151
|
Tang LTH, Lee GA, Cook SJ, Ho J, Potter CC, Bülow HE. Restructuring of an asymmetric neural circuit during associative learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523604. [PMID: 36711870 PMCID: PMC9882173 DOI: 10.1101/2023.01.12.523604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Asymmetric brain function is common across the animal kingdom and involved in language processing, and likely in learning and memory. What regulates asymmetric brain function remains elusive. Here, we show that the nematode Caenorhabditis elegans restructures an asymmetric salt sensing neural circuit during associative learning. Worms memorize and prefer the salt concentration at which they were raised in the presence of food through a left-biased network architecture. When conditioned at elevated salt concentrations, animals change the left-biased to a right-biased network, which explains the changed salt-seeking behavior. The changes in circuit architecture require new synapse formation induced through asymmetric, paracrine insulin-signaling. Therefore, experience-dependent changes in asymmetric network architecture rely on paracrine insulin signaling and are fundamental to learning and behavior.
Collapse
|
152
|
Ren Q, Wan B, Luo X, Liu Q, Gong H, Li H, Luo M, Xu D, Liu P, Wang J, Yin Z, Li X. Glutamate alterations in the premature infant brain during different gestational ages with glutamate chemical exchange saturation transfer imaging: a pilot study. Eur Radiol 2023; 33:4214-4222. [PMID: 36600123 DOI: 10.1007/s00330-022-09374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To elucidate the change in glutamate levels in preterm infants at different gestational ages by glutamate chemical exchange saturated transfer (GluCEST) magnetic resonance imaging and to compare the difference in glutamate levels among different brain regions between very early preterm infants and middle and late preterm infants. METHODS Fifty-three preterm infants (59% males; median gestational age = 33.6 weeks) underwent MRI, including conventional MRI and GluCEST. The original data were postprocessed in MATLAB. Correlation analysis was used to determine the relationship between the MTRasym and gestational age. The differences in MTRasym signals among different ROIs were statistically analysed by one-way analysis of variance (ANOVA). The MTRasym difference of the bilateral hemispherical ROI was compared by a paired T test. RESULTS In all ROIs, glutamate concentration was positively correlated with gestational age. The glutamate concentration in the thalamus was higher than that in the frontal lobe in very early, middle and late preterm infants. A difference in glutamate concentration was not found in the bilateral ROIs. CONCLUSIONS The concentration of glutamate in the brains of preterm infants of different gestational ages increased with gestational age, which may be one of the factors contributing to the higher incidence of neurodevelopmental dysfunction in very early preterm infants compared to that in middle and late preterm infants. Meanwhile, the glutamate concentrations among different brain regions were also diverse. KEY POINTS • The glutamate concentration was positively correlated with gestational age in preterm infants of the brain. • Glutamate concentrations were dissimilar in different brain regions of preterm infants. • Glutamate concentration during the process of brain development in premature infants was not found to be asymmetric.
Collapse
Affiliation(s)
- Qingfa Ren
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Bin Wan
- Neonatal Intensive Care Unit, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Xunrong Luo
- Department of Radiology, Affiliated Cancer Hospital of Chongqing University, No. 181 Hanyu Road, Shapingba District, Chongqing, 400016, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Mingfang Luo
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Donghao Xu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Pan Liu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China.
| | - Zhijie Yin
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China.
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China.
| |
Collapse
|
153
|
Lamichhane B, Luckett PH, Dierker D, Yun Park K, Burton H, Olufawo M, Trevino G, Lee JJ, Daniel AGS, Hacker CD, Marcus DS, Shimony JS, Leuthardt EC. Structural gray matter alterations in glioblastoma and high-grade glioma-A potential biomarker of survival. Neurooncol Adv 2023; 5:vdad034. [PMID: 37152811 PMCID: PMC10162111 DOI: 10.1093/noajnl/vdad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Background Patients with glioblastoma (GBM) and high-grade glioma (HGG, World Health Organization [WHO] grade IV glioma) have a poor prognosis. Consequently, there is an unmet clinical need for accessible and noninvasively acquired predictive biomarkers of overall survival in patients. This study evaluated morphological changes in the brain separated from the tumor invasion site (ie, contralateral hemisphere). Specifically, we examined the prognostic value of widespread alterations of cortical thickness (CT) in GBM/HGG patients. Methods We used FreeSurfer, applied with high-resolution T1-weighted MRI, to examine CT, evaluated prior to standard treatment with surgery and chemoradiation in patients (GBM/HGG, N = 162, mean age 61.3 years) and 127 healthy controls (HC; 61.9 years mean age). We then compared CT in patients to HC and studied patients' associated changes in CT as a potential biomarker of overall survival. Results Compared to HC cases, patients had thinner gray matter in the contralesional hemisphere at the time of tumor diagnosis. patients had significant cortical thinning in parietal, temporal, and occipital lobes. Fourteen cortical parcels showed reduced CT, whereas in 5, it was thicker in patients' cases. Notably, CT in the contralesional hemisphere, various lobes, and parcels was predictive of overall survival. A machine learning classification algorithm showed that CT could differentiate short- and long-term survival patients with an accuracy of 83.3%. Conclusions These findings identify previously unnoticed structural changes in the cortex located in the hemisphere contralateral to the primary tumor mass. Observed changes in CT may have prognostic value, which could influence care and treatment planning for individual patients.
Collapse
Affiliation(s)
- Bidhan Lamichhane
- Corresponding Author: Bidhan Lamichhane, PhD, Department of Neurosurgery, Washington University School of Medicine, Box 8057, 660 South Euclid, St. Louis, MO 63110, USA ()
| | - Patrick H Luckett
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ki Yun Park
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Harold Burton
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Olufawo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John J Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andy G S Daniel
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Carl D Hacker
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel S Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, Missouri, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Laser Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
154
|
Baizer JS, Witelson SF. Comparative analysis of four nuclei in the human brainstem: Individual differences, left-right asymmetry, species differences. Front Neuroanat 2023; 17:1069210. [PMID: 36874056 PMCID: PMC9978016 DOI: 10.3389/fnana.2023.1069210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction It is commonly thought that while the organization of the cerebral cortex changes dramatically over evolution, the organization of the brainstem is conserved across species. It is further assumed that, as in other species, brainstem organization is similar from one human to the next. We will review our data on four human brainstem nuclei that suggest that both ideas may need modification. Methods We have studied the neuroanatomical and neurochemical organization of the nucleus paramedianus dorsalis (PMD), the principal nucleus of the inferior olive (IOpr), the arcuate nucleus of the medulla (Arc) and the dorsal cochlear nucleus (DC). We compared these human brainstem nuclei to nuclei in other mammals including chimpanzees, monkeys, cats and rodents. We studied human cases from the Witelson Normal Brain collection using Nissl and immunostained sections, and examined archival Nissl and immunostained sections from other species. Results We found significant individual variability in the size and shape of brainstem structures among humans. There is left-right asymmetry in the size and appearance of nuclei, dramatically so in the IOpr and Arc. In humans there are nuclei, e.g., the PMD and the Arc, not seen in several other species. In addition, there are brainstem structures that are conserved across species but show major expansion in humans, e.g., the IOpr. Finally, there are nuclei, e.g. the DC, that show major differences in structure among species. Discussion Overall, the results suggest several principles of human brainstem organization that distinguish humans from other species. Studying the functional correlates of, and the genetic contributions to, these brainstem characteristics are important future research directions.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
155
|
Fundamental Cause of Bio-Chirality: Space-Time Symmetry—Concept Review. Symmetry (Basel) 2022. [DOI: 10.3390/sym15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The search for fundamental determinants of bio-molecular chirality is a hot topic in biology, clarifying the meaning of evolution and the enigma of life’s origin. The question of origin may be resolved assuming that non-biological and biological entities obey nature’s universal laws grounded on space-time symmetry (STS) and space-time relativity (SPR). The fabric of STS is our review’s primary subject. This symmetry, encompassing the behavior of elementary particles and galaxy structure, imposes its fundamental laws on all hierarchical levels of the biological world. From the perspective of STS, objects across spatial scales may be classified as chiral or achiral concerning a specific space-related symmetry transformation: mirror reflection. The chiral object is not identical (i.e., not superimposable) to its mirror image. In geometry, distinguish two kinds of chiral objects. The first one does not have any reflective symmetry elements (a point or plane of symmetry) but may have rotational symmetry axes (dissymmetry). The second one does not have any symmetry elements (asymmetry). As the form symmetry deficiency, Chirality is the critical structural feature of natural systems, including sub-atomic particles and living matter. According to the Standard Model (SM) theory and String Theory (StrT), elementary particles associated with the four fundamental forces of nature determine the existence of micro- and galaxy scales of nature. Therefore, the inheritance of molecular symmetry from the symmetry of elementary particles indicates a bi-directional (internal [(micro-scale) and external (galaxy sale)] causal pathway of prevalent bio-chirality. We assume that the laws of the physical world impact the biological matter’s appearance through both extremities of spatial dimensions. The extended network of multi-disciplinary experimental evidence supports this hypothesis. However, many experimental results are derived and interpreted based on the narrow-view prerogative and highly specific terminology. The current review promotes a holistic approach to experimental results in two fast-developing, seemingly unrelated, divergent branches of STS and biological chirality. The generalized view on the origin of prevalent bio-molecular chirality is necessary for understanding the link between a diverse range of biological events. The chain of chirality transfer links ribosomal protein synthesis, cell morphology, and neuronal signaling with the laterality of cognitive functions.
Collapse
|
156
|
Zhang J, Kang L, Li J, Li Y, Bi H, Yang Y. Brain Correlates of Chinese Handwriting and Their Relation to Reading Development in Children: An fMRI Study. Brain Sci 2022; 12:brainsci12121724. [PMID: 36552183 PMCID: PMC9775262 DOI: 10.3390/brainsci12121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Handwriting plays an important role in written communication, reading, and academic success. However, little is known about the neural correlates of handwriting in children. Using functional magnetic resonance imaging (fMRI) and a copying task, we investigated regional brain activation and functional lateralization associated with Chinese handwriting in children (N = 36, 9-11 years old), as well as their relations to reading skills. We found significant activation of the bilateral frontal motor cortices, somatosensory cortex, intraparietal sulcus (IPS), fusiform gyrus (FuG), and cerebellum during handwriting, suggesting that an adult-like brain activation pattern emerges by middle childhood. Moreover, children showed left-lateralized and bilateral activation of motor regions and right-lateralized activation of the FuG and cerebellum during handwriting, suggesting that functional lateralization of handwriting is not fully established by this age. Finally, the activation of Exner's area and the lateralization of the IPS and cerebellum during handwriting were correlated with reading skills, possibly representing a neural link between handwriting and reading in children. Collectively, this study reveals the brain correlates of handwriting and their relation to reading development in Chinese children, offering new insight into the development of handwriting and reading skills.
Collapse
Affiliation(s)
- Jun Zhang
- College of Education, Capital Normal University, Beijing 100048, China
| | - Liying Kang
- College of Preschool Education, Capital Normal University, Beijing 100048, China
- Correspondence: (L.K.); (Y.Y.); Tel.: +86-010-68906533 (L.K.); +86-010-64842728 (Y.Y.)
| | - Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhen Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (L.K.); (Y.Y.); Tel.: +86-010-68906533 (L.K.); +86-010-64842728 (Y.Y.)
| |
Collapse
|
157
|
Kentar M, Díaz-Peregrino R, Trenado C, Sánchez-Porras R, San-Juan D, Ramírez-Cuapio FL, Holzwarth N, Maier-Hein L, Woitzik J, Santos E. Spatial and temporal frequency band changes during infarct induction, infarct progression, and spreading depolarizations in the gyrencephalic brain. Front Neurosci 2022; 16:1025967. [PMID: 36570832 PMCID: PMC9769704 DOI: 10.3389/fnins.2022.1025967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 12/07/2022] Open
Abstract
Aim To describe the spatial and temporal electrocorticographic (ECoG) changes after middle cerebral artery occlusion (MCAo), including those caused by spreading depolarization (SD) in the pig brain. Methods The left middle cerebral arteries (MCAs) were clipped in six pigs. The clipping procedure lasted between 8 and 12 min, achieving a permanent occlusion (MCAo). Five-contact ECoG stripes were placed bilaterally over the frontoparietal cortices corresponding to the irrigation territory of the MCA and anterior cerebral artery (ACA). ECoG recordings were performed around 24 h: 1 h before and 23 h after the MCAo, and SDs were quantified. Five-minute ECoG signal segments were sampled before, 5 min, and 4, 8, and 12 h after cerebral artery occlusion and before, during, and after the negative direct current shift of the SDs. The power spectrum of the signals was decomposed into delta, theta, alpha, beta, and gamma bands. Descriptive statistics, Wilcoxon matched-pairs signed-rank tests, and Friedman tests were performed. Results Electrodes close to the MCAo showed instant decay in all frequency bands and SD onset during the first 5 h. Electrodes far from the MCAo exhibited immediate loss of fast frequencies and progressive decline of slow frequencies with an increased SD incidence between 6 and 14 h. After 8 h, the ACA electrode reported a secondary reduction of all frequency bands except gamma and high SD incidence within 12-17 h. During the SD, all electrodes showed a decline in all frequency bands. After SD passage, frequency band recovery was impaired only in MCA electrodes. Conclusion ECoG can identify infarct progression and secondary brain injury. Severe disturbances in all the frequency bands are generated in the cortices where the SDs are passing by.
Collapse
Affiliation(s)
- Modar Kentar
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Roberto Díaz-Peregrino
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Renán Sánchez-Porras
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - F. Leonardo Ramírez-Cuapio
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Niklas Holzwarth
- Division of Intelligent Medical Systems, German Cancer Research Center, Heidelberg, Germany
| | - Lena Maier-Hein
- Division of Intelligent Medical Systems, German Cancer Research Center, Heidelberg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany,Department of Neurosurgery, Evangelisches Krankenhaus, Carl-von-Ossietzky University, Oldenburg, Germany,*Correspondence: Edgar Santos,
| |
Collapse
|
158
|
Xia X, Wang D, Wang L, Li X, Chen R, Liu Y, Zhang J. Connectivity from ipsilateral and contralateral dorsolateral prefrontal cortex to the active primary motor cortex during approaching-avoiding behavior. Cortex 2022; 157:155-166. [PMID: 36327745 DOI: 10.1016/j.cortex.2022.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/11/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
Automatic action tendency is reflected by a fast reaction to approach positive stimulus and to avoid negative stimulus (automatic behaviors), while a slow reaction to approach negative stimulus and avoid positive stimulus (controlled behaviors). The dorsolateral prefrontal cortex (DLPFC) is involved in the modulation of the automatic action tendency; however, it remains unclear whether DLPFC modulates the behavior through motor inhibition or excitation, as well as the exact timing of the modulation. We used paired-pulse, dual-site TMS protocols to investigate the connectivity between left/right DLPFC and the left primary motor cortex (M1) during the manikin task performed with the right hand. For the behavioral data, the results from reaction time (RT) and premotor time (PMT), which represents the beginning of finger movements, of the approaching-avoiding behavior in both experiments showed a shorter duration for automatic behavior compared to the controlled behavior. There was stronger facilitation of the left DLPFC-left M1 connectivity at interstimulus-interval of 25 ms in controlled behavior compared to automatic behavior (positive-approaching vs. positive-avoiding: P = .002; negative-avoiding vs. negative-approaching: P = .017). The right DLPFC-left M1 connectivity did not change with the task. The present study confirmed the automatic action tendency from both reaction time and the premotor time. During the right-handed task, the DLPFC contralateral but not ipsilateral to the effector could facilitate the left M1 to speed up the execution of the controlled behavior through a polysynaptic pathway.
Collapse
Affiliation(s)
- Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China; Krembil Research Institute, University Health Network, Toronto, Canada
| | - Dandan Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Linqi Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xiangming Li
- Shanghai Suiti Technology Co., Ltd, Shanghai, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
159
|
Wang C, Wei Y, Li J, Li X, Liu Y, Hu Q, Wang Y. Asymmetry-enhanced attention network for Alzheimer's diagnosis with structural Magnetic Resonance Imaging. Comput Biol Med 2022; 151:106282. [PMID: 36413817 DOI: 10.1016/j.compbiomed.2022.106282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVE With the aging of the global population becoming severe, Alzheimer's disease (AD) has become one of the world's most common senile diseases. Many studies have suggested that the brain's left-right asymmetry is one of the possible diagnostic landmarks for AD. However, most published approaches to classification problems may not adequately explore the asymmetry between the left and right hemispheres. At the same time, the relationship between asymmetry traits and other classifier features remains understudied. METHODS In this paper, we proposed an asymmetry enhanced attention network (ASEAN) for AD diagnosis that effectively combines the anatomical asymmetry characteristics of the brain to enhance the accuracy and stability of classification tasks. First, we proposed a multi-scale asymmetry feature extraction module (MSAF) that can extract the asymmetry features of the brain from various scales. Second, we proposed an asymmetry refinement module (ARM) that considers the dependency between feature maps to suppress the irrelevant regions of the asymmetric feature maps. In addition, a parameter-free attention module was introduced to infer 4D attention weights and improve the network's representation capability. RESULTS The proposed method achieved performance improvements on two databases: Alzheimer's Disease Neuroimaging Initiative (ADNI) and Australian Imaging, Biomarkers and Lifestyle (AIBL). For the classification tasks on ADNI, the proposed method achieves 92.1% accuracy, 96.2% sensitivity, and 91.3% specificity on the AD vs. CN (Cognitively Normal) task. Compared with state-of-the-art methods, the proposed method could achieve comparable results. CONCLUSION The proposed model can extract long-range left-right brain similarity as complementary information and improve the model's diagnostic performance. A large number of experiments also support the model's validity. At the same time, this work provides a valuable reference for other neurological diseases, particularly those that exhibit left-right brain asymmetry during development.
Collapse
Affiliation(s)
- Chuyuan Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Ying Wei
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; Information Technology R&D Innovation Center of Peking University, Shaoxing, China; Changsha Hisense Intelligent System Research Institute Co., Ltd., China.
| | - Jiaguang Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiang Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yue Liu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Qian Hu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yuefeng Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | | |
Collapse
|
160
|
Tarchi L, Damiani S, Fantoni T, Pisano T, Castellini G, Politi P, Ricca V. Centrality and interhemispheric coordination are related to different clinical/behavioral factors in attention deficit/hyperactivity disorder: a resting-state fMRI study. Brain Imaging Behav 2022; 16:2526-2542. [PMID: 35859076 PMCID: PMC9712307 DOI: 10.1007/s11682-022-00708-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/26/2022]
Abstract
Eigenvector-Centrality (EC) has shown promising results in the field of Psychiatry, with early results also pertaining to ADHD. Parallel efforts have focused on the description of aberrant interhemispheric coordination in ADHD, as measured by Voxel-Mirrored-Homotopic-Connectivity (VMHC), with early evidence of altered Resting-State fMRI. A sample was collected from the ADHD200-NYU initiative: 86 neurotypicals and 89 participants with ADHD between 7 and 18 years old were included after quality control for motion. After preprocessing, voxel-wise EC and VMHC values between diagnostic groups were compared, and network-level values from 15 functional networks extracted. Age, ADHD severity (Connor's Parent Rating-Scale), IQ (Wechsler-Abbreviated-Scale), and right-hand dominance were correlated with EC/VMHC values in the whole sample and within groups, both at the voxel-wise and network-level. Motion was controlled by censoring time-points with Framewise-Displacement > 0.5 mm, as well as controlling for group differences in mean Framewise-Displacement values. EC was significantly higher in ADHD compared to neurotypicals in the left inferior Frontal lobe, Lingual gyri, Peri-Calcarine cortex, superior and middle Occipital lobes, right inferior Occipital lobe, right middle Temporal gyrus, Fusiform gyri, bilateral Cuneus, right Precuneus, and Cerebellum (FDR-corrected-p = 0.05). No differences were observed between groups in voxel-wise VMHC. EC was positively correlated with ADHD severity scores at the network level (at p-value < 0.01, Inattentive: Cerebellum rho = 0.273; Hyper/Impulsive: High-Visual Network rho = 0.242, Cerebellum rho = 0.273; Global Index Severity: High-Visual Network rho = 0.241, Cerebellum rho = 0.293). No differences were observed between groups for motion (p = 0.443). While EC was more related to ADHD psychopathology, VMHC was consistently and negatively correlated with age across all networks.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy.
| | - Stefano Damiani
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy
| | - Teresa Fantoni
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| |
Collapse
|
161
|
Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference. Neuroimage 2022; 262:119534. [PMID: 35931311 DOI: 10.1016/j.neuroimage.2022.119534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lateralization is a fundamental characteristic of many behaviors and the organization of the brain, and atypical lateralization has been suggested to be linked to various brain-related disorders such as autism and schizophrenia. Right-handedness is one of the most prominent markers of human behavioural lateralization, yet its neurobiological basis remains to be determined. Here, we present a large-scale analysis of handedness, as measured by self-reported direction of hand preference, and its variability related to brain structural and functional organization in the UK Biobank (N = 36,024). A multivariate machine learning approach with multi-modalities of brain imaging data was adopted, to reveal how well brain imaging features could predict individual's handedness (i.e., right-handedness vs. non-right-handedness) and further identify the top brain signatures that contributed to the prediction. Overall, the results showed a good prediction performance, with an area under the receiver operating characteristic curve (AUROC) score of up to 0.72, driven largely by resting-state functional measures. Virtual lesion analysis and large-scale decoding analysis suggested that the brain networks with the highest importance in the prediction showed functional relevance to hand movement and several higher-level cognitive functions including language, arithmetic, and social interaction. Genetic analyses of contributions of common DNA polymorphisms to the imaging-derived handedness prediction score showed a significant heritability (h2=7.55%, p <0.001) that was similar to and slightly higher than that for the behavioural measure itself (h2=6.74%, p <0.001). The genetic correlation between the two was high (rg=0.71), suggesting that the imaging-derived score could be used as a surrogate in genetic studies where the behavioural measure is not available. This large-scale study using multimodal brain imaging and multivariate machine learning has shed new light on the neural correlates of human handedness.
Collapse
|
162
|
Pascarella A, Gianni E, Abbondanza M, Armonaite K, Pitolli F, Bertoli M, L’Abbate T, Grifoni J, Vitulano D, Bruni V, Conti L, Paulon L, Tecchio F. Normalized compression distance to measure cortico-muscular synchronization. Front Neurosci 2022; 16:933391. [PMID: 36440261 PMCID: PMC9687393 DOI: 10.3389/fnins.2022.933391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/19/2022] [Indexed: 06/29/2024] Open
Abstract
The neuronal functional connectivity is a complex and non-stationary phenomenon creating dynamic networks synchronization determining the brain states and needed to produce tasks. Here, as a measure that quantifies the synchronization between the neuronal electrical activity of two brain regions, we used the normalized compression distