Savelyeva
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Andrew J Steele
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Francesco Forconi
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Freda K Stevenson
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
166
|
Obishakin E, de Trez C, Magez S. Chronic Trypanosoma congolense infections in mice cause a sustained disruption of the B-cell homeostasis in the bone marrow and spleen. Parasite Immunol 2014; 36:187-98. [PMID: 24451010 DOI: 10.1111/pim.12099] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/15/2014] [Indexed: 12/21/2022]
Abstract
Trypanosoma congolense is one of the main species responsible for Animal African Trypanosomosis (AAT). As preventive vaccination strategies for AAT have been unsuccessful so far, investigating the mechanisms underlying vaccine failure has to be prioritized. In T. brucei and T. vivax infections, recent studies revealed a rapid onset of destruction of the host B-cell compartment, resulting in the loss of memory recall capacity. To assess such effect in experimental T. congolense trypanosomosis, we performed infections with both the cloned Tc13 parasite, which is considered as a standard model system for T. congolense rodent infections and the noncloned TRT55 field isolate. These infections differ in their virulence level in the C57BL/6 mouse model for trypanosomosis. We show that early on, an irreversible depletion of all developmental B cells stages occur. Subsequently, in the spleen, a detrimental decrease in immature B cells is followed by a significant and permanent depletion of Marginal zone B cells and Follicular B cells. The severity of these events later on in infection correlated with the virulence level of the parasite stock. In line with this, it was observed that later-stage infection-induced IgGs were largely nonspecific, in particular in the more virulent TRT55 infection model.
Collapse
Affiliation(s)
- E Obishakin
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| | | | | |
Collapse
|
167
|
Ikebuchi R, Konnai S, Okagawa T, Nishimori A, Nakahara A, Murata S, Ohashi K. Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle. J Gen Virol 2014; 95:1832-1842. [PMID: 24814926 DOI: 10.1099/vir.0.065011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bovine leukemia virus (BLV) induces abnormal B-cell proliferation and B-cell lymphoma in cattle, where the BLV provirus is integrated into the host genome. BLV-infected B-cells rarely express viral proteins in vivo, but short-term cultivation augments BLV expression in some, but not all, BLV-infected B-cells. This observation suggests that two subsets, i.e. BLV-silencing cells and BLV-expressing cells, are present among BLV-infected B-cells, although the mechanisms of viral expression have not been determined. In this study, we examined B-cell markers and viral antigen expression in B-cells from BLV-infected cattle to identify markers that may discriminate BLV-expressing cells from BLV-silencing cells. The proportions of IgM(high) B-cells were increased in blood lymphocytes from BLV-infected cattle. IgM(high) B-cells mainly expressed BLV antigens, whereas IgM(low) B-cells did not, although the provirus load was equivalent in both subsets. Several parameters were investigated in these two subsets to characterize their cellular behaviour. Real-time PCR and microarray analyses detected higher expression levels of some proto-oncogenes (e.g. Maf, Jun and Fos) in IgM(low) B-cells than those in IgM(high) B-cells. Moreover, lymphoma cells obtained from the lymph nodes of 14 BLV-infected cattle contained IgM(low) or IgM(-) B-cells but no IgM(high) B-cells. To our knowledge, this is the first study to demonstrate that IgM(high) B-cells mainly comprise BLV-expressing cells, whereas IgM(low) B-cells comprise a high proportion of BLV-silencing B-cells in BLV-infected cattle.
Collapse
Affiliation(s)
- Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ayako Nakahara
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
168
|
B cell transcription factors: Potential new therapeutic targets for SLE. Clin Immunol 2014; 152:140-51. [DOI: 10.1016/j.clim.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
|
169
|
Liu Y, Liu A, Iikuni N, Xu H, Shi FD, La Cava A. Regulatory CD4+ T Cells Promote B Cell Anergy in Murine Lupus. THE JOURNAL OF IMMUNOLOGY 2014; 192:4069-73. [DOI: 10.4049/jimmunol.1302897] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
170
|
Variable induction of PRDM1 and differentiation in chronic lymphocytic leukemia is associated with anergy. Blood 2014; 123:3277-85. [PMID: 24637363 DOI: 10.1182/blood-2013-11-539049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite antigen engagement and intact B-cell-receptor (BCR) signaling, chronic lymphocytic leukemia (CLL) cells fail to undergo terminal differentiation. We hypothesized that such failure may be due to anergy, as CLL cells exhibit variable levels of nonresponsiveness to surface IgM stimulation that is reversible in vitro. Moreover, anergy is associated with reduced differentiation capacity in normal B cells. We investigated responses of CLL cells to two potent differentiation-promoting agents, IL-21 and cytosine guanine dinucleotide-enriched oligo-deoxynucleotides. The induction of PR domain-containing protein 1 (PRDM1; also known as Blimp-1), a critical regulator of plasmacytic differentiation, by these agents was closely correlated but varied between individual cases, despite functionally intact IL-21 receptor- and Toll-like receptor 9-mediated signal transducer and activator of transcription 3, and nuclear factor-κB pathways. PRDM1 induction was inversely correlated with the extent of anergy as measured by the ability to mobilize intracellular Ca(2+) following BCR crosslinking. PRDM1 responsiveness was associated with other markers of differentiation and proliferation but not with differences in apoptosis. The ability to induce PRDM1 did correlate with differential transcriptional and epigenetic regulation of the PRDM1 gene. These studies extend our understanding of CLL pathobiology, demonstrating that reduced differentiation capacity may be a consequence of anergy. Epigenetic drugs may offer possibilities to reactivate PRDM1 expression as part of novel differentiation therapy approaches.
Collapse
|
171
|
Humpert ML, Pinto D, Jarrossay D, Thelen M. CXCR7 influences the migration of B cells during maturation. Eur J Immunol 2014; 44:694-705. [PMID: 24259140 DOI: 10.1002/eji.201343907] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/31/2013] [Accepted: 11/15/2013] [Indexed: 12/25/2022]
Abstract
The atypical chemokine receptor CXCR7 binds the chemokines CXCL12 and CXCL11. The receptor is widely expressed and was shown to tune CXCR12-induced responses of CXCR4. Here, the function of CXCR7 was examined at late stages of human B-cell maturation, when B cells differentiate into Ab-secreting plasmablasts. We identified two populations of CXCR7(+) cells in tonsillar lymphocytes, one being presumably memory B cells or early plasmablasts (FSC(low) CD19(+) CD38(mid) ) and the other being plasmablasts or early plasma cells (FSC(high) CD19(+) CD38(+) ). CXCR7 is expressed on CD19(+) CD27(+) memory B cells, on CD19(+) CD38(+) CD138(-) and intracellular immunoglobulin high plasmablasts, but not on CD19(+) CD138(+) icIg(high) plasma cells. The differential expression pattern suggests a potential contribution of the scavenger receptor in final B-cell maturation. On in vitro differentiating B cells, we found a marked inverse correlation between CXCR7 and CXCR5 cell surface levels, whereas expression of CXCR4 remained almost constant. Migration assays performed with tonsillar mononuclear cells or in vitro differentiated cells revealed that inhibition of CXCR7 markedly increases chemotaxis toward CXCL12, especially at late stages of B-cell maturation. Chemotaxis was attenuated in the presence of CXCR4 antagonists, confirming that migration is CXCR4 mediated. Our findings unequivocally demonstrate a novel role for CXCR7 in regulating the migration of plasmablasts during B-cell maturation.
Collapse
Affiliation(s)
- Marie-Luise Humpert
- Institute for Research in Biomedicine, Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
172
|
Chung JY, Figgett W, Fairfax K, Bernard C, Chan J, Toh BH, Mackay F, Alderuccio F. Gene therapy delivery of myelin oligodendrocyte glycoprotein (MOG) via hematopoietic stem cell transfer induces MOG-specific B cell deletion. THE JOURNAL OF IMMUNOLOGY 2014; 192:2593-601. [PMID: 24532581 DOI: 10.4049/jimmunol.1203563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The various mechanisms that have been described for immune tolerance govern our ability to control self-reactivity and minimize autoimmunity. However, the capacity to genetically manipulate the immune system provides a powerful avenue to supplement this natural tolerance in an Ag-specific manner. We have previously shown in the mouse model of experimental autoimmune encephalomyelitis that transfer of bone marrow (BM) transduced with retrovirus encoding myelin oligodendrocyte glycoprotein (MOG) promotes disease resistance and CD4(+) T cell deletion within the thymus. However, the consequence of this strategy on B cell tolerance is not known. Using BM from IgH(MOG) mice that develop MOG-specific B cell receptors, we generated mixed chimeras together with BM-encoding MOG. In these animals, the development of MOG-specific B cells was abrogated, resulting in a lack of MOG-specific B cells in all B cell compartments examined. This finding adds a further dimension to our understanding of the mechanisms of tolerance that are associated with this gene therapy approach to treating autoimmunity and may have important implications for Ab-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Jie-Yu Chung
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria 3181, Australia
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Davani D, Pancer Z, Cheroutre H, Ratcliffe MJH. Negative selection of self-reactive chicken B cells requires B cell receptor signaling and is independent of the bursal microenvironment. THE JOURNAL OF IMMUNOLOGY 2014; 192:3207-17. [PMID: 24516196 DOI: 10.4049/jimmunol.1302394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although the negative selection of self-reactive B cells in the bone marrow of mammals has been clearly demonstrated, it remains unclear in models of gut-associated B cell lymphopoiesis, such as that of the chicken (Gallus gallus). We have generated chicken surface IgM-related receptors in which the diversity region of the lamprey variable lymphocyte receptor (VLR) has been fused to the C region of chicken surface IgM (Tμ). Expression of a VLR:Tμ receptor with specificity for PE supported normal development of B cells, whereas a VLR:Tμ receptor specific to hen egg lysozyme (a self-antigen with respect to chicken B cells) induced, in vivo, complete deletion of VLR(HEL)Tμ-expressing B cells. In ovo i.v. injection of PE resulted in deletion of VLR(PE)Tμ-expressing Β cells in the embryo spleen, demonstrating that negative selection was independent of the bursal microenvironment. Although chickens transduced with a murine CD8α:chicken Igα fusion protein contained B cells expressing mCD8α:chIgα, cotransfection of the mCD8α:chIgα construct, together with thymus leukemia Ag (a natural ligand for mCD8α), resulted in reduced levels of mCD8α:chIgα-expressing B cells in inverse proportion to the levels of thymus leukemia Ag-expressing cells. Deletion of mCD8α:chIgα-expressing cells was specific for B cells and required active signaling downstream of the mCD8α:chIgα receptor. Ag-mediated negative selection of developing chicken B cells can therefore occur independently of the bursal microenvironment and is dependent on signaling downstream of the BCR.
Collapse
Affiliation(s)
- Dariush Davani
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | | | | | |
Collapse
|
174
|
Protein kinase Cδ promotes transitional B cell-negative selection and limits proximal B cell receptor signaling to enforce tolerance. Mol Cell Biol 2014; 34:1474-85. [PMID: 24515435 DOI: 10.1128/mcb.01699-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase Cδ (PKCδ) deficiency causes autoimmune pathology in humans and mice and is crucial for the maintenance of B cell homeostasis. However, the mechanisms underlying autoimmune disease in PKCδ deficiency remain poorly defined. Here, we address the antigen-dependent and -independent roles of PKCδ in B cell development, repertoire selection, and antigen responsiveness. We demonstrate that PKCδ is rapidly phosphorylated downstream of both the B cell receptor (BCR) and the B cell-activating factor (BAFF) receptor. We found that PKCδ is essential for antigen-dependent negative selection of splenic transitional B cells and is required for activation of the proapoptotic Ca(2+)-Erk pathway that is selectively activated during B cell-negative selection. Unexpectedly, we also identified a previously unrecognized role for PKCδ as a proximal negative regulator of BCR signaling that substantially impacts survival and proliferation of mature follicular B cells. As a consequence of these distinct roles, PKCδ deficiency leads to the survival and development of a B cell repertoire that is not only aberrantly autoreactive but also hyperresponsive to antigen stimulation.
Collapse
|
175
|
Avalos AM, Bilate AM, Witte MD, Tai AK, He J, Frushicheva MP, Thill PD, Meyer-Wentrup F, Theile CS, Chakraborty AK, Zhuang X, Ploegh HL. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. ACTA ACUST UNITED AC 2014; 211:365-79. [PMID: 24493799 PMCID: PMC3920557 DOI: 10.1084/jem.20131603] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Monovalent engagement can trigger BCR signal transduction, and fine-tuning of BCR-ligand recognition can lead to B cell nonresponsiveness, activation, or inhibition. Valency requirements for B cell activation upon antigen encounter are poorly understood. OB1 transnuclear B cells express an IgG1 B cell receptor (BCR) specific for ovalbumin (OVA), the epitope of which can be mimicked using short synthetic peptides to allow antigen-specific engagement of the BCR. By altering length and valency of epitope-bearing synthetic peptides, we examined the properties of ligands required for optimal OB1 B cell activation. Monovalent engagement of the BCR with an epitope-bearing 17-mer synthetic peptide readily activated OB1 B cells. Dimers of the minimal peptide epitope oriented in an N to N configuration were more stimulatory than their C to C counterparts. Although shorter length correlated with less activation, a monomeric 8-mer peptide epitope behaved as a weak agonist that blocked responses to cell-bound peptide antigen, a blockade which could not be reversed by CD40 ligation. The 8-mer not only delivered a suboptimal signal, which blocked subsequent responses to OVA, anti-IgG, and anti-kappa, but also competed for binding with OVA. Our results show that fine-tuning of BCR-ligand recognition can lead to B cell nonresponsiveness, activation, or inhibition.
Collapse
Affiliation(s)
- Ana M Avalos
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Hinman RM, Smith MJ, Cambier JC. B cells and type 1 diabetes ...in mice and men. Immunol Lett 2014; 160:128-32. [PMID: 24472603 DOI: 10.1016/j.imlet.2014.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/14/2014] [Indexed: 12/25/2022]
Abstract
Nearly 70% of newly produced B cells express autoreactive antigen receptors and must be silenced to prevent autoimmunity. Failure of silencing mechanisms is apparent in type 1 diabetes (T1D), where islet antigen-specific B cells appear critical for development of disease. Evidence for a B cell role in T1D includes success of B cell targeted anti-CD20 therapy, which delays T1D progression in both NOD mice and new onset patients. Demonstrating the importance of specificity, NOD mice whose B cell repertoire is biased toward insulin reactivity show increased disease development, while bias away from insulin reactivity largely prevents disease. Finally, though not required for illness, high affinity insulin autoantibodies are often the first harbingers of T1D. B cell cytokine production and auto-antigen presentation to self-reactive T cells are likely important in pathogenesis. Here we review B cell function, as described above, in T1D in humans and the non-obese diabetic (NOD) mouse. We will discuss recent broad-based B cell depletion studies and how they may provide the basis for refinement of future treatments for the disorder.
Collapse
Affiliation(s)
- Rochelle M Hinman
- University of Colorado Denver and National Jewish Health, Denver, CO, United States.
| | - Mia J Smith
- University of Colorado Denver and National Jewish Health, Denver, CO, United States.
| | - John C Cambier
- University of Colorado Denver and National Jewish Health, Denver, CO, United States; Department of Immunology, National Jewish Health, Rm 803A, Goodman Building, 1400 Jackson Street, Denver, CO 80206, United States.
| |
Collapse
|
177
|
Zhang J, Alam SM, Bouton-Verville H, Chen Y, Newman A, Stewart S, Jaeger FH, Montefiori DC, Dennison SM, Haynes BF, Verkoczy L. Modulation of nonneutralizing HIV-1 gp41 responses by an MHC-restricted TH epitope overlapping those of membrane proximal external region broadly neutralizing antibodies. THE JOURNAL OF IMMUNOLOGY 2014; 192:1693-706. [PMID: 24465011 DOI: 10.4049/jimmunol.1302511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs), but current immunization strategies fail to induce BnAbs, and for unknown reasons, often induce nonneutralizing Abs instead. To explore potential host genetic contributions controlling Ab responses to the HIV-1 Envelope, we have used congenic strains to identify a critical role for MHC class II restriction in modulating Ab responses to the membrane proximal external region (MPER) of gp41, a key vaccine target. Immunized H-2(d)-congenic strains had more rapid, sustained, and elevated MPER(+) Ab titers than those bearing other haplotypes, regardless of immunogen, adjuvant, or prime or boost regimen used, including formulations designed to provide T cell help. H-2(d)-restricted MPER(+) serum Ab responses depended on CD4 TH interactions with class II (as revealed in immunized intra-H-2(d/b) congenic or CD154(-/-) H-2(d) strains, and by selective abrogation of MPER restimulated, H-2(d)-restricted primed splenocytes by class II-blocking Abs), and failed to neutralize HIV-1 in the TZM-b/l neutralization assay, coinciding with lack of specificity for an aspartate residue in the neutralization core of BnAb 2F5. Unexpectedly, H-2(d)-restricted MPER(+) responses functionally mapped to a core TH epitope partially overlapping the 2F5/z13/4E10 BnAb epitopes as well as nonneutralizing B cell-Ab binding residues. We propose that class II restriction contributes to the general heterogeneity of nonneutralizing gp41 responses induced by Envelope. Moreover, the proximity of TH and B cell epitopes in this restriction may have to be considered in redesigning minimal MPER immunogens aimed at exclusively binding BnAb epitopes and triggering MPER(+) BnAbs.
Collapse
Affiliation(s)
- Jinsong Zhang
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Kirchenbaum GA, St Clair JB, Detanico T, Aviszus K, Wysocki LJ. Functionally responsive self-reactive B cells of low affinity express reduced levels of surface IgM. Eur J Immunol 2014; 44:970-82. [PMID: 24375379 DOI: 10.1002/eji.201344276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022]
Abstract
Somatic gene rearrangement generates a diverse repertoire of B cells, many which have receptors possessing a range of affinities for self-Ag. Newly generated B cells express high and relatively uniform amounts of surface IgM (sIgM), while follicular (FO) B cells express sIgM at widely varying levels. It is plausible, therefore, that downmodulation of sIgM serves as a mechanism to maintain weakly self-reactive B cells in a responsive state by decreasing their avidity for self-Ag. We tested this hypothesis by performing comparative functional tests with FO IgM(hi) and IgM(lo) B cells from the unrestricted repertoire of WT C57BL/6 mice. We found that FO IgM(lo) B cells mobilized Ca(2+) equivalently to IgM(hi) B cells when the same number of sIgM molecules was engaged. In agreement, FO IgM(lo) B cells were functionally competent to produce an antibody response following adoptive transfer. The FO IgM(lo) cell population had elevated levels of Nur77 transcript, and was enriched with nuclear-reactive specificities. Hybridoma sampling revealed that these B-cell receptors were of low affinity. Collectively, these results suggest that sIgM downmodulation by low-affinity, self-reactive B cells preserves their immunocompetence and circumvents classical peripheral tolerance mechanisms that would otherwise reduce diversity within the B cell compartment.
Collapse
Affiliation(s)
- Greg A Kirchenbaum
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | | | | | | | | |
Collapse
|
179
|
Séïté JF, Goutsmedt C, Youinou P, Pers JO, Hillion S. Intravenous immunoglobulin induces a functional silencing program similar to anergy in human B cells. J Allergy Clin Immunol 2014; 133:181-8.e1-9. [DOI: 10.1016/j.jaci.2013.08.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/29/2022]
|
180
|
Abstract
The development and function of B lymphocytes critically depend on the non-germline B-cell antigen receptor (BCR). In addition to the diverse antigen-recognition regions, whose coding sequences are generated by the somatic DNA rearrangement, the variety of the constant domains of the Heavy Chain (HC) portion contributes to the multiplicity of the BCR types. The functions of particular classes of the HC, particularly in the context of the membrane BCR, are not completely understood. The expression of the various classes of the HC correlates with the distinct stages of B-cell development, types of B-cell subsets, and their effector functions. In this chapter, we summarize and discuss the accumulated knowledge on the role of the μ, δ, and γ HC isotypes of the conventional and precursor BCR in B-cell differentiation, selection, and engagement with (auto)antigens.
Collapse
Affiliation(s)
- Elena Surova
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hassan Jumaa
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Department of Immunology, Ulm University, Ulm, Germany.
| |
Collapse
|
181
|
Abstract
Though type 1 diabetes (T1D) is considered a T cell-mediated autoimmune disorder, recent evidence indicates that B cells play a critical role in disease. This conclusion is based in part on the success of anti-CD20 (rituximab) therapy, which by broadly depleting B cells delays disease progression in non-obese diabetic (NOD) mice and new-onset patients. B cell receptor (BCR) specificity to islet autoantigen is key. NOD mice whose B cell repertoire is biased toward insulin reactivity show increased disease development, while bias away from insulin reactivity largely prevents disease. Although the operative disease-promoting B cell effector function remains undefined, islet-antigen reactive B cells function in antigen presentation to diabetogenic CD4 T cells. Other studies implicate B cells in antigen presentation to CD8 T cells. B cell participation in TID appears predicated on faulty B cell tolerance. Here, we review extant findings implicating B cells in T1D in mice and men.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Autoantibodies/blood
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Progression
- Humans
- Immune Tolerance/drug effects
- Immune Tolerance/immunology
- Immunologic Factors/pharmacology
- Lymphocyte Depletion
- Mice
- Mice, Inbred NOD
- Molecular Targeted Therapy
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/immunology
- Rituximab
Collapse
Affiliation(s)
- Rochelle M Hinman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, P18-8100, Mail Stop 8333, RC1 N, Aurora, CO, 80045-2537, USA,
| | | |
Collapse
|
182
|
|
183
|
Castro R, Bromage E, Abós B, Pignatelli J, González Granja A, Luque A, Tafalla C. CCR7 is mainly expressed in teleost gills, where it defines an IgD+IgM- B lymphocyte subset. THE JOURNAL OF IMMUNOLOGY 2013; 192:1257-66. [PMID: 24353268 DOI: 10.4049/jimmunol.1302471] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokine receptor CCR7, the receptor for both CCL19 and CCL21 chemokines, regulates the recruitment and clustering of circulating leukocytes to secondary lymphoid tissues, such as lymph nodes and Peyer's patches. Even though teleost fish do not have either of these secondary lymphoid structures, we have recently reported a homolog to CCR7 in rainbow trout (Oncorhynchus mykiss). In the present work, we have studied the distribution of leukocytes bearing extracellular CCR7 in naive adult tissues by flow cytometry, observing that among the different leukocyte populations, the highest numbers of cells with membrane (mem)CCR7 were recorded in the gill (7.5 ± 2% CCR7(+) cells). In comparison, head kidney, spleen, thymus, intestine, and peripheral blood possessed <5% CCR7(+) cells. When CCR7 was studied at early developmental stages, we detected a progressive increase in gene expression and protein CCR7 levels in the gills throughout development. Surprisingly, the majority of the CCR7(+) cells in the gills were not myeloid cells and did not express membrane CD8, IgM, nor IgT, but expressed IgD on the cell surface. In fact, most IgD(+) cells in the gills expressed CCR7. Intriguingly, the IgD(+)CCR7(+) population did not coexpress memIgM. Finally, when trout were bath challenged with viral hemorrhagic septicemia virus, the number of CCR7(+) cells significantly decreased in the gills while significantly increased in head kidney. These results provide evidence of the presence of a novel memIgD(+)memIgM(-) B lymphocyte subset in trout that expresses memCCR7 and responds to viral infections. Similarities with IgD(+)IgM(-) subsets in mammals are discussed.
Collapse
Affiliation(s)
- Rosario Castro
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid 28130, Spain
| | | | | | | | | | | | | |
Collapse
|
184
|
Sang A, Zheng YY, Morel L. Contributions of B cells to lupus pathogenesis. Mol Immunol 2013; 62:329-38. [PMID: 24332482 DOI: 10.1016/j.molimm.2013.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/14/2013] [Accepted: 11/14/2013] [Indexed: 01/09/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies. This review summarizes first the results obtained in the mouse that have revealed how B cell tolerance is breached in SLE. We then review the B cell subsets, in addition to the autoAb producing cells, which contribute to SLE pathogenesis, focusing on marginal zone B cells, B-1 cells and regulatory B cells. Finally, we review the interactions between B cells and other immune cells that have been implicated in SLE, such as dendritic cells, macrophages, neutrophils and T cells.
Collapse
Affiliation(s)
- Allison Sang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ying-Yi Zheng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
185
|
Khan WN, Wright JA, Kleiman E, Boucher JC, Castro I, Clark ES. B-lymphocyte tolerance and effector function in immunity and autoimmunity. Immunol Res 2013; 57:335-53. [DOI: 10.1007/s12026-013-8466-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
186
|
Pierce SK, Liu W. Encoding immunological memory in the initiation of B-cell receptor signaling. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 78:231-7. [PMID: 24100585 DOI: 10.1101/sqb.2013.78.020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In one of the earliest events in the initiation of antigen-driven antibody responses, naïve, IgM-, and IgD-expressing B cells enter germinal centers where they irreversibly isotype switch to the expression of predominately IgG B-cell receptors (BCRs). The IgG-expressing B cells then undergo rounds of antigen-driven selection, ultimately exiting germinal centers as IgG-expressing memory B cells or plasma blast. This early switch from IgM to IgG begs the question: Of what advantage to the memory response is the B cell's expression of an IgG BCR? Despite convincing evidence that the expression of IgG BCRs is essential for antibody memory responses in vivo, the molecular basis of this requirement is only incompletely understood. Here we describe intrinsic features of IgG BCRs that endow memory B cells with the ability to rapidly and efficiently initiate signaling. Remarkably, efficient signaling is mediated through the cytoplasmic tail of the membrane IgG that binds to synapse associated protein 97, a member of a large family of proteins that are best studied for their role in regulating receptor signaling in neuronal synapses. These findings underscore an interesting parallel in the mechanisms at play in encoding immunological memory and memory in the nervous system.
Collapse
Affiliation(s)
- Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Wanli Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
187
|
Kremer AN, van der Griendt JC, van der Meijden ED, Honders MW, Ayoglu B, Schwenk JM, Nilsson P, Falkenburg JHF, Griffioen M. Development of a coordinated allo T cell and auto B cell response against autosomal PTK2B after allogeneic hematopoietic stem cell transplantation. Haematologica 2013; 99:365-9. [PMID: 24097630 DOI: 10.3324/haematol.2013.086652] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is well known that allo-reactive T cells play a crucial role in graft-versus-leukemia and graft-versus-host disease after allogeneic hematopoietic stem cell transplantation (alloSCT). Allo-reactive CD4(+) T cells can mediate direct cytolysis, but may also stimulate production of IgG antibodies as helper cells. Immune complexes may subsequently be processed and presented by professional antigen presenting cells and stimulate induction of specific CD8(+) T cells. As such, proteins targeted in coordinated T- and B-cell responses may represent a class of immunodominant antigens in clinical responses after alloSCT. We previously identified LB-PTK2B-1T as HLA class II restricted polymorphic antigen in a patient treated with donor lymphocyte infusion for relapsed chronic myeloid leukemia after HLA-matched alloSCT. Since PTK2B has also been described as antibody target, we here investigated whether a coordinated T- and B-cell response against PTK2B was induced. Patient serum before and after alloSCT and donor lymphocyte infusion (DLI) was screened for antibodies, and we indeed observed development of a humoral immune response against PTK2B. Antibodies against PTK2B were only found after DLI and, in contrast to the CD4(+) T cells, recognized a monomorphic region of the protein. To our knowledge, this is the first description of a coordinated allo-reactive CD4(+) T-cell and auto-reactive antibody response against an autosomal antigen.
Collapse
|
188
|
Ksionda O, Limnander A, Roose JP. RasGRP Ras guanine nucleotide exchange factors in cancer. FRONTIERS IN BIOLOGY 2013; 8:508-532. [PMID: 24744772 PMCID: PMC3987922 DOI: 10.1007/s11515-013-1276-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.
