151
|
Yamashita M, Kuwahara M. The critical role of Bach2 in regulating type 2 chronic airway inflammation. Int Immunol 2019. [PMID: 29529253 DOI: 10.1093/intimm/dxy020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although Bach2 (broad complex-tramtrack-bric a brac and Cap'n'collar homology 2) plays an important role in regulating Th2 cell differentiation and type 2 immune responses, the underlying molecular mechanisms remain unclear. Our current studies demonstrate that Bach2 associates with Batf (basic leucine zipper transcription factor ATF-like) family transcription factors and binds to the regulatory regions of the Th2 cytokine gene loci. The Bach2-Batf complex antagonizes the recruitment of the interferon regulatory factor 4 (Irf4)-containing Batf complex to activator protein 1 (AP-1) motifs in the Th2 cytokine gene locus and suppresses Th2 cytokine production and/or Th2 cell differentiation. The deletion of Batf ameliorated the spontaneous development of type 2 airway inflammation that is found in mice with Bach2 deficiency specifically in T cells. Interestingly, Bach2 regulates Batf and Batf3 expression via two distinct pathways. First, the Bach2-Batf complex directly binds to the Batf and Batf3 gene loci and reduces transcription by interfering with the Batf-Irf4 complex. Second, Bach2 suppresses interleukin 4 (IL-4)-induced augmentation of Batf and Batf3 expression through the regulation of IL-4 production. These findings suggest that IL-4 and Batf family transcription factors form a positive feedback amplification loop to induce Th2 cell differentiation and that Bach2-Batf interactions block the formation of this amplification loop. Furthermore, we found that reductions in Bach2 confer an innate immunological function on CD4 T cells to induce antigen-independent cytokine production. Some Bach2-deficient lung CD4 T cells showed characteristic features similar to pathogenic Th2 cells, including IL-33 receptor expression and IL-33-dependent Th2 cytokine production. These results suggest a critical role for Bach2 in regulating Th2 cell differentiation and the subsequent onset of chronic type 2 inflammation.
Collapse
Affiliation(s)
- Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, Japan.,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, Japan
| | - Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, Japan.,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, Japan
| |
Collapse
|
152
|
Halbritter F, Farlik M, Schwentner R, Jug G, Fortelny N, Schnöller T, Pisa H, Schuster LC, Reinprecht A, Czech T, Gojo J, Holter W, Minkov M, Bauer WM, Simonitsch-Klupp I, Bock C, Hutter C. Epigenomics and Single-Cell Sequencing Define a Developmental Hierarchy in Langerhans Cell Histiocytosis. Cancer Discov 2019; 9:1406-1421. [PMID: 31345789 DOI: 10.1158/2159-8290.cd-19-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023]
Abstract
Langerhans cell histiocytosis (LCH) is a rare neoplasm predominantly affecting children. It occupies a hybrid position between cancers and inflammatory diseases, which makes it an attractive model for studying cancer development. To explore the molecular mechanisms underlying the pathophysiology of LCH and its characteristic clinical heterogeneity, we investigated the transcriptomic and epigenomic diversity in primary LCH lesions. Using single-cell RNA sequencing, we identified multiple recurrent types of LCH cells within these biopsies, including putative LCH progenitor cells and several subsets of differentiated LCH cells. We confirmed the presence of proliferative LCH cells in all analyzed biopsies using IHC, and we defined an epigenomic and gene-regulatory basis of the different LCH-cell subsets by chromatin-accessibility profiling. In summary, our single-cell analysis of LCH uncovered an unexpected degree of cellular, transcriptomic, and epigenomic heterogeneity among LCH cells, indicative of complex developmental hierarchies in LCH lesions. SIGNIFICANCE: This study sketches a molecular portrait of LCH lesions by combining single-cell transcriptomics with epigenome profiling. We uncovered extensive cellular heterogeneity, explained in part by an intrinsic developmental hierarchy of LCH cells. Our findings provide new insights and hypotheses for advancing LCH research and a starting point for personalizing therapy.See related commentary by Gruber et al., p. 1343.This article is highlighted in the In This Issue feature, p. 1325.
Collapse
Affiliation(s)
- Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Gunhild Jug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Schnöller
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Hanja Pisa
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Holter
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, St. Anna Kinderspital, Vienna, Austria
| | - Milen Minkov
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, Adolescent Medicine and Neonatology, Rudolfstiftung Hospital, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Caroline Hutter
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, St. Anna Kinderspital, Vienna, Austria
| |
Collapse
|
153
|
Khalil DN, Suek N, Campesato LF, Budhu S, Redmond D, Samstein RM, Krishna C, Panageas KS, Capanu M, Houghton S, Hirschhorn D, Zappasodi R, Giese R, Gasmi B, Schneider M, Gupta A, Harding JJ, Moral JA, Balachandran VP, Wolchok JD, Merghoub T. In situ vaccination with defined factors overcomes T cell exhaustion in distant tumors. J Clin Invest 2019; 129:3435-3447. [PMID: 31329159 DOI: 10.1172/jci128562] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Irreversible T cell exhaustion limits the efficacy of programmed cell death 1 (PD-1) blockade. We observed that dual CD40-TLR4 stimulation within a single tumor restored PD-1 sensitivity and that this regimen triggered a systemic tumor-specific CD8+ T cell response. This approach effectively treated established tumors in diverse syngeneic cancer models, and the systemic effect was dependent on the injected tumor, indicating that treated tumors were converted into necessary components of this therapy. Strikingly, this approach was associated with the absence of exhausted PD-1hi T cells in treated and distant tumors, while sparing the intervening draining lymph node and spleen. Furthermore, patients with transcription changes like those induced by this therapy experienced improved progression-free survival with anti-PD-1 treatment. Dual CD40-TLR4 activation within a single tumor is thus an approach for overcoming resistance to PD-1 blockade that is unique in its ability to cause the loss of exhausted T cells within tumors while sparing nonmalignant tissues.
Collapse
Affiliation(s)
- Danny N Khalil
- Ludwig Collaborative and Swim Across America Laboratory.,Parker Institute for Cancer Immunotherapy, and.,Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - Nathan Suek
- Ludwig Collaborative and Swim Across America Laboratory
| | | | - Sadna Budhu
- Ludwig Collaborative and Swim Across America Laboratory
| | - David Redmond
- Ludwig Collaborative and Swim Across America Laboratory
| | | | | | | | - Marinela Capanu
- Department of Epidemiology and Biostatistics, MSKCC, New York, New York, USA
| | - Sean Houghton
- Ludwig Collaborative and Swim Across America Laboratory
| | | | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory.,Parker Institute for Cancer Immunotherapy, and
| | - Rachel Giese
- Ludwig Collaborative and Swim Across America Laboratory.,Department of Surgery, MSKCC, New York, New York, USA
| | - Billel Gasmi
- National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | | - Aditi Gupta
- Ludwig Collaborative and Swim Across America Laboratory
| | - James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | | | - Vinod P Balachandran
- Parker Institute for Cancer Immunotherapy, and.,Hepatopancreatobiliary Service, Department of Surgery and David M. Rubenstein Center for Pancreatic Cancer Research, MSKCC, New York, New York, USA
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory.,Parker Institute for Cancer Immunotherapy, and.,Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory.,Parker Institute for Cancer Immunotherapy, and.,Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
154
|
Wang Q, Lu W, Yin T, Lu L. Calycosin suppresses TGF-β-induced epithelial-to-mesenchymal transition and migration by upregulating BATF2 to target PAI-1 via the Wnt and PI3K/Akt signaling pathways in colorectal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:240. [PMID: 31174572 PMCID: PMC6555005 DOI: 10.1186/s13046-019-1243-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/23/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To determine whether the upregulation of basic leucine zipper ATF-like transcription factor 2 (BATF2) by calycosin suppresses the growth and epithelial-to-mesenchymal transition (EMT) in human colorectal cancer (CRC) cells. METHOD Cells were cultured and treated with different concentrations of calycosin for different periods of time. Protein and mRNA expression was determined by western blotting and quantitative PCR. Cell migration was assessed by Transwell experiments. Co-immunoprecipitation and luciferase assays were used to analyze the association between BATF2 and plasminogen activator inhibitor-1. (PAI-1). Cell apoptosis was determined by flow cytometry; β-catenin cellular localization was visualized by immunofluorescent staining. RESULTS Calycosin up-regulated the expression of BATF2 via the signal transducer and activator of transcription 3 (STAT3) pathway, which was antagonized by transforming growth factor beta (TGF-β), calycosin promoted the cell apoptosis and growth inhibition via phosphoinositide 3-kinase (PI3K)/Akt pathway. TGF-β promoted cell growth, which was inhibited by calycosin regulating the expression of proliferating cell nuclear antigen (PCNA) via the phosphoinositide 3-kinase pathway. TGF-β suppressed expression of BAX via the phosphoinositide 3-kinase pathway but induced cell apoptosis .calycosin enhanced the effect of TGF-β on cell apoptosis,In addition, calycosin suppressed TGF-β-induced cell migration by increasing BATF2 to target PAI-1. TGF-β-induced EMT was inhibited by calycosin in human CRC LoVo and HCT116 cell lines via the Wnt signaling pathway. CONCLUSIONS The induction of BATF2 by calycosin may be a feasible therapeutic option for CRC. .
Collapse
Affiliation(s)
- Qun Wang
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Wuhan, Hubei, 430079, People's Republic of China. .,Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, People's Republic of China. .,Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, Hubei, 430079, People's Republic of China. .,Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, Hubei, 430079, People's Republic of China.
| | - Weijun Lu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Wuhan, Hubei, 430079, People's Republic of China.,Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, People's Republic of China
| | - Tao Yin
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Wuhan, Hubei, 430079, People's Republic of China.,Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, People's Republic of China
| | - Li Lu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, People's Republic of China. .,Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, Hubei, 430079, People's Republic of China. .,Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, Hubei, 430079, People's Republic of China. .,Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Wuhan, Hubei, 430079, People's Republic of China.
| |
Collapse
|
155
|
Sekimata M, Yoshida D, Araki A, Asao H, Iseki K, Murakami-Sekimata A. Runx1 and RORγt Cooperate to Upregulate IL-22 Expression in Th Cells through Its Distal Enhancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3198-3210. [PMID: 31028121 DOI: 10.4049/jimmunol.1800672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
IL-22 is a cytokine that plays a pivotal role in regulating tissue homeostasis at barrier surfaces and is produced by activated CD4+ Th cells. Currently, the molecular mechanisms regulating Il22 gene expression are still unclear. In this study, we have identified a crucial cis-regulatory element located 32 kb upstream of the mouse Il22 promoter, termed conserved noncoding sequence (CNS)-32. We demonstrated that CNS-32 acts as an enhancer in reporter assays and contains binding motifs for Runt-related transcription factor (Runx)1 and retinoic acid-related orphan receptor γt (RORγt). Mutation of these motifs significantly abrogated the reporter activity, suggesting a role for both factors in the control of enhancer-mediated Il22 expression. Runx1 and RORγt occupancy and elevated histone H4 acetylation at CNS-32 were evident, as naive T cells differentiated into IL-22-producing Th22 cells. Overexpression of Runx1 promoted IL-22 production by inducing RORγt and IL-23 receptor, all critical to Th22 cell induction. Although Runx1 alone enhanced IL-22 production in Th22 cells, it was further enhanced in the presence of RORγt. Conversely, short hairpin RNA-mediated knockdown of core-binding factor β, a cofactor essential for Runx1 activity, was effective in limiting IL-22 production. Collectively, our results suggest that IL-22 production is controlled by a regulatory circuit in which Runx1 induces RORγt and then partners with RORγt to direct Il22 expression through their targeting of the Il22 enhancer.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Animals
- Cell Differentiation
- Cells, Cultured
- Conserved Sequence/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Enhancer Elements, Genetic/genetics
- Interleukins/genetics
- Interleukins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutation/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Protein Binding
- RNA, Small Interfering/genetics
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- Up-Regulation
- Interleukin-22
Collapse
Affiliation(s)
- Masayuki Sekimata
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan;
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Daiki Yoshida
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
156
|
Ibrutinib induces chromatin reorganisation of chronic lymphocytic leukaemia cells. Oncogenesis 2019; 8:32. [PMID: 31076570 PMCID: PMC6510766 DOI: 10.1038/s41389-019-0142-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common leukaemia in Western countries. It has recently been shown that the homogeneity of the chromatin landscape between CLL cells contrasts with the important observed genetic heterogeneity of the disease. To gain further insight into the consequences of disease evolution on the epigenome's plasticity, we monitored changes in chromatin structure occurring in vivo in CLL cells from patients receiving continuous Ibrutinib treatment. Ibrutinib, an oral inhibitor of the Bruton's tyrosine kinase (BTK) has proved to be remarkably efficient against treatment naïve (TN), heavily pre-treated and high-risk chronic lymphocytic leukaemia (CLL), with limited adverse events. We established that the chromatin landscape is significantly and globally affected in response to Ibrutinib. However, we observed that prior to treatment, CLL cells show qualitative and quantitative variations in chromatin structure correlated with both EZH2 protein level and cellular response to external stimuli. Then, under prolonged exposure to Ibrutinib, a loss of the two marks associated with lysine 27 (acetylation and trimethylation) was observed. Altogether, these data indicate that the epigenome of CLL cells from the peripheral blood change dynamically in response to stimuli and suggest that these cells might adapt to the Ibrutinib "hit" in a process leading toward a possible reduced sensitivity to treatment.
Collapse
|
157
|
Tsuda M, Hamade H, Thomas LS, Salumbides BC, Potdar AA, Wong MH, Nunnelee JS, Stamps JT, Neutzsky-Wulff AV, Barrett RJ, Wang Y, Tang J, Funari VA, Targan SR, Michelsen KS. A role for BATF3 in T H9 differentiation and T-cell-driven mucosal pathologies. Mucosal Immunol 2019; 12:644-655. [PMID: 30617301 PMCID: PMC6462229 DOI: 10.1038/s41385-018-0122-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023]
Abstract
T helper 9 (TH9) cells are important for the development of inflammatory and allergic diseases. The TH9 transcriptional network converges signals from cytokines and antigen presentation but is incompletely understood. Here, we identified TL1A, a member of the TNF superfamily, as a strong inducer of mouse and human TH9 differentiation. Mechanistically, TL1A induced the expression of the transcription factors BATF and BATF3 and facilitated their binding to the Il9 promoter leading to enhanced secretion of IL-9. BATF- and BATF3-deficiencies impaired IL-9 secretion under TH9 and TH9-TL1A-polarizing conditions. In vivo, using a T-cell transfer model, we demonstrated that TL1A promoted IL-9-dependent, TH9 cell-induced intestinal and lung inflammation. Neutralizing IL-9 antibodies attenuated TL1A-driven mucosal inflammation. Batf3-/- TH9-TL1A cells induced reduced inflammation and cytokine expression in vivo compared to WT cells. Our results demonstrate that TL1A promotes TH9 cell differentiation and function and define a role for BATF3 in T-cell-driven mucosal inflammation.
Collapse
Affiliation(s)
- Masato Tsuda
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA,Current address: Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino Fujisawa-shi Kanagawa, 252-0880 Japan
| | - Hussein Hamade
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Lisa S. Thomas
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Brenda C. Salumbides
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Alka A. Potdar
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Michelle H. Wong
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Jordan S. Nunnelee
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Jasmine T. Stamps
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Anita Vibsig Neutzsky-Wulff
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Robert J. Barrett
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA,Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vincent A. Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Kathrin S. Michelsen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA,To whom correspondence should be addressed: Kathrin S. Michelsen, Ph.D. F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Davis Research Building, RM 4066, 110 George Burns Road, Los Angeles, CA 90048, USA, Phone: (310) 423-0539 FAX: (310) 423-0224,
| |
Collapse
|
158
|
Lio CWJ, Shukla V, Samaniego-Castruita D, González-Avalos E, Chakraborty A, Yue X, Schatz DG, Ay F, Rao A. TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer. Sci Immunol 2019; 4:eaau7523. [PMID: 31028100 PMCID: PMC6599614 DOI: 10.1126/sciimmunol.aau7523] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
TET enzymes are dioxygenases that promote DNA demethylation by oxidizing the methyl group of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Here, we report a close correspondence between 5hmC-marked regions, chromatin accessibility and enhancer activity in B cells, and a strong enrichment for consensus binding motifs for basic region-leucine zipper (bZIP) transcription factors at TET-responsive genomic regions. Functionally, Tet2 and Tet3 regulate class switch recombination (CSR) in murine B cells by enhancing expression of Aicda, which encodes the activation-induced cytidine deaminase (AID) enzyme essential for CSR. TET enzymes deposit 5hmC, facilitate DNA demethylation, and maintain chromatin accessibility at two TET-responsive enhancer elements, TetE1 and TetE2, located within a superenhancer in the Aicda locus. Our data identify the bZIP transcription factor, ATF-like (BATF) as a key transcription factor involved in TET-dependent Aicda expression. 5hmC is not deposited at TetE1 in activated Batf-deficient B cells, indicating that BATF facilitates TET recruitment to this Aicda enhancer. Our study emphasizes the importance of TET enzymes for bolstering AID expression and highlights 5hmC as an epigenetic mark that captures enhancer dynamics during cell activation.
Collapse
Affiliation(s)
- Chan-Wang J Lio
- Division of Signaling and Gene Expression, La Jolla Institute, San Diego, CA, USA.
| | - Vipul Shukla
- Division of Signaling and Gene Expression, La Jolla Institute, San Diego, CA, USA
| | | | | | | | - Xiaojing Yue
- Division of Signaling and Gene Expression, La Jolla Institute, San Diego, CA, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ferhat Ay
- Division of Vaccine Discovery, La Jolla Institute, San Diego, CA, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute, San Diego, CA, USA.
- Sanford Consortium for Regenerative Medicine, San Diego, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
159
|
Zhu D, Huang R, Fu P, Chen L, Luo L, Chu P, He L, Li Y, Liao L, Zhu Z, Wang Y. Investigating the Role of BATF3 in Grass Carp ( Ctenopharyngodon idella) Immune Modulation: A Fundamental Functional Analysis. Int J Mol Sci 2019; 20:ijms20071687. [PMID: 30987332 PMCID: PMC6479329 DOI: 10.3390/ijms20071687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Basic leucine zipper transcription factor ATF-like (BATF)-3, belonging to activator protein 1 (AP-1) superfamily transcription factors, is essential for homeostatic development of CD8α+ classical dendritic cells activating CD8 T-cell responses to intracellular pathogens. In this study, the characteristics and cDNA cloning of the CiBATF3 molecule were described in grass carp (Ctenopharyngodon idella). CiBATF3 had abundant expression in immune-related organizations, including liver, spleen and gill, and grass carp reovirus (GCRV) infection had significantly changed its expression level. After Ctenopharyngodon idella kidney (CIK) cells were challenged with pathogen-associated molecular patterns (PAMPs), polyinosinic:polycytidylic acid (poly(I:C)) stimulation induced higher mRNA levels of CiBATF3 than that of lipopolysaccharide (LPS). Subcellular localization showed that CiBATF3-GFP was entirely distributed throughout cells and nuclear translocation of CiBATF3 was found after poly(I:C) treatment. Additionally, the interaction between CiBATF3 and interleukin 10 (IL-10) was proven by bimolecular fluorescence complementation (BiFC) system. The small interfering RNA (siRNA)-mediated CiBATF3 silencing showed that the mRNA of CiBATF3 and its downstream genes were down-regulated in vitro and in vivo. CiBATF3 played a negative regulatory role in the transcriptional activities of AP-1 and NF-κB reporter gene. In summary, the results may provide valuable information on fundamental functional mechanisms of CiBATF3.
Collapse
Affiliation(s)
- Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Peipei Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lifei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pengfei Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
160
|
Zinc finger-IRF composite elements bound by Ikaros/IRF4 complexes function as gene repression in plasma cell. Blood Adv 2019; 2:883-894. [PMID: 29669755 DOI: 10.1182/bloodadvances.2017010413] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
The transcription factor (TF) interferon regulatory factor-4 (IRF4) promotes both germinal center (GC) reactions and plasma cell (PC) differentiation by binding to alternative DNA motifs including AP-1-IRF composite elements, Ets-IRF composite elements (EICEs), and interferon sequence response elements (ISREs). Although all of these motifs mediate transcriptional activation by IRF4, it is still unknown how some of the IRF4 target genes are downregulated upon PC differentiation. Here, we revealed a molecular mechanism of IRF4-mediated gene downregulation during PC differentiation. By combining IRF4 chromatin immunoprecipitation sequence and gene expression analysis, we identified zinc finger-IRF composite elements (ZICEs) in IRF4 binding regions aligned with genes whose expression was downregulated in PCs. The zinc finger TFs Ikaros and Aiolos were identified as IRF4 binding partners in PCs, and Ikaros but not Aiolos was essential for IRF4 binding to the ZICE sequence and for PC differentiation. The Ebf1 gene, which positively controls B-cell activation and GC reactions, was identified as one of the Ikaros/IRF4 target genes. Importantly, while the ZICE embeds the ISRE motif, IRF4 bound the ZICE motif as heterodimers with Ikaros for repression of target genes, which include Ebf1 In contrast, if the zinc finger motif is juxtaposed to the EICE motif, the Ikaros/PU.1/IRF4 complex functioned to activate target gene expression. Our findings revealed a novel mode of IRF4 activity upon PC differentiation where upon forming an Ikaros/IRF4 DNA-bound complex, a subset of genes is repressed.
Collapse
|
161
|
Abstract
Interleukin (IL)-10 is an essential anti-inflammatory cytokine that plays important roles as a negative regulator of immune responses to microbial antigens. Loss of IL-10 results in the spontaneous development of inflammatory bowel disease as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions to prevent excessive inflammation during the course of infection. IL-10 can be produced in response to pro-inflammatory signals by virtually all immune cells, including T cells, B cells, macrophages, and dendritic cells. Given its function in maintaining the delicate balance between effective immunity and tissue protection, it is evident that IL-10 expression is highly dynamic and needs to be tightly regulated. The transcriptional regulation of IL-10 production in myeloid cells and T cells is the topic of this review. Drivers of IL-10 expression as well as their downstream signaling pathways and transcription factors will be discussed. We will examine in more detail how various signals in CD4+ T cells converge on common transcriptional circuits, which fine-tune IL-10 expression in a context-dependent manner.
Collapse
|
162
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
163
|
Fonseca GJ, Tao J, Westin EM, Duttke SH, Spann NJ, Strid T, Shen Z, Stender JD, Sakai M, Link VM, Benner C, Glass CK. Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages. Nat Commun 2019; 10:414. [PMID: 30679424 PMCID: PMC6345992 DOI: 10.1038/s41467-018-08236-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/13/2018] [Indexed: 02/08/2023] Open
Abstract
Mechanisms by which members of the AP-1 family of transcription factors play non-redundant biological roles despite recognizing the same DNA sequence remain poorly understood. To address this question, here we investigate the molecular functions and genome-wide DNA binding patterns of AP-1 family members in primary and immortalized mouse macrophages. ChIP-sequencing shows overlapping and distinct binding profiles for each factor that were remodeled following TLR4 ligation. Development of a machine learning approach that jointly weighs hundreds of DNA recognition elements yields dozens of motifs predicted to drive factor-specific binding profiles. Machine learning-based predictions are confirmed by analysis of the effects of mutations in genetically diverse mice and by loss of function experiments. These findings provide evidence that non-redundant genomic locations of different AP-1 family members in macrophages largely result from collaborative interactions with diverse, locus-specific ensembles of transcription factors and suggest a general mechanism for encoding functional specificities of their common recognition motif.
Collapse
Affiliation(s)
- Gregory J Fonseca
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Emma M Westin
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Sascha H Duttke
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Tobias Strid
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Zeyang Shen
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92037, USA
| | - Joshua D Stender
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Verena M Link
- Faculty of Biology, Division of Evolutionary Biology, Ludwig-Maximilian University of Munich, Munich, 80539, Germany
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
164
|
Theisen DJ, Ferris ST, Briseño CG, Kretzer N, Iwata A, Murphy KM, Murphy TL. Batf3-Dependent Genes Control Tumor Rejection Induced by Dendritic Cells Independently of Cross-Presentation. Cancer Immunol Res 2019; 7:29-39. [PMID: 30482745 DOI: 10.1158/2326-6066.cir-18-0138] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/12/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
The BATF3-dependent cDC1 lineage of conventional dendritic cells (cDC) is required for rejection of immunogenic sarcomas and for rejection of progressive sarcomas during checkpoint blockade therapy. One unique function of the cDC1 lineage is the efficient cross-presentation of tumor-derived neoantigens to CD8+ T cells, but it is not clear that this is the only unique function of cDC1 required for tumor rejection. We previously showed that BATF3 functions during cDC1 lineage commitment to maintain IRF8 expression in the specified cDC1 progenitor. However, since cDC1 progenitors do not develop into mature cDC1s in Batf3 -/- mice, it is still unclear whether BATF3 has additional functions in mature cDC1 cells. A transgenic Irf8-Venus reporter allele increases IRF8 protein concentration sufficiently to allow autonomous cDC1 development in spleens of Batf3 -/- mice. These restored Batf3 -/- cDC1s are transcriptionally similar to control wild-type cDC1s but have reduced expression of a restricted set of cDC1-specific genes. Restored Batf3 -/- cDC1s are able to cross-present cell-associated antigens both in vitro and in vivo However, Batf3 -/- cDC1 exhibit altered characteristics in vivo and are unable to mediate tumor rejection. These results show that BATF3, in addition to regulating Irf8 expression to stabilize cDC1 lineage commitment, also controls expression of a small set of genes required for cDC1-mediated tumor rejection. These BATF3-regulated genes may be useful targets in immunotherapies aimed at promoting tumor rejection.
Collapse
Affiliation(s)
- Derek J Theisen
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Stephen T Ferris
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Nicole Kretzer
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
- Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| |
Collapse
|
165
|
Guler R, Mpotje T, Ozturk M, Nono JK, Parihar SP, Chia JE, Abdel Aziz N, Hlaka L, Kumar S, Roy S, Penn-Nicholson A, Hanekom WA, Zak DE, Scriba TJ, Suzuki H, Brombacher F. Batf2 differentially regulates tissue immunopathology in Type 1 and Type 2 diseases. Mucosal Immunol 2019; 12:390-402. [PMID: 30542107 PMCID: PMC7051910 DOI: 10.1038/s41385-018-0108-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 02/04/2023]
Abstract
Basic leucine zipper transcription factor 2 (Batf2) activation is detrimental in Type 1-controlled infectious diseases, demonstrated during infection with Mycobacterium tuberculosis (Mtb) and Listeria monocytogenes Lm. In Batf2-deficient mice (Batf2-/-), infected with Mtb or Lm, mice survived and displayed reduced tissue pathology compared to infected control mice. Indeed, pulmonary inflammatory macrophage recruitment, pro-inflammatory cytokines and immune effectors were also decreased during tuberculosis. This explains that batf2 mRNA predictive early biomarker found in active TB patients is increased in peripheral blood. Similarly, Lm infection in human macrophages and mouse spleen and liver also increased Batf2 expression. In striking contrast, Type 2-controlled schistosomiasis exacerbates during infected Batf2-/- mice with increased intestinal fibro-granulomatous inflammation, pro-fibrotic immune cells, and elevated cytokine production leading to wasting disease and early death. Together, these data strongly indicate that Batf2 differentially regulates Type 1 and Type 2 immunity in infectious diseases.
Collapse
Affiliation(s)
- Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aWellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Thabo Mpotje
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Justin K. Nono
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 0595 6917grid.500526.4The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aWellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDivision of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Julius Ebua Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Nada Abdel Aziz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 0639 9286grid.7776.1Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Lerato Hlaka
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Santosh Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Adam Penn-Nicholson
- 0000 0004 1937 1151grid.7836.aSouth African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Willem A. Hanekom
- 0000 0004 1937 1151grid.7836.aSouth African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Daniel E. Zak
- 0000 0004 0463 2611grid.53964.3dThe Center for Infectious Disease Research, Seattle, WA 98109 USA
| | - Thomas J. Scriba
- 0000 0004 1937 1151grid.7836.aSouth African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aWellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| |
Collapse
|
166
|
Koizumi SI, Sasaki D, Hsieh TH, Taira N, Arakaki N, Yamasaki S, Wang K, Sarkar S, Shirahata H, Miyagi M, Ishikawa H. JunB regulates homeostasis and suppressive functions of effector regulatory T cells. Nat Commun 2018; 9:5344. [PMID: 30559442 PMCID: PMC6297218 DOI: 10.1038/s41467-018-07735-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/22/2018] [Indexed: 01/12/2023] Open
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells need to differentiate into effector Treg (eTreg) cells to maintain immune homeostasis. T-cell receptor (TCR)-dependent induction of the transcription factor IRF4 is essential for eTreg differentiation, but how IRF4 activity is regulated in Treg cells is still unclear. Here we show that the AP-1 transcription factor, JunB, is expressed in eTreg cells and promotes an IRF4-dependent transcription program. Mice lacking JunB in Treg cells develop multi-organ autoimmunity, concomitant with aberrant activation of T helper cells. JunB promotes expression of Treg effector molecules, such as ICOS and CTLA4, in BATF-dependent and BATF-independent manners, and is also required for homeostasis and suppressive functions of eTreg. Mechanistically, JunB facilitates the accumulation of IRF4 at a subset of IRF4 target sites, including those located near Icos and Ctla4. Thus, JunB is a critical regulator of IRF4-dependent Treg effector programs, highlighting important functions for AP-1 in Treg-mediated immune homeostasis.
Collapse
Affiliation(s)
- Shin-Ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Daiki Sasaki
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Tsung-Han Hsieh
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Naoyuki Taira
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shinichi Yamasaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Ke Wang
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shukla Sarkar
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Hiroki Shirahata
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Mio Miyagi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
167
|
Rosa FF, Pires CF, Kurochkin I, Ferreira AG, Gomes AM, Palma LG, Shaiv K, Solanas L, Azenha C, Papatsenko D, Schulz O, e Sousa CR, Pereira CF. Direct reprogramming of fibroblasts into antigen-presenting dendritic cells. Sci Immunol 2018; 3:3/30/eaau4292. [DOI: 10.1126/sciimmunol.aau4292] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022]
Abstract
Ectopic expression of transcription factors has been used to reprogram differentiated somatic cells toward pluripotency or to directly reprogram them to other somatic cell lineages. This concept has been explored in the context of regenerative medicine. Here, we set out to generate dendritic cells (DCs) capable of presenting antigens from mouse and human fibroblasts. By screening combinations of 18 transcription factors that are expressed in DCs, we have identified PU.1, IRF8, and BATF3 transcription factors as being sufficient to reprogram both mouse and human fibroblasts to induced DCs (iDCs). iDCs acquire a conventional DC type 1–like transcriptional program, with features of interferon-induced maturation. iDCs secrete inflammatory cytokines and have the ability to engulf, process, and present antigens to T cells. Furthermore, we demonstrate that murine iDCs generated here were able to cross-present antigens to CD8+ T cells. Our reprogramming system should facilitate better understanding of DC specification programs and serve as a platform for the development of patient-specific DCs for immunotherapy.
