151
|
Nimmo JT, Kelly L, Verma A, Carare RO, Nicoll JAR, Dodart JC. Amyloid-β and α-Synuclein Immunotherapy: From Experimental Studies to Clinical Trials. Front Neurosci 2021; 15:733857. [PMID: 34539340 PMCID: PMC8441015 DOI: 10.3389/fnins.2021.733857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease and Lewy body diseases are the most common causes of neurodegeneration and dementia. Amyloid-beta (Aβ) and alpha-synuclein (αSyn) are two key proteins involved in the pathogenesis of these neurodegenerative diseases. Immunotherapy aims to reduce the harmful effects of protein accumulation by neutralising toxic species and facilitating their removal. The results of the first immunisation trial against Aβ led to a small percentage of meningoencephalitis cases which revolutionised vaccine design, causing a shift in the field of immunotherapy from active to passive immunisation. While the vast majority of immunotherapies have been developed for Aβ and tested in Alzheimer’s disease, the field has progressed to targeting other proteins including αSyn. Despite showing some remarkable results in animal models, immunotherapies have largely failed final stages of clinical trials to date, with the exception of Aducanumab recently licenced in the US by the FDA. Neuropathological findings translate quite effectively from animal models to human trials, however, cognitive and functional outcome measures do not. The apparent lack of translation of experimental studies to clinical trials suggests that we are not obtaining a full representation of the effects of immunotherapies from animal studies. Here we provide a background understanding to the key concepts and challenges involved in therapeutic design. This review further provides a comprehensive comparison between experimental and clinical studies in Aβ and αSyn immunotherapy and aims to determine the possible reasons for the disconnection in their outcomes.
Collapse
Affiliation(s)
- Jacqui Taryn Nimmo
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Louise Kelly
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ajay Verma
- Yumanity Therapeutics, Boston, MA, United States
| | - Roxana O Carare
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
152
|
Meshkini E, Aminpour A, Hazrati Tappeh K, Seyyedi S, Shokri M. Evaluation of Adjuvant Effectiveness of Alum-Propranolol Mixture on the Immunogenicity of Excreted/Secreted Antigens of Toxoplasma gondii RH Strain. Adv Pharm Bull 2021; 11:570-577. [PMID: 34513633 PMCID: PMC8421635 DOI: 10.34172/apb.2021.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/09/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: The introduction of novel adjuvants is an important step in attempts to develop a safe and more efficient vaccine. The present study was performed to determine whether the use of a mixed beta-adrenergic receptor antagonist propranolol (PRP) and aluminum (alum), as an adjuvant, have efficacy for Toxoplasma gondii vaccine to induce protective immunity in a mouse model. Methods: Female BALB/c mice divided into five groups were immunized with excretorys-ecretory antigens (ESA) vaccine, alum-ESA vaccine, PRP-ESA vaccine, and alum-PRP ESA vaccine, as well as with phosphate buffered saline (PBS), as a negative control group. The immune responses were evaluated by lymphocyte proliferation assay for measuring delayedtype hypersensitivity (DTH) response and by cytokine assay for evaluating IFN-γ and IL-5 levels. The survival rate of mice in all groups was assessed during a three-week monitoring period after an intraperitoneal challenge with T. gondii tachyzoites. Results: The results showed that mice immunized with PRP, as an adjuvant, could secret a higher level of IFN-γ, which was significant in comparison to other groups. However, mice vaccinated with alum-precipitated ESA antigen had ability to produce an elevated level of IL-5 compared to other mouse groups (P ≤ 0.05). Moreover, alum-PRP co-administration together with ESA vaccine resulted in the longer survival of mice. Conclusion: The findings of this study revealed that the combination of alum-PRP adjuvants and ESA vaccine of T. gondii elicits both humoral and cellular immune responses, which are comparable to either alum or PRP alone.
Collapse
Affiliation(s)
- Elyar Meshkini
- Department of Parasitology & Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Arash Aminpour
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Parasitology & Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Khosrow Hazrati Tappeh
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Parasitology & Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Seyyedi
- Department of Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Meysam Shokri
- Department of Parasitology & Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
153
|
Elevated IgG Antibody to Aluminum Bound to Human Serum Albumin in Patients with Crohn's, Celiac and Alzheimer's Disease. TOXICS 2021; 9:toxics9090212. [PMID: 34564363 PMCID: PMC8473134 DOI: 10.3390/toxics9090212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022]
Abstract
Aluminum is in our water and food, and is used as an adjuvant in vaccines. About 40% of the ingested dose accumulates within the intestinal mucosa, making the gut the main target of inflammation and autoimmunity; about 1% accumulates in the skeletal system and brain, inducing the cross-linking of amyloid-β-42 peptide and the formation of amyloid aggregates associated with Alzheimer's disease. To examine whether the accumulation of aluminum in the gut and brain tissues results in neoantigen formation, we bound aluminum compounds to human serum albumin. We used ELISA to measure IgG antibody in 94 different sera from healthy controls and 47 sera from each group of patients: anti-Saccharomyces cerevisiae antibody-positive (Crohn's), and positive for deamidated α-gliadin and transglutaminase-2 IgA antibodies (celiac disease), autoimmune disorders associated with intestinal tissue antigens. Because earlier studies have shown that aluminum exposure is linked to Alzheimer's disease etiology, and high aluminum content is detected in Alzheimer's patients' brain tissue, we also measured aluminum antibody in the blood of these patients. Additionally, we measured aluminum antibody in the sera of mixed connective tissue disease patients who were positive for antinuclear antibodies, and used them as disease controls. We found significant IgG antibody elevation against all three aluminum compounds in the sera of patients with Crohn's, celiac and Alzheimer's disease, but not in patients with mixed connective tissue disease. We concluded that aluminum ingestion and absorption from the GI tract and brain may contribute to Crohn's, celiac and Alzheimer's disease, but not to mixed connective tissue disease.
Collapse
|
154
|
|
155
|
Yokomizo S, Katagiri W, Maki Y, Sano T, Inoue K, Fukushi M, Atochin DN, Kushibiki T, Kawana A, Kimizuka Y, Kashiwagi S. Brief exposure of skin to near-infrared laser augments early vaccine responses. NANOPHOTONICS 2021; 10:3187-3197. [PMID: 34868804 PMCID: PMC8635068 DOI: 10.1515/nanoph-2021-0133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid establishment of herd immunity with vaccination is effective to combat emerging infectious diseases. Although the incorporation of adjuvant and intradermal (ID) injection could augment early responses to the vaccine, the current chemical or biological adjuvants are inappropriate for this purpose with their side effects and high reactogenicity in the skin. Recently, a near-infrared (NIR) laser has been shown to augment the immune response to ID vaccination and could be alternatively used for mass vaccination programs. Here, we determined the effect of NIR laser as well as licensed chemical adjuvants on the immunogenicity 1, 2, and 4 weeks after ID influenza vaccination in mice. The NIR laser adjuvant augmented early antibody responses, while the widely used alum adjuvant induced significantly delayed responses. In addition, the oil-in-water and alum adjuvants, but not the NIR laser, elicited escalated TH2 responses with allergenic immunoglobulin E (IgE) responses. The effect of the NIR laser was significantly suppressed in the basic leucine zipper transcription factor ATF-like 3 (Batf3) knockout mice, suggesting a critical role of the cluster of differentiation 103+ (CD103)+ dendritic cells. The current preliminary study suggests that NIR laser adjuvant is an alternative strategy to chemical and biological agents to timely combat emerging infectious diseases. Moreover, its immunomodulatory property could be used to enhance the efficacy of immunotherapy for allergy and cancer.
Collapse
Affiliation(s)
- Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown 02129, MA, USA
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa 116-8551, Tokyo, Japan
| | - Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown 02129, MA, USA
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Kanagawa, Japan
| | - Yohei Maki
- Division of Infectious Diseases and Respiratory Medicine, Department of Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Tomoya Sano
- Division of Infectious Diseases and Respiratory Medicine, Department of Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Kazumasa Inoue
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa 116-8551, Tokyo, Japan
| | - Masahiro Fukushi
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa 116-8551, Tokyo, Japan
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown 02129, MA, USA
| | - Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | |
Collapse
|
156
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Hamaguchi I. Nasal alum-adjuvanted vaccine promotes IL-33 release from alveolar epithelial cells that elicits IgA production via type 2 immune responses. PLoS Pathog 2021; 17:e1009890. [PMID: 34460865 PMCID: PMC8432758 DOI: 10.1371/journal.ppat.1009890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/10/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Aluminum hydroxide salts (alum) have been added to inactivated vaccines as safe and effective adjuvants to increase the effectiveness of vaccination. However, the exact cell types and immunological factors that initiate mucosal immune responses to alum adjuvants are unclear. In this study, the mechanism of action of alum adjuvant in nasal vaccination was investigated. Alum has been shown to act as a powerful and unique adjuvant when added to a nasal influenza split vaccine in mice. Alum is cytotoxic in the alveoli and stimulates the release of damage-associated molecular patterns, such as dsDNA, interleukin (IL)-1α, and IL-33. We found that Ag-specific IgA antibody (Ab) production was markedly reduced in IL-33-deficient mice. However, no decrease was observed in Ag-specific IgA Ab production with DNase I treatment, and no decrease was observed in IL-1α/β or IL-6 production in IL-33-deficient mice. From the experimental results of primary cultured cells and immunofluorescence staining, although IL-1α was secreted by alveolar macrophage necroptosis, IL-33 release was observed in alveolar epithelial cell necroptosis but not in alveolar macrophages. Alum- or IL-33-dependent Ag uptake enhancement and elevation of OX40L expression were not observed. By stimulating the release of IL-33, alum induced Th2 immunity via IL-5 and IL-13 production in group 2 innate lymphoid cells (ILC2s) and increased MHC class II expression in antigen-presenting cells (APCs) in the lung. Our results suggest that IL-33 secretion by epithelial cell necroptosis initiates APC- and ILC2-mediated T cell activation, which is important for the enhancement of Ag-specific IgA Ab production by alum. Aluminum salts have been used as adjuvants in many vaccines. Aluminum salts induce Th2 immunity and vaccine antigen-specific antibody production aluminum salts elicit adjuvant action via cytokine production. Currently, the mechanisms underlying aluminum salt function in nasal vaccination are unknown, and elucidation of the mechanism is important for the development of particulate adjuvants. This study focused on the cytokines released from dead cells as induced by aluminum salt. This study found that aluminum adjuvant caused release of the cytokine interleukin (IL)-33 from alveolar epithelial cells by inducing necrosis. IL-33 is also crucial for antigen-specific IgA antibody production by nasal vaccination. Aluminum adjuvant also induces alveolar macrophage necrosis, which is not accompanied by IL-33 release. Aluminum salt-induced IL-33 acts as an activator for group 2 innate lymphoid cells and antigen-presenting cells in the lung. This means that by developing an adjuvant that targets the release of IL-33, it may be possible to develop a highly effective nasal vaccine. IL-33 significantly contributes to the efficacy of nasal vaccines and provides new insights into the mechanisms underlying aluminum adjuvants, showing that lung parenchymal tissue, rather than macrophages and lymphocytes, is the source of IL-33.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
- * E-mail: (ES); (TM)
| | - Hideki Asanuma
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
- * E-mail: (ES); (TM)
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| |
Collapse
|
157
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
158
|
Senapati S, Darling RJ, Ross KA, Wannemeuhler MJ, Narasimhan B, Mallapragada SK. Self-assembling synthetic nanoadjuvant scaffolds cross-link B cell receptors and represent new platform technology for therapeutic antibody production. SCIENCE ADVANCES 2021; 7:eabj1691. [PMID: 34348905 PMCID: PMC8336949 DOI: 10.1126/sciadv.abj1691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Host antibody responses are pivotal for providing protection against infectious agents. We have pioneered a new class of self-assembling micelles based on pentablock copolymers that enhance antibody responses while providing a low inflammatory environment compared to traditional adjuvants. This type of "just-right" immune response is critical in the rational design of vaccines for older adults. Here, we report on the mechanism of enhancement of antibody responses by pentablock copolymer micelles, which act as scaffolds for antigen presentation to B cells and cross-link B cell receptors, unlike other micelle-forming synthetic block copolymers. We exploited this unique mechanism and developed these scaffolds as a platform technology to produce antibodies in vitro. We show that this novel approach can be used to generate laboratory-scale quantities of therapeutic antibodies against multiple antigens, including those associated with SARS-CoV-2 and Yersinia pestis, further expanding the value of these nanomaterials to rapidly develop countermeasures against infectious diseases.
Collapse
Affiliation(s)
- Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Ross J Darling
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Michael J Wannemeuhler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
159
|
Rapaka RR, Cross AS, McArthur MA. Using Adjuvants to Drive T Cell Responses for Next-Generation Infectious Disease Vaccines. Vaccines (Basel) 2021; 9:vaccines9080820. [PMID: 34451945 PMCID: PMC8402546 DOI: 10.3390/vaccines9080820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Using adjuvants to drive features of T cell responses to vaccine antigens is an important technological challenge in the design of new and improved vaccines against infections. Properties such as T helper cell function, T cell memory, and CD8+ T cell cytotoxicity may play critical roles in optimal and long-lived immunity through vaccination. Directly manipulating specific immune activation or antigen delivery pathways with adjuvants may selectively augment desired T cell responses in vaccination and may improve the effectiveness and durability of vaccine responses in humans. In this review we outline recently studied adjuvants in their potential for antigen presenting cell and T cell programming during vaccination, with an emphasis on what has been observed in studies in humans as available.
Collapse
|
160
|
Nguyen QT, Kim D, Iamsawat S, Le HT, Kim S, Qiu KT, Hinds TD, Bazeley P, O'Shea JJ, Choi J, Asosingh K, Erzurum SC, Min B. Cutting Edge: Steroid Responsiveness in Foxp3 + Regulatory T Cells Determines Steroid Sensitivity during Allergic Airway Inflammation in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:765-770. [PMID: 34301840 DOI: 10.4049/jimmunol.2100251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Glucocorticoids are a highly effective first-line treatment option for many inflammatory diseases, including asthma. Some patients develop a steroid-resistant condition, yet, the cellular and molecular mechanisms underlying steroid resistance remain largely unknown. In this study, we used a murine model of steroid-resistant airway inflammation and report that combining systemic dexamethasone and intranasal IL-27 is able to reverse the inflammation. Foxp3+ regulatory T cells (Tregs) were required during dexamethasone/IL-27 treatment of steroid-resistant allergic inflammation, and importantly, direct stimulation of Tregs via glucocorticoid or IL-27 receptors was essential. Mechanistically, IL-27 stimulation in Tregs enhanced expression of the agonistic glucocorticoid receptor-α isoform. Overexpression of inhibitory glucocorticoid receptor-β isoform in Tregs alone was sufficient to elicit steroid resistance in a steroid-sensitive allergic inflammation model. Taken together, our results demonstrate for the first time, to our knowledge, that Tregs are instrumental during steroid resistance and that manipulating steroid responsiveness in Tregs may represent a novel strategy to treat steroid refractory asthma.
Collapse
Affiliation(s)
- Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Dongkyun Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH.,Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Supinya Iamsawat
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH.,Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | - Kevin T Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | | - Booki Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH; .,Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
161
|
Guerrero Manriquez GG, Tuero I. Adjuvants: friends in vaccine formulations against infectious diseases. Hum Vaccin Immunother 2021; 17:3539-3550. [PMID: 34288795 DOI: 10.1080/21645515.2021.1934354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases represent a major cause of deaths worldwide. No vaccine or effective treatment exists nowadays, especially against intracellular pathogens. The increase in multiple drug and superbug antibiotic resistance strains, excessive medication, or misuse of drugs has prompted the search for other safe and effective alternatives. Consistent with this, adjuvants (Latin word "adjuvare": "help or aid") co-administered (Exo) in vaccines have emerged as a promising alternative to initiate and boost an innate, downstream signal that led to adaptative immune response. Nowadays, a promising model of strong immunogens and adjuvants at mucosal sites are the microbial bacterial toxins. Other adjuvants that are also used and might successfully replace aluminum salts in combination with nanotechnology are CpG-ODN, poly IC, type I IFNs, mRNA platforms. Therefore, in the present review, we focused to revisit the old to the new adjuvants compounds, the properties that make them friends in vaccine formulations against infectious diseases.
Collapse
Affiliation(s)
| | - I Tuero
- Faculty of Science and Phylosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
162
|
Production and Immunogenicity of a Tag-Free Recombinant Chimera Based on PfMSP-1 and PfMSP-3 Using Alhydrogel and Dipeptide-Based Hydrogels. Vaccines (Basel) 2021; 9:vaccines9070782. [PMID: 34358198 PMCID: PMC8310097 DOI: 10.3390/vaccines9070782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
A fusion chimeric vaccine comprising multiple protective domains of different blood-stage Plasmodium falciparum antigens is perhaps necessary for widening the protective immune responses and reducing the morbidity caused by the disease. Here we continue to build upon the prior work of developing a recombinant fusion chimera protein, His-tagged PfMSP-Fu24, by producing it as a tag-free recombinant protein. In this study, tag-free recombinant PfMSPFu24 (rFu24) was expressed in Escherichia coli, and the soluble protein was purified using a three-step purification involving ammonium sulphate precipitation followed by 2-step ion exchange chromatography procedures and shown that it was highly immunogenic with the human-compatible adjuvant Alhydrogel. We further investigated two dipeptides, phenylalanine-α, β-dehydrophenylalanine (FΔF) and Leucine-α, β-dehydrophenylalanine (LΔF) based hydrogels as effective delivery platforms for rFu24. These dipeptides self-assembled spontaneously to form a highly stable hydrogel under physiological conditions. rFu24 was efficiently entrapped in both the F∆F and L∆F hydrogels, and the three-dimensional (3D) mesh-like structures of the hydrogels remained intact after the entrapment of the antigen. The two hydrogels significantly stimulated rFu24-specific antibody titers, and the sera from the immunized mice showed an invasion inhibitory activity comparable to that of Alhydrogel. Easily synthesized dipeptide hydrogels can be used as an effective antigen delivery platform to induce immune responses.
Collapse
|
163
|
Siriwattananon K, Manopwisedjaroen S, Shanmugaraj B, Prompetchara E, Ketloy C, Buranapraditkun S, Tharakhet K, Kaewpang P, Ruxrungtham K, Thitithanyanont A, Phoolcharoen W. Immunogenicity Studies of Plant-Produced SARS-CoV-2 Receptor Binding Domain-Based Subunit Vaccine Candidate with Different Adjuvant Formulations. Vaccines (Basel) 2021; 9:744. [PMID: 34358160 PMCID: PMC8310282 DOI: 10.3390/vaccines9070744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 12/23/2022] Open
Abstract
Due to the rapid transmission of the coronavirus disease 2019 (COVID-19) causing serious public health problems and economic burden, the development of effective vaccines is a high priority for controlling the virus spread. Our group has previously demonstrated that the plant-produced receptor-binding domain (RBD) of SARS-CoV-2 fused with Fc of human IgG was capable of eliciting potent neutralizing antibody and cellular immune responses in animal studies, and the immunogenicity could be improved by the addition of an alum adjuvant. Here, we performed a head-to-head comparison of different commercially available adjuvants, including aluminum hydroxide gel (alum), AddaVax (MF59), monophosphoryl lipid A from Salmonella minnesota R595 (mPLA-SM), and polyinosinic-polycytidylic acid (poly(I:C)), in mice by combining them with plant-produced RBD-Fc, and the differences in the immunogenicity of RBD-Fc with different adjuvants were evaluated. The specific antibody responses in terms of total IgG, IgG1, and IgG2a subtypes and neutralizing antibodies, as well as vaccine-specific T-lymphocyte responses, induced by the different tested adjuvants were compared. We observed that all adjuvants tested here induced a high level of total IgG and neutralizing antibodies, but mPLA-SM and poly (I:C) showed the induction of a balanced IgG1 and IgG2a (Th2/Th1) immune response. Further, poly (I:C) significantly increased the frequency of IFN-γ-expressing cells compared with control, whereas no significant difference was observed between the adjuvanted groups. This data revealed the adjuvants' role in enhancing the immune response of RBD-Fc vaccination and the immune profiles elicited by different adjuvants, which could prove helpful for the rational development of next-generation SARS-CoV-2 RBD-Fc subunit vaccines. However, additional research is essential to further investigate the efficacy and safety of this vaccine formulation before clinical trials.