Collapse
Affiliation(s)
- Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andre Limnander
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
189
|
Verkoczy L, Chen Y, Zhang J, Bouton-Verville H, Newman A, Lockwood B, Scearce RM, Montefiori DC, Dennison SM, Xia SM, Hwang KK, Liao HX, Alam SM, Haynes BF. Induction of HIV-1 broad neutralizing antibodies in 2F5 knock-in mice: selection against membrane proximal external region-associated autoreactivity limits T-dependent responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:2538-50. [PMID: 23918977 DOI: 10.4049/jimmunol.1300971] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs). Using a knock-in (KI) model of 2F5, a human HIV-1 gp41 membrane proximal external region (MPER)-specific BnAb, we previously demonstrated that a key obstacle to BnAb induction is clonal deletion of BnAb-expressing B cells. In this study of this model, we provide a proof-of-principle that robust serum neutralizing IgG responses can be induced from pre-existing, residual, self-reactive BnAb-expressing B cells in vivo using a structurally compatible gp41 MPER immunogen. Furthermore, in CD40L-deficient 2F5 KI mice, we demonstrate that these BnAb responses are elicited via a type II T-independent pathway, coinciding with expansion and activation of transitional splenic B cells specific for 2F5's nominal gp41 MPER-binding epitope (containing the 2F5 neutralization domain ELDKWA). In contrast, constitutive production of nonneutralizing serum IgGs in 2F5 KI mice is T dependent and originates from a subset of splenic mature B2 cells that have lost their ability to bind 2F5's gp41 MPER epitope. These results suggest that residual, mature B cells expressing autoreactive BnAbs, like 2F5 as BCR, may be limited in their ability to participate in T-dependent responses by purifying selection that selectively eliminates reactivity for neutralization epitope-containing/mimicked host Ags.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Taher TE, Muhammad HA, Rahim A, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA. Aberrant B-lymphocyte responses in lupus: inherent or induced and potential therapeutic targets. Eur J Clin Invest 2013; 43:866-80. [PMID: 23701475 DOI: 10.1111/eci.12111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lupus is a prototype autoimmune disease of unknown aetiology. The disease is complex; manifest diverse clinical symptoms and disease mechanisms. This complexity has provided many leads to explore: from disease mechanisms to approaches for therapy. B-lymphocytes play a central role in the pathogenesis of the disease. However, the cause of aberrant B-lymphocyte responses in patients and, indeed, its causal relationship with the disease remain unclear. DESIGN This article provides a synopsis of current knowledge of immunological abnormalities in lupus with an emphasis on abnormalities in the B-lymphocyte compartment. RESULTS There is evidence for abnormalities in most compartments of the immune system in animal models and patients with lupus including an ever expanding list of abnormalities within the B-lymphocyte compartment. In addition, recent genome-wide linkage analyses in large cohorts of patients have identified new sets of genetic association factors some with potential links with defective B-lymphocyte responses although their full pathophysiological effects remain to be determined. The accumulating knowledge may help in the identification and application of new targeted therapies for treating lupus disease. CONCLUSIONS Cellular, molecular and genetic studies have provided significant insights into potential causes of immunological defects associated with lupus. Most of this insight relate to defects in B- and T-lymphocyte tolerance, signalling and responses. For B-lymphocytes, there is evidence for altered regulation of inter and intracellular signalling pathways at multiple levels. Some of these abnormalities will be discussed within the context of potential implications for disease pathogenesis and targeted therapies.
Collapse
Affiliation(s)
- Taher E Taher
- Bone & Joint Research Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
191
|
Chen Y, Zhang J, Hwang KK, Bouton-Verville H, Xia SM, Newman A, Ouyang YB, Haynes BF, Verkoczy L. Common tolerance mechanisms, but distinct cross-reactivities associated with gp41 and lipids, limit production of HIV-1 broad neutralizing antibodies 2F5 and 4E10. THE JOURNAL OF IMMUNOLOGY 2013; 191:1260-75. [PMID: 23825311 DOI: 10.4049/jimmunol.1300770] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Developing an HIV-1 vaccine has been hampered by the inability of immunogens to induce broadly neutralizing Abs (BnAbs) that protect against infection. Previously, we used knockin (KI) mice expressing a prototypical gp41-specific BnAb, 2F5, to demonstrate that immunological tolerance triggered by self-reactivity of the 2F5 H chain impedes BnAb induction. In this study, we generate KI models expressing H chains from two other HIV-1 Abs, 4E10 (another self-/polyreactive, anti-gp41 BnAb) and 48d (an anti-CD4 inducible, nonpolyreactive Ab), and find a similar developmental blockade consistent with central B cell deletion in 4E10, but not in 48d VH KI mice. Furthermore, in KI strains expressing the complete 2F5 and 4E10 Abs as BCRs, we find that residual splenic B cells arrest at distinct developmental stages, yet exhibit uniformly low BCR densities, elevated basal activation, and profoundly muted responses to BCR ligation and, when captured as hybridoma mAb lines, maintain their dual (gp41/lipid) affinities and capacities to neutralize HIV-1, establishing a key role for anergy in suppressing residual 2F5- or 4E10-expressing B cells. Importantly, serum IgGs from naive 2F5 and 4E10 KI strains selectively eliminate gp41 and lipid binding, respectively, suggesting B cells expressing 2F5 or 4E10 as BCRs exhibit specificity for a distinct spectrum of host Ags, including selective interactions by 2F5 BCR(+) B cells (i.e., and not 4E10 BCR(+) B cells) with those mimicked by its gp41 neutralization epitope.
Collapse
Affiliation(s)
- Yao Chen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Tullus K, Marks SD. Indications for use and safety of rituximab in childhood renal diseases. Pediatr Nephrol 2013; 28:1001-9. [PMID: 22992983 DOI: 10.1007/s00467-012-2260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 01/06/2023]
Abstract
Rituximab was initially developed for the treatment of patients with B cell lymphoma but has during the last decade proven to be quite effective in treating a range of kidney diseases including lupus nephritis, nephrotic syndrome, and also in different situations before and after a renal transplant. We will here review the scientific basis for the use of rituximab in children with renal diseases and give recommendations both regarding its clinical use and need for further research.
Collapse
Affiliation(s)
- Kjell Tullus
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London, WC1N 3JH, England, UK.
| | | |
Collapse
|
193
|
Gauld SB, De Santis JL, Kulinski JM, McGraw JA, Leonardo SM, Ruder EA, Maier W, Tarakanova VL. Modulation of B-cell tolerance by murine gammaherpesvirus 68 infection: requirement for Orf73 viral gene expression and follicular helper T cells. Immunology 2013; 139:197-204. [PMID: 23311955 DOI: 10.1111/imm.12069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/22/2022] Open
Abstract
Viruses such as Epstein-Barr virus (EBV) have been linked to mechanisms that support autoantibody production in diseases such as systemic lupus erythematosus. However, the mechanisms by which viruses contribute to autoantibody production remain poorly defined. This stems in part, from the high level of seropositivity for EBV (> 95%) and the exquisite species specificity of EBV. In this study we overcame these problems by using murine gammaherpesvirus 68 (MHV68), a virus genetically and biologically related to EBV. We first showed that MHV68 drives autoantibody production by promoting a loss of B-cell anergy. We next showed that MHV68 infection resulted in the expansion of follicular helper T (Tfh) cells in vivo, and that these Tfh cells supported autoantibody production and a loss of B-cell anergy. Finally, we showed that the expansion of Tfh cells and autoantibody production was dependent on the establishment of viral latency and expression of a functional viral gene called Orf73. Collectively, our studies highlighted an unexpected role for viral latency in the development of autoantibodies following MHV68 infection and suggest that virus-induced expansion of Tfh cells probably plays a key role in the loss of B-cell anergy.
Collapse
Affiliation(s)
- Stephen B Gauld
- Medical College of Wisconsin, Division of Allergy/Immunology, Department of Pediatrics, The Children's Research Institute, Milwaukee, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Yau IW, Cato MH, Jellusova J, Hurtado de Mendoza T, Brink R, Rickert RC. Censoring of self-reactive B cells by follicular dendritic cell-displayed self-antigen. THE JOURNAL OF IMMUNOLOGY 2013; 191:1082-90. [PMID: 23817432 DOI: 10.4049/jimmunol.1201569] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the secondary lymphoid organs, intimate contact with follicular dendritic cells (FDCs) is required for B cell retention and Ag-driven selection during the germinal center response. However, selection of self-reactive B cells by Ag on FDCs has not been addressed. To this end, we generated a mouse model to conditionally express a membrane-bound self-antigen on FDCs and to monitor the fate of developing self-reactive B cells. In this article, we show that self-antigen displayed on FDCs mediates effective elimination of self-reactive B cells at the transitional stage. Notwithstanding, some self-reactive B cells persist beyond this checkpoint, showing evidence of Ag experience and intact proximal BCR signaling, but they are short-lived and unable to elicit T cell help. These results implicate FDCs as an important component of peripheral B cell tolerance that prevents the emergence of naive B cells capable of responding to sequestered self-antigens.
Collapse
Affiliation(s)
- Irene W Yau
- Program on Inflammatory Diseases, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
195
|
Pye DS, Rubio I, Pusch R, Lin K, Pettitt AR, Till KJ. Chemokine unresponsiveness of chronic lymphocytic leukemia cells results from impaired endosomal recycling of Rap1 and is associated with a distinctive type of immunological anergy. THE JOURNAL OF IMMUNOLOGY 2013; 191:1496-504. [PMID: 23804711 DOI: 10.4049/jimmunol.1203484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trafficking of malignant lymphocytes is fundamental to the biology of chronic lymphocytic leukemia (CLL). Transendothelial migration (TEM) of normal lymphocytes into lymph nodes requires the chemokine-induced activation of Rap1 and αLβ2 integrin. However, in most cases of CLL, Rap1 is refractory to chemokine stimulation, resulting in failed αLβ2 activation and TEM unless α4β1 is coexpressed. In this study, we show that the inability of CXCL12 to induce Rap1 GTP loading in CLL cells results from failure of Rap1-containing endosomes to translocate to the plasma membrane. Furthermore, failure of chemokine-induced Rap1 translocation/GTP loading was associated with a specific pattern of cellular IgD distribution resembling that observed in normal B cells anergized by DNA-based Ags. Anergic features and chemokine unresponsiveness could be simultaneously reversed by culturing CLL cells ex vivo, suggesting that these two features are coupled and driven by stimuli present in the in vivo microenvironment. Finally, we show that failure of Rap1 translocation/GTP loading is linked to defective activation of phospholipase D1 and its upstream activator Arf1. Taken together, our findings indicate that chemokine unresponsiveness in CLL lymphocytes results from failure of Arf1/phospholipase D1-mediated translocation of Rap1 to the plasma membrane for GTP loading and may be a specific feature of anergy induced by DNA Ags.
Collapse
Affiliation(s)
- Derek S Pye
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, United Kingdom
| | | | | | | | | | | |
Collapse
|
196
|
Taher TE, Muhammad HA, Bariller E, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA. B-lymphocyte signalling abnormalities and lupus immunopathology. Int Rev Immunol 2013; 32:428-44. [PMID: 23768155 DOI: 10.3109/08830185.2013.788648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lupus is a complex autoimmune rheumatic disease of unknown aetiology. The disease is associated with diverse features of immunological abnormality in which B-lymphocytes play a central role. However, the cause of atypical B-lymphocyte responses remains unclear. In this article, we provide a synopsis of current knowledge on intracellular signalling abnormalities in B-lymphocytes in lupus and their potential effects on the response of these cells in mouse models and in patients. There are numerous reported defects in the regulation of intracellular signalling proteins and pathways in B-lymphocytes in lupus that, potentially, affect critical biological responses. Most of the evidence for these defects comes from studies of disease models and genetically engineered mice. However, there is also increasing evidence from studying B-lymphocytes from patients and from genome-wide linkage analyses for parallel defects to those observed in mice. These studies provide molecular and genetic explanations for the key immunological abnormalities associated with lupus. Most of the new information appears to relate to defects in intracellular signalling that impact B-lymphocyte tolerance, cytokine production and responses to infections. Some of these abnormalities will be discussed within the context of disease pathogenesis.
Collapse
Affiliation(s)
- Taher E Taher
- Bone & Joint Research Unit, William Harvey Research Institute, Barts
| | | | | | | | | | | | | |
Collapse
|
197
|
Kil LP, Hendriks RW. Aberrant B cell selection and activation in systemic lupus erythematosus. Int Rev Immunol 2013; 32:445-70. [PMID: 23768157 DOI: 10.3109/08830185.2013.786712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detrimental role of B lymphocytes in systemic lupus erythematosus (SLE) is evident from the high levels of pathogenic antinuclear autoantibodies (ANAs) found in SLE patients. Affirming this causative role, additional antibody-independent roles of B cells in SLE were appreciated. In recent years, many defects in B cell selection and activation have been identified in murine lupus models and SLE patients that explain the increased emergence and persistence of autoreactive B cells and their lowered activation threshold. Therefore, clinical trials with B cell depletion regimens in SLE patients were initiated but disappointingly the efficacy of B cell depleting agents proved to be limited. Remarkably however, a major breakthrough in SLE therapy was accomplished by blocking B cell survival factors rather then eliminating B cells. This surprising finding indicates that although SLE is a B cell-driven disease, the amplifying crosstalk between B cells and other cells of the immune system likely evokes the observed tolerance breakdown in B cells. Moreover, this implies that intelligent interception of pro-inflammatory loops rather then selectively silencing B cells will be key to the development of new SLE therapies. In this review, we will not only highlight the intrinsic B cell defects that facilitate the persistence of autoreactive B cells and their activation, but in addition we will focus on B cell extrinsic signals derived from T cells and innate immune cells that lower the activation threshold for B cells.
Collapse
Affiliation(s)
- Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MC, NL 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
198
|
Saadoun D, Terrier B, Bannock J, Vazquez T, Massad C, Kang I, Joly F, Rosenzwajg M, Sene D, Benech P, Musset L, Klatzmann D, Meffre E, Cacoub P. Expansion of autoreactive unresponsive CD21-/low B cells in Sjögren's syndrome-associated lymphoproliferation. ACTA ACUST UNITED AC 2013; 65:1085-96. [PMID: 23279883 DOI: 10.1002/art.37828] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 12/07/2012] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Primary Sjögren's syndrome (SS) is an autoimmune disease associated with a high risk of developing non-Hodgkin's lymphoma. This study was undertaken to determine the nature of B cells driving lymphoproliferation in primary SS. METHODS B cell subsets and function were analyzed in peripheral blood from 66 adult patients with primary SS (including 14 patients with B cell lymphoproliferative disease [LPD]) and 30 healthy donors, using flow cytometry, calcium mobilization, and gene array analysis. The reactivity of recombinant antibodies isolated from single B cells from patients with primary SS and LPD was tested using an enzyme-linked immunosorbent assay. RESULTS We observed an expansion of an unusual CD21-/low B cell population that correlated with lymphoproliferation in patients with primary SS. A majority of CD21-/low B cells from patients with primary SS expressed autoreactive antibodies, which recognized nuclear and cytoplasmic structures. These B cells belonged to the memory compartment, since their Ig genes were mutated. They were unable to induce calcium flux, become activated, or proliferate in response to B cell receptor and/or CD40 triggering, suggesting that these autoreactive B cells may be anergic. However, CD21-/low B cells from patients with primary SS remained responsive to Toll-like receptor (TLR) stimulation. Molecules specifically expressed in CD21-/low B cells that are likely to induce their unresponsive stage were detected in gene array analyses. CONCLUSION Patients with primary SS who display high frequencies of autoreactive and unresponsive CD21-/low B cells are susceptible to developing lymphoproliferation. These cells remain in peripheral blood controlled by functional anergy instead of being eliminated, and chronic antigenic stimulation through TLR stimulation may create a favorable environment for breaking tolerance and activating these cells.
Collapse
Affiliation(s)
- D Saadoun
- CNRS UMR 7211, INSERM U959, Groupe Hospitalier Pitié-Salpêtrière, and Université Pierre et Marie Curie, Paris 6, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Bounab Y, Getahun A, Cambier JC, Daëron M. Phosphatase regulation of immunoreceptor signaling in T cells, B cells and mast cells. Curr Opin Immunol 2013; 25:313-20. [PMID: 23684445 DOI: 10.1016/j.coi.2013.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/30/2022]
Abstract
Recent progress has begun to reveal the often complex and changing roles of phosphotyrosine and phosphoinositide phosphatases in regulation of immunoreceptor signaling. The resultant confusion has been further increased by discoveries of new players. Here we provide a review of recent progress in defining the roles of these enzymes in immunoreceptor-dependent mast cell, T cell and B cell activation.
Collapse
Affiliation(s)
- Yacine Bounab
- Institut Pasteur, Département d'Immunologie, Centre d'Immunologie Humaine, Paris, France
| | | | | | | |
Collapse
|
200
|
Uyttenhove C, van Snick J. [Auto-vaccines: an immunological alternative to gene silencing]. Med Sci (Paris) 2013; 29:425-9. [PMID: 23621939 DOI: 10.1051/medsci/2013294017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Auto-vaccination is a procedure that recently attracted the interest of a growing number of investigators as an alternative to gene inactivation for functional studies of cytokines or other mediators. It is based on the observation that autologous cytokines cross-linked to a foreign protein or peptide are recognized by self-reactive B cells that present foreign peptides, and by doing so attract illicit help from helper T cells that recognize the foreign peptide on the self-reactive B cell MHC Class II complex. This leads to the production of antibodies reacting with self-proteins and thus to neutralization of the targeted factor. Here, we summarize the different techniques that were successful in breaking this self-tolerance and provide several examples of the functional consequences of these auto-vaccines. An additional output of auto-vaccination is the production of mouse monoclonal antibodies against mouse factors. Such antibodies have obvious advantages for long-term use in vivo.
Collapse
Affiliation(s)
- Catherine Uyttenhove
- Institut Ludwig pour la Recherche sur le Cancer et Unité de Génétique Cellulaire, Université Catholique de Louvain, 74 Avenue Hippocrate, 1200 Bruxelles, Belgique
| | | |
Collapse
|