Collapse
|
168
|
Yu CR, Choi JK, Uche AN, Egwuagu CE. Production of IL-35 by Bregs is mediated through binding of BATF-IRF-4-IRF-8 complex to il12a and ebi3 promoter elements. J Leukoc Biol 2018; 104:1147-1157. [PMID: 30117603 PMCID: PMC11290588 DOI: 10.1002/jlb.3a0218-071rrr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022] Open
Abstract
IL-10 and IL-35 suppress excessive immune responses and therapeutic strategies are being developed to increase their levels in autoimmune diseases. In this study, we sought to identify major cell types that produce both cytokines in-vivo and to characterize mechanisms that regulate their production. Experimental autoimmune uveitis (EAU) is a CNS autoimmune disease that serves as model of human uveitis. We induced EAU in C57BL/6J mice and investigated whether T cells, B lymphocytes, or myeloid cells are the major producers of IL-10 or IL-35 in blood, lymph nodes (LNs), spleen, and at the site of ocular inflammation, the neuroretina. Analysis of these tissues identified B cells as the major producers of IL-10 and IL-35 in-vivo. Compared to regulatory T cells (Tregs), IL-10- or IL-35-producing regulatory B cells (Bregs) are substantially expanded in blood, LNs, spleen, and retina of mice with EAU. We performed EMSA and chromatin immunoprecipitation (ChIP) assays on activated B cells stimulated with IL-35 or TLR agonists. We found that BATF, IFN regulatory factor (IRF)-4, and IRF-8 transcription factors were recruited and bound to AP1-IRF-composite elements (AICEs) of il12a, ebi3, and/or il10 loci, suggesting their involvement in regulating IL-10 and IL-35 transcriptional programs of B cells. Showing that B cells are major source of IL-10 and IL-35 in-vivo and identifying transcription factors that contribute to IL-10 and IL-35 expression in the activated B-cell, suggest that the BATF/IRF-4/IRF-8 axis can be exploited therapeutically to regulate physiological levels of IL-10/IL-35-Bregs and that adoptive transfer of autologous Bregs might be an effective therapy for autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita N Uche
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
169
|
Sabzevary-Ghahfarokhi M, Shirzad H, Rafieian-Kopaei M, Ghatreh-Samani M, Shohan M. The Role of Inflammatory Cytokines in Creating T Cell Exhaustion in Cancer. Cancer Biother Radiopharm 2018; 33:267-273. [DOI: 10.1089/cbr.2018.2449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Milad Sabzevary-Ghahfarokhi
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatreh-Samani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mojtaba Shohan
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
170
|
Schleussner N, Merkel O, Costanza M, Liang HC, Hummel F, Romagnani C, Durek P, Anagnostopoulos I, Hummel M, Jöhrens K, Niedobitek A, Griffin PR, Piva R, Sczakiel HL, Woessmann W, Damm-Welk C, Hinze C, Stoiber D, Gillissen B, Turner SD, Kaergel E, von Hoff L, Grau M, Lenz G, Dörken B, Scheidereit C, Kenner L, Janz M, Mathas S. The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia 2018; 32:1994-2007. [PMID: 29588546 PMCID: PMC6127090 DOI: 10.1038/s41375-018-0045-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 01/26/2023]
Abstract
Transcription factor AP-1 is constitutively activated and IRF4 drives growth and survival in ALK+ and ALK- anaplastic large cell lymphoma (ALCL). Here we demonstrate high-level BATF and BATF3 expression in ALCL. Both BATFs bind classical AP-1 motifs and interact with in ALCL deregulated AP-1 factors. Together with IRF4, they co-occupy AP-1-IRF composite elements, differentiating ALCL from non-ALCL. Gene-specific inactivation of BATFs, or global AP-1 inhibition results in ALCL growth retardation and/or cell death in vitro and in vivo. Furthermore, the AP-1-BATF module establishes TH17/group 3 innate lymphoid cells (ILC3)-associated gene expression in ALCL cells, including marker genes such as AHR, IL17F, IL22, IL26, IL23R and RORγt. Elevated IL-17A and IL-17F levels were detected in a subset of children and adolescents with ALK+ ALCL. Furthermore, a comprehensive analysis of primary lymphoma data confirms TH17-, and in particular ILC3-skewing in ALCL compared with PTCL. Finally, pharmacological inhibition of RORC as single treatment leads to cell death in ALCL cell lines and, in combination with the ALK inhibitor crizotinib, enforces death induction in ALK+ ALCL. Our data highlight the crucial role of AP-1/BATFs in ALCL and lead to the concept that some ALCL might originate from ILC3.
Collapse
Affiliation(s)
- Nikolai Schleussner
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Olaf Merkel
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
| | - Mariantonia Costanza
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
| | - Huan-Chang Liang
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
| | - Franziska Hummel
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Chiara Romagnani
- German Rheumatism Research Centre, German Rheumatism Research Centre (DRFZ), A Leibniz Institute, 10117, Berlin, Germany
- Medical Department I, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Pawel Durek
- German Rheumatism Research Centre, German Rheumatism Research Centre (DRFZ), A Leibniz Institute, 10117, Berlin, Germany
| | | | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Korinna Jöhrens
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Antonia Niedobitek
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | | | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | - Henrike L Sczakiel
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Wilhelm Woessmann
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
- NHL-BFM Study Centre and Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Christine Damm-Welk
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
- NHL-BFM Study Centre and Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Christian Hinze
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Department of Nephrology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Dagmar Stoiber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Bernd Gillissen
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Suzanne D Turner
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, CB21QP, UK
| | - Eva Kaergel
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Linda von Hoff
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Michael Grau
- Department of Medicine A, Albert-Schweitzer-Campus 1, University Hospital Münster, 48149, Münster, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, 48149, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Albert-Schweitzer-Campus 1, University Hospital Münster, 48149, Münster, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, 48149, Münster, Germany
| | - Bernd Dörken
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Lukas Kenner
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria.
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK.
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria.
- University of Veterinary Medicine, Vienna, Austria.
- CBmed, Center for Biomarker Research in Medicine, 8010, Graz, Austria.
| | - Martin Janz
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, 13125, Berlin, Germany
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany.
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany.
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, 13125, Berlin, Germany.
| |
Collapse
|
171
|
Nakagawa M, Shaffer AL, Ceribelli M, Zhang M, Wright G, Huang DW, Xiao W, Powell J, Petrus MN, Yang Y, Phelan JD, Kohlhammer H, Dubois SP, Yoo HM, Bachy E, Webster DE, Yang Y, Xu W, Yu X, Zhao H, Bryant BR, Shimono J, Ishio T, Maeda M, Green PL, Waldmann TA, Staudt LM. Targeting the HTLV-I-Regulated BATF3/IRF4 Transcriptional Network in Adult T Cell Leukemia/Lymphoma. Cancer Cell 2018; 34:286-297.e10. [PMID: 30057145 PMCID: PMC8078141 DOI: 10.1016/j.ccell.2018.06.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
Abstract
Adult T cell leukemia/lymphoma (ATLL) is a frequently incurable disease associated with the human lymphotropic virus type I (HTLV-I). RNAi screening of ATLL lines revealed that their proliferation depends on BATF3 and IRF4, which cooperatively drive ATLL-specific gene expression. HBZ, the only HTLV-I encoded transcription factor that is expressed in all ATLL cases, binds to an ATLL-specific BATF3 super-enhancer and thereby regulates the expression of BATF3 and its downstream targets, including MYC. Inhibitors of bromodomain-and-extra-terminal-domain (BET) chromatin proteins collapsed the transcriptional network directed by HBZ and BATF3, and were consequently toxic for ATLL cell lines, patient samples, and xenografts. Our study demonstrates that the HTLV-I oncogenic retrovirus exploits a regulatory module that can be attacked therapeutically with BET inhibitors.
Collapse
Affiliation(s)
- Masao Nakagawa
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Pre-Clinical Innovation, NCATS, NIH, Bethesda, MD 20892, USA
| | - Meili Zhang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - George Wright
- Biometric Research Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Wenming Xiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Bioinformatics and Biostatistics, NCTR/FDA, Jefferson, AR 72079, USA
| | - John Powell
- Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael N Petrus
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yibin Yang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Holger Kohlhammer
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sigrid P Dubois
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hee Min Yoo
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Emmanuel Bachy
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daniel E Webster
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bonita R Bryant
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Joji Shimono
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Takashi Ishio
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Michiyuki Maeda
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
172
|
Park SH, Rhee J, Kim SK, Kang JA, Kwak JS, Son YO, Choi WS, Park SG, Chun JS. BATF regulates collagen-induced arthritis by regulating T helper cell differentiation. Arthritis Res Ther 2018; 20:161. [PMID: 30071881 PMCID: PMC6090970 DOI: 10.1186/s13075-018-1658-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022] Open
Abstract
Background We recently demonstrated that BATF, a member of the activator protein-1 (AP-1) family, regulates osteoarthritic cartilage destruction. Here, we explored the roles and regulatory mechanisms of BATF in collagen-induced arthritis (CIA) in mice. Methods CIA and K/BxN serum transfer were used to generate inflammatory arthritis models in wild-type (WT) and Batf−/− mice. RA manifestations were determined by examining CIA incidence, clinical score, synovitis, synovial hyperplasia, angiogenesis in inflamed synovium, pannus formation, bone erosion, and cartilage destruction. Immune features in RA were analyzed by examining immune cell populations and cytokine production. Results BATF was upregulated in the synovial tissues of joints in which inflammatory arthritis had been caused by CIA or K/BxN serum transfer. The increases in CIA incidence, clinical score, and autoantibody production in CIA-induced WT mice were completely abrogated in the corresponding Batf−/− DBA/1 J mice. Genetic ablation of Batf also inhibited CIA-induced synovitis, synovial hyperplasia, angiogenesis in synovial tissues, pannus formation, bone erosion, and cartilage destruction. Batf knockout inhibited the differentiation of T helper (Th)17 cells and the conversion of CD4+Foxp3+ cells to CD4+IL-17+ cells. However, BATF did not modulate the functions of fibroblast-like synoviocytes (FLS), including the expressions of chemokines, matrix-degrading enzymes, vascular endothelial growth factor, and receptor activator of NF-κB ligand (RANKL). Conclusion Our findings indicate that BATF crucially mediates CIA by regulating Th cell differentiation without directly affecting the functions of FLS.
Collapse
Affiliation(s)
- Sang-Heon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jinseol Rhee
- Keimyung University Dongsan Medical Center, Daegu, 41931, Republic of Korea
| | - Seul-Ki Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jung-Ah Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ji-Sun Kwak
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young-Ok Son
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Wan-Su Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jang-Soo Chun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
173
|
Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nat Genet 2018; 50:1140-1150. [PMID: 29988122 PMCID: PMC6097927 DOI: 10.1038/s41588-018-0156-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression.
Collapse
|
174
|
Morman RE, Schweickert PG, Konieczny SF, Taparowsky EJ. BATF regulates the expression of Nfil3, Wnt10a and miR155hg for efficient induction of antibody class switch recombination in mice. Eur J Immunol 2018; 48:1492-1505. [PMID: 29898247 DOI: 10.1002/eji.201747360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 05/14/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022]
Abstract
BATF functions in T cells and B cells to control the host response to antigen and promote the production of class switched immunoglobulins. In this study, we demonstrate that BATF expression increases rapidly, and transiently, following B cell stimulation and use an inducible murine model of BATF deletion to show that this induction is necessary, and sufficient, for immunoglobulin (Ig) class switch recombination (CSR). We examine two genes (Nfil3 and miR155gh) that are positively regulated, and one gene (Wnt10a) that is negatively regulated by BATF during CSR. These genes play essential roles in CSR and each impacts the expression and/or function of the others. Our observations allow these targets of BATF regulation to be positioned in a network upstream of the activation of germline transcripts (GLT) from the IgH locus and of transcriptional activation of Aicda - the gene encoding the enzyme directing Ig gene rearrangements. This work extends the knowledge of the molecular control of CSR and, importantly, positions the induction and function of BATF as an early event in this process.
Collapse
Affiliation(s)
- Rosemary E Morman
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Patrick G Schweickert
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Stephen F Konieczny
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Elizabeth J Taparowsky
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
175
|
Zappasodi R, Budhu S, Hellmann MD, Postow MA, Senbabaoglu Y, Manne S, Gasmi B, Liu C, Zhong H, Li Y, Huang AC, Hirschhorn-Cymerman D, Panageas KS, Wherry EJ, Merghoub T, Wolchok JD. Non-conventional Inhibitory CD4 +Foxp3 -PD-1 hi T Cells as a Biomarker of Immune Checkpoint Blockade Activity. Cancer Cell 2018; 33:1017-1032.e7. [PMID: 29894689 PMCID: PMC6648657 DOI: 10.1016/j.ccell.2018.05.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/22/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
A significant proportion of cancer patients do not respond to immune checkpoint blockade. To better understand the molecular mechanisms underlying these treatments, we explored the role of CD4+Foxp3- T cells expressing PD-1 (4PD1hi) and observed that 4PD1hi accumulate intratumorally as a function of tumor burden. Interestingly, CTLA-4 blockade promotes intratumoral and peripheral 4PD1hi increases in a dose-dependent manner, while combination with PD-1 blockade mitigates this effect and improves anti-tumor activity. We found that lack of effective 4PD1hi reduction after anti-PD-1 correlates with poor prognosis. Mechanistically, we provide evidence that mouse and human circulating and intra-tumor 4PD1hi inhibit T cell functions in a PD-1/PD-L1 dependent fashion and resemble follicular helper T cell (TFH)-like cells. Accordingly, anti-CTLA-4 activity is improved in TFH deficient mice.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sadna Budhu
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew D Hellmann
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA
| | - Yasin Senbabaoglu
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sasikanth Manne
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Billel Gasmi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cailian Liu
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hong Zhong
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyun Li
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander C Huang
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Hirschhorn-Cymerman
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katherine S Panageas
- Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - E John Wherry
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
176
|
Bigley V, Maisuria S, Cytlak U, Jardine L, Care MA, Green K, Gunawan M, Milne P, Dickinson R, Wiscombe S, Parry D, Doffinger R, Laurence A, Fonseca C, Stoevesandt O, Gennery A, Cant A, Tooze R, Simpson AJ, Hambleton S, Savic S, Doody G, Collin M. Biallelic interferon regulatory factor 8 mutation: A complex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. J Allergy Clin Immunol 2018; 141:2234-2248. [PMID: 29128673 PMCID: PMC5986711 DOI: 10.1016/j.jaci.2017.08.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/08/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND The homozygous K108E mutation of interferon regulatory factor 8 (IRF8) is reported to cause dendritic cell (DC) and monocyte deficiency. However, more widespread immune dysfunction is predicted from the multiple roles ascribed to IRF8 in immune cell development and function. OBJECTIVE We sought to describe the effect on hematopoiesis and immunity of the compound heterozygous R83C/R291Q mutation of IRF8, which is present in a patient with recurrent viral infection, granuloproliferation, and intracerebral calcification. METHODS Variant IRF8 alleles were identified by means of exome sequencing, and their function was tested by using reporter assays. The cellular phenotype was studied in detail by using flow cytometry, functional immunologic assay transcriptional profiling, and antigen receptor profiling. RESULTS Both mutations affected conserved residues, and R291Q is orthologous to R294, which is mutated in the BXH2 IRF8-deficient mouse. R83C showed reduced nuclear translocation, and neither mutant was able to regulate the Ets/IRF composite element or interferon-stimulated response element, whereas R291Q retained BATF/JUN interactions. DC deficiency and monocytopenia were observed in blood, dermis, and lung lavage fluid. Granulocytes were consistently increased, dysplastic, and hypofunctional. Natural killer cell development and maturation were arrested. TH1, TH17, and CD8+ memory T-cell differentiation was significantly reduced, and T cells did not express CXCR3. B-cell development was impaired, with fewer memory cells, reduced class-switching, and lower frequency and complexity of somatic hypermutation. Cell-specific gene expression was widely disturbed in interferon- and IRF8-regulated transcripts. CONCLUSIONS This analysis defines the clinical features of human biallelic IRF8 deficiency, revealing a complex immunodeficiency syndrome caused by DC and monocyte deficiency combined with widespread immune dysregulation.
Collapse
Affiliation(s)
- Venetia Bigley
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Sheetal Maisuria
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Urszula Cytlak
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Jardine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Matthew A Care
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Kile Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Merry Gunawan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul Milne
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Dickinson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Parry
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Arian Laurence
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Claudia Fonseca
- Cambridge Protein Arrays, Babraham Research Campus, Cambridge, United Kingdom
| | - Oda Stoevesandt
- Cambridge Protein Arrays, Babraham Research Campus, Cambridge, United Kingdom
| | - Andrew Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Andrew Cant
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Reuben Tooze
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sinisa Savic
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit and Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Gina Doody
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
177
|
Stelekati E, Chen Z, Manne S, Kurachi M, Ali MA, Lewy K, Cai Z, Nzingha K, McLane LM, Hope JL, Fike AJ, Katsikis PD, Wherry EJ. Long-Term Persistence of Exhausted CD8 T Cells in Chronic Infection Is Regulated by MicroRNA-155. Cell Rep 2018; 23:2142-2156. [PMID: 29768211 PMCID: PMC5986283 DOI: 10.1016/j.celrep.2018.04.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 02/05/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Persistent viral infections and tumors drive development of exhausted T (TEX) cells. In these settings, TEX cells establish an important host-pathogen or host-tumor stalemate. However, TEX cells erode over time, leading to loss of pathogen or cancer containment. We identified microRNA (miR)-155 as a key regulator of sustained TEX cell responses during chronic lymphocytic choriomeningitis virus (LCMV) infection. Genetic deficiency of miR-155 ablated CD8 T cell responses during chronic infection. Conversely, enhanced miR-155 expression promoted expansion and long-term persistence of TEX cells. However, rather than strictly antagonizing exhaustion, miR-155 promoted a terminal TEX cell subset. Transcriptional profiling identified coordinated control of cell signaling and transcription factor pathways, including the key AP-1 family member Fosl2. Overexpression of Fosl2 reversed the miR-155 effects, identifying a link between miR-155 and the AP-1 transcriptional program in regulating TEX cells. Thus, we identify a mechanism of miR-155 regulation of TEX cells and a key role for Fosl2 in T cell exhaustion.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Mohammed-Alkhatim Ali
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Keith Lewy
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; College of Life Sciences, Peking University, Beijing, China
| | - Kito Nzingha
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Laura M McLane
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Jennifer L Hope
- Department of Microbiology and Immunology, Drexel University College of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Adam J Fike
- Department of Microbiology and Immunology, Drexel University College of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - E John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
178
|
Wang J, Liu M, Wu Y, Yoon S, Alnabulsi A, Liu F, Fernández-Álvarez C, Wang T, Holland JW, Secombes CJ, Zou J. Immune-modulation of two BATF3 paralogues in rainbow trout Oncorhynchus mykiss. Mol Immunol 2018; 99:104-114. [PMID: 29747051 DOI: 10.1016/j.molimm.2018.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Basic leucine zipper transcription factor ATF-like (BATF) -3 is a member of the activator protein 1 (AP‑1) family of transcription factors and is known to play a vital role in regulating differentiation of antigen-presenting cells in mammals. In this study, two BATF3 homologues (termed BATF3a and BATF3b) have been identified in rainbow trout (Oncorhynchus mykiss). Both genes were constitutively expressed in tissues, with particularly high levels of BATF3a in spleen, liver, pyloric caecae and head kidney. BATF3a was also more highly induced by PAMPs and cytokines in cultured cells, with type II IFN a particularly potent inducer. In rIL-4/13 pre-stimulated cells, the viral PAMPS polyI:C and R848 had the most pronounced effect on BATF3 expression. BATF3 expression could also be modulated in vivo, following infection with Yersinia ruckeri, a bacterial pathogen causing redmouth disease in salmonids, or with the rhabdovirus IHNV. The results suggest that BATF3 may be functionally conserved in regulating the differentiation and activation of immune cells in lower vertebrates and could be explored as a potential marker for comparative investigation of leucocyte lineage commitment across the vertebrate phyla.
Collapse
Affiliation(s)
- Jun Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang, 641100, China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agriculture University, 59 Mucai Street, Harbin, Heilongjiang Province, China
| | - Yang Wu
- College of Animal Science and Technology, Northeast Agriculture University, 59 Mucai Street, Harbin, Heilongjiang Province, China
| | - Sohye Yoon
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Abdo Alnabulsi
- Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Clara Fernández-Álvarez
- Departamento de Microbiología y Parasitología, Edificio CIBUS-Facultad de Biología and Instituto de Investigación y Análisis Alimentarios. Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Jun Zou
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; International Research Center for Marine Biosciences, College of Aquaculture and Life Science, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
179
|
Cao L, Liu Y, Wang D, Huang L, Li F, Liu J, Zhang C, Shen Z, Gao Q, Yuan W, Zhang Y. MiR-760 suppresses human colorectal cancer growth by targeting BATF3/AP-1/cyclinD1 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:83. [PMID: 29661228 PMCID: PMC5902951 DOI: 10.1186/s13046-018-0757-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Background Recent studies have reported that microRNAs (miRNAs) often function as negative post-transcriptional regulators with altered expression levels found in colorectal cancer (CRC). There have been few studies on miRNAs that regulate the oncogenic alterations in CRC. Here, we aim to explore the anti-cancer miRNA and the potential mechanisms by which miRNAs modulate CRC progression. Methods We performed an integrated analysis of CRC miRNA expression datasets in The Cancer Genome Atlas (TCGA). The miRNA with the lowest expression, miR-760, was validated in an independent validation sample cohort of 76 CRC tissues. Functional assays, such as CCK-8 assay, colony formation assay, and CFSE staining, were used to determine the oncogenic role of miR-760 in human CRC progression. Furthermore, western blotting and dual-luciferase reporter assay were used to determine the mechanism by which miR-760 promotes proliferation of CRC cells. Xenograft nude mouse models were used to determine the role of miR-760 in CRC tumorigenicity in vivo. Immunohistochemical assays were conducted to study the relationship between miR-760 expression and basic leucine zipper transcriptional factor ATF-like 3 (BATF3) expression in human CRC samples. Results miR-760 was markedly downregulated in CRC tissues, and low miR-760 expression was associated with poor prognosis among CRC patients. Upregulation of miR-760 suppressed CRC cell proliferation, whereas downregulation of miR-760 promoted CRC proliferation in vitro. Additionally, we identified BATF3 as a direct target of miR-760, and that the essential biological function of miR-760 during CRC progression both in vitro and in vivo is to suppress the expression of BATF3 and downstream cyclinD1 via AP-1 transcription factor. Finally, we showed a significant correlation between miR-760 and BATF3 expression in CRC tissues. Conclusions miR-760 inhibited CRC growth by downregulating BATF3/AP-1/ cyclinD1 signaling. Electronic supplementary material The online version of this article (10.1186/s13046-018-0757-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Cao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yulin Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhibo Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qun Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
180
|
The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas. Cancers (Basel) 2018; 10:cancers10040093. [PMID: 29597249 PMCID: PMC5923348 DOI: 10.3390/cancers10040093] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma.
Collapse
|
181
|
Ali N, Zirak B, Truong HA, Maurano MM, Gratz IK, Abbas AK, Rosenblum MD. Skin-Resident T Cells Drive Dermal Dendritic Cell Migration in Response to Tissue Self-Antigen. THE JOURNAL OF IMMUNOLOGY 2018; 200:3100-3108. [PMID: 29563179 DOI: 10.4049/jimmunol.1701206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/22/2018] [Indexed: 01/03/2023]
Abstract
Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103+ dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression. This window of time was characterized by the preferential activation of tissue-resident Ag-specific effector T cells (Teffs), with no concurrent activation of Ag-specific Teffs in SDLNs. Using genetic deletion and adoptive transfer approaches, we show that activation of skin-resident Teffs is required to drive CD103+ DDC migration in response to tissue self-antigen and this Batf3-dependent DC population is necessary to mount a fulminant autoimmune response in skin. Conversely, activation of Ag-specific Teffs in SDLNs played no role in DDC migration. Our studies reveal a crucial role for skin-resident T cell-derived signals, originating at the site of self-antigen expression, to drive DDC migration during the elicitation phase of an autoimmune response.
Collapse
Affiliation(s)
- Niwa Ali
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143.,Cutaneous Medicine Unit, St. John's Institute of Dermatology, King's College London, London SE1 9RT, United Kingdom
| | - Bahar Zirak
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143
| | - Hong-An Truong
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143
| | - Megan M Maurano
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143
| | - Iris K Gratz
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143.,Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria; and
| | - Abul K Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143;
| |
Collapse
|
182
|
Kanemaru H, Yamane F, Tanaka H, Maeda K, Satoh T, Akira S. BATF2 activates DUSP2 gene expression and up-regulates NF-κB activity via phospho-STAT3 dephosphorylation. Int Immunol 2018. [DOI: 10.1093/intimm/dxy023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Hisashi Kanemaru
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
| | - Fumihiro Yamane
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
| | - Hiroki Tanaka
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Kazuhiko Maeda
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
183
|
Abstract
Dendritic cells (DCs) are a heterogeneous population playing a pivotal role in immune responses and tolerance. DCs promote immune tolerance by participating in the negative selection of autoreactive T cells in the thymus. Furthermore, to eliminate autoreactive T cells that have escaped thymic deletion, DCs also induce immune tolerance in the periphery through various mechanisms. Breakdown of these functions leads to autoimmune diseases. Moreover, DCs play a critical role in maintenance of homeostasis in body organs, especially the skin and intestine. In this review, we focus on recent developments in our understanding of the mechanisms of tolerance induction by DCs in the body.
Collapse
Affiliation(s)
- Hitoshi Hasegawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takuya Matsumoto
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
184
|
Regulation of age-associated B cells by IRF5 in systemic autoimmunity. Nat Immunol 2018; 19:407-419. [PMID: 29483597 PMCID: PMC6095139 DOI: 10.1038/s41590-018-0056-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Age-associated B cells (ABCs) are a T-bet–dependent B cell subset,
which accumulates prematurely in autoimmune settings. The pathways regulating
ABCs in autoimmunity are largely unknown. SWAP-70 and
DEF6 (also known as IBP or SLAT) are the only two
members of the SWEF family, a unique family of Rho GTPase-regulatory proteins
that controls both cytoskeletal dynamics and IRF4 activity. Notably,
DEF6 is a newly identified human SLE-risk variant. Here we
show that the lupus syndrome that developed in SWEF-deficient mice is
accompanied by the accumulation of ABCs, which produce autoantibodies upon
stimulation. ABCs from SWEF-deficient mice exhibited a distinctive transcriptome
and a unique chromatin landscape characterized by enrichment in motifs bound by
transcription factors of the IRF family, AP-1/BATF, and T-bet. Enhanced ABC
formation in SWEF-deficient mice was controlled by interleukin 21 (IL-21) and
IRF5, whose variants are strongly associated with lupus. The lack of SWEF
proteins led to dysregulated IRF5 activity in response to IL-21 stimulation.
These studies thus uncover a new genetic pathway controlling ABCs in
autoimmunity.
Collapse
|
185
|
Hoves S, Ooi CH, Wolter C, Sade H, Bissinger S, Schmittnaegel M, Ast O, Giusti AM, Wartha K, Runza V, Xu W, Kienast Y, Cannarile MA, Levitsky H, Romagnoli S, De Palma M, Rüttinger D, Ries CH. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J Exp Med 2018; 215:859-876. [PMID: 29436396 PMCID: PMC5839760 DOI: 10.1084/jem.20171440] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/20/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
Combined CSF-1R+CD40 antibody therapy induces profound and rapid TAM reprogramming before TAMs are eliminated. This combination of cancer immunotherapies tailored to activate the innate immune system creates an inflamed tumor microenvironment ultimately leading to tumor eradication by the adaptive immunity. Depletion of immunosuppressive tumor-associated macrophages (TAMs) or reprogramming toward a proinflammatory activation state represent different strategies to therapeutically target this abundant myeloid population. In this study, we report that inhibition of colony-stimulating factor-1 receptor (CSF-1R) signaling sensitizes TAMs to profound and rapid reprogramming in the presence of a CD40 agonist before their depletion. Despite the short-lived nature of macrophage hyperactivation, combined CSF-1R+CD40 stimulation of macrophages is sufficient to create a proinflammatory tumor milieu that reinvigorates an effective T cell response in transplanted tumors that are either responsive or insensitive to immune checkpoint blockade. The central role of macrophages in regulating preexisting immunity is substantiated by depletion experiments, transcriptome analysis of ex vivo sorted TAMs, and gene expression profiling of whole tumor lysates at an early treatment time point. This approach enabled the identification of specific combination-induced changes among the pleiotropic activation spectrum of the CD40 agonist. In patients, CD40 expression on human TAMs was detected in mesothelioma and colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Sabine Hoves
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Chia-Huey Ooi
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany.,Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Carsten Wolter
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Hadassah Sade
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Bissinger
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Martina Schmittnaegel
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Oliver Ast
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Anna M Giusti
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Katharina Wartha
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Valeria Runza
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Wei Xu
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Yvonne Kienast
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Michael A Cannarile
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Hyam Levitsky
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Solange Romagnoli
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dominik Rüttinger
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Carola H Ries
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
186
|
Soleto I, Fischer U, Tafalla C, Granja AG. Identification of a Potential Common Ancestor for Mammalian Cross-Presenting Dendritic Cells in Teleost Respiratory Surfaces. Front Immunol 2018; 9:59. [PMID: 29422901 PMCID: PMC5788898 DOI: 10.3389/fimmu.2018.00059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized antigen-presenting cells that bridge innate and adaptive immune responses in vertebrates, being key modulators in the initiation of specific responses. Although teleost fish present the main elements of a fully developed adaptive immune system, not many studies have focused on identifying specific DC subsets in teleost species. Previous work from our group identified in rainbow trout (Oncorhynchus mykiss) skin a DC subpopulation co-expressing CD8α and major histocompatibility complex II β on the cell surface. Interestingly, these CD8+ DCs expressed common unique markers of mammalian cross-presenting DCs, a DC subset with an important role in antigen presentation and activation of CD8+ T cytotoxic lymphocytes. In this study, we have identified a similar DC subset in rainbow trout gills that also transcribes molecules uniquely expressed on diverse mammalian cross-presenting DC populations such as CD8, CD103, CD141, Batf3, IFN regulatory protein 8, and toll-like receptor 3. Hence, we have undertaken a broad phenotypic and functional characterization of this new DC subset that includes the confirmation of novel capacities for DCs in teleost, such an IgM-binding capacity and responsiveness to CD40 ligand. Furthermore, our results show that in gills, this DC subset shows some different phenotypic and functional characteristics when compared with their homologs in the skin, suggesting an adaptation of the cells to different mucosal tissues or different maturation status depending on their location. Our findings contribute to increase our knowledge on fish cross-presenting DCs, an important cell population to take into account for the future design of mucosal vaccination strategies.
Collapse
Affiliation(s)
- Irene Soleto
- Centro de Investigación en Sanidad Animal (CISA), INIA, Valdeolmos, Spain
| | - Uwe Fischer
- Bundesforschungsinstitut für Tiergesundheit, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA), INIA, Valdeolmos, Spain
| | - Aitor G Granja
- Centro de Investigación en Sanidad Animal (CISA), INIA, Valdeolmos, Spain
| |
Collapse
|
187
|
IRF8-dependent molecular complexes control the Th9 transcriptional program. Nat Commun 2017; 8:2085. [PMID: 29233972 PMCID: PMC5727025 DOI: 10.1038/s41467-017-01070-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
Interferon regulatory factors (IRF) have critical functions in lymphoid development and in immune response regulation. Although many studies have described the function of IRF4 in CD4+ T cells, few have focused on the IRF4 homologue, IRF8. Here, we show that IRF8 is required for Th9 differentiation in vitro and in vivo. IRF8 functions through a transcription factor complex consisting of IRF8, IRF4, PU.1 and BATF, which binds to DNA and boosts Il9 transcription. By contrast, IRF8 deficiency promotes the expression of other genes such as Il4, as IRF8 dimerises with the transcriptional repressor ETV6 and inhibits Il4 expression. In vivo, IRF8 is essential for the anti-tumour effects of Th9 cells in mouse melanoma models. Our results show that IRF8 complexes boost the Th9 program and repress Il4 expression to modulate Th9 cell differentiation, thereby implicating IRF8 as a potential therapeutic target to affect Th9 responses in cancer therapy. Interferon regulatory factors IRF regulate lymphoid development, but the specific function of IRF8 in helper T-cell polarization is unclear. Here the authors show that IRF8 forms a complex with IRF4, PU.1 and BATF to modulate the Th9 transcription program and expression of IL-4 and IL-9.
Collapse
|
188
|
The AP-1 transcription factor JunB is required for Th17 cell differentiation. Sci Rep 2017; 7:17402. [PMID: 29234109 PMCID: PMC5727176 DOI: 10.1038/s41598-017-17597-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-17-producing T helper (Th17) cells are crucial for host defense against extracellular microbes and pathogenesis of autoimmune diseases. Here we show that the AP-1 transcription factor JunB is required for Th17 cell development. Junb-deficient CD4+ T cells are able to develop in vitro into various helper T subsets except Th17. The RNA-seq transcriptome analysis reveals that JunB is crucial for the Th17-specific gene expression program. Junb-deficient mice are completely resistant to experimental autoimmune encephalomyelitis, a Th17-mediated inflammatory disease, and naive T helper cells from such mice fail to differentiate into Th17 cells. JunB appears to activate Th17 signature genes by forming a heterodimer with BATF, another AP-1 factor essential for Th17 differentiation. The mechanism whereby JunB controls Th17 cell development likely involves activation of the genes for the Th17 lineage-specifying orphan receptors RORγt and RORα and reduced expression of Foxp3, a transcription factor known to antagonize RORγt function.
Collapse
|
189
|
Wu J, Zhang H, Shi X, Xiao X, Fan Y, Minze LJ, Wang J, Ghobrial RM, Xia J, Sciammas R, Li XC, Chen W. Ablation of Transcription Factor IRF4 Promotes Transplant Acceptance by Driving Allogenic CD4 + T Cell Dysfunction. Immunity 2017; 47:1114-1128.e6. [PMID: 29221730 DOI: 10.1016/j.immuni.2017.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/07/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Abstract
CD4+ T cells orchestrate immune responses and destruction of allogeneic organ transplants, but how this process is regulated on a transcriptional level remains unclear. Here, we demonstrated that interferon regulatory factor 4 (IRF4) was a key transcriptional determinant controlling T cell responses during transplantation. IRF4 deletion in mice resulted in progressive establishment of CD4+ T cell dysfunction and long-term allograft survival. Mechanistically, IRF4 repressed PD-1, Helios, and other molecules associated with T cell dysfunction. In the absence of IRF4, chromatin accessibility and binding of Helios at PD-1 cis-regulatory elements were increased, resulting in enhanced PD-1 expression and CD4+ T cell dysfunction. The dysfunctional state of Irf4-deficient T cells was initially reversible by PD-1 ligand blockade, but it progressively developed into an irreversible state. Hence, IRF4 controls a core regulatory circuit of CD4+ T cell dysfunction, and targeting IRF4 represents a potential therapeutic strategy for achieving transplant acceptance.
Collapse
Affiliation(s)
- Jie Wu
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hedong Zhang
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Xiaomin Shi
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Yihui Fan
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Laurie J Minze
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Jin Wang
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Rafik M Ghobrial
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Roger Sciammas
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Center for Comparative Medicine, University of California Davis, Davis, CA 95616, USA
| | - Xian C Li
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
190
|
Increased BATF expression is associated with the severity of liver damage in patients with chronic hepatitis B. Clin Exp Med 2017; 18:263-272. [PMID: 29164410 DOI: 10.1007/s10238-017-0480-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/12/2017] [Indexed: 12/29/2022]
Abstract
T helper (Th) 17 cells have a critical role in the pathogenesis of chronic hepatitis B virus (HBV) infection, and basic leucine zipper transcription factor, ATF-like (BATF) is a newly identified transcriptional factor regulating the differentiation of Th17 cells. However, its precise role in patients with chronic hepatitis B remains unclear. Sixty chronic hepatitis B (CHB) patients, twenty-two acute-on-chronic hepatitis B liver failure (ACHBLF) patients and seventeen healthy controls were included in our study. Both peripheral and intrahepatic expressions of BATF were analyzed by flow cytometry, quantitative real-time polymerase chain reaction and immunohistochemical staining. Peripheral BATF mRNA and protein expression levels were higher in CHB patients than those in healthy controls. Particularly in ACHBLF patients, the BATF mRNA and protein levels were further increased over those in CHB patients. Intrahepatic BATF-positive infiltrating cells were enriched in portal area of CHB patients, and more positive cells were found in patients with higher inflammation grade. Peripheral BATF expression was positively correlated with serum parameters of liver injury and plasma HBV DNA load. Furthermore, a positive correlation was found between the frequency of BATF-positive CD3+ T cells and the increased Th17 response in chronic HBV-infected patients. BATF over-expression might augment Th17 cell response and relate to the disease progression of CHB.
Collapse
|
191
|
Kato M, Kashem MA, Cheng C. An intestinal microRNA modulates the homeostatic adaptation to chronic oxidative stress in C. elegans. Aging (Albany NY) 2017; 8:1979-2005. [PMID: 27623524 PMCID: PMC5076448 DOI: 10.18632/aging.101029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/19/2016] [Indexed: 12/22/2022]
Abstract
Adaptation to an environmental or metabolic perturbation is a feature of the evolutionary process. Recent insights into microRNA function suggest that microRNAs serve as key players in a robust adaptive response against stress in animals through their capacity to fine-tune gene expression. However, it remains largely unclear how a microRNA-modulated downstream mechanism contributes to the process of homeostatic adaptation. Here we show that loss of an intestinally expressed microRNA gene, mir-60, in the nematode C. elegans promotes an adaptive response to chronic - a mild and long-term - oxidative stress exposure. The pathway involved appears to be unique since the canonical stress-responsive factors, such as DAF-16/FOXO, are dispensable for mir-60 loss to enhance oxidative stress resistance. Gene expression profiles revealed that genes encoding lysosomal proteases and those involved in xenobiotic metabolism and pathogen defense responses are up-regulated by the loss of mir-60. Detailed genetic studies and computational microRNA target prediction suggest that endocytosis components and a bZip transcription factor gene zip-10, which functions in innate immune response, are directly modulated by miR-60 in the intestine. Our findings suggest that the mir-60 loss facilitates adaptive response against chronic oxidative stress by ensuring the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Masaomi Kato
- The Laboratory of Ageing, Centenary Institute, Camperdown, NSW 2050, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Mohammed Abul Kashem
- The Laboratory of Ageing, Centenary Institute, Camperdown, NSW 2050, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Chao Cheng
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
192
|
Local and Systemic CD4 + T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis. J Immunol Res 2017; 2017:3642832. [PMID: 29234685 PMCID: PMC5695030 DOI: 10.1155/2017/3642832] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/26/2017] [Indexed: 01/23/2023] Open
Abstract
Investigation of the Th1 immune response in sarcoidosis CD4+ T cells has revealed reduced proliferative capacity and cytokine expression upon TCR stimulation. In other disease models, such cellular dysfunction has been associated with a step-wise, progressive loss of T cell function that results from chronic antigenic stimulation. T cell exhaustion is defined by decreased cytokine production upon TCR activation, decreased proliferation, increased expression of inhibitory cell surface receptors, and increased susceptibility to apoptosis. We characterized sarcoidosis CD4+ T cell immune function in systemic and local environments among subjects undergoing disease progression compared to those experiencing disease resolution. Spontaneous and TCR-stimulated Th1 cytokine expression and proliferation assays were performed in 53 sarcoidosis subjects and 30 healthy controls. PD-1 expression and apoptosis were assessed by flow cytometry. Compared to healthy controls, sarcoidosis CD4+ T cells demonstrated reductions in Th1 cytokine expression, proliferative capacity (p < 0.05), enhanced apoptosis (p < 0.01), and increased PD-1 expression (p < 0.001). BAL-derived CD4+ T cells also demonstrated multiple facets of T cell exhaustion (p < 0.05). Reversal of CD4+ T cell exhaustion was observed in subjects undergoing spontaneous resolution (p < 0.05). Sarcoidosis CD4+ T cells exhibit loss of cellular function during progressive disease that follows the archetype of T cell exhaustion.
Collapse
|
193
|
Wang B, Kang W, Zuo J, Kang W, Sun Y. The Significance of Type-I Interferons in the Pathogenesis and Therapy of Human Immunodeficiency Virus 1 Infection. Front Immunol 2017; 8:1431. [PMID: 29163506 PMCID: PMC5671973 DOI: 10.3389/fimmu.2017.01431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/13/2017] [Indexed: 01/25/2023] Open
Abstract
Type-I interferons (IFN-I) are a widely expressed family that could promote antivirus immunity in the process of pathogens invasion. In a human immunodeficiency virus 1 (HIV-1)-infected individual, the production of IFN-I can be detected as early as the acute phase and will persist throughout the course of infection. However, sustained stimulation of immune system by IFN-I also contributes greatly to host-mediated immunopathology and diseases progression. Although the protective effects of IFN-I in the acute phase of HIV-1 infection have been observed, more studies recently focus on their detrimental role in the chronic stage. Inhibition of IFN-I signaling may reverse HIV-1-induced immune hyperactivation and furthermore reduce HIV-1 reservoirs, which suggest this strategy may provide a potential way to enhance the therapeutic effect of antiretroviral therapy. Therefore, we review the role of IFN-I in HIV-1 progression, their effects on different immunocytes, and therapeutic prospects targeting the IFN-I system.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiahui Zuo
- Clinical Laboratory, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenzhen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
194
|
Mittal D, Vijayan D, Putz EM, Aguilera AR, Markey KA, Straube J, Kazakoff S, Nutt SL, Takeda K, Hill GR, Waddell N, Smyth MJ. Interleukin-12 from CD103 + Batf3-Dependent Dendritic Cells Required for NK-Cell Suppression of Metastasis. Cancer Immunol Res 2017; 5:1098-1108. [PMID: 29070650 DOI: 10.1158/2326-6066.cir-17-0341] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/19/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
Several host factors may affect the spread of cancer to distant organs; however, the intrinsic role of dendritic cells (DC) in controlling metastasis is poorly described. Here, we show in several tumor models that although the growth of primary tumors in Batf3-deficient mice, which lack cross-presenting DCs, was not different from primary tumors in wild-type (WT) control mice, Batf3-deficient mice had increased experimental and spontaneous metastasis and poorer survival. The increased metastasis was independent of CD4+ and CD8+ T lymphocytes, but required NK cells and IFNγ. Chimeric mice in which Batf3-dependent DCs uniformly lacked the capacity to produce IL12 had metastatic burdens similar to the Batf3-deficient mice, suggesting that Batf3+ DCs were the only cell type whose IL12 production was critical for controlling metastasis. We found that IL12-YFP reporter mice, whose lungs were injected with B16F10 melanoma, had increased numbers of IL12-expressing CD103+ DCs with enhanced CD86 expression. Bone-marrow-derived DCs from WT, but not Batf3-deficient, mice activated NK cells to produce IFNγ in an IL12-dependent manner and therapeutic injection of recombinant mouse IL12 decreased metastasis in both WT and Batf3-deficient mice. Analysis of TCGA datasets revealed an association between high expression of BATF3 and IRF8 and improved survival of breast cancer patients; BATF3 expression also significantly correlated with NK-cell receptor genes, IL12, and IFNG Collectively, our findings show that IL12 from CD103+ DCs is critical for NK cell-mediated control of tumor metastasis. Cancer Immunol Res; 5(12); 1098-108. ©2017 AACR.
Collapse
Affiliation(s)
- Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Dipti Vijayan
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Eva M Putz
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amelia R Aguilera
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kate A Markey
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Department of Haematology, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Jasmin Straube
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Stephen Kazakoff
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Department of Haematology, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Nicola Waddell
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
195
|
Mvubu NE, Pillay B, McKinnon LR, Pillay M. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells. Cytokine 2017; 104:53-64. [PMID: 29032986 DOI: 10.1016/j.cyto.2017.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/23/2017] [Accepted: 09/23/2017] [Indexed: 02/07/2023]
Abstract
M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis.
Collapse
Affiliation(s)
- Nontobeko E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Balakrishna Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Lyle R McKinnon
- Centre for the AIDS Program of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, South Africa.
| |
Collapse
|
196
|
Mariani L, Weinand K, Vedenko A, Barrera LA, Bulyk ML. Identification of Human Lineage-Specific Transcriptional Coregulators Enabled by a Glossary of Binding Modules and Tunable Genomic Backgrounds. Cell Syst 2017; 5:187-201.e7. [PMID: 28957653 PMCID: PMC5657590 DOI: 10.1016/j.cels.2017.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/03/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023]
Abstract
Transcription factors (TFs) control cellular processes by binding specific DNA motifs to modulate gene expression. Motif enrichment analysis of regulatory regions can identify direct and indirect TF binding sites. Here, we created a glossary of 108 non-redundant TF-8mer "modules" of shared specificity for 671 metazoan TFs from publicly available and new universal protein binding microarray data. Analysis of 239 ENCODE TF chromatin immunoprecipitation sequencing datasets and associated RNA sequencing profiles suggest the 8mer modules are more precise than position weight matrices in identifying indirect binding motifs and their associated tethering TFs. We also developed GENRE (genomically equivalent negative regions), a tunable tool for construction of matched genomic background sequences for analysis of regulatory regions. GENRE outperformed four state-of-the-art approaches to background sequence construction. We used our TF-8mer glossary and GENRE in the analysis of the indirect binding motifs for the co-occurrence of tethering factors, suggesting novel TF-TF interactions. We anticipate that these tools will aid in elucidating tissue-specific gene-regulatory programs.
Collapse
Affiliation(s)
- Luca Mariani
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Weinand
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anastasia Vedenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Luis A Barrera
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
197
|
Attanasio J, Wherry EJ. Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 2017; 44:1052-68. [PMID: 27192569 DOI: 10.1016/j.immuni.2016.04.022] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Indexed: 12/16/2022]
Abstract
Costimulatory and inhibitory receptors play a key role in regulating immune responses to infections. Recent translation of knowledge about inhibitory receptors such as CTLA-4 and PD-1 into the cancer clinic highlights the opportunities to manipulate these pathways to treat human disease. Studies in infectious disease have provided key insights into the specific roles of these pathways and the effects of their manipulation. Here, recent studies are discussed that have addressed how major inhibitory and costimulatory pathways play a role in regulating immune responses during acute and chronic infections. Mechanistic insights from studies of infectious disease provide opportunities to further expand our toolkit to treat cancer and chronic infections in the clinic.
Collapse
Affiliation(s)
- John Attanasio
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
198
|
Papili Gao N, Ud-Dean SMM, Gandrillon O, Gunawan R. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics 2017; 34:258-266. [PMID: 28968704 PMCID: PMC5860204 DOI: 10.1093/bioinformatics/btx575] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/12/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022] Open
Abstract
Motivation Single cell transcriptional profiling opens up a new avenue in studying the functional role of cell-to-cell variability in physiological processes. The analysis of single cell expression profiles creates new challenges due to the distributive nature of the data and the stochastic dynamics of gene transcription process. The reconstruction of gene regulatory networks (GRNs) using single cell transcriptional profiles is particularly challenging, especially when directed gene-gene relationships are desired. Results We developed SINCERITIES (SINgle CEll Regularized Inference using TIme-stamped Expression profileS) for the inference of GRNs from single cell transcriptional profiles. We focused on time-stamped cross-sectional expression data, commonly generated from transcriptional profiling of single cells collected at multiple time points after cell stimulation. SINCERITIES recovers directed regulatory relationships among genes by employing regularized linear regression (ridge regression), using temporal changes in the distributions of gene expressions. Meanwhile, the modes of the gene regulations (activation and repression) come from partial correlation analyses between pairs of genes. We demonstrated the efficacy of SINCERITIES in inferring GRNs using in silico time-stamped single cell expression data and single cell transcriptional profiles of THP-1 monocytic human leukemia cells. The case studies showed that SINCERITIES could provide accurate GRN predictions, significantly better than other GRN inference algorithms such as TSNI, GENIE3 and JUMP3. Moreover, SINCERITIES has a low computational complexity and is amenable to problems of extremely large dimensionality. Finally, an application of SINCERITIES to single cell expression data of T2EC chicken erythrocytes pointed to BATF as a candidate novel regulator of erythroid development. Availability and implementation MATLAB and R version of SINCERITIES are freely available from the following websites: http://www.cabsel.ethz.ch/tools/sincerities.html and https://github.com/CABSEL/SINCERITIES. The single cell THP-1 and T2EC transcriptional profiles are available from the original publications (Kouno et al., 2013; Richard et al., 2016). The in silico single cell data are available on SINCERITIES websites. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nan Papili Gao
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - S M Minhaz Ud-Dean
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Olivier Gandrillon
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR, INSERM Lyon, France.,Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Rhône-Alpes, France
| | - Rudiyanto Gunawan
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
199
|
De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C, Bonnal RJP, Provasi E, Sarnicola ML, Panzeri I, Moro M, Crosti M, Mazzara S, Vaira V, Bosari S, Palleschi A, Santambrogio L, Bovo G, Zucchini N, Totis M, Gianotti L, Cesana G, Perego RA, Maroni N, Pisani Ceretti A, Opocher E, De Francesco R, Geginat J, Stunnenberg HG, Abrignani S, Pagani M. Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells. Immunity 2017; 45:1135-1147. [PMID: 27851914 PMCID: PMC5119953 DOI: 10.1016/j.immuni.2016.10.021] [Citation(s) in RCA: 476] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/07/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023]
Abstract
Tumor-infiltrating regulatory T lymphocytes (Treg) can suppress effector T cells specific for tumor antigens. Deeper molecular definitions of tumor-infiltrating-lymphocytes could thus offer therapeutic opportunities. Transcriptomes of T helper 1 (Th1), Th17, and Treg cells infiltrating colorectal or non-small-cell lung cancers were compared to transcriptomes of the same subsets from normal tissues and validated at the single-cell level. We found that tumor-infiltrating Treg cells were highly suppressive, upregulated several immune-checkpoints, and expressed on the cell surfaces specific signature molecules such as interleukin-1 receptor 2 (IL1R2), programmed death (PD)-1 Ligand1, PD-1 Ligand2, and CCR8 chemokine, which were not previously described on Treg cells. Remarkably, high expression in whole-tumor samples of Treg cell signature genes, such as LAYN, MAGEH1, or CCR8, correlated with poor prognosis. Our findings provide insights into the molecular identity and functions of human tumor-infiltrating Treg cells and define potential targets for tumor immunotherapy. Transcriptome analysis performed on tumor-resident CD4+ Th1, Th17, and Treg cells Tumor-infiltrating Treg cells are defined by the expression of signature genes Treg-specific signature genes correlate with patients’ survival in both CRC and NSCLC
Collapse
Affiliation(s)
- Marco De Simone
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Alberto Arrigoni
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Grazisa Rossetti
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Paola Gruarin
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Valeria Ranzani
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Claudia Politano
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Raoul J P Bonnal
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Elena Provasi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Maria Lucia Sarnicola
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Ilaria Panzeri
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Monica Moro
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Mariacristina Crosti
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Saveria Mazzara
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Valentina Vaira
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy; Division of Pathology, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Organ Transplantation, Università degli Studi di Milano, Milano 20122, Italy
| | - Silvano Bosari
- Division of Pathology, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Organ Transplantation, Università degli Studi di Milano, Milano 20122, Italy
| | - Alessandro Palleschi
- Division of Thoracic Surgery, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Luigi Santambrogio
- Division of Thoracic Surgery, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Organ Transplantation, Università degli Studi di Milano, Milano 20122, Italy
| | - Giorgio Bovo
- Department of Pathology, San Gerardo Hospital, Monza 20900, Italy
| | - Nicola Zucchini
- Department of Pathology, San Gerardo Hospital, Monza 20900, Italy
| | - Mauro Totis
- Department of Surgery, San Gerardo Hospital, Monza 20900, Italy
| | - Luca Gianotti
- Department of Surgery, San Gerardo Hospital, Monza 20900, Italy; School of Medicine and Surgery, Milano-Bicocca University, Monza 20900 Italy
| | - Giancarlo Cesana
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900 Italy
| | - Roberto A Perego
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900 Italy
| | - Nirvana Maroni
- UO Chirurgia Epatobiliopancreatica e Digestiva Ospedale San Paolo, Milan 20142, Italy
| | - Andrea Pisani Ceretti
- UO Chirurgia Epatobiliopancreatica e Digestiva Ospedale San Paolo, Milan 20142, Italy
| | - Enrico Opocher
- UO Chirurgia Epatobiliopancreatica e Digestiva Ospedale San Paolo, Milan 20142, Italy; Department of Health Sciences, Università degli Studi di Milano, Milano 20122, Italy
| | - Raffaele De Francesco
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Jens Geginat
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano 20122, Italy.
| | - Massimiliano Pagani
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi,' Milan 20122, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano 20129, Italy.
| |
Collapse
|
200
|
Eslamloo K, Xue X, Hall JR, Smith NC, Caballero-Solares A, Parrish CC, Taylor RG, Rise ML. Transcriptome profiling of antiviral immune and dietary fatty acid dependent responses of Atlantic salmon macrophage-like cells. BMC Genomics 2017; 18:706. [PMID: 28886690 PMCID: PMC5591513 DOI: 10.1186/s12864-017-4099-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Due to the limited availability and high cost of fish oil in the face of increasing aquaculture production, there is a need to reduce usage of fish oil in aquafeeds without compromising farm fish health. Therefore, the present study was conducted to determine if different levels of vegetable and fish oils can alter antiviral responses of salmon macrophage-like cells (MLCs). Atlantic salmon (Salmo salar) were fed diets containing 7.4% (FO7) or 5.1% (FO5) fish oil. These diets were designed to be relatively low in EPA + DHA (i.e. FO7: 1.41% and FO5: 1%), but near the requirement level, and resulting in comparable growth. Vegetable oil (i.e. rapeseed oil) was used to balance fish oil in experimental diets. After a 16-week feeding trial, MLCs isolated from fish in these dietary groups were stimulated by a viral mimic (dsRNA: pIC) for 6 h (qPCR assay) and 24 h (microarray and qPCR assays). RESULTS The fatty acid composition of head kidney leukocytes varied between the two dietary groups (e.g. higher 20:5n-3 in the FO7 group). Following microarray assays using a 44K salmonid platform, Rank Products (RP) analysis showed 14 and 54 differentially expressed probes (DEP) (PFP < 0.05) between the two diets in control and pIC groups (FO5 vs. FO7), respectively. Nonetheless, Significance Analysis of Microarrays (SAM, FDR < 0.05) identified only one DEP between pIC groups of the two diets. Moreover, we identified a large number (i.e. 890 DEP in FO7 and 1128 DEP in FO5 overlapping between SAM and RP) of pIC-responsive transcripts, and several of them were involved in TLR-/RLR-dependent and cytokine-mediated pathways. The microarray results were validated as significantly differentially expressed by qPCR assays for 2 out of 9 diet-responsive transcripts and for all of the 35 selected pIC-responsive transcripts. CONCLUSION Fatty acid-binding protein adipocyte (fabp4) and proteasome subunit beta type-8 (psmb8) were significantly up- and down-regulated, respectively, in the MLCs of fish fed the diet with a lower level of fish oil, suggesting that they are important diet-responsive, immune-related biomarkers for future studies. Although the different levels of dietary fish and vegetable oils involved in this study affected the expression of some transcripts, the immune-related pathways and functions activated by the antiviral response of salmon MLCs in both groups were comparable overall. Moreover, the qPCR revealed transcripts responding early to pIC (e.g. lgp2, map3k8, socs1, dusp5 and cflar) and time-responsive transcripts (e.g. scarb1-a, csf1r, traf5a, cd80 and ctsf) in salmon MLCs. The present study provides a comprehensive picture of the putative molecular pathways (e.g. RLR-, TLR-, MAPK- and IFN-associated pathways) activated by the antiviral response of salmon MLCs.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|