Collapse
Affiliation(s)
- Konlavat Siriwattananon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwimon Manopwisedjaroen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (A.T.)
| | | | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supranee Buranapraditkun
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittipan Tharakhet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
| | - Papatsara Kaewpang
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (A.T.)
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
164
|
Kardani K, Sadat SM, Kardani M, Bolhassani A. The next generation of HCV vaccines: a focus on novel adjuvant development. Expert Rev Vaccines 2021; 20:839-855. [PMID: 34114513 DOI: 10.1080/14760584.2021.1941895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Considerable efforts have been made to treat and prevent acute and chronic infections caused by the hepatitis C virus (HCV). Current treatments are unable to protect people from reinfection. Hence, there is a need for development of both preventive and therapeutic HCV vaccines. Many vaccine candidates are in development to fight against HCV, but their efficacy has so far proven limited partly due to low immunogenicity. AREAS COVERED We explore development of novel and powerful adjuvants to achieve an effective HCV vaccine. The basis for developing strong adjuvants is to understand the innate immunity pathway, which subsequently stimulates humoral and cellular immune responses. We have also investigated immunogenicity of developed adjuvants that have been used in recent studies available in online databases such as PubMed, PMC, ScienceDirect, Google Scholar, etc. EXPERT OPINION Adjuvants are used as a part of vaccine formulation to boost vaccine immunogenicity and antigen delivery. Several FDA-approved adjuvants are used in licensed human vaccines. Unfortunately, no adjuvant has yet been proven to boost HCV immune responses to the extent needed for an effective vaccine. One of the promising approaches for developing an effective adjuvant is the combination of various adjuvants to trigger several innate immune responses, leading to activation of adaptive immunity.[Figure: see text].
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Kardani
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
165
|
AbdelAllah NH, Gaber Y, AbdelGhani S, Rashed ME, Azmy AF. Chitosan and alginate salt as biomaterials are potential natural adjuvants for killed cholera vaccine. J Biomed Mater Res A 2021; 109:2462-2470. [PMID: 34117696 DOI: 10.1002/jbm.a.37240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
Chitosan and alginate salts are natural biopolymers that have gained recent attention in the biomedical sectors. Their properties allow them to become potential candidates as safe, cheap, and effective vaccine adjuvants. The present study aimed to enhance the immunogenic response of a current injectable killed cholera vaccine (KCV) using chitosan and alginate salt as natural adjuvants against alum. We tested KCV adjuvanted with alum, chitosan, and sodium alginate in mice. Mice were immunized intraperitoneally with KCV adjuvanted with alum, chitosan, or alginate salt and compared with a control unadjuvanted immunized group. Humoral, cellular, and functional immune responses were evaluated in all groups. The addition of adjuvants, particularly natural adjuvants, to KCV significantly improved the immune response as demonstrated by specific antibody increase, strong proliferation effects, and high protection rate against different challenge doses of cholera strains. Our findings demonstrate that chitosan and alginate salt are superior adjuvants for boosting the KCV immune response and highlights the requirement for further vaccine development.
Collapse
Affiliation(s)
- Nourhan H AbdelAllah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Viral Control Unit, Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Yasser Gaber
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-karak, Jordan
| | - Sameh AbdelGhani
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Mohamed E Rashed
- Microbiology Department, Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Ahmed F Azmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
166
|
Pivniouk V, Gimenes Junior JA, Honeker LK, Vercelli D. The role of innate immunity in asthma development and protection: Lessons from the environment. Clin Exp Allergy 2021; 50:282-290. [PMID: 31581343 DOI: 10.1111/cea.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
Asthma, a complex, chronic disease characterized by airway inflammation, hyperresponsiveness and remodelling, affects over 300 million people worldwide. While the disease is typically associated with exaggerated allergen-induced type 2 immune responses, these responses are strongly influenced by environmental exposures that stimulate innate immune pathways capable of promoting or protecting from asthma. The dual role played by innate immunity in asthma pathogenesis offers multiple opportunities for both research and clinical interventions and is the subject of this review.
Collapse
Affiliation(s)
- Vadim Pivniouk
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Linnea K Honeker
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Donata Vercelli
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
167
|
Pulendran B, S Arunachalam P, O'Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov 2021; 20:454-475. [PMID: 33824489 PMCID: PMC8023785 DOI: 10.1038/s41573-021-00163-y] [Citation(s) in RCA: 812] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Adjuvants are vaccine components that enhance the magnitude, breadth and durability of the immune response. Following its introduction in the 1920s, alum remained the only adjuvant licensed for human use for the next 70 years. Since the 1990s, a further five adjuvants have been included in licensed vaccines, but the molecular mechanisms by which these adjuvants work remain only partially understood. However, a revolution in our understanding of the activation of the innate immune system through pattern recognition receptors (PRRs) is improving the mechanistic understanding of adjuvants, and recent conceptual advances highlight the notion that tissue damage, different forms of cell death, and metabolic and nutrient sensors can all modulate the innate immune system to activate adaptive immunity. Furthermore, recent advances in the use of systems biology to probe the molecular networks driving immune response to vaccines ('systems vaccinology') are revealing mechanistic insights and providing a new paradigm for the vaccine discovery and development process. Here, we review the 'known knowns' and 'known unknowns' of adjuvants, discuss these emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuvants for use in vaccines against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Chemistry, Engineering & Medicine for Human Health, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
168
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
169
|
Zhivaki D, Kagan JC. NLRP3 inflammasomes that induce antitumor immunity. Trends Immunol 2021; 42:575-589. [PMID: 34034975 DOI: 10.1016/j.it.2021.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/30/2022]
Abstract
Inflammasomes have emerged as context-dependent regulators of inflammation and protective immunity in vertebrates. Depending on the cell type and stimulus, inflammasome activities lead to interleukin (IL)-1 release from living (hyperactive) or dead (pyroptotic) cells. Herein, we review the mechanisms by which inflammasomes can impact CD8+ T cell-mediated antitumor immunity. We describe recent work demonstrating the differential impact of pyroptosis in cancer cells and dendritic cells (DCs) on antitumor immunity. We further highlight the surprising ability of inflammasomes within hyperactive DCs to facilitate the use of tumor lysates as immunogens, promoting CD8+ T cell-mediated antitumor responses. These context-dependent roles of inflammasomes in living and dead cells offer much opportunity for future research and should inform discussions of next-generation immunotherapy development.
Collapse
Affiliation(s)
- Dania Zhivaki
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
170
|
Guerrini G, Vivi A, Gioria S, Ponti J, Magrì D, Hoeveler A, Medaglini D, Calzolai L. Physicochemical Characterization Cascade of Nanoadjuvant-Antigen Systems for Improving Vaccines. Vaccines (Basel) 2021; 9:vaccines9060544. [PMID: 34064212 PMCID: PMC8224364 DOI: 10.3390/vaccines9060544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 01/25/2023] Open
Abstract
Adjuvants have been used for decades to enhance the immune response to vaccines, in particular for the subunit-based adjuvants. Physicochemical properties of the adjuvant-protein antigen complexes, such as size, morphology, protein structure and binding, influence the overall efficacy and safety of the vaccine. Here we show how to perform an accurate physicochemical characterization of the nanoaluminum-ovalbumin complex. Using a combination of existing techniques, we developed a multi-staged characterization strategy based on measurements of increased complexity. This characterization cascade has the advantage of being very flexible and easily adaptable to any adjuvant-protein antigen combinations. It will contribute to control the quality of antigen-adjuvant complexes and immunological outcomes, ultimately leading to improved vaccines.
Collapse
Affiliation(s)
- Giuditta Guerrini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.G.); (A.V.); (D.M.)
| | - Antonio Vivi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.G.); (A.V.); (D.M.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
| | - Arnd Hoeveler
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.G.); (A.V.); (D.M.)
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
- Correspondence:
| |
Collapse
|
171
|
Tian Y, Hu Q, Zhang R, Zhou B, Xie D, Wang Y, Zhang X, Yang L. Rational design of innate defense regulator peptides as tumor vaccine adjuvants. NPJ Vaccines 2021; 6:75. [PMID: 34016984 PMCID: PMC8138013 DOI: 10.1038/s41541-021-00334-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
The development of adjuvants has been an empirical process. Efforts to develop a new design and evaluation system for novel adjuvants are not only desirable but also necessary. Moreover, composite adjuvants that contain two or more types of adjuvants to synergistically enhance the immune response are important for adjuvant and vaccine design. Innate defense regulator peptides (IDRs) are promising adjuvants for clinical immunotherapy because they exhibit multifaceted immunomodulatory capabilities. However, the rational design and discovery of IDRs that have improved immunomodulatory activities have been hampered by the lack of screening techniques and the great challenges in the identification of their interaction partners. Here, we describe a screening and evaluation system for IDR design. On the basis of in vitro screening, the optimized IDR DP7 recruited neutrophils, monocytes and macrophages to the site of infection. The adjuvant, comprising the DP7 and CpG oligonucleotide (CpG), induced chemokine/cytokine expression, enhanced the antigen uptake by dendritic cells and upregulated surface marker expression in dendritic cells. Vaccination with the NY-ESO-1 or OVA antigens combined with the adjuvant alum/CpG/DP7 strongly suppressed tumor growth in mice which was due to the improvement of antigen-specific humoral and cellular immunity. Regarding the mechanism of action, GPR35 may be the potential interaction partner of DP7. Our study revealed the potential application of the screening and evaluation system as a strategy for rationally designing effective IDRs or composite adjuvants and identifying their mechanism of action.
Collapse
Affiliation(s)
- Yaomei Tian
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, Sichuan, PR China
| | - Qiuyue Hu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Rui Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xueyan Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Li Yang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
172
|
Ren H, Mou Y, Lin L, Wang L, Hu H. Efficient antigen cross-presentation through coating conventional aluminum adjuvant particles with PEI. Am J Transl Res 2021; 13:4092-4102. [PMID: 34150001 PMCID: PMC8205809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Classical aluminum adjuvant is a deficient antigen carrier for cross-presentation and cross-priming of CD8+ cytotoxic T cells. Our previous research has demonstrated that cross-presentation efficiency significantly increased when antigens are conjugated covalently to α-Al2O3 nanoparticles. Here we found that coating conventional aluminum adjuvants with polyethyleneimine (PEI) could enhance antigen cross-presentation of DCs (dendritic cells) in vitro and in vivo. PEIs exerted differential effects on antigen cross-presentation. These findings provided an alternative approach to promote the rapid translation of alumina nanoparticles adjuvants into clinical application.
Collapse
Affiliation(s)
- Hongyan Ren
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, P. R. China
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
| | - Yongbin Mou
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
- Nanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Lin Lin
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineChina
| | - Lixin Wang
- School of Medicine, Southeast UniversityNanjing, China
| | - Hongming Hu
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
| |
Collapse
|
173
|
Siriwattananon K, Manopwisedjaroen S, Shanmugaraj B, Rattanapisit K, Phumiamorn S, Sapsutthipas S, Trisiriwanich S, Prompetchara E, Ketloy C, Buranapraditkun S, Wijagkanalan W, Tharakhet K, Kaewpang P, Leetanasaksakul K, Kemthong T, Suttisan N, Malaivijitnond S, Ruxrungtham K, Thitithanyanont A, Phoolcharoen W. Plant-Produced Receptor-Binding Domain of SARS-CoV-2 Elicits Potent Neutralizing Responses in Mice and Non-human Primates. FRONTIERS IN PLANT SCIENCE 2021; 12:682953. [PMID: 34054909 PMCID: PMC8158422 DOI: 10.3389/fpls.2021.682953] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 05/11/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected global public health and economy. Despite the substantial efforts, only few vaccines are currently approved and some are in the different stages of clinical trials. As the disease rapidly spreads, an affordable and effective vaccine is urgently needed. In this study, we investigated the immunogenicity of plant-produced receptor-binding domain (RBD) of SARS-CoV-2 in order to use as a subunit vaccine. In this regard, RBD of SARS-CoV-2 was fused with Fc fragment of human IgG1 and transiently expressed in Nicotiana benthamiana by agroinfiltration. The plant-produced RBD-Fc fusion protein was purified from the crude extract by using protein A affinity column chromatography. Two intramuscular administration of plant-produced RBD-Fc protein formulated with alum as an adjuvant have elicited high neutralization titers in immunized mice and cynomolgus monkeys. Further it has induced a mixed Th1/Th2 immune responses and vaccine-specific T-lymphocyte responses which was confirmed by interferon-gamma (IFN-γ) enzyme-linked immunospot assay. Altogether, our results demonstrated that the plant-produced SARS-CoV-2 RBD has the potential to be used as an effective vaccine candidate against SARS-CoV-2. To our knowledge, this is the first report demonstrating the immunogenicity of plant-produced SARS-CoV-2 RBD protein in mice and non-human primates.
Collapse
Affiliation(s)
- Konlavat Siriwattananon
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Supaporn Phumiamorn
- Department of Medical Sciences, Ministry of Public Health, Institute of Biological Products, Nonthaburi, Thailand
| | - Sompong Sapsutthipas
- Department of Medical Sciences, Ministry of Public Health, Institute of Biological Products, Nonthaburi, Thailand
| | - Sakalin Trisiriwanich
- Department of Medical Sciences, Ministry of Public Health, Institute of Biological Products, Nonthaburi, Thailand
| | - Eakachai Prompetchara
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Kittipan Tharakhet
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
| | - Papatsara Kaewpang
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
| | - Kantinan Leetanasaksakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand
| | - Nutchanat Suttisan
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand
| | | | - Kiat Ruxrungtham
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
174
|
Zhang R, Wang C, Guan Y, Wei X, Sha M, Yi M, Jing M, Lv M, Guo W, Xu J, Wan Y, Jia XM, Jiang Z. Manganese salts function as potent adjuvants. Cell Mol Immunol 2021; 18:1222-1234. [PMID: 33767434 PMCID: PMC8093200 DOI: 10.1038/s41423-021-00669-w] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Aluminum-containing adjuvants have been used for nearly 100 years to enhance immune responses in billions of doses of vaccines. To date, only a few adjuvants have been approved for use in humans, among which aluminum-containing adjuvants are the only ones widely used. However, the medical need for potent and safe adjuvants is currently continuously increasing, especially those triggering cellular immune responses for cytotoxic T lymphocyte activation, which are urgently needed for the development of efficient virus and cancer vaccines. Manganese is an essential micronutrient required for diverse biological activities, but its functions in immunity remain undefined. We previously reported that Mn2+ is important in the host defense against cytosolic dsDNA by facilitating cGAS-STING activation and that Mn2+ alone directly activates cGAS independent of dsDNA, leading to an unconventional catalytic synthesis of 2'3'-cGAMP. Herein, we found that Mn2+ strongly promoted immune responses by facilitating antigen uptake, presentation, and germinal center formation via both cGAS-STING and NLRP3 activation. Accordingly, a colloidal manganese salt (Mn jelly, MnJ) was formulated to act not only as an immune potentiator but also as a delivery system to stimulate humoral and cellular immune responses, inducing antibody production and CD4+/CD8+ T-cell proliferation and activation by either intramuscular or intranasal immunization. When administered intranasally, MnJ also worked as a mucosal adjuvant, inducing high levels of secretory IgA. MnJ showed good adjuvant effects for all tested antigens, including T cell-dependent and T cell-independent antigens, such as bacterial capsular polysaccharides, thus indicating that it is a promising adjuvant candidate.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yukun Guan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengyin Sha
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengran Yi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Miao Jing
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wen Guo
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
175
|
Nakashima M, Ishikawa K, Fugiwara A, Shu K, Fukushima Y, Okamoto M, Tsukamoto H, Kouwaki T, Oshiumi H. miR-451a levels rather than human papillomavirus vaccine administration is associated with the severity of murine experimental autoimmune encephalomyelitis. Sci Rep 2021; 11:9369. [PMID: 33931700 PMCID: PMC8087664 DOI: 10.1038/s41598-021-88842-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
Human papilloma virus (HPV) vaccine is currently the most effective prophylaxis to prevent cervical cancer. However, concerns regarding its potential severe adverse reactions have limited the vaccination rate. HPV vaccines have been determined to contain adjuvants which induce inflammation by the innate immune system and are crucial for triggering adaptive immunity. MicroRNA-451a (miR-451a) is located within circulating extracellular vesicles (EVs) and regulates the innate immune response. In this study, we examined the effect of HPV vaccines and EV miR-451a on murine experimental autoimmune encephalomyelitis (EAE), which is an autoimmune disorder that affects the central nervous system. Although HPV vaccine induced pro-inflammatory cytokine expression and macrophage cell death, it failed to exacerbate mouse EAE, whereas circulating EV miR-451a levels were associated with the severity of EAE. Since miR-451a knockout exhibited only marginal effect on the murine EAE clinical score, our data suggest that miR-451a levels reflect an unknown condition associated with EAE severity. Interestingly, excessive uptake of glucose increased EV miR-451a levels both in vitro and in vivo and also exacerbated mouse EAE. Therefore, environmental factors that increase EV miR-451a levels exacerbate the autoimmune disorder more than the HPV vaccine. These observations provide evidence for the safety of HPV vaccines.
Collapse
Affiliation(s)
- Momoka Nakashima
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kana Ishikawa
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Aika Fugiwara
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kaiin Shu
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yoshimi Fukushima
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Masaaki Okamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
| |
Collapse
|
176
|
Zhang W, Zhu C, Xiao F, Liu X, Xie A, Chen F, Dong P, Lin P, Zheng C, Zhang H, Gong H, Wu Y. pH-Controlled Release of Antigens Using Mesoporous Silica Nanoparticles Delivery System for Developing a Fish Oral Vaccine. Front Immunol 2021; 12:644396. [PMID: 33953716 PMCID: PMC8089398 DOI: 10.3389/fimmu.2021.644396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/23/2021] [Indexed: 01/08/2023] Open
Abstract
The development of effective vaccines and delivery systems in aquaculture is a long-term challenge for controlling emerging and reemerging infections. Cost-efficient and advanced nanoparticle vaccines are of tremendous applicability in prevention of infectious diseases of fish. In this study, dihydrolipoamide dehydrogenase (DLDH) antigens of Vibrio alginolyticus were loaded into mesoporous silica nanoparticles (MSN) to compose the vaccine delivery system. Hydroxypropyl methylcellulose phthalate (HP55) was coated to provide protection of immunogen. The morphology, loading capacity, acid-base triggered release were characterized and the toxicity of nanoparticle vaccine was determined in vitro. Further, the vaccine immune effects were evaluated in large yellow croaker via oral administration. In vitro studies confirmed that the antigen could be stable in enzymes-rich artificial gastric fluid and released under artificial intestinal fluid environment. In vitro cytotoxicity assessment demonstrated the vaccines within 120 μg/ml have good biocompatibility for large yellow croaker kidney cells. Our data confirmed that the nanoparticle vaccine in vivo could elicit innate and adaptive immune response, and provide good protection against Vibrio alginolyticus challenge. The MSN delivery system prepared may be a potential candidate carrier for fish vaccine via oral administration feeding. Further, we provide theoretical basis for developing convenient, high-performance, and cost-efficient vaccine against infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Weibin Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China.,Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Chunhua Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Fangnan Xiao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiaodong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Anhua Xie
- Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Fangman Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Panpan Dong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Pingdong Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Chenyang Zheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hong Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hui Gong
- Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
177
|
Zhang QJ, Luan JC, Song LB, Cong R, Ji CJ, Zhou X, Xia JD, Song NH. Age-Related Differences in Molecular Profiles for Immune Checkpoint Blockade Therapy. Front Immunol 2021; 12:657575. [PMID: 33936087 PMCID: PMC8082107 DOI: 10.3389/fimmu.2021.657575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapies have significantly improved the prognosis and shown considerable promise for cancer therapy; however, differences in ICB treatment efficacy between the elderly and young are unknown. We analyzed the studies enrolled in the meta-analysis using the deft approach, and found no difference in efficacy except melanoma patients receiving anti–PD-1 therapy. Similarly, higher treatment response rate and more favorable prognosis were observed in elderly patients in some cancer types (e.g., melanoma) with data from published ICB treatment clinical trials. In addition, we comprehensively compared immunotherapy-related molecular profiles between elderly and young patients from public trials and The Cancer Genome Atlas (TCGA), and validated these findings in several independent datasets. We discovered a divergent age-biased immune profiling, including the properties of tumors (e.g., tumor mutation load) and immune features (e.g., immune cells), in a pancancer setting across 27 cancer types. We believe that ICB treatment efficacy might vary depending on specific cancer types and be determined by both the tumor internal features and external immune microenvironment. Considering the high mutational properties in elderly patients in many cancer types, modulating immune function could be beneficial to immunotherapy in the elderly, which requires further investigation.
Collapse
Affiliation(s)
- Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiao-Chen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le-Bin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng-Jian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Dong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Affiliated Kezhou People's Hospital of Nanjing Medical University, Xinjiang, China
| |
Collapse
|
178
|
Stephens LM, Ross KA, Waldstein KA, Legge KL, McLellan JS, Narasimhan B, Varga SM. Prefusion F-Based Polyanhydride Nanovaccine Induces Both Humoral and Cell-Mediated Immunity Resulting in Long-Lasting Protection against Respiratory Syncytial Virus. THE JOURNAL OF IMMUNOLOGY 2021; 206:2122-2134. [PMID: 33827894 DOI: 10.4049/jimmunol.2100018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in both young children and in older adults. Despite the morbidity, mortality, and high economic burden caused by RSV worldwide, no licensed vaccine is currently available. We have developed a novel RSV vaccine composed of a prefusion-stabilized variant of the fusion (F) protein (DS-Cav1) and a CpG oligodeoxynucleotide adjuvant encapsulated within polyanhydride nanoparticles, termed RSVNanoVax. A prime-boost intranasal administration of RSVNanoVax in BALB/c mice significantly alleviated weight loss and pulmonary dysfunction in response to an RSV challenge, with protection maintained up to at least 6 mo postvaccination. In addition, vaccinated mice exhibited rapid viral clearance in the lungs as early as 2 d after RSV infection in both inbred and outbred populations. Vaccination induced tissue-resident memory CD4 and CD8 T cells in the lungs, as well as RSV F-directed neutralizing Abs. Based on the robust immune response elicited and the high level of durable protection observed, our prefusion RSV F nanovaccine is a promising new RSV vaccine candidate.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Kody A Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kevin L Legge
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA.,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA; .,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| |
Collapse
|
179
|
Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. J Inorg Biochem 2021; 219:111454. [PMID: 33878530 PMCID: PMC8007196 DOI: 10.1016/j.jinorgbio.2021.111454] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
In recent years, some viruses have caused a grave crisis to global public health, especially the human coronavirus. A truly effective vaccine is therefore urgently needed. Vaccines should generally have two features: delivering antigens and modulating immunity. Adjuvants have an unshakable position in the battle against the virus. In addition to the perennial use of aluminium adjuvant, nanoparticles have become the developing adjuvant candidates due to their unique properties. Here we introduce several typical nanoparticles and their antivirus vaccine adjuvant applications. Finally, for the combating of the coronavirus, we propose several design points, hoping to provide ideas for the development of personalized vaccines and adjuvants and accelerate the clinical application of adjuvants.
Collapse
Affiliation(s)
- Lichun Mao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziwei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, PR China.
| |
Collapse
|
180
|
Yang Y, Tang J, Song H, Yang Y, Gu Z, Fu J, Liu Y, Zhang M, Qiao ZA, Yu C. Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angew Chem Int Ed Engl 2021; 59:19610-19617. [PMID: 32876984 DOI: 10.1002/anie.202006861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Aluminum-containing adjuvants used in vaccine formulations suffer from low cellular immunity, severe aggregation, and accumulation in the brain. Conventional aluminosilicates widely used in the chemical industry focus mainly on acidic sites for catalytic applications, but they are rarely used as adjuvants. Reported here is an innovative "ligand-assisted steric hindrance" strategy to create a high density of six-coordinate VI Al-OH groups with basicity on dendritic mesoporous silica nanoparticles as new nanoadjuvants. Compared to four-coordinate IV Al-modified counterparts, VI Al-OH-rich aluminosilicate nanoadjuvants enhance cellular delivery of antigens and provoke stronger cellular immunity. Moreover, the aluminum accumulation in the brain is more reduced than that with a commercial adjuvant. These results show that coordination chemistry can be used to control the adjuvanticity, providing new understanding in the development of next-generation vaccine adjuvants.
Collapse
Affiliation(s)
- Yang Yang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yang Liu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
181
|
Khatuntseva EA, Nifantiev NE. Glycoconjugate Vaccines for Prevention of Haemophilus influenzae Type b Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:26-52. [PMID: 33776394 PMCID: PMC7980804 DOI: 10.1134/s1068162021010106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022]
Abstract
This review summarizes the experience in laboratory- and industrial-scale syntheses of glycoconjugate vaccines used for prevention of infectious diseases caused by Haemophilus influenzae type b bacteria based on the linear capsular polysaccharide poly-3-β-D-ribosyl-(1→1)-D-ribitol-5-phosphate (PRP) or related synthetic oligosaccharide ligands. The methods for preparation of related oligosaccharide derivatives and results of the studies evaluating effect of their length on immunogenic properties of the conjugates with protein carriers are overviewed.
Collapse
Affiliation(s)
- E A Khatuntseva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - N E Nifantiev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
182
|
Jensen-Jarolim E, Roth-Walter F, Jordakieva G, Pali-Schöll I. Allergens and Adjuvants in Allergen Immunotherapy for Immune Activation, Tolerance, and Resilience. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1780-1789. [PMID: 33753052 DOI: 10.1016/j.jaip.2020.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
Allergen immunotherapy (AIT) is the only setting in which a vaccine is applied in patients allergic exactly to the active principle in the vaccine. Therefore, AIT products need to be not only effective but also safe. In Europe, for subcutaneous AIT, this has been achieved by the allergoid strategy in which IgE epitopes are destroyed or masked. In addition, adjuvants physically precipitate the allergen at the injection site to prevent too rapid systemic distribution. The choice of adjuvant critically shapes the efficacy and type of immune response to the injected allergen. In contrast to TH2-promoting adjuvants, others clearly counteract allergy. Marketed products in Europe are formulated with aluminum hydroxide (alum) (66.7%), microcrystalline tyrosine (16.7%), calcium phosphate (11.1%), or the TH1 adjuvant monophosphoryl lipid A (5.6%). In contrast to the European practice, in the United States mostly nonadjuvanted extracts and no allergoids are used for subcutaneous AIT, highlighting not only a regulatory but maybe a "historic preference." Sublingual AIT in the form of drops or tablets is currently applied worldwide without adjuvants, usually with higher safety but lower patient adherence than subcutaneous AIT. This article will discuss how AIT and adjuvants modulate the immune response in the treated patient toward immune activation, modulation, or-with new developments in the pipeline-immune resilience.
Collapse
Affiliation(s)
- Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna, Vienna, Austria.
| | - Franziska Roth-Walter
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna, Vienna, Austria
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna, Vienna, Austria
| |
Collapse
|
183
|
Ozberk V, Reynolds S, Huo Y, Calcutt A, Eskandari S, Dooley J, Mills JL, Rasmussen IS, Dietrich J, Pandey M, Good MF. Prime-Pull Immunization with a Bivalent M-Protein and Spy-CEP Peptide Vaccine Adjuvanted with CAF®01 Liposomes Induces Both Mucosal and Peripheral Protection from covR/S Mutant Streptococcus pyogenes. mBio 2021; 12:e03537-20. [PMID: 33622722 PMCID: PMC8545125 DOI: 10.1128/mbio.03537-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 11/20/2022] Open
Abstract
Infections with Streptococcus pyogenes and their sequelae are responsible for an estimated 18 million cases of serious disease with >700 million new primary cases and 500,000 deaths per year. Despite the burden of disease, there is currently no vaccine available for this organism. Here, we define a combination vaccine P*17/K4S2 comprising of 20-mer B-cell peptide epitopes, p*17 (a mutant derived from the highly conserved C3-repeat region of the M-protein), and K4S2 (derived from the streptococcal anti-neutrophil factor, Spy-CEP). The peptides are chemically conjugated to either diphtheria toxoid (DT) or a nontoxic mutant form of diphtheria toxin, CRM197. We demonstrate that a prime-pull immunization regimen involving two intramuscular inoculations with P*17/K4S2 adjuvanted with a two-component liposomal adjuvant system (CAF01; developed by Statens Serum Institut [SSI], Denmark), followed by an intranasal inoculation of unadjuvanted vaccine (in Tris) induces peptide- and S. pyogenes-binding antibodies and protects from mucosal and skin infection with hypervirulent covR/S mutant organisms. Prior vaccination with DT does not diminish the response to the conjugate peptide vaccines. Detailed Good Laboratory Practice (GLP) toxicological evaluation in male and female rats did not reveal any gross or histopathological adverse effects.IMPORTANCE A vaccine to control S. pyogenes infection is desperately warranted. S. pyogenes colonizes the upper respiratory tract (URT) and skin, from where it can progress to invasive and immune-mediated diseases. Global mortality estimates for S. pyogenes-associated diseases exceeds 500,000 deaths per year. S. pyogenes utilizes antigenic variation as a defense mechanism to circumvent host immune responses and thus a successful vaccine needs to provide strain-transcending and multicompartment (mucosal and skin) immunity. By defining highly conserved and protective epitopes from two critical virulence factors (M-protein and Spy-CEP) and combining them with a potent immunostimulant, CAF®01, we are addressing an unmet clinical need for a mucosally and skin-active subunit vaccine. We demonstrate that prime-pull immunization (2× intramuscular injections followed by intranasal immunization) promotes high sustained antibody levels in the airway mucosa and serum and protects against URT and invasive disease.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Outer Membrane Proteins/administration & dosage
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Female
- Immunity, Mucosal
- Immunization/methods
- Liposomes/administration & dosage
- Liposomes/chemistry
- Male
- Mice, Inbred BALB C
- Rats
- Rats, Sprague-Dawley
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Mice
Collapse
Affiliation(s)
- Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Simone Reynolds
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Yongbao Huo
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | | | - Jessica Dooley
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Jamie-Lee Mills
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Ida S Rasmussen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
184
|
Li Z, Zhao Y, Li Y, Chen X. Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Vaccines (Basel) 2021; 9:75. [PMID: 33494477 PMCID: PMC7911902 DOI: 10.3390/vaccines9020075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Influenza poses a huge threat to global public health. Influenza vaccines are the most effective and cost-effective means to control influenza. Current influenza vaccines mainly induce neutralizing antibodies against highly variable globular head of hemagglutinin and lack cross-protection. Vaccine adjuvants have been approved to enhance seasonal influenza vaccine efficacy in the elderly and spare influenza vaccine doses. Clinical studies found that MF59 and AS03-adjuvanted influenza vaccines could induce cross-protective immunity against non-vaccine viral strains. In addition to MF59 and AS03 adjuvants, experimental adjuvants, such as Toll-like receptor agonists, saponin-based adjuvants, cholera toxin and heat-labile enterotoxin-based mucosal adjuvants, and physical adjuvants, are also able to broaden influenza vaccine-induced immune responses against non-vaccine strains. This review focuses on introducing the various types of adjuvants capable of assisting current influenza vaccines to induce cross-protective immunity in preclinical and clinical studies. Mechanisms of licensed MF59 and AS03 adjuvants to induce cross-protective immunity are also introduced. Vaccine adjuvants hold a great promise to adjuvant influenza vaccines to induce cross-protective immunity.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA; (Z.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
185
|
Lee JH, Choi JH, Jeong KB, Lee SJ, Lee MK, Lee WY, Yong SJ, Kim SH. Safety and Utility of Rush Immunotherapy with Aqueous Allergen Extracts for Treatment of Respiratory Allergies. J Korean Med Sci 2021; 36:e18. [PMID: 33463092 PMCID: PMC7813580 DOI: 10.3346/jkms.2021.36.e18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Generally, allergen immunotherapy must be administered for three to five years. Meanwhile, rush immunotherapy (RIT) shortens the required duration for the build-up phase, thereby improving the therapy's convenience compared with conventional immunotherapy (CIT). However, RIT is often performed with modified allergens. Therefore, this study aimed to investigate the safety and utility of RIT with aqueous allergens. METHODS Medical records of 98 patients sensitized with at least one inhalant allergen who had received subcutaneous immunotherapy for allergic rhinitis with or without asthma were retrospectively reviewed. All patients were classified into three groups: depot-RIT (n = 25), receiving RIT with depot allergen; aqueous-RIT (n = 48), receiving RIT with aqueous allergen; and aqueous-CIT (n = 25), receiving CIT with aqueous allergen. Patients who had received immunotherapy targeting only house dust mites were excluded. RESULTS The proportions of patients presenting with a systemic reaction to depot-RIT, aqueous-RIT, or aqueous-CIT were 80.0%, 85.4%, and 48.0%, respectively (P = 0.002). The proportions of patients experiencing severe systemic reaction were 4.0%, 16.7%, and 8.0% in depot-RIT, aqueous-RIT and aqueous-CIT, respectively (P = 0.223). The proportions of depot-RIT and aqueous-RIT patients presenting with systemic reaction or severe systemic reaction did not differ significantly (P = 0.553 and P = 0.118, respectively). Significantly fewer depot-RIT (1.0 ± 0.2) and aqueous-RIT patients (2.0 ± 1.3) required outpatient clinical visits during the build-up phase, compared to those administered aqueous-CIT (13.6 ± 1.9; P < 0.001). Moreover, the build-up phase decreased to 17.4 ± 1.8 days in depot-RIT and 23.7 ± 10.9 days in aqueous-RIT, compared to 92.0 ± 12.5 days in aqueous-CIT (P < 0.001). CONCLUSION RIT with aqueous allergen reduced the build-up phase duration and frequency of hospital visits, with acceptable safety levels. RIT with aqueous allergen may, therefore, be suitable for broad application to patients with respiratory allergies.
Collapse
Affiliation(s)
- Ji Ho Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Hwa Choi
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Keun Bae Jeong
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seok Jeong Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Myoung Kyu Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Won Yeon Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Suk Joong Yong
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sang Ha Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
186
|
Fukase K. Glycoconjugates for Adjuvants and Self-Adjuvanting Vaccines. COMPREHENSIVE GLYCOSCIENCE 2021:166-184. [DOI: 10.1016/b978-0-12-819475-1.00099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
187
|
Soni D, Bobbala S, Li S, Scott EA, Dowling DJ. The sixth revolution in pediatric vaccinology: immunoengineering and delivery systems. Pediatr Res 2021; 89:1364-1372. [PMID: 32927471 PMCID: PMC7511675 DOI: 10.1038/s41390-020-01112-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023]
Abstract
Infection is the predominant cause of mortality in early life, and immunization is the most promising biomedical intervention to reduce this burden. However, very young infants fail to respond optimally to most vaccines currently in use, especially neonates. In 2005, Stanley Plotkin proposed that new delivery systems would spur a new revolution in pediatric vaccinology, just as attenuation, inactivation, cell culture of viruses, genetic engineering, and adjuvantation had done in preceding decades. Recent advances in the field of immunoengineering, which is evolving alongside vaccinology, have begun to increasingly influence vaccine formulation design. Historically, the particulate nature of materials used in many vaccine formulations was empiric, often because of the need to stabilize antigens or reduce endotoxin levels. However, present vaccine delivery systems are rationally engineered to mimic the size, shape, and surface chemistry of pathogens, and are therefore often referred to as "pathogen-like particles". More than a decade from his original assessment, we re-assess Plotkin's prediction. In addition, we highlight how immunoengineering and advanced delivery systems may be uniquely capable of enhancing vaccine responses in vulnerable populations, such as infants. IMPACT: Immunoengineering and advanced delivery systems are leading to new developments in pediatric vaccinology. Summarizes delivery systems currently in use and development, and prospects for the future. Broad overview of immunoengineering's impact on vaccinology, catering to Pediatric Clinicians and Immunologists.
Collapse
Affiliation(s)
- Dheeraj Soni
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Sharan Bobbala
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, Northwestern University, Evanston, IL USA
| | - Sophia Li
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, Northwestern University, Evanston, IL USA
| | - Evan A. Scott
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, Northwestern University, Evanston, IL USA
| | - David J. Dowling
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| |
Collapse
|
188
|
Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 2020; 21:83-100. [PMID: 33353987 PMCID: PMC7754704 DOI: 10.1038/s41577-020-00479-7] [Citation(s) in RCA: 806] [Impact Index Per Article: 161.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Immunization is a cornerstone of public health policy and is demonstrably highly cost-effective when used to protect child health. Although it could be argued that immunology has not thus far contributed much to vaccine development, in that most of the vaccines we use today were developed and tested empirically, it is clear that there are major challenges ahead to develop new vaccines for difficult-to-target pathogens, for which we urgently need a better understanding of protective immunity. Moreover, recognition of the huge potential and challenges for vaccines to control disease outbreaks and protect the older population, together with the availability of an array of new technologies, make it the perfect time for immunologists to be involved in designing the next generation of powerful immunogens. This Review provides an introductory overview of vaccines, immunization and related issues and thereby aims to inform a broad scientific audience about the underlying immunological concepts. This Review, aimed at a broad scientific audience, provides an introductory guide to the history, development and immunological basis of vaccines, immunization and related issues to provide insight into the challenges facing immunologists who are designing the next generation of vaccines.
Collapse
Affiliation(s)
- Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK. .,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK.
| | - Else M Bijker
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| |
Collapse
|
189
|
Lampe AT, Farris EJ, Brown DM, Pannier AK. High- and low-molecular-weight chitosan act as adjuvants during single-dose influenza A virus protein vaccination through distinct mechanisms. Biotechnol Bioeng 2020; 118:1224-1243. [PMID: 33289090 PMCID: PMC7897297 DOI: 10.1002/bit.27647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
The investigation of new adjuvants is essential for the development of efficacious vaccines. Chitosan (CS), a derivative of chitin, has been shown to act as an adjuvant, improving vaccine-induced immune responses. However, the effect of CS molecular weight (MW) on this adjuvanticity has not been investigated, despite MW having been shown to impact CS biological properties. Here, two MW variants of CS were investigated for their ability to enhance vaccine-elicited immune responses in vitro and in vivo, using a single-dose influenza A virus (IAV) protein vaccine model. Both low-molecular-weight (LMW) and high-molecular-weight (HMW) CS-induced interferon regulatory factor pathway signaling, antigen-presenting cell activation, and cytokine messenger RNA (mRNA) production, with LMW inducing higher mRNA levels at 24 h and HMW elevating mRNA responses at 48 h. LMW and HMW CS also induced adaptive immune responses after vaccination, indicated by enhanced immunoglobulin G production in mice receiving LMW CS and increased CD4 interleukin 4 (IL-4) and IL-2 production in mice receiving HMW CS. Importantly, both LMW and HMW CS adjuvantation reduced morbidity following homologous IAV challenge. Taken together, these results support that LMW and HMW CS can act as adjuvants, although this protection may be mediated through distinct mechanisms based on CS MW.
Collapse
Affiliation(s)
- Anna T Lampe
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Eric J Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Trudeau Institute, Saranac Lake, NY, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
190
|
Belz TF, Olson ME, Giang E, Law M, Janda KD. Evaluation of a Series of Lipidated Tucaresol Adjuvants in a Hepatitis C Virus Vaccine Model. ACS Med Chem Lett 2020; 11:2428-2432. [PMID: 33335664 DOI: 10.1021/acsmedchemlett.0c00413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 01/02/2023] Open
Abstract
Hepatitis C virus (HCV) infections represent a global health challenge; however, developing a vaccine for treatment of HCV infection has remained difficult as heterogeneous HCV contains distinct genotypes, and each genotype contains various subtypes and different envelope glycoproteins. Currently, there is no effective preventive vaccine for achieving global control over HCV. In our efforts to improve upon current HCV vaccines we designed a synthetically accessible adjuvant platform, wherein we synthesized 11 novel lipidated tucaresol analogues to assess their immunological potential. Using a tucaresol-based adjuvant approach, truncated lipid-variants together with an engineered E1E2 antigen construct, namely E2ΔTM3, elicited antibody (Ab) responses that were significantly higher than tucaresol. In sum, antibody end-point titer values largely corroborated HCV neutralization data with a simplified lipidated tucaresol variant affording the highest end point titer and % neutralization. This study lays the groundwork for additional permutations in tucaresol adjuvant design, including the examination of other proteins in vaccine development.
Collapse
Affiliation(s)
- Tyson F. Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Margaret E. Olson
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- College of Pharmacy, Roosevelt University, 1400 North Roosevelt Boulevard, Schaumburg, Illinois 60173, United States
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
191
|
Manabe Y, Chang TC, Fukase K. Recent advances in self-adjuvanting glycoconjugate vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:61-71. [PMID: 34895656 DOI: 10.1016/j.ddtec.2020.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023]
Abstract
Compared to traditional vaccines that are formulated into mixtures of an adjuvant and an antigen, a self-adjuvanting vaccine consists of an antigen that is covalently conjugated to a well-defined adjuvant. In self-adjuvanting vaccines, innate immune receptor ligands are usually used as adjuvants. Innate immune receptor ligands effectively trigger acquired immunity through the activation of innate immunity to enhance host immune responses to antigens. When a self-adjuvanting vaccine is used, immune cells simultaneously uptake the antigen and the adjuvant because they are covalently linked. Consequently, the adjuvant can specifically induce immune responses against the conjugated antigen. Importantly, self-adjuvanting vaccines do not require co-administration of additional adjuvants or immobilization to carrier proteins, which enables avoidance of the use of highly toxic adjuvants or the induction of undesired immune responses. Given these excellent properties, self-adjuvanting vaccines are expected to serve as candidates for the next generation of vaccines. Herein, we review vaccine adjuvants, with a focus on the adjuvants used in self-adjuvanting vaccines, and then overview recent advances made with self-adjuvanting conjugate vaccines.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Japan; Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Japan.
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Japan; Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Japan.
| |
Collapse
|
192
|
Gomord V, Stordeur V, Fitchette AC, Fixman ED, Tropper G, Garnier L, Desgagnes R, Viel S, Couillard J, Beauverger G, Trepout S, Ward BJ, van Ree R, Faye L, Vézina LP. Design, production and immunomodulatory potency of a novel allergen bioparticle. PLoS One 2020; 15:e0242867. [PMID: 33259521 PMCID: PMC7707610 DOI: 10.1371/journal.pone.0242867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment with evidence for sustained efficacy. However, it is poorly developed compared to symptomatic drugs. The main reasons come from treatment duration implying monthly injections during 3 to 5 years or daily sublingual use, and the risk of allergic side-effects. To become a more attractive alternative to lifelong symptomatic drug use, improvements to AIT are needed. Among the most promising new immunotherapy strategies is the use of bioparticles for the presentation of target antigen to the immune system as they can elicit strong T cell and B cell immune responses. Virus-like particles (VLPs) are a specific class of bioparticles in which the structural and immunogenic constituents are from viral origin. However, VLPs are ill-suited for use in AIT as their antigenicity is linked to structure. Recently, synthetic biology has been used to produce artificial modular bioparticles, in which supramolecular assemblies are made of elements from heterogeneous biological sources promoting the design and use of in vivo-assembling enveloped bioparticles for viral and non-viral antigens presentation. We have used a coiled-coil hybrid assembly for the design of an enveloped bioparticle (eBP) that present trimers of the Der p 2 allergen at its surface, This bioparticle was produced as recombinant and in vivo assembled eBPs in plant. This allergen biotherapeutic was used to demonstrate i) the capacity of plants to produce synthetic supramolecular allergen bioparticles, and ii) the immunomodulatory potential of naturally-assembled allergen bioparticles. Our results show that allergens exposed on eBPs induced a very strong IgG response consisting predominantly of IgG2a in favor of the TH1 response. Finally, our results demonstrate that rDer p 2 present on the surface of BPs show a very limited potential to stimulate the basophil degranulation of patient allergic to this allergen which is predictive of a high safety potential.
Collapse
Affiliation(s)
- Véronique Gomord
- ANGANY Innovation, Val de Reuil, France
- ANGANY Inc, Québec, Québec, Canada
| | | | | | - Elizabeth D. Fixman
- McGill University Health Centre, Research Institute (RI MUHC), Montreal, Quebec, Canada
| | | | - Lorna Garnier
- Service d’Immunologie Biologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | | | - Sébastien Viel
- Service d’Immunologie Biologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | | | | | - Sylvain Trepout
- IR2 Inserm, Plateforme de microscopie électronique, INSERM US43/CNRS UMS2016, Institut Curie, Orsay, France
| | - Brian J. Ward
- McGill University Health Centre, Research Institute (RI MUHC), Montreal, Quebec, Canada
| | - Ronald van Ree
- Department of Experimental Immunology, Molecular and Translational Allergy, Amsterdam, Netherlands
| | - Loic Faye
- ANGANY Innovation, Val de Reuil, France
| | | |
Collapse
|
193
|
A highly immunogenic and effective measles virus-based Th1-biased COVID-19 vaccine. Proc Natl Acad Sci U S A 2020; 117:32657-32666. [PMID: 33257540 PMCID: PMC7768780 DOI: 10.1073/pnas.2014468117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The COVID-19 pandemic has already caused over 1 million deaths. Therefore, effective vaccine concepts are urgently needed. In search of such a concept, we have analyzed a measles virus-based vaccine candidate targeting SARS-CoV-2. Using this well-known, safe vaccine backbone, we demonstrate here induction of functional immune responses in both arms of adaptive immunity, yielding antiviral efficacy in vivo with the desired immune bias. Consequently, no immunopathologies became evident during challenge experiments. Moreover, the candidate still induces immunity against the measles, recognized as a looming second menace, when countries are forced to stop routine vaccination campaigns in the face of COVID-19. Thus, a bivalent measles-based COVID-19 vaccine could be the solution for two significant public health threats. The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has spread worldwide, with millions of cases and more than 1 million deaths to date. The gravity of the situation mandates accelerated efforts to identify safe and effective vaccines. Here, we generated measles virus (MeV)-based vaccine candidates expressing the SARS-CoV-2 spike glycoprotein (S). Insertion of the full-length S protein gene in two different MeV genomic positions resulted in modulated S protein expression. The variant with lower S protein expression levels was genetically stable and induced high levels of effective Th1-biased antibody and T cell responses in mice after two immunizations. In addition to neutralizing IgG antibody responses in a protective range, multifunctional CD8+ and CD4+ T cell responses with S protein-specific killing activity were detected. Upon challenge using a mouse-adapted SARS-CoV-2, virus loads in vaccinated mice were significantly lower, while vaccinated Syrian hamsters revealed protection in a harsh challenge setup using an early-passage human patient isolate. These results are highly encouraging and support further development of MeV-based COVID-19 vaccines.
Collapse
|
194
|
Zhivaki D, Borriello F, Chow OA, Doran B, Fleming I, Theisen DJ, Pallis P, Shalek AK, Sokol CL, Zanoni I, Kagan JC. Inflammasomes within Hyperactive Murine Dendritic Cells Stimulate Long-Lived T Cell-Mediated Anti-tumor Immunity. Cell Rep 2020; 33:108381. [PMID: 33207188 PMCID: PMC7727444 DOI: 10.1016/j.celrep.2020.108381] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Central to anti-tumor immunity are dendritic cells (DCs), which stimulate long-lived protective T cell responses. Recent studies have demonstrated that DCs can achieve a state of hyperactivation, which is associated with inflammasome activities within living cells. Herein, we report that hyperactive DCs have an enhanced ability to migrate to draining lymph nodes and stimulate potent cytotoxic T lymphocyte (CTL) responses. This enhanced migratory activity is dependent on the chemokine receptor CCR7 and is associated with a unique transcriptional program that is not observed in conventionally activated or pyroptotic DCs. We show that hyperactivating stimuli are uniquely capable of inducing durable CTL-mediated anti-tumor immunity against tumors that are sensitive or resistant to PD-1 inhibition. These protective responses are intrinsic to the cDC1 subset of DCs, depend on the inflammasome-dependent cytokine IL-1β, and enable tumor lysates to serve as immunogens. If these activities are verified in humans, hyperactive DCs may impact immunotherapy.
Collapse
Affiliation(s)
- Dania Zhivaki
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Francesco Borriello
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Ohn A Chow
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Doran
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ira Fleming
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J Theisen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paris Pallis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Alex K Shalek
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ivan Zanoni
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
195
|
Yang Y, Tang J, Song H, Yang Y, Gu Z, Fu J, Liu Y, Zhang M, Qiao Z, Yu C. Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Yang
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Yang Liu
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Zhen‐An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
196
|
Immunogenicity and Protective Efficacy of a Non-Living Anthrax Vaccine versus a Live Spore Vaccine with Simultaneous Penicillin-G Treatment in Cattle. Vaccines (Basel) 2020; 8:vaccines8040595. [PMID: 33050254 PMCID: PMC7711464 DOI: 10.3390/vaccines8040595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
Sterne live spore vaccine (SLSV) is the current veterinary anthrax vaccine of choice. Unlike the non-living anthrax vaccine (NLAV) prototype, SLSV is incompatible with concurrent antibiotics use in an anthrax outbreak scenario. The NLAV candidates used in this study include a crude recombinant protective antigen (CrPA) and a purified recombinant protective antigen (PrPA) complemented by formalin-inactivated spores and Emulsigen-D®/Alhydrogel® adjuvants. Cattle were vaccinated twice (week 0 and 3) with NLAVs plus penicillin-G (Pen-G) treatment and compared to cattle vaccinated twice with SLSV alone and with Pen-G treatment. The immunogenicity was assessed using ELISA against rPA and FIS, toxin neutralisation assay (TNA) and opsonophagocytic assay. The protection was evaluated using an in vivo passive immunisation mouse model. The anti-rPA IgG titres for NLAVs plus Pen-G and SLSV without Pen-G treatment showed a significant increase, whereas the titres for SLSV plus Pen-G were insignificant compared to pre-vaccination values. A similar trend was measured for IgM, IgG1, and IgG2 and TNA titres (NT50) showed similar trends to anti-rPA titres across all vaccine groups. The anti-FIS IgG and IgM titres increased significantly for all vaccination groups at week 3 and 5 when compared to week 0. The spore opsonising capacity increased significantly in the NLAV vaccinated groups including Pen-G treatment and the SLSV without Pen-G but much less in the SLSV group with Pen-G treatment. Passive immunization of A/J mice challenged with a lethal dose of 34F2 spores indicated significant protective capacity of antibodies raised in the SLSV and the PrPA + FIS + adjuvants vaccinated and Pen-G treated groups but not for the NLAV with the CrPA + FIS + adjuvants and the SLSV vaccinated and Pen-G treated group. Our findings indicate that the PrPA + FIS + Emulsigen-D®/Alhydrogel® vaccine candidate may provide the same level of antibody responses and protective capacity as the SLSV. Advantageously, it can be used concurrently with Penicillin-G in an outbreak situation and as prophylactic treatment in feedlots and valuable breeding stocks.
Collapse
|
197
|
Gupta D, Gangwar A, Jyoti K, Sainaga Jyothi VG, Sodhi RK, Mehra NK, Singh SB, Madan J. Self healing hydrogels: A new paradigm immunoadjuvant for delivering peptide vaccine. Colloids Surf B Biointerfaces 2020; 194:111171. [DOI: 10.1016/j.colsurfb.2020.111171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
|
198
|
Mohamed H, Esposito RA, Kutzler MA, Wigdahl B, Krebs FC, Miller V. Nonthermal plasma as part of a novel strategy for vaccination. PLASMA PROCESSES AND POLYMERS (PRINT) 2020; 17:2000051. [PMID: 32837491 PMCID: PMC7404442 DOI: 10.1002/ppap.202000051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/28/2020] [Accepted: 06/28/2020] [Indexed: 05/03/2023]
Abstract
Vaccination has been one of the most effective health intervention mechanisms to reduce morbidity and mortality associated with infectious diseases. Vaccines stimulate the body's protective immune responses through controlled exposure to modified versions of pathogens that establish immunological memory. However, only a few diseases have effective vaccines. The biological effects of nonthermal plasma on cells suggest that plasma could play an important role in improving efficacy of existing vaccines and overcoming some of the limitations and challenges with current vaccination strategies. This review summarizes the opportunities for nonthermal plasma for immunization and therapeutic purposes.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Rita A. Esposito
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Michele A. Kutzler
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Fred C. Krebs
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Vandana Miller
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaPennsylvania
| |
Collapse
|
199
|
Zawawi A, Else KJ. Soil-Transmitted Helminth Vaccines: Are We Getting Closer? Front Immunol 2020; 11:576748. [PMID: 33133094 PMCID: PMC7565266 DOI: 10.3389/fimmu.2020.576748] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Abstract
Parasitic helminths infect over one-fourth of the human population resulting in significant morbidity, and in some cases, death in endemic countries. Despite mass drug administration (MDA) to school-aged children and other control measures, helminth infections are spreading into new areas. Thus, there is a strong rationale for developing anthelminthic vaccines as cost-effective, long-term immunological control strategies, which, unlike MDA, are not haunted by the threat of emerging drug-resistant helminths nor limited by reinfection risk. Advances in vaccinology, immunology, and immunomics include the development of new tools that improve the safety, immunogenicity, and efficacy of vaccines; and some of these tools have been used in the development of helminth vaccines. The development of anthelminthic vaccines is fraught with difficulty. Multiple lifecycle stages exist each presenting stage-specific antigens. Further, helminth parasites are notorious for their ability to dampen down and regulate host immunity. One of the first significant challenges in developing any vaccine is identifying suitable candidate protective antigens. This review explores our current knowledge in lead antigen identification and reports on recent pre-clinical and clinical trials in the context of the soil-transmitted helminths Trichuris, the hookworms and Ascaris. Ultimately, a multivalent anthelminthic vaccine could become an essential tool for achieving the medium-to long-term goal of controlling, or even eliminating helminth infections.
Collapse
Affiliation(s)
- Ayat Zawawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Ayat Zawawi
| | - Kathryn J. Else
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine, and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom,Kathryn J. Else
| |
Collapse
|
200
|
Cheng YJ, Huang CY, Ho HM, Huang MH. Morphology and protein adsorption of aluminum phosphate and aluminum hydroxide and their potential catalytic function in the synthesis of polymeric emulsifiers. Colloids Surf A Physicochem Eng Asp 2020; 608:125564. [PMID: 32929307 PMCID: PMC7481801 DOI: 10.1016/j.colsurfa.2020.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
Aluminum gel structure was associated with adsorption and catalytic ability. Crystalline Al(OH)3 is a suitable adjuvant for antigen adsorption. Amorphous AlPO4 is an efficient catalyst for polymeric emulsifier synthesis.
Aluminum-containing salts are commonly used as antacids and vaccine adjuvants; however, key features of functional activities remain unclear. Here, we characterized vaccine formulations based on aluminum phosphate and aluminum hydroxide and investigated the respective modes of action linking physicochemical properties and catalytic ability. TEM microscopy indicated that aluminum phosphate gel solutions are amorphous, whereas aluminum hydroxide gel solutions have a crystalline structure consistent with boehmite. At very low BSA concentrations, 100 % adsorption of the protein on aluminum hydroxide could be achieved. As the protein concentration increased, the amount of adsorbed BSA decreased as fewer vacant sites were available on the surface of the adjuvants. Notably, less than 20 % adsorption was observed in aluminum phosphate. The protein adsorption profiles should confront the requirements for vaccine immunoavailability. In terms of catalytic ability, the prepared aluminum salts were tested for their ability to drive the amphiphilic engineering of oligo(lactic acid) (OLA) onto methoxy poly(ethylene glycol). It was concluded that aluminum hydroxide, rather than aluminum phosphate, is suitable to be a vaccine adjuvant according to the morphology and antigen adsorption efficiency results; on the other hand, aluminum phosphate may be a more efficient catalyst for the synthesis of polymeric emulsifiers than aluminum hydroxide. The results provide critical mechanistic insight into aluminum-containing salts in vaccine formulations.
Collapse
Affiliation(s)
- Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35053 Miaoli, Taiwan
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35053 Miaoli, Taiwan
| | - Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35053 Miaoli, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35053 Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, 40402 Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan.,Biotechnology Center, National Chung Hsing University, 40227 Taichung, Taiwan
| |
Collapse
|