151
|
Zhang C, Liang R, Gan X, Yang X, Chen L, Jian J. MicroRNA-384-5p/Beclin-1 As Potential Indicators For Epigallocatechin Gallate Against Cardiomyocytes Ischemia Reperfusion Injury By Inhibiting Autophagy Via PI3K/Akt Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3607-3623. [PMID: 31802847 PMCID: PMC6802542 DOI: 10.2147/dddt.s219074] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
Background/Aims Epigallocatechin gallate (EGCG) has established protective actions against myocardial ischemia/reperfusion (I/R) injury by regulating autophagy. However, little is known about the mechanisms of EGCG in posttranscriptional regulation in the process of cardioprotection. Here we studied whether microRNAs play a role in EGCG-induced cardioprotection. Methods The myocardial I/R injury in vitro and in vivo model were made, with or without EGCG pretreatment. The upregulation and silencing of microRNA-384-5p (miR-384) and Beclin-1 in H9c2 cell lines were established. Rats were transfected with miR-384 specific shRNA. Dual-luciferase reporter gene assay was conducted to verify the relationship between miR-384 and Beclin-1. TTC staining was performed to analyze the area of myocardial infarct size. Cell viability was monitored by cell counting kit-8 (CCK-8). The release of cardiac troponin-I (cTnI) was examined by ELISA. The levels of autophagy-related genes or proteins expression were evaluated by qRT-PCR or Western blotting. Autophagosomes of myocardial cells were detected by transmission electron microscopy and laser scanning confocal microscope. Results I/R increased both autophagosomes and autolysosomes, thereby increasing autophagic flux both in vitro and in vivo. Pretreatment with EGCG attenuated I/R-induced autophagic flux expression, accompanied by an increase in cell viability and a decrease in the size of myocardial infarction. MiR-384 expression was down-regulated in H9c2 cell lines when subjected to I/R, while this suppression could be reversed by EGCG pretreatment. The dual-luciferase assay verified that Beclin-1 was a target of miR-384. Both overexpression of miR-384 and knocking down of Beclin-1 significantly inhibited I/R-induced autophagy, accompanied by the activation of PI3K/Akt pathway, thus enhanced the protective effect of EGCG. However, these functions were abrogated by the PI3K inhibitor, LY294002. Conclusion We confirmed that EGCG has a protective role in microRNA-384-mediated autophagy by targeting Beclin-1 via activating the PI3K/Akt signaling pathway. Our results unveiled a novel role of EGCG in myocardial protection, involving posttranscriptional regulation with miRNA-384.
Collapse
Affiliation(s)
- Chan Zhang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ronggan Liang
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Xiaowen Gan
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Xiufang Yang
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - LingLin Chen
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Jie Jian
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
152
|
Cheng Z. The FoxO-Autophagy Axis in Health and Disease. Trends Endocrinol Metab 2019; 30:658-671. [PMID: 31443842 DOI: 10.1016/j.tem.2019.07.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Autophagy controls cellular remodeling and quality control. Dysregulated autophagy has been implicated in several human diseases including obesity, diabetes, cardiovascular disease, neurodegenerative diseases, and cancer. Current evidence has revealed that FoxO (forkhead box class O) transcription factors have a multifaceted role in autophagy regulation and dysregulation. Nuclear FoxOs transactivate genes that control the formation of autophagosomes and their fusion with lysosomes. Independently of transactivation, cytosolic FoxO proteins induce autophagy by directly interacting with autophagy proteins. Autophagy is also controlled by FoxOs through epigenetic mechanisms. Moreover, FoxO proteins can be degraded directly or indirectly by autophagy. Cutting-edge evidence is reviewed that the FoxO-autophagy axis plays a crucial role in health and disease.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Food Science and Human Nutrition Department, The University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
153
|
Shin J, Syme C, Wang D, Richer L, Pike GB, Gaudet D, Paus T, Pausova Z. Novel Genetic Locus of Visceral Fat and Systemic Inflammation. J Clin Endocrinol Metab 2019; 104:3735-3742. [PMID: 30942860 PMCID: PMC6642667 DOI: 10.1210/jc.2018-02656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/28/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Visceral fat (VF), more than fat elsewhere in the body [mostly subcutaneous fat (SF)], promotes systemic inflammation and related disease. The mechanisms of preferentially visceral accumulation of body fat are largely unknown. OBJECTIVE To identify genetic loci and mechanistic pathways of preferential accumulation of VF and associated low-grade systemic inflammation. DESIGN Genome-wide association study (GWAS). SETTING AND PARTICIPANTS Population-based cohort of 1586 adolescents (aged 12 to 19 years) and adults (aged 36 to 65 years). MAIN OUTCOME MEASURES Abdominal VF and SF were measured with MRI, total body fat (TBF) was assessed with bioimpedance, and low-grade systemic inflammation was examined by serum C-reactive protein (CRP) measurement. RESULTS This GWAS of preferential accumulation of VF identified a significant locus on chromosome 6 at rs803522 (P = 1.1 × 10-9 or 4.3 × 10-10 for VF adjusted for SF or TBF, respectively). The major allele was associated with more VF; the association was similar in adolescents and adults. The allele was also associated with higher CRP level, but this association was stronger in adults than adolescents (P for interaction = 4.5 × 10-3). In adults, VF was a significant mediator (P = 1.9× 10-4) in the association between the locus and CRP, explaining 30% of the mediation. The locus was near ATG5, encoding an autophagy molecule reported to modulate adipocyte size and macrophage polarization. CONCLUSION A genetic locus near ATG5 regulates preferential accumulation of VF (vs SF) in youth and adulthood and contributes to the development of systemic inflammation in adulthood.
Collapse
Affiliation(s)
- Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Catriona Syme
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dominic Wang
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - G Bruce Pike
- Department of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Centre and ECOGENE-21, Department of Medicine, Université de Montréal, Saguenay, Quebec, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
154
|
Bonam SR, Ruff M, Muller S. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells 2019; 8:E849. [PMID: 31394830 PMCID: PMC6721745 DOI: 10.3390/cells8080849] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
HSPA8/HSC70 is a molecular chaperone involved in a wide variety of cellular processes. It plays a crucial role in protein quality control, ensuring the correct folding and re-folding of selected proteins, and controlling the elimination of abnormally-folded conformers and of proteins daily produced in excess in our cells. HSPA8 is a crucial molecular regulator of chaperone-mediated autophagy, as a detector of substrates that will be processed by this specialized autophagy pathway. In this review, we shortly summarize its structure and overall functions, dissect its implication in immune disorders, and list the known pharmacological tools that modulate its functions. We also exemplify the interest of targeting HSPA8 to regulate pathological immune dysfunctions.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France
| | - Marc Ruff
- Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404 Strasbourg, France
| | - Sylviane Muller
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, 67000 Strasbourg, France.
| |
Collapse
|
155
|
Wang Y, Bonavida B. A New Linkage between the Tumor Suppressor RKIP and Autophagy: Targeted Therapeutics. Crit Rev Oncog 2019; 23:281-305. [PMID: 30311561 DOI: 10.1615/critrevoncog.2018027211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complexities of molecular signaling in cancer cells have been hypothesized to mediate cross-network alterations of oncogenic processes such as uncontrolled cell growth, proliferation, acquisition of epithelial-to-mesenchymal transition (EMT) markers, and resistance to cytotoxic therapies. The two biochemically exclusive processes/proteins examined in the present review are the metastasis suppressor Raf-1 kinase inhibitory protein (RKIP) and the cell-intrinsic system of macroautophagy (hereafter referred to as autophagy). RKIP is poorly expressed in human cancer tissues, and low expression levels are correlated with high incidence of tumor growth, metastasis, poor treatment efficacy, and poor prognoses in cancer patients. By comparison, autophagy is a conserved cytoprotective degradation pathway that has been shown to influence the acquisition of resistance to hypoxia and nutrient depletion as well as the regulation of chemo-immuno-resistance and apoptotic evasion. Evidently, a broad library of cancer-relevant studies exists for RKIP and autophagy, although reports of the interactions between pathways involving RKIP and autophagy have been relatively sparse. To circumvent this limitation, the coordinate regulatory and effector mechanisms were examined for both RKIP and autophagy. Here, we propose three putative pathways that demonstrate the inherent pleiotropism and relevance of RKIP and the microtubule-associated protein 1 light chain 3 (MAP1LC3, LC3) on cell growth, proliferation, senescence, and EMT, among the hallmarks of cancer. Our findings suggest that signaling modules involving p53, signal transducer and activator of transcription 3 (STAT3), nuclear factor-κB (NF-κB), and Snail highlight the novel roles for RKIP in the control of autophagy and vice versa. The suggested potential crosstalk mechanisms are new areas of research in which to further study RKIP and autophagy in cancer models. These should lead to novel prognostic motifs and will provide alternative therapeutic strategies for the treatment of unresponsive aggressive cancer types.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90025-1747
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747
| |
Collapse
|
156
|
Pang J, Xiong H, Ou Y, Yang H, Xu Y, Chen S, Lai L, Ye Y, Su Z, Lin H, Huang Q, Xu X, Zheng Y. SIRT1 protects cochlear hair cell and delays age-related hearing loss via autophagy. Neurobiol Aging 2019; 80:127-137. [PMID: 31170533 DOI: 10.1016/j.neurobiolaging.2019.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
Age-related hearing loss (AHL) is typically caused by the irreversible death of hair cells (HCs). Autophagy is a constitutive pathway to strengthen cell survival under normal or stress condition. Our previous work suggested that impaired autophagy played an important role in the development of AHL in C57BL/6 mice, although the underlying mechanism of autophagy in AHL still needs to be investigated. SIRT1 as an important regulator involves in AHL and is also a regulator of autophagy. Thus, we hypothesized that the modulation between SIRT1 and autophagy contribute to HC death and the progressive hearing dysfunction in aging. In the auditory cell line HEI-OC1, SIRT1 modulated autophagosome induction because of SIRT1 deacetylating a core autophagy protein ATG9A. The deacetylation of ATG9A not only affects the autophagosome membrane formation but also acts as a sensor of endoplasmic reticulum (ER) stress inducing autophagy. Moreover, the silencing of SIRT1 facilitated cell death via autophagy inhibition, whereas SIRT1 and autophagy activation reversed the SIRT1 inhibition media cell death. Notably, resveratrol, the first natural agonist of SIRT1, altered the organ of Corti autophagy impairment of the 12-month-old C57BL/6 mice and delayed AHL. The activation of SIRT1 modulates the deacetylation status of ATG9A, which acts as a sensor of ER stress, providing a novel perspective in elucidating the link between ER stress and autophagy in aging. Because SIRT1 activation restores autophagy with reduced HC death and hearing loss, it could be used as a strategy to delay AHL.
Collapse
Affiliation(s)
- Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Yaodong Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongyi Ye
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Hanqing Lin
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
157
|
Propolis Reduces the Expression of Autophagy-Related Proteins in Chondrocytes under Interleukin-1β Stimulus. Int J Mol Sci 2019; 20:ijms20153768. [PMID: 31374866 PMCID: PMC6695581 DOI: 10.3390/ijms20153768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Osteoarthritis (OA) is a progressive and multifactorial disease that is associated with aging. A number of changes occur in aged cartilage, such as increased oxidative stress, decreased markers of healthy cartilage, and alterations in the autophagy pathway. Propolis extracts contain a mixture of polyphenols and it has been proved that they have high antioxidant capacity and could regulate the autophagic pathway. Our objective was to evaluate the effect of ethanolic extract of propolis (EEP) on chondrocytes that were stimulated with IL-1β. Methods: Rabbit chondrocytes were isolated and stimulated with IL-1β and treated with EEP. We evaluated cell viability, nitric oxide production, healthy cartilage, and OA markers, and the expression of three proteins associated with the autophagy pathway LC3, ATG5, and AKT1. Results: The EEP treatment reduces the expression of LC3, ATG5, and AKT1, reduces the production of nitric oxide, increases the expression of healthy markers, and reduces OA markers. Conclusions: These results suggest that treatment with EEP in chondrocytes that were stimulated with IL-1β has beneficial effects, such as a decrease in the expression of proteins associated with autophagy, MMP13, and production of nitric oxide, and also increased collagen II.
Collapse
|
158
|
Wu M, Lao YZ, Tan HS, Lu G, Ren Y, Zheng ZQ, Yi J, Fu WW, Shen HM, Xu HX. Oblongifolin C suppresses lysosomal function independently of TFEB nuclear translocation. Acta Pharmacol Sin 2019; 40:929-937. [PMID: 30333555 DOI: 10.1038/s41401-018-0167-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
Lysosomes are the terminal organelles of the autophagic-endocytic pathway and play a key role in the degradation of autophagic contents. We previously reported that a natural compound oblongifolin C (OC) increased the number of autophagosomes and impaired the degradation of P62, most likely via suppression of lysosomal function and blockage of autophagosome-lysosome fusion. However, the precise mechanisms of how OC inhibits the lysosome-autophagy pathway remain unclear. In the present study, we investigated the effect of OC on transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, lysosomal function and autophagy. We showed that treatment with OC (15 μM) markedly enhanced the nuclear translocation of TFEB in HeLa cells, concomitantly reduced the interaction of TFEB with 14-3-3 proteins. We further demonstrated that OC caused significant inhibition of mTORC1 along with TFEB nuclear translocation, and OC-mediated TFEB nuclear translocation was dependent on mTORC1 suppression. Intriguingly, this increased nuclear TFEB was accompanied by reduced TFEB luciferase activity, increased lysosomal pH and impaired cathepsin enzyme activities. In HeLa cells, treatment with OC (7.5 μM) resulted in about 30% of cell death, whereas treatment with hydroxycitrate, a caloric restriction mimetic (20 μM) did not affect the cell viability. However, cotreatment with OC and hydroxycitrate caused significantly great cytotoxicity (>50%). Taken together, these results demonstrate that inhibition of lysosome function is mediated by OC, despite evident TFEB nuclear translocation.
Collapse
|
159
|
Effect of typhaneoside on ventricular remodeling and regulation of PI3K/Akt/mTOR pathway. Herz 2019; 45:113-122. [PMID: 31201434 PMCID: PMC7721680 DOI: 10.1007/s00059-019-4819-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Background This study aimed to investigate the effect of typhaneoside on ventricular remodeling and regulation of the PI3K/Akt/mTOR autophagy transduction pathway in rats with heart failure after myocardial infarction. Methods The effects of typhaneoside on the general condition of rats were observed in vivo using a rat model of heart failure after myocardial infarction had been established. The expression of serum N‑terminal pro-brain natriuretic peptide (NT-proBNP), matrix lysin 2 (ST2), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), matrix metalloproteinase 2 (MMP-2), and MMP-9 was detected via ELISA. A hypoxia/reoxygenation model was established to analyze the number and morphology of autophagosomes in vitro by transmission electron microscopy. Light chain 3 (LC3) variations were detected by immunofluorescence. Western blotting was used to assess LC3-II/LC3-I and p62 expression as well as p‑Akt/Akt, p‑mTOR/mTOR ratios. Results Compared with the sham group, the general condition scores of the rats in the model group decreased significantly, while the expression of serum NT-proBNP, ST2, IL-6, TNF-α, MMP-2, and MMP-9 increased. The number of autophagosomes in the drug-containing serum group was significantly reduced and the ratio of LC3-II/LC3-I was significantly decreased. The expression of P62 protein was increased, and the ratios of p‑Akt/Akt and p‑mTOR/mTOR were significantly increased. Conclusion Typhaneoside regulates IL-6 and TNF-α as well as MMP-2 and MMP-9 in rats with heart failure after myocardial infarction. Typhaneoside can improve cardiac morphological structure and myocardial remodeling and enhance heart function. It may mediate autophagy inhibition in the cardiomyocyte anoxia/reoxygenation (A/R) pathway through the PI3K/Akt/mTOR autophagy transduction pathway.
Collapse
|
160
|
Sikder S, Kumari S, Mustafi P, Ramdas N, Padhi S, Saha A, Bhaduri U, Banerjee B, Manjithaya R, Kundu TK. Nonhistone human chromatin protein PC4 is critical for genomic integrity and negatively regulates autophagy. FEBS J 2019; 286:4422-4442. [PMID: 31169983 DOI: 10.1111/febs.14952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022]
Abstract
Multifunctional human transcriptional positive co-activator 4 (PC4) is a bona fide nonhistone component of the chromatin and plays a pivotal role in the process of chromatin compaction and functional genome organization. Knockdown of PC4 expression causes a drastic decompaction which leads to open conformation of the chromatin, and thereby altered nuclear architecture, defects in chromosome segregation and changed epigenetic landscape. Interestingly, these defects do not induce cellular death but result in enhanced cellular proliferation, possibly through enhanced autophagic activity. Moreover, PC4 depletion confers significant resistance to gamma irradiation. Exposure to gamma irradiation further induced autophagy in these cells. Inhibition of autophagy by small molecule inhibitors as well as by silencing of a critical autophagy gene drastically reduces the ability of PC4 knockdown cells to survive. On the contrary, complementation with wild-type PC4 could reverse this phenomenon, confirming the process of autophagy as the key mechanism for radiation resistance in the absence of PC4. These data connect the unexplored role of chromatin architecture in regulating autophagy during stress conditions such as radiation.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Pallabi Mustafi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Nisha Ramdas
- Mechanobiology Institute & Department of Biological Sciences, National University of Singapore, Singapore
| | - Swatishree Padhi
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arka Saha
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Utsa Bhaduri
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
161
|
Liu Z, Shi Z, Lin J, Zhao S, Hao M, Xu J, Li Y, Zhao Q, Tao L, Diao A. Piperlongumine-induced nuclear translocation of the FOXO3A transcription factor triggers BIM-mediated apoptosis in cancer cells. Biochem Pharmacol 2019; 163:101-110. [PMID: 30753811 DOI: 10.1016/j.bcp.2019.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
The transcription factor forkhead box O 3A (FOXO3A) is a tumor suppressor that promotes cell cycle arrest and apoptosis. Piperlongumine (PL), a plant alkaloid, is known to selectively kill tumor cells while sparing normal cells. However, the mechanism of PL-induced cancer cell death is not fully understood. We report here that an association of FOXO3A with the pro-apoptotic protein BIM (also known as BCL2-like 11, BCL2L11) has a direct and specific function in PL-induced cancer cell death. Using HeLa cells stably expressing a FOXO3A-GFP fusion protein and several other cancer cell lines, we found that PL treatment induces FOXO3A dephosphorylation and nuclear translocation and promotes its binding to the BIM gene promoter, resulting in the up-regulation of BIM in the cancer cell lines. Accordingly, PL inhibited cell viability and caused intrinsic apoptosis in a FOXO3A-dependent manner. Of note, siRNA-mediated FOXO3A knockdown rescued the cells from PL-induced cell death. In vivo, the PL treatment markedly inhibited xenograft tumor growth, and this inhibition was accompanied by the activation of the FOXO3A-BIM axis. Moreover, PL promoted FOXO3A dephosphorylation by inhibiting phosphorylation and activation of Akt, a kinase that phosphorylates FOXO3A. In summary, our findings indicate that PL activates the FOXO3A-BIM apoptotic axis by promoting dephosphorylation and nuclear translocation of FOXO3A via Akt signaling inhibition. These findings uncover a critical mechanism underlying the effects of PL on cancer cells.
Collapse
Affiliation(s)
- Zhenxing Liu
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Zhichen Shi
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Jieru Lin
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Shuang Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Min Hao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Junting Xu
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Qing Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Li Tao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Aipo Diao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China.
| |
Collapse
|
162
|
Targeting GPER1 to suppress autophagy as a male-specific therapeutic strategy for iron-induced striatal injury. Sci Rep 2019; 9:6661. [PMID: 31040364 PMCID: PMC6491488 DOI: 10.1038/s41598-019-43244-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
The functional outcome of intracerebral hemorrhage (ICH) in young male patients are poor than in premenopausal women. After ICH, ferrous iron accumulation causes a higher level of oxidative injury associated with autophagic cell death in striatum of male mice than in females. In rodent model of ferrous citrate (FC)-infusion that simulates iron accumulation after ICH, female endogenous estradiol (E2) suppresses autophagy via estrogen receptor α (ERα) and contributes to less injury severity. Moreover, E2 implantation diminished the FC-induced autophagic cell death and injury in males, whose ERα in the striatum is less than females. Since, no sex difference of ERβ was observed in striatum, we delineated whether ERα and G-protein-coupled estrogen receptor 1 (GPER1) mediate the suppressions of FC-induced autophagy and oxidative injury by E2 in a sex-dimorphic manner. The results showed that the ratio of constitutive GPER1 to ERα in striatum is higher in males than in females. The GPER1 and ERα predominantly mediated suppressive effects of E2 on FC-induced autophagy in males and antioxidant effect of E2 in females, respectively. This finding opens the prospect of a male-specific therapeutic strategy targeting GPER1 for autophagy suppression in patients suffering from iron overload after hemorrhage.
Collapse
|
163
|
Mahapatra KK, Panigrahi DP, Praharaj PP, Bhol CS, Patra S, Mishra SR, Behera BP, Bhutia SK. Molecular interplay of autophagy and endocytosis in human health and diseases. Biol Rev Camb Philos Soc 2019; 94:1576-1590. [PMID: 30989802 DOI: 10.1111/brv.12515] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Autophagy, an evolutionarily conserved process for maintaining the physio-metabolic equilibrium of cells, shares many common effector proteins with endocytosis. For example, tethering proteins involved in fusion like Ras-like GTPases (Rabs), soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs), lysosomal-associated membrane protein (LAMP), and endosomal sorting complex required for transport (ESCRT) have a dual role in endocytosis and autophagy, and the trafficking routes of these processes converge at lysosomes. These common effectors indicate an association between budding and fusion of membrane-bound vesicles that may have a substantial role in autophagic lysosome reformation, by sensing cellular stress levels. Therefore, autophagy-endocytosis crosstalk may be significant and implicates a novel endocytic regulatory pathway of autophagy. Moreover, endocytosis has a pivotal role in the intake of signalling molecules, which in turn activates cascades that can result in pathophysiological conditions. This review discusses the basic mechanisms of this crosstalk and its implications in order to identify potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Kewal K Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna P Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra S Bhol
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya R Mishra
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Bishnu P Behera
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| |
Collapse
|
164
|
Is there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve? Clin Sci (Lond) 2019; 133:805-819. [PMID: 30991346 DOI: 10.1042/cs20181092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Autophagy is a conserved process by which cytoplasmatic elements are sequestered in vesicles and degraded after their fusion with lysosomes, thus recycling the precursor molecules. The autophagy-mediated removal of redundant/harmful/damaged organelles and biomolecules plays not only a replenishing function, but protects against stressful conditions through an adaptive mechanism. Autophagy, known to play a role in several pathological conditions, is now gaining increasing attention also in the perspective of the identification of the pathogenetic mechanisms at the basis of ascending thoracic aortic aneurysm (TAA), a localized or diffused dilatation of the aorta with an abnormal widening greater than 50 percent of the vessel's normal diameter. TAA is less frequent than abdominal aortic aneurysm (AAA), but is encountered with a higher percentage in patients with congenital heart disease or known genetic syndromes. Several biological aspects of TAA pathophysiology remain to be elucitated and therapeutic needs are still widely unmet. One of the most controversial and epidemiologically important forms of TAA is that associated with the congenital bicuspid malformation of the aortic valve (BAV). Dysregulated autophagy in response, for example, to wall shear stress alterations, has been demonstrated to affect the phenotype of vascular cells relevant to aortopathy, with potential consequences on signaling, remodeling, and angiogenesis. The most recent findings and hypotheses concerning the multiple aspects of autophagy and of its dysregulation are summarized, both in general and in the context of the different vascular cell types and of TAA progression, with particular reference to BAV-related aortopathy.
Collapse
|
165
|
Walter J, Bolognin S, Antony PMA, Nickels SL, Poovathingal SK, Salamanca L, Magni S, Perfeito R, Hoel F, Qing X, Jarazo J, Arias-Fuenzalida J, Ignac T, Monzel AS, Gonzalez-Cano L, Pereira de Almeida L, Skupin A, Tronstad KJ, Schwamborn JC. Neural Stem Cells of Parkinson's Disease Patients Exhibit Aberrant Mitochondrial Morphology and Functionality. Stem Cell Reports 2019; 12:878-889. [PMID: 30982740 PMCID: PMC6522948 DOI: 10.1016/j.stemcr.2019.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that Parkinson's disease (PD), besides being an age-associated disorder, might also have a neurodevelopment component. Disruption of mitochondrial homeostasis has been highlighted as a crucial cofactor in its etiology. Here, we show that PD patient-specific human neuroepithelial stem cells (NESCs), carrying the LRRK2-G2019S mutation, recapitulate key mitochondrial defects previously described only in differentiated dopaminergic neurons. By combining high-content imaging approaches, 3D image analysis, and functional mitochondrial readouts we show that LRRK2-G2019S mutation causes aberrations in mitochondrial morphology and functionality compared with isogenic controls. LRRK2-G2019S NESCs display an increased number of mitochondria compared with isogenic control lines. However, these mitochondria are more fragmented and exhibit decreased membrane potential. Functional alterations in LRRK2-G2019S cultures are also accompanied by a reduced mitophagic clearance via lysosomes. These findings support the hypothesis that preceding mitochondrial developmental defects contribute to the manifestation of the PD pathology later in life. Mitochondrial gene expression is altered in NESCs carrying the LRRK2-G2019 mutation LRRK2-G2019S mutation induces alterations in mitochondrial morphology in NESCs Mitophagy is affected in PD-specific NESCs carrying the LRRK2-G2019S mutation Mitochondrial phenotypes in NESC are rescued by genetic correction of LRRK2-G2019S
Collapse
Affiliation(s)
- Jonas Walter
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Paul M A Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Sarah L Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Life Science Research Unit (LSRU), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Luis Salamanca
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Stefano Magni
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Fredrik Hoel
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Xiaobing Qing
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Jonathan Arias-Fuenzalida
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Tomasz Ignac
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Luis Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Center for Research of Biological Systems, University of California San Diego, La Jolla, CA 92093, USA
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg.
| |
Collapse
|
166
|
Schwertheim S, Westerwick D, Jastrow H, Theurer S, Schaefer CM, Kälsch J, Möllmann D, Schlattjan M, Wedemeyer H, Schmid KW, Baba HA. Intranuclear inclusions in hepatocellular carcinoma contain autophagy-associated proteins and correlate with prolonged survival. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 5:164-176. [PMID: 30859721 PMCID: PMC6648385 DOI: 10.1002/cjp2.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/05/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
For decades, intranuclear inclusions in many normal and neoplastic cells have been considered to be mere invaginations of cytoplasm into the nucleus without any notable function or influence on disease. We investigated such inclusions in 75 specimens of hepatocellular carcinoma (HCC). In this context we demonstrate that these inclusions are true inclusions, completely closed and delimited by the nuclear membrane, containing degenerate cell organelles and lysosomal proteins. Moreover, their occurrence was positively associated with patient survival but not with tumour grade or stage. In a standardised area a mean of 124 inclusions per specimen was present in the tumorous liver tissue in contrast to 5 inclusions in the non‐tumorous adjacent section and 89% of all scrutinised HCC showed at least one membrane‐bound nuclear inclusion. Ultrastructural characterisation by transmission electron microscopy revealed degenerative materials such as residues of lysosomes, endoplasmic reticulum and Golgi apparatus within the inclusions. Due to the fact that the content of the inclusions appears to be more condensed than cytoplasm and contains fewer intact cell organelles, we assume that they are not mere invaginations of cytoplasm. Three dimensional (3D) reconstruction of isolated and immunofluorescence stained nuclei showed that the inclusions are completely located within the nucleus without any connection to the cytoplasm. The limiting membrane of the inclusions contained lamin B suggesting nuclear membrane origin. The content of the inclusions stained for the autophagy‐associated proteins p62, ubiquitin, LC3B, cathepsin B and cathepsin D. Triple immunofluorescence staining followed by 3D reconstruction revealed co‐localisation of p62, ubiquitin and LC3B in the same inclusion. Our observations uncover that these inclusions are real inclusions completely surrounded by the nucleus. We propose that the presence of autophagy‐associated proteins and proteases within the inclusions contribute to beneficial survival.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Westerwick
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Institute of Anatomy, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Sarah Theurer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph M Schaefer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dorothe Möllmann
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Schlattjan
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,West German Cancer Centre Essen (WTZE), University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
167
|
Wang P, Nolan TM, Yin Y, Bassham DC. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy 2019; 16:123-139. [PMID: 30909785 DOI: 10.1080/15548627.2019.1598753] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a conserved catabolic process in eukaryotes that contributes to cell survival in response to multiple stresses and is important for organism fitness. In Arabidopsis thaliana, the core machinery of autophagy is well defined, but its transcriptional regulation is largely unknown. The ATG8 (autophagy-related 8) protein plays central roles in decorating autophagosomes and binding to specific cargo receptors to recruit cargo to autophagosomes. We propose that the transcriptional control of ATG8 genes is important during the formation of autophagosomes and therefore contributes to survival during stress. Here, we describe a yeast one-hybrid (Y1H) screen for transcription factors (TFs) that regulate ATG8 gene expression in Arabidopsis, using the promoters of 4 ATG8 genes. We identified a total of 225 TFs from 35 families that bind these promoters. The TF-ATG8 promoter interactions revealed a wide array of diverse TF families for different promoters, as well as enrichment for families of TFs that bound to specific fragments. These TFs are not only involved in plant developmental processes but also in the response to environmental stresses. TGA9 (TGACG (TGA) motif-binding protein 9)/AT1G08320 was confirmed as a positive regulator of autophagy. TGA9 overexpression activated autophagy under both control and stress conditions and transcriptionally up-regulated expression of ATG8B, ATG8E and additional ATG genes via binding to their promoters. Our results provide a comprehensive resource of TFs that regulate ATG8 gene expression and lay a foundation for understanding the transcriptional regulation of plant autophagy.Abbreviations: ABRC: Arabidopsis biological resource center; AP2-EREBP: APETALA2/Ethylene-responsive element binding protein; ARF: auxin response factor; ATF4: activating transcription factor 4; ATG: autophagy-related; ChIP: chromatin immunoprecipitation; DAP-seq: DNA affinity purification sequencing; FOXO: forkhead box O; GFP: green fluorescent protein; GO: gene ontologies; HB: homeobox; LD: long-day; LUC: firefly luciferase; MAP1LC3: microtubule associated protein 1 light chain 3; MDC: monodansylcadaverine; 3-MA: 3-methyladenine; OE: overexpressing; PCD: programmed cell death; qPCR: quantitative polymerase chain reaction; REN: renilla luciferase; RT: room temperature; SD: standard deviation; TF: transcription factor; TFEB: transcription factor EB; TGA: TGACG motif; TOR: target of rapamycin; TSS: transcription start site; WT: wild-type; Y1H: yeast one-hybrid.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
168
|
Puri D, Subramanyam D. Stress - (self) eating: Epigenetic regulation of autophagy in response to psychological stress. FEBS J 2019; 286:2447-2460. [PMID: 30927484 DOI: 10.1111/febs.14826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is a constitutive and cytoprotective catabolic process. Aberrations in autophagy lead to a multitude of degenerative disorders, with neurodegeneration being one of the most widely studied autophagy-related disorders. While the field has largely been focusing on the cytosolic constituents and processes of autophagy, recent studies are increasingly appreciating the role of chromatin modifications and epigenetic regulation in autophagy maintenance. Autophagy has been implicated in the regulation of neurogenesis, and disruption of neurogenesis in response to psychological stress is a proximal risk factor for development of neuropsychiatric disorders such as major depressive disorder (MDD). In this review, we will discuss the regulation of autophagy in normal neurogenesis as well as during chronic psychological stress, focusing on the epigenetic control of autophagy in these contexts, and also highlight the lacunae in our understanding of this process. The systematic study of these regulatory mechanisms will provide a novel therapeutic strategy, based on the use epigenetic regulators of autophagy to enhance neurogenesis and potentially alleviate stress-related behavioral disorders.
Collapse
Affiliation(s)
- Deepika Puri
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Deepa Subramanyam
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
169
|
Kim H, Williams D, Qiu Y, Song Z, Yang Z, Kimler V, Goldberg A, Zhang R, Yang Z, Chen X, Wang L, Fang D, Lin JD, Zhang K. Regulation of hepatic autophagy by stress-sensing transcription factor CREBH. FASEB J 2019; 33:7896-7914. [PMID: 30912978 DOI: 10.1096/fj.201802528r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy, a lysosomal degradative pathway in response to nutrient limitation, plays an important regulatory role in lipid homeostasis upon energy demands. Here, we demonstrated that the endoplasmic reticulum-tethered, stress-sensing transcription factor cAMP-responsive element-binding protein, hepatic-specific (CREBH) functions as a major transcriptional regulator of hepatic autophagy and lysosomal biogenesis in response to nutritional or circadian signals. CREBH deficiency led to decreased hepatic autophagic activities and increased hepatic lipid accumulation upon starvation. Under unfed or during energy-demanding phases of the circadian cycle, CREBH is activated to drive expression of the genes encoding the key enzymes or regulators in autophagosome formation or autophagic process, including microtubule-associated protein 1B-light chain 3, autophagy-related protein (ATG)7, ATG2b, and autophagosome formation Unc-51 like kinase 1, and the genes encoding functions in lysosomal biogenesis and homeostasis. Upon nutrient starvation, CREBH regulates and interacts with peroxisome proliferator-activated receptor α (PPARα) and PPARγ coactivator 1α to synergistically drive expression of the key autophagy genes and transcription factor EB, a master regulator of lysosomal biogenesis. Furthermore, CREBH regulates rhythmic expression of the key autophagy genes in the liver in a circadian-dependent manner. In summary, we identified CREBH as a key transcriptional regulator of hepatic autophagy and lysosomal biogenesis for the purpose of maintaining hepatic lipid homeostasis under nutritional stress or circadian oscillation.-Kim, H., Williams, D., Qiu, Y., Song, Z., Yang, Z., Kimler, V., Goldberg, A., Zhang, R., Yang, Z., Chen, X., Wang, L., Fang, D., Lin, J. D., Zhang, K. Regulation of hepatic autophagy by stress-sensing transcription factor CREBH.
Collapse
Affiliation(s)
- Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dreana Williams
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yining Qiu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhao Yang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Victoria Kimler
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Andrew Goldberg
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zengquan Yang
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Li Wang
- Department of Physiology and Neurobiology-Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.,Department of Internal Medicine, Liver Center, Yale University, New Haven, Connecticut, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA.,Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
170
|
RNA Binding Protein HuR Promotes Autophagosome Formation by Regulating Expression of Autophagy-Related Proteins 5, 12, and 16 in Human Hepatocellular Carcinoma Cells. Mol Cell Biol 2019; 39:MCB.00508-18. [PMID: 30602494 PMCID: PMC6399664 DOI: 10.1128/mcb.00508-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a process of lysosomal self-degradation of cellular components by forming autophagosomes. Autophagosome formation is an essential process in autophagy and is fine-tuned by various autophagy-related gene (ATG) products, including ATG5, ATG12, and ATG16. Although several reports have shown that numerous factors affect multiple levels of gene regulation to orchestrate cellular autophagy, the detailed mechanism of autophagosome formation still needs further investigation. In this study, we demonstrate that the RNA binding protein HuR (human antigen R) performs an essential function in autophagosome formation. We observe that HuR silencing leads to inhibition of autophagosome formation and autophagic flux in liver cells. Ribonucleoprotein immunoprecipitation (RIP) assay allows the identification of ATG5, ATG12, and ATG16 mRNAs as the direct targets of HuR. We further show that HuR mediates the translation of ATG5, ATG12, and ATG16 mRNAs by binding to their 3' untranslated regions (UTRs). In addition, we show that HuR expression positively correlates with the levels of ATG5 and ATG12 in hepatocellular carcinoma (HCC) cells. Collectively, our results suggest that HuR functions as a pivotal regulator of autophagosome formation by enhancing the translation of ATG5, ATG12, and ATG16 mRNAs and that augmented expression of HuR and ATGs may participate in the malfunction of autophagy in HCC cells.
Collapse
|
171
|
Liu J, Liu W, Yang H. Balancing Apoptosis and Autophagy for Parkinson's Disease Therapy: Targeting BCL-2. ACS Chem Neurosci 2019; 10:792-802. [PMID: 30400738 DOI: 10.1021/acschemneuro.8b00356] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apoptosis and autophagy are important intracellular processes that maintain organism homeostasis and promote survival. Autophagy selectively degrades damaged cellular organelles and protein aggregates, while apoptosis removes damaged or aged cells. Maintaining a balance between autophagy and apoptosis is critical for cell fate, especially for long-lived cells such as neurons. Conversely, their imbalance is associated with neurodegenerative diseases such as Parkinson's disease (PD), which is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Restoring the balance between autophagy and apoptosis is a promising strategy for the treatment of PD. Some core proteins engage in cross talk between apoptosis and autophagy, including B cell lymphoma (BCL)-2 family members. This Review summarizes the role of BCL-2 members in the regulation of apoptosis and autophagy and discusses potential therapeutic approaches that target this balance for PD treatment.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurobiology School of
Basic Medical Sciences, Capital Medical University, Center of Parkinson’s
Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory
of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s
Disease, Key Laboratory for Neurodegenerative Disease of the Ministry
of Education, Beijing 100069, China
| | - Weijing Liu
- Department of Neurobiology School of
Basic Medical Sciences, Capital Medical University, Center of Parkinson’s
Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory
of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s
Disease, Key Laboratory for Neurodegenerative Disease of the Ministry
of Education, Beijing 100069, China
| | - Hui Yang
- Department of Neurobiology School of
Basic Medical Sciences, Capital Medical University, Center of Parkinson’s
Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory
of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s
Disease, Key Laboratory for Neurodegenerative Disease of the Ministry
of Education, Beijing 100069, China
| |
Collapse
|
172
|
Nrf2-miR-129-3p-mTOR Axis Controls an miRNA Regulatory Network Involved in HDACi-Induced Autophagy. Mol Ther 2019; 27:1039-1050. [PMID: 30852137 DOI: 10.1016/j.ymthe.2019.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase inhibitors (HDACis) are the recommended treatment for many solid tumors; however, resistance is a major clinical obstacle for their efficacy. High levels of the transcription factor nuclear factor erythroid 2 like-2 (Nrf2) in cancer cells suggest a vital role in chemoresistance, and regulation of autophagy is one mechanism by which Nrf2 mediates chemoresistance. Although the molecular mechanisms underlying this activity are unclear, understanding them may ultimately improve therapeutic outcomes following HDACi treatment. In this study, we found that HDACi treatment increased Nrf2 mRNA and protein levels and enhanced Nrf2 transcriptional activity. Conversely, Nrf2 knockdown or inhibition blocked HDACi-induced autophagy. In addition, a microRNA (miRNA) array identified upregulation of miR-129-3p in response to Nrf2 overexpression. Chromatin immunoprecipitation assays confirmed miR-129-3p to be a direct Nrf2 target. RepTar and RNAhybrid databases indicated mammalian target of rapamycin (mTOR) as a potential miR-129-3p target, which we experimentally confirmed. Finally, Nrf2 inhibition or miR-129-3p in combination with HDACis increased cell death in vitro and in vivo. Collectively, these results demonstrated that Nrf2 regulates mTOR during HDACi-induced autophagy through miRNA-129-3p and inhibition of this pathway could enhance HDACi-mediated cell death.
Collapse
|
173
|
Nanduri R, Kalra R, Bhagyaraj E, Chacko AP, Ahuja N, Tiwari D, Kumar S, Jain M, Parkesh R, Gupta P. AutophagySMDB: a curated database of small molecules that modulate protein targets regulating autophagy. Autophagy 2019; 15:1280-1295. [PMID: 30669929 DOI: 10.1080/15548627.2019.1571717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Macroautophagy/autophagy is a complex self-degradative mechanism responsible for clearance of non functional organelles and proteins. A range of factors influences the autophagic process, and disruptions in autophagy-related mechanisms lead to disease states, and further exacerbation of disease. Despite in-depth research into autophagy and its role in pathophysiological processes, the resources available to use it for therapeutic purposes are currently lacking. Herein we report the Autophagy Small Molecule Database (AutophagySMDB; http://www.autophagysmdb.org/ ) of small molecules and their cognate protein targets that modulate autophagy. Presently, AutophagySMDB enlists ~10,000 small molecules which regulate 71 target proteins. All entries are comprised of information such as EC50 (half maximal effective concentration), IC50 (half maximal inhibitory concentration), Kd (dissociation constant) and Ki (inhibition constant), IUPAC name, canonical SMILE, structure, molecular weight, QSAR (quantitative structure activity relationship) properties such as hydrogen donor and acceptor count, aromatic rings and XlogP. AutophagySMDB is an exhaustive, cross-platform, manually curated database, where either the cognate targets for small molecule or small molecules for a target can be searched. This database is provided with different search options including text search, advanced search and structure search. Various computational tools such as tree tool, cataloging tools, and clustering tools have also been implemented for advanced analysis. Data and the tools provided in this database helps to identify common or unique scaffolds for designing novel drugs or to improve the existing ones for autophagy small molecule therapeutics. The approach to multitarget drug discovery by identifying common scaffolds has been illustrated with experimental validation. Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy related; AutophagySMDB: autophagy small molecule database; BCL2: BCL2, apoptosis regulator; BECN1: beclin 1; CAPN: calpain; MTOR: mechanistic target of rapamycin kinase; PPARG: peroxisome proliferator activated receptor gamma; SMILES: simplified molecular input line entry system; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Rashi Kalra
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Ella Bhagyaraj
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Anuja P Chacko
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Nancy Ahuja
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Drishti Tiwari
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Sumit Kumar
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Monika Jain
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Raman Parkesh
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Pawan Gupta
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
174
|
Pesonen M, Vähäkangas K. Autophagy in exposure to environmental chemicals. Toxicol Lett 2019; 305:1-9. [PMID: 30664929 DOI: 10.1016/j.toxlet.2019.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022]
Abstract
Autophagy is a catabolic pathway, which breaks down old and damaged cytoplasmic material into basic biomolecules through lysosome-mediated digestion thereby recycling cellular material. In this way, autophagy prevents the accumulation of damaged cellular components inside cells and reduces metabolic stress and toxicity. The basal level of autophagy is generally low but essential for maintaining the turnover of proteins and other molecules. The level is, however, increased in response to various stress conditions including chemical stress. This elevation in autophagy is intended to restore energy balance and improve cell survival in stress conditions. However, aberrant and/or deficient autophagy may also be involved in the aggravation of chemical-caused insults. Thus, the overall role of autophagy in chemical-induced toxicity is complex and only a limited number of environmental chemicals have been studied from this point of view. Autophagy is associated with many of the chemical-caused cytotoxic mechanisms, including mitochondrial dysfunction, DNA damage, oxidative stress, changes in the endoplasmic reticulum, impairment of lysosomal functions, and inflammation. This mini-review describes autophagy and its involvement in the responses to some common environmental exposures including airborne particulate matter, nanoparticles and tobacco smoke as well as to some common single environmental chemicals.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Science, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Science, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
175
|
Mao W, Peters HL, Sutton MN, Orozco AF, Pang L, Yang H, Lu Z, Bast RC. The role of vascular endothelial growth factor, interleukin 8, and insulinlike growth factor in sustaining autophagic DIRAS3-induced dormant ovarian cancer xenografts. Cancer 2019; 125:1267-1280. [PMID: 30620384 DOI: 10.1002/cncr.31935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Re-expression of the imprinted tumor suppressor gene DIRAS family GTPase 3 (DIRAS3) (aplysia ras homology member I [ARHI]) induces autophagy and tumor dormancy in ovarian cancer xenografts, but drives autophagic cancer cell death in cell culture. The current study explored the tumor and host factors required to prevent autophagic cancer cell death in xenografts and the use of antibodies against those factors or their receptors to eliminate dormant autophagic ovarian cancer cells. METHODS Survival factors (insulinlike growth factor 1 [IGF-1], vascular endothelial growth factor [VEGF], and interleukin 8 [IL-8]) were detected with growth factor arrays and measured using enzyme-linked immunoadsorbent assay analysis. Phosphorylation of protein kinase B (AKT), phosphorylation of extracellular signal-regulated kinase (ERK), nuclear localization of translocation factor EB (TFEB) or forkhead box O3a (FOXo3a), and expression of microtubule-associated proteins 1A/1B light chain 3B (MAPLC3B; LC3B) were examined using Western blot analysis. The effect of treatment with antibodies against survival factors or their receptors was studied using DIRAS3-induced dormant xenograft models. RESULTS Ovarian cancer cells grown subcutaneously in nude mice exhibited higher levels of phosphorylated ERK/AKT activity and lower levels of nuclear TFEB/FOXo3a, MAPLC3B, and autophagy compared with cells grown in culture. Induction of autophagy and dormancy with DIRAS3 was associated with decreased ERK/AKT signaling. The addition of VEGF, IGF-1, and IL-8 weakened the inhibitory effect of DIRAS3 on ERK/AKT activity and reduced DIRAS3-mediated TFEB or FOXo3a nuclear localization and MAPLC3B expression in ovarian cancer cells. Treatment with antibodies against VEGF, IL-8, and IGF receptor inhibited the growth of dormant xenografts, thereby prolonging survival from 99 to >220 days (P < .05) and curing a percentage of mice. CONCLUSIONS Treatment with a combination of anti-VEGF, anti-IL-8, and anti-IGF receptor antibodies prevented the outgrowth of dormant cells and prolonged survival in a preclinical model.
Collapse
Affiliation(s)
- Weiqun Mao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haley L Peters
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Margie N Sutton
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aaron F Orozco
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lan Pang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
176
|
Epigenetic Regulation of Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:221-236. [DOI: 10.1007/978-981-15-0602-4_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
177
|
Kuroki T, Osari S, Nagata K, Kawaguchi A. Influenza A Virus NS1 Protein Suppresses JNK1-Dependent Autophagosome Formation Mediated by Rab11a Recycling Endosomes. Front Microbiol 2018; 9:3120. [PMID: 30619194 PMCID: PMC6302085 DOI: 10.3389/fmicb.2018.03120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023] Open
Abstract
Autophagy is an essential process for cellular metabolism and homeostasis, but also functions as one of innate immune responses against pathogen infection. However, in contrast to cellular metabolism and homeostasis pathways, less is known about how virus infection leads to autophagosome formation. Here, we showed that influenza A virus NS1 protein inhibits the formation of autophagosomes. The autophagosome formation was induced by infection with NS1 mutant virus lacking the dsRNA-binding activity for inhibition of innate immune responses (R38AK41A) or the activation of PI3K-Akt signaling pathway (Y89F). R38AK41A mutant infection induced phosphorylation of JNK1 and up-regulated the expression of autophagy-related genes which are downstream of JNK1 signaling pathway. We also found that the amount of phosphorylated TSC2, which activates mTOR, increased in wild type-infected cells but not in Y89F mutant-infected cells. These findings suggest that NS1 inhibits the autophagosome formation through both the inhibition of JNK1 and the activation of PI3K-Akt-mTOR pathway. Further, viral ribonucleoprotein (vRNP) complexes were selectively sequestered into autophagosomes, and knockdown of Rab11a, which is responsible for the apical transport of vRNP complexes, impaired not only engulfment of vRNP complexes by autophagosomes but also the formation of autophagosomes in R38AK41A mutant-infected cells. This indicates that Rab11a-positive recycling endosomes function as a donor membrane for the phagophore elongation and an autophagic receptor for the selective engulfment of viral RNP complexes. Based on these results, we propose that NS1 inhibits JNK1-mediated autophagy induction and the sequestration of vRNP complexes into autophagosomes.
Collapse
Affiliation(s)
- Takahiro Kuroki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Suguru Osari
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
178
|
Qian S, Han Y, Shi Y, Xu W, Zhu Y, Jiang S, Chen Y, Yu Z, Zhang S, Yang Y, Yu K, Zhang S. Benzene induces haematotoxicity by promoting deacetylation and autophagy. J Cell Mol Med 2018; 23:1022-1033. [PMID: 30411500 PMCID: PMC6349156 DOI: 10.1111/jcmm.14003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic exposure to benzene is known to be associated with haematotoxicity and the development of aplastic anaemia and leukaemia. However, the mechanism underlying benzene-induced haematotoxicity, especially at low concentrations of chronic benzene exposure has not been well-elucidated. Here, we found that increased autophagy and decreased acetylation occurred in bone marrow mononuclear cells (BMMNCs) isolated from patients with chronic benzene exposure. We further showed in vitro that benzene metabolite, hydroquinone (HQ) could directly induce autophagy without apoptosis in BMMNCs and CD34+ cells. This was mediated by reduction in acetylation of autophagy components through inhibiting the activity of acetyltransferase, p300. Furthermore, elevation of p300 expression by Momordica Antiviral Protein 30 Kd (MAP30) or chloroquine reduced HQ-induced autophagy. We further demonstrated that in vivo, MAP30 and chloroquine reversed benzene-induced autophagy and haematotoxicity in a mouse model. Taken together, these findings highlight increased autophagy as a novel mechanism for benzene-induced haematotoxicity and provide potential strategies to reverse this process for therapeutic benefits.
Collapse
Affiliation(s)
- Shanhu Qian
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yixiang Han
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanling Xu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyi Zhu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecule Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiping Yang
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Kang Yu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
179
|
Wang C, Bauckman KA, Ross ASB, Symington JW, Ligon MM, Scholtes G, Kumar A, Chang HW, Twentyman J, Fashemi BE, Xavier RJ, Mysorekar IU. A non-canonical autophagy-dependent role of the ATG16L1 T300A variant in urothelial vesicular trafficking and uropathogenic Escherichia coli persistence. Autophagy 2018; 15:527-542. [PMID: 30335568 DOI: 10.1080/15548627.2018.1535290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
50% of Caucasians carry a Thr300Ala variant (T300A) in the protein encoded by the macroautophagy/autophagy gene ATG16L1. Here, we show that the T300A variant confers protection against urinary tract infections (UTIs), the most common infectious disease in women. Using knockin mice carrying the human T300A variant, we show that the variant limits the UTI-causing bacteria, uropathogenic Escherichia coli (UPEC), from establishing persistent intracellular reservoirs, which can seed UTI recurrence. This phenotype is recapitulated in mice lacking Atg16l1 or Atg7 exclusively in the urothelium. We further show that mice with the T300A variant exhibit urothelial cellular abnormalities, including vesicular congestion and aberrant accumulation of UPK (uroplakin) proteins. Importantly, presence of the T300A variant in humans is associated with similar urothelial architectural abnormalities, indicating an evolutionarily conserved impact. Mechanistically, we show that the reduced bacterial persistence is independent of basal autophagic flux or proinflammatory cytokine responses and does not involve Atg14 or Epg5. However, the T300A variant is associated with increased expression of the small GTPase Rab33b; RAB33B interacts with ATG16L1, as well as other secretory RABs, RAB27B and RAB11A, important for UPEC exocytosis from the urothelium. Finally, inhibition of secretory RABs in bladder epithelial cells increases intracellular UPEC load. Together, our results reveal that UPEC selectively utilize genes important for autophagosome formation to persist in the urothelium, and that the presence of the T300A variant in ATG16L1 is associated with changes in urothelial vesicle trafficking, which disrupts the ability of UPEC to persist, thereby limiting the risk of recurrent UTIs. Abbreviations: 3-PEHPC: 3-pyridinyl ethylidene hydroxyl phosphonocarboxylate; ATG: autophagy; ATG16L1: autophagy related 16 like 1; BECs: bladder epithelial cells; dpi: days post infection; hpi: hours post infection; IF: immunofluorescence; IL1B: interleukin 1 beta; IL6: interleukin 6; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MVB: multivesicular bodies; T300A: Thr300Ala; TNF: tumor necrosis factor; QIR(s): quiescent intracellular reservoir(s); siRNA: short interfering RNA; UPEC: uropathogenic Escherichia coli; UTI(s): urinary tract infection(s); TEM: transmission electron microscopy; WT: wild type.
Collapse
Affiliation(s)
- Caihong Wang
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA
| | - Kyle A Bauckman
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA
| | - Adam S B Ross
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA
| | - Jane W Symington
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA
| | - Marianne M Ligon
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA
| | - Gael Scholtes
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA
| | - Akhil Kumar
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA
| | - Hao-Wei Chang
- b Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Joy Twentyman
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA
| | - Bisiayo E Fashemi
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA
| | - Ramnik J Xavier
- c Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease , Massachusetts General Hospital and Harvard Medical School , Boston , MA , USA
| | - Indira U Mysorekar
- a Department of Obstetrics and Gynecology , Washington University School of Medicine , St. Louis , MO , USA.,b Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
180
|
Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management. Pharmacol Ther 2018; 191:1-22. [PMID: 29909238 PMCID: PMC6195437 DOI: 10.1016/j.pharmthera.2018.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022]
Abstract
Although advances in medical technology and health care have improved the early diagnosis and management for cardiorenal metabolic disorders, the prevalence of obesity, insulin resistance, diabetes, hypertension, dyslipidemia, and kidney disease remains high. Findings from numerous population-based studies, clinical trials, and experimental evidence have consolidated a number of theories for the pathogenesis of cardiorenal metabolic anomalies including resistance to the metabolic action of insulin, abnormal glucose and lipid metabolism, oxidative and nitrosative stress, endoplasmic reticulum (ER) stress, apoptosis, mitochondrial damage, and inflammation. Accumulating evidence has recently suggested a pivotal role for proteotoxicity, the unfavorable effects of poor protein quality control, in the pathophysiology of metabolic dysregulation and related cardiovascular complications. The ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathways, two major although distinct cellular clearance machineries, govern protein quality control by degradation and clearance of long-lived or damaged proteins and organelles. Ample evidence has depicted an important role for protein quality control, particularly autophagy, in the maintenance of metabolic homeostasis. To this end, autophagy offers promising targets for novel strategies to prevent and treat cardiorenal metabolic diseases. Targeting autophagy using pharmacological or natural agents exhibits exciting new strategies for the growing problem of cardiorenal metabolic disorders.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Adam T Whaley-Connell
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - James R Sowers
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
181
|
Abstract
Epigenetics is the study of heritable mechanisms that can modify gene activity and phenotype without modifying the genetic code. The basis for the concept of epigenetics originated more than 2,000 yr ago as a theory to explain organismal development. However, the definition of epigenetics continues to evolve as we identify more of the components that make up the epigenome and dissect the complex manner by which they regulate and are regulated by cellular functions. A substantial and growing body of research shows that nutrition plays a significant role in regulating the epigenome. Here, we critically assess this diverse body of evidence elucidating the role of nutrition in modulating the epigenome and summarize the impact such changes have on molecular and physiological outcomes with regards to human health.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Departments of Genetics and Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina; and Departments of Nutrition and Pediatrics, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Steven H Zeisel
- Departments of Genetics and Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina; and Departments of Nutrition and Pediatrics, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| |
Collapse
|
182
|
Abstract
Macroautophagy/autophagy is vital for intracellular quality control and homeostasis. Therefore, careful regulation of autophagy is very important. In the past 10 years, a number of studies have reported that estrogenic effectors affect autophagy. However, some results, especially those regarding the modulatory effect of 17β-estradiol (E2) on autophagy seem inconsistent. Moreover, several clinical trials are already in place combining both autophagy inducers and autophagy inhibitors with endocrine therapies for breast cancer. Not all patients experience benefit, which further confuses and complicates our understanding of the main effects of autophagy in estrogen-related cancer. In view of the importance of the crosstalk between estrogen signaling and autophagy, this review summarizes the estrogenic effectors reported to affect autophagy, subcellular distribution and translocation of estrogen receptors, autophagy-targeted transcription factors (TFs), miRNAs, and histone modifications regulated by E2. Upon stimulation with estrogen, there will always be opposing functional actions, which might occur between different receptors, receptors on TFs, TFs on autophagy genes, or even histone modifications on transcription. The huge signaling network downstream of estrogen can promote autophagy and reduce overstimulated autophagy at the same time, which allows autophagy to be regulated by estrogen in a restricted range. To help understand how the estrogenic regulation of autophagy affects cell fate, a hypothetical model is presented here. Finally, we discuss some exciting new directions in the field. We hope this might help to better understand the multiple associations between estrogen and autophagy, the pathogenic mechanisms of many estrogen-related diseases, and to design novel and efficacious therapeutics. Abbreviations: AP-1, activator protein-1; HATs, histone acetyltransferases; HDAC, histone deacetylases; HOTAIR, HOX transcript antisense RNA.
Collapse
Affiliation(s)
- Jin Xiang
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Xiang Liu
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Jing Ren
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Kun Chen
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Hong-Lu Wang
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Yu-Yang Miao
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Miao-Miao Qi
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| |
Collapse
|
183
|
Ambrosio S, Ballabio A, Majello B. Histone methyl-transferases and demethylases in the autophagy regulatory network: the emerging role of KDM1A/LSD1 demethylase. Autophagy 2018; 15:187-196. [PMID: 30208749 DOI: 10.1080/15548627.2018.1520546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macroautophagy/autophagy is a physiological mechanism that is essential for the maintenance of cellular homeostasis and stress adaptation. Defective autophagy is associated with many human diseases, including cancer and neurodegenerative disorders. The emerging implication of epigenetic events in the control of the autophagic process opens new avenues of investigation and offers the opportunity to develop novel therapeutic strategies in diseases associated with dysfunctional autophagy-lysosomal pathways. Accumulating evidence reveals that several methyltransferases and demethylases are essential regulators of autophagy, and recent studies have led to the identification of the lysine demethylase KDM1A/LSD1 as a promising drug target. KDM1A/LSD1 modulates autophagy at multiple levels, participating in the transcriptional control of several downstream effectors. This review summarizes our current understanding of the role of KDM1A/LSD1 in the autophagy regulatory network.
Collapse
Affiliation(s)
- Susanna Ambrosio
- a Department of Biology , Federico II University , Naples , Italy.,b Telethon Institute of Genetics and Medicine (TIGEM) , Pozzuoli, Naples , Italy
| | - Andrea Ballabio
- b Telethon Institute of Genetics and Medicine (TIGEM) , Pozzuoli, Naples , Italy.,c Medical Genetics, Department of Translational Medicine , Federico II University , Naples , Italy.,d Department of Molecular and Human Genetics , Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital , Houston , TX , USA
| | - Barbara Majello
- a Department of Biology , Federico II University , Naples , Italy
| |
Collapse
|
184
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
185
|
Peeters JGC, Picavet LW, Coenen SGJM, Mauthe M, Vervoort SJ, Mocholi E, de Heus C, Klumperman J, Vastert SJ, Reggiori F, Coffer PJ, Mokry M, van Loosdregt J. Transcriptional and epigenetic profiling of nutrient-deprived cells to identify novel regulators of autophagy. Autophagy 2018; 15:98-112. [PMID: 30153076 PMCID: PMC6287694 DOI: 10.1080/15548627.2018.1509608] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is a lysosomal degradation pathway critical for maintaining cellular homeostasis and viability, and is predominantly regarded as a rapid and dynamic cytoplasmic process. To increase our understanding of the transcriptional and epigenetic events associated with autophagy, we performed extensive genome-wide transcriptomic and epigenomic profiling after nutrient deprivation in human autophagy-proficient and autophagy-deficient cells. We observed that nutrient deprivation leads to the transcriptional induction of numerous autophagy-associated genes. These transcriptional changes are reflected at the epigenetic level (H3K4me3, H3K27ac, and H3K56ac) and are independent of autophagic flux. As a proof of principle that this resource can be used to identify novel autophagy regulators, we followed up on one identified target: EGR1 (early growth response 1), which indeed appears to be a central transcriptional regulator of autophagy by affecting autophagy-associated gene expression and autophagic flux. Taken together, these data stress the relevance of transcriptional and epigenetic regulation of autophagy and can be used as a resource to identify (novel) factors involved in autophagy regulation.
Collapse
Affiliation(s)
- J G C Peeters
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - L W Picavet
- b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - S G J M Coenen
- b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - M Mauthe
- d Department of Cell Biology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - S J Vervoort
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - E Mocholi
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - C de Heus
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,f Department of Cell Biology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - J Klumperman
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,f Department of Cell Biology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - S J Vastert
- b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - F Reggiori
- d Department of Cell Biology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - P J Coffer
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - M Mokry
- c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,g Epigenomics facility , University Medical Center Utrecht , Utrecht , The Netherlands
| | - J van Loosdregt
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| |
Collapse
|
186
|
Zhou W, Gong L, Wu Q, Xing C, Wei B, Chen T, Zhou Y, Yin S, Jiang B, Xie H, Zhou L, Zheng S. PHF8 upregulation contributes to autophagic degradation of E-cadherin, epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:215. [PMID: 30180906 PMCID: PMC6122561 DOI: 10.1186/s13046-018-0890-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Background Plant homeodomain finger protein 8 (PHF8) serves an activator of epithelial-mesenchymal transition (EMT) and is implicated in various tumors. However, little is known about PHF8 roles in hepatocellular carcinoma (HCC) and regulating E-cadherin expression. Methods PHF8 expression pattern was investigated by informatic analysis and verified by RT-qPCR and immunochemistry in HCC tissues and cell lines. CCK8, xenograft tumor model, transwell assay, and tandem mCherry-GFP-LC3 fusion protein assay were utilized to assess the effects of PHF8 on proliferation, metastasis and autophagy of HCC cells in vitro and in vivo. ChIP, immunoblot analysis, rescue experiments and inhibitor treatment were used to clarify the mechanism by which PHF8 facilitated EMT, metastasis and autophagy. Results PHF8 upregulation was quite prevalent in HCC tissues and closely correlated with worse overall survival and disease-relapse free survival. Furthermore, PHF8-knockdown dramatically suppressed cell growth, migration, invasion and autophagy, and the expression of SNAI1, VIM, N-cadherin and FIP200, and increased E-cadherin level, while PHF8-overexpression led to the opposite results. Additionally, FIP200 augmentation reversed the inhibited effects of PHF8-siliencing on tumor migration, invasion and autophagy. Mechanistically, PHF8 was involved in transcriptionally regulating the expression of SNAI1, VIM and FIP200, rather than N-cadherin and E-cadherin. Noticeably, E-cadherin degradation could be accelerated by PHF8-mediated FIP200-dependent autophagy, a crucial pathway complementary to transcriptional repression of E-cadherin by SNAI1 activation. Conclusion These findings suggested that PHF8 played an oncogenic role in facilitating FIP200-dependent autophagic degradation of E-cadherin, EMT and metastasis in HCC. PHF8 might be a promising target for prevention, treatment and prognostic prediction of HCC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0890-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wuhua Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Li Gong
- Department of Endocrinology, Taihe Hospital, Shiyan, China
| | - Qinchuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Chunyang Xing
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bajin Wei
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Tianchi Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Yuan Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Shengyong Yin
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Bin Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Shiyan, China
| | - Haiyang Xie
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China. .,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China. .,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China. .,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China. .,Key Laboratory of the Diagnosis and Treatment of Organ transplantation, CAMS, Hangzhou, China. .,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China. .,Collaborative Innovation Center for Diagnosis Treatment of Infectious Disease, Zhejiang University, Hangzhou, China.
| |
Collapse
|
187
|
He M, Xu Y, Chen J, Luo Y, Lv Y, Su J, Kershaw MJ, Li W, Wang J, Yin J, Zhu X, Liu X, Chern M, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Ren Z, Wu X, Li P, Li S, Peng Y, Lin F, Talbot NJ, Chen X. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. Autophagy 2018; 14:1543-1561. [PMID: 29929416 DOI: 10.1080/15548627.2018.1458171] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy is essential for appressorium-mediated plant infection by Magnaporthe oryzae, the causal agent of rice blast disease and a major threat to global food security. The regulatory mechanism of pathogenicity-associated autophagy, however, remains largely unknown. Here, we report the identification and functional characterization of a plausible ortholog of yeast SNT2 in M. oryzae, which we term MoSNT2. Deletion mutants of MoSNT2 are compromised in autophagy homeostasis and display severe defects in autophagy-dependent fungal cell death and pathogenicity. These mutants are also impaired in infection structure development, conidiation, oxidative stress tolerance and cell wall integrity. MoSnt2 recognizes histone H3 acetylation through its PHD1 domain and thereby recruits the histone deacetylase complex, resulting in deacetylation of H3. MoSnt2 binds to promoters of autophagy genes MoATG6, 15, 16, and 22 to regulate their expression. In addition, MoTor controls MoSNT2 expression to regulate MoTor signaling which leads to autophagy and rice infection. Our study provides evidence of a direct link between MoSnt2 and MoTor signaling and defines a novel epigenetic mechanism by which MoSNT2 regulates infection-associated autophagy and plant infection by the rice blast fungus. ABBREVIATIONS M. oryzae: Magnaporthe oryzae; S. cerevisiae: Saccharomyces cerevisiae; F. oxysporum: Fusarium oxysporum; U. maydis: Ustilago maydis; Compl.: complemented strains of ΔMosnt2 expressing MoSNT2-GFP; ATG: autophagy-related; HDAC: histone deacetylase complex; Tor: target of rapamycin kinase; MTOR: mechanistic target of rapamycin kinase in mammals; MoSnt2: DNA binding SaNT domain protein in M. oryzae; MoTor: target of rapamycin kinase in M. oryzae; MoAtg8: autophagy-related protein 8 in M. oryzae; MoHos2: hda one similar protein in M. oryzae; MoeIf4G: eukaryotic translation initiation factor 4 G in M. oryzae; MoRs2: ribosomal protein S2 in M. oryzae; MoRs3: ribosomal protein S3 in M. oryzae; MoIcl1: isocitrate lyase in M. oryzae; MoSet1: histone H3K4 methyltransferase in M. oryzae; Asd4: ascus development 4; Abl1: AMP-activated protein kinase β subunit-like protein; Tig1: TBL1-like gene required for invasive growth; Rpd3: reduced potassium dependency; KAT8: lysine (K) acetyltransferase 8; PHD: plant homeodomain; ELM2: Egl-27 and MTA1 homology 2; GFP: green fluorescent protein; YFP: yellow fluorescent protein; YFPCTF: C-terminal fragment of YFP; YFPNTF: N-terminal fragment of YFP; GST: glutathione S-transferase; bp: base pairs; DEGs: differentially expressed genes; CM: complete medium; MM-N: minimum medium minus nitrogen; CFW: calcofluor white; CR: congo red; DAPI: 4', 6-diamidino-2-phenylindole; BiFC: bimolecular fluorescence complementation; RT: reverse transcription; PCR: polymerase chain reaction; qPCR: quantitative polymerase chain reaction; RNAi: RNA interference; ChIP: chromatin immunoprecipitation.
Collapse
Affiliation(s)
- Min He
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China.,b School of Biosciences , University of Exeter , Exeter , UK
| | - Youpin Xu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jinhua Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yuan Luo
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yang Lv
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jia Su
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | | | - Weitao Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jing Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Junjie Yin
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xiaobo Zhu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xiaohong Liu
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | - Mawsheng Chern
- d Department of Plant Pathology , University of California , Davis , CA , USA
| | - Bingtian Ma
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jichun Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Peng Qin
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Weilan Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yuping Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Wenming Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Zhenglong Ren
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xianjun Wu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Ping Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Shigui Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Youliang Peng
- e State Key Laboratory of Agrobiotechnology and MOA, Key Laboratory of Plant Pathology , China Agricultural University , Beijing , China
| | - Fucheng Lin
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | | | - Xuewei Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
188
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|
189
|
Neill T, Andreuzzi E, Wang ZX, Peiper SC, Mongiat M, Iozzo RV. Endorepellin remodels the endothelial transcriptome toward a pro-autophagic and pro-mitophagic gene signature. J Biol Chem 2018; 293:12137-12148. [PMID: 29921586 PMCID: PMC6078466 DOI: 10.1074/jbc.ra118.002934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Indexed: 12/24/2022] Open
Abstract
Regulation of autophagy by proteolytically cleaved fragments of heparan sulfate proteoglycans is a novel and current research focus in tumor biology. Endorepellin is the C-terminal angiostatic fragment of the heparan sulfate proteoglycan perlecan and induces autophagy in endothelial cells. To further investigate this property, we used NanoString, a digital PCR platform for measuring pre-defined transcripts in biological samples to analyze a custom subset of 95 autophagy-related genes in human umbilical vein endothelial cells treated with ultrapure human recombinant endorepellin. We discovered an endorepellin-evoked pro-autophagic and pro-mitophagic gene expression signatures, which included two coordinately up-regulated mitochondrial-associated genes encoding the E3 ubiquitin protein ligase Parkin and the tumor suppressor mitostatin. Induction of both proteins required the tyrosine kinase activity of vascular endothelial growth factor receptor 2 (VEGFR2). Furthermore, we discovered that endorepellin evoked mitochondrial depolarization in endothelial cells via a specific interaction between its two proximal LG1/2 domains and VEGFR2. We also found that following loss of membrane potential, mitostatin and parkin interact and that mitostatin associates with the established Parkin receptor mitofusin-2. In conclusion, we have identified a critical role for endorepellin in remodeling the autophagic transcriptome and influencing mitochondrial homeostasis.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Eva Andreuzzi
- Department of Translational Research, Experimental Oncology Division 2, CRO Aviano-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Stephen C Peiper
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Maurizo Mongiat
- Department of Translational Research, Experimental Oncology Division 2, CRO Aviano-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
190
|
Huntingtin Aggregation Impairs Autophagy, Leading to Argonaute-2 Accumulation and Global MicroRNA Dysregulation. Cell Rep 2018; 24:1397-1406. [DOI: 10.1016/j.celrep.2018.07.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/19/2018] [Accepted: 07/04/2018] [Indexed: 11/21/2022] Open
|
191
|
Chi Y, Xu H, Wang F, Chen X, Shan Z, Sun Y, Fan Q. ZKSCAN3 promotes breast cancer cell proliferation, migration and invasion. Biochem Biophys Res Commun 2018; 503:2583-2589. [PMID: 30049438 DOI: 10.1016/j.bbrc.2018.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023]
Abstract
ZKSCAN3, a zinc-finger transcription factor, which has been shown to be upregulated in several human cancer. However, the expression level, function and mechanism of ZKSCAN3 in breast cancer remains unknown. In the current study, immunohistochemistry, western blot and quantitative real time polymerase chain reaction (qRT-PCR) results showed that ZKSCAN3 was overexpressed in breast cancer tissue compared with normal breast tissue. Through analyzing the clinicopathological characteristics, we demonstrated that positive ZKSCAN3 expression predicted poor prognosis of patients with breast cancer. The expression level of ZKSCAN3 protein/mRNA in breast cancer cells (MCF-7 and MDA-MB-231) was higher than its expression in normal breast cells (HBL-100). Knocking down ZKSCAN3 via its short hairpin RNA (shRNA) in MCF-7 and MDA-MB-231 inhibited cell viability, migration and invasion. Western blot analysis showed that ZKSCAN3 silencing lead to significant decreases in the expression of Cyclin D1, B-cell lymphoma-2 (Bcl-2), and matrix metalloproteinase (MMP)-2/MMP-9, as well as increases in the expression of Bcl2 Associated X Protein (Bax) in breast cancer cells. Additionally, ZKSCAN3-shRNA expression markedly suppressed tumor growth in breast cancer xenograft mice. Finally, we demonstrated that silencing of ZKSCAN3 was able to inhibit Akt/mTOR signaling pathway by blocking p-Akt and p-mTOR protein expression in breast cancer cells. These results demonstrate that ZKSCAN3 plays a significant role in the progression of breast cancer. Therefore, ZKSCAN3 is a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yanyan Chi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Han Xu
- Department of Breast Disease Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoling Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhengzheng Shan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
192
|
Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev 2018; 43:38-46. [PMID: 30031632 DOI: 10.1016/j.cytogfr.2018.07.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Autophagy is a ubiquitous cellular process that regulates cell growth, survival, development and death. Its process is closely associated with diverse conditions, such as liver diseases, neurodegenerative diseases, myopathy, heart diseases, cancer, immunization, and inflammatory diseases. Thus, understanding the modulation of autophagy may provide novel insight into potential therapeutic targets. Autophagy is closely intertwined with inflammatory and immune responses, and cytokines may help mediate this interaction. Autophagy has been shown to regulate, and be regulated by, a wide range of proinflammatory cytokines. This review aims to summarize recent progress in elucidating the interplay between autophagy and proinflammatory cytokines, including IFN-γ, TNF-α, IL-17, and cytokines of the IL-1 family (e.g., IL-1α, IL-1β, IL-33, and IL-36).
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, No.51 Fu-Cheng Road, Beijing 100048, China.
| |
Collapse
|
193
|
Frías-Lasserre D, Villagra CA, Guerrero-Bosagna C. Stress in the Educational System as a Potential Source of Epigenetic Influences on Children's Development and Behavior. Front Behav Neurosci 2018; 12:143. [PMID: 30057532 PMCID: PMC6053942 DOI: 10.3389/fnbeh.2018.00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Abstract
Despite current advances on the relevance of environmental cues and epigenetic mechanisms in biological processes, including behavior, little attention has been paid to the potential link between epigenetic influences and educational sciences. For instance, could the learning environment and stress determine epigenetic marking, affecting students' behavior development? Could this have consequences on educational outcomes? So far, it has been shown that environmental stress influences neurological processes and behavior both in humans and rats. Through epigenetic mechanisms, offspring from stressed individuals develop altered behavior without any exposure to traumatizing experiences. Methylated DNA and noncoding RNAs regulate neurological processes such as synaptic plasticity and brain cortex development in children. The malfunctioning of these processes is associated with several neurological disorders, and these findings open up new avenues for the design of enriched environments for education and therapy. In this article, we discuss current cases of stress and behavioral disorders found in youngsters, and highlight the importance of considering epigenetic processes affecting the development of cognitive abilities and learning within the educational environment and for the development of teaching methodologies.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Cristian A. Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
194
|
Guo J, Wu Y, Du J, Yang L, Chen W, Gong K, Dai J, Miao S, Jin D, Xi S. Deregulation of UBE2C-mediated autophagy repression aggravates NSCLC progression. Oncogenesis 2018; 7:49. [PMID: 29904125 PMCID: PMC6002383 DOI: 10.1038/s41389-018-0054-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
The roles of aberrantly regulated autophagy in human malignancy and the mechanisms that initiate and sustain the repression of autophagy in carcinogenesis are less well defined. Activation of the oncogene UBE2C and repression of autophagy are concurrently underlying the initiation, progression, and metastasis of lung cancer and exploration of essential association of UBE2C with autophagy will confer more options in searching novel molecular therapeutic targets in lung cancer. Here we report that aberrant activation of UBE2C in lung tumors from patients associates with adverse prognosis and enhances cell proliferation, clonogenicity, and invasive growth of NSCLC. UBE2C selectively represses autophagy in NSCLC and disruption of UBE2C-mediated autophagy repression attenuates cell proliferation, clonogenicity, and invasive growth of NSCLC. Autophagy repression is essentially involved in UBE2C-induced cell proliferation, clonogenicity, and invasive growth of NSCLC. Interference of UBE2C-autophagy repression axis by Norcantharidin arrests NSCLC progression. UBE2C is repressed post-transcriptionally via tumor suppressor miR-381 and epitranscriptionally stabilized with maintenance of lower m6A level within its mature RNAs due to the upregulation of m6A demethylase ALKBH5 in NSCLC. Collectively, our results indicated that deregulated UBE2C-autophagy repression axis drives NSCLC progression which renders varieties of potential molecular targets in cancer therapy of NSCLC.
Collapse
Affiliation(s)
- Jiwei Guo
- Cancer Research Institute, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China
| | - Yan Wu
- Cancer Research Institute, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China
| | - Jing Du
- Cancer Research Institute, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China
| | - Lijuan Yang
- Cancer Research Institute, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China
| | - Weiwei Chen
- Cancer Research Institute, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China
| | - Kaikai Gong
- Cancer Research Institute, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China
| | - Juanjuan Dai
- Cancer Research Institute, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China
| | - Shuang Miao
- Cancer Research Institute, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China
| | - Dan Jin
- Department of Pain Ward, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China
| | - Sichuan Xi
- Cancer Research Institute, Binzhou Medical University Hospital, 256603, Binzhou, P.R. China.
| |
Collapse
|
195
|
Thongrod S, Wanichanon C, Kankuan W, Siangcham T, Phadngam S, Morani F, Isidoro C, Sobhon P. Autophagy-Associated Shrinkage of the Hepatopancreas in Fasting Male Macrobrachium rosenbergii Is Rescued by Neuropeptide F. Front Physiol 2018; 9:613. [PMID: 29910737 PMCID: PMC5992412 DOI: 10.3389/fphys.2018.00613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Invertebrate neuropeptide F-I (NPF-I), much alike its mammalian homolog neuropeptide Y, influences several physiological processes, including circadian rhythms, cortical excitability, stress response, and food intake behavior. Given the role of autophagy in the metabolic stress response, we investigated the effect of NPF-1 on autophagy during fasting and feeding conditions in the hepatopancreas and muscle tissues of the male giant freshwater prawn Macrobrachium rosenbergii. Starvation up-regulated the expression of the autophagy marker LC3 in both tissues. Yet, based on the relative levels of the autophagosome-associated LC3-II isoform and of its precursor LC3-I, the hepatopancreas was more responsive than the muscle to starvation-induced autophagy. Injection of NPF-I inhibited the autophagosome formation in the hepatopancreas of fasting prawns. Relative to the body weight, the muscle weight was not affected, while that of the hepatopancreas decreased upon starvation and NPF-1 treatment could largely prevent such weight loss. Thus, the hepatopancreas is the reserve organ for the nutrient homeostasis during starvation and NPF-I plays a crucial role in the balancing of energy expenditure and energy intake during starvation by modulating autophagy.
Collapse
Affiliation(s)
- Sirorat Thongrod
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chaitip Wanichanon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wilairat Kankuan
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Tanapan Siangcham
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suratchanee Phadngam
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
196
|
Transcriptional and epigenetic modulation of autophagy promotes EBV oncoprotein EBNA3C induced B-cell survival. Cell Death Dis 2018; 9:605. [PMID: 29789559 PMCID: PMC5964191 DOI: 10.1038/s41419-018-0668-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Epstein-Barr virus (EBV) oncoprotein EBNA3C is indispensable for primary B-cell transformation and maintenance of lymphoblastoid cells outgrowth. EBNA3C usurps two putative cellular pathways-cell-cycle and apoptosis, essentially through modulating ubiquitin-mediated protein-degradation or gene transcription. In cancer cells, these two pathways are interconnected with autophagy,-a survival-promoting catabolic network in which cytoplasmic material including mis/un-folded protein aggregates and damaged organelles along with intracellular pathogens are degraded and recycled in lysosomal compartments. Studies have shown that tumor viruses including EBV can manipulate autophagy as a survival strategy. Here, we demonstrate that EBNA3C elevates autophagy, which serves as a prerequisite for apoptotic inhibition and maintenance of cell growth. Using PCR based micro-array we show that EBNA3C globally accelerates autophagy gene transcription under growth limiting conditions. Reanalyzing the ENCODE ChIP-sequencing data (GSE52632 and GSE26386) followed by ChIP-PCR demonstrate that EBNA3C recruits several histone activation epigenetic marks (H3K4me1, H3K4me3, H3K9ac, and H3K27ac) for transcriptional activation of autophagy genes, notably ATG3, ATG5, and ATG7 responsible for autophagosome formation. Moreover, under growth limiting conditions EBNA3C further stimulates the autophagic response through upregulation of a number of tumor suppressor genes, notably cyclin-dependent kinase inhibitors-CDKN1B (p27Kip1) and CDKN2A (p16INK4a) and autophagy mediated cell-death modulators-DRAM1 and DAPK1. Together our data highlight a new role of an essential EBV oncoprotein in regulating autophagy cascade as a survival mechanism and offer novel-targets for potential therapeutic expansion against EBV induced B-cell lymphomas.
Collapse
|
197
|
Codogno P, Morel E. FOXO3a Provides a Quickstep from Autophagy Inhibition to Apoptosis in Cancer Therapy. Dev Cell 2018. [PMID: 29533768 DOI: 10.1016/j.devcel.2018.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
FOXO3a, a member of the Forkhead transcription factor family, has roles in apoptosis and autophagy. In this issue of Developmental Cell, Fitzwalter et al. (2018) describe how the blockade of FOXO3a turnover, which normally occurs through autophagy, sensitizes cancer cells to apoptosis through FOXO3a-mediated stimulation of pro-apoptotic PUMA/BBC3 expression.
Collapse
Affiliation(s)
- Patrice Codogno
- INSERM U1151-CNRS UMR 8253, Institut Necker Enfants-Malades (INEM), 70014 Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 70006 Paris, France.
| | - Etienne Morel
- INSERM U1151-CNRS UMR 8253, Institut Necker Enfants-Malades (INEM), 70014 Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 70006 Paris, France.
| |
Collapse
|
198
|
Gat-Yablonski G, De Luca F. Effect of Nutrition on Statural Growth
. Horm Res Paediatr 2018; 88:46-62. [PMID: 28365689 DOI: 10.1159/000456547] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
In children, proper growth and development are often regarded as a surrogate marker for good health. A complex system controls the initiation, rate, and cessation of growth, and thus gives a wonderful example of the interactions between genetics, epigenetics, and environmental factors (especially stress and nutrition). Malnutrition is considered a leading cause of growth attenuation in children. This review summarizes our current knowledge regarding the mechanisms linking nutrition and skeletal growth, including systemic factors, such as insulin, growth hormone, insulin-like growth factor-1, fibroblast growth factor-21, etc., and local mechanisms, including mTOR, miRNAs, and epigenetics. Studying the molecular mechanisms regulating skeletal growth may lead to the establishment of better nutritional and therapeutic regimens for more effective linear growth in children with malnutrition and growth abnormalities.
.
Collapse
Affiliation(s)
- Galia Gat-Yablonski
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children's Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco De Luca
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
199
|
mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Biosci Rep 2018; 38:BSR20171669. [PMID: 29563162 PMCID: PMC5968188 DOI: 10.1042/bsr20171669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Unc-51 Like Kinase 1 (ULK1) is a critical regulator of the biogenesis of autophagosomes, the central component of the catabolic macroautophagy pathway. Regulation of ULK1 activity is dependent upon several phosphorylation events acting to repress or activate the enzymatic function of this protein. Phosphorylation of Ser758 ULK1 has been linked to repression of autophagosome biogenesis and was thought to be exclusively dependent upon mTOR complex 1 kinase activity. In the present study, a novel regulation of Ser758 ULK1 phosphorylation is reported following prolonged inhibition of the Parkinson’s disease linked protein leucine rich repeat kinase 2 (LRRK2). Here, modulation of Ser758 ULK1 phosphorylation following LRRK2 inhibition is decoupled from the repression of autophagosome biogenesis and independent of mTOR complex 1 activity.
Collapse
|
200
|
Lin KC, Lin MW, Hsu MN, Yu-Chen G, Chao YC, Tuan HY, Chiang CS, Hu YC. Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Am J Cancer Res 2018; 8:2477-2487. [PMID: 29721093 PMCID: PMC5928903 DOI: 10.7150/thno.24173] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/20/2018] [Indexed: 01/08/2023] Open
Abstract
Rationale: Cisplatin (CDDP) is a broad-spectrum anticancer drug but chemoresistance to CDDP impedes its wide use for cancer therapy. Autophagy is an event occurring in the cytoplasm and cytoplasmic LC3 puncta formation is a hallmark of autophagy. Graphene oxide (GO) is a nanomaterial that provokes autophagy in CT26 colon cancer cells and confers antitumor effects. Here we aimed to evaluate whether combined use of GO with CDDP (GO/CDDP) overcomes chemoresistance in different cancer cells and uncover the underlying mechanism. Methods: We treated different cancer cells with GO/CDDP and evaluated the cytotoxicity, death mechanism, autophagy induction and nuclear entry of CDDP. We further knocked down genes essential for autophagic flux and deciphered which step is critical to nuclear import and cell death. Finally, we performed immunoprecipitation, mass spectrometry and immunofluorescence labeling to evaluate the association of LC3 and CDDP. Results: We uncovered that combination of GO and CDDP (GO/CDDP) promoted the killing of not only CT26 cells, but also ovarian, cervical and prostate cancer cells. In the highly chemosensitized Skov-3 cells, GO/CDDP significantly enhanced concurrent nuclear import of CDDP and autophagy marker LC3 and elevated cell necrosis, which required autophagy initiation and progression but did not necessitate late autophagy events (e.g., autophagosome completion and autolysosome formation). The GO/CDDP-elicited nuclear trafficking and cell death also required importin α/β, and LC3 also co-migrated with CDDP and histone H1/H4 into the nucleus. In particular, GO/CDDP triggered histone H4 acetylation in the nucleus, which could decondense the chromosome and enable CDDP to more effectively access chromosomal DNA to trigger cell death. Conclusion: These findings shed light on the mechanisms of GO/CDDP-induced chemosensitization and implicate the potential applications of GO/CDDP to treat multiple cancers.
Collapse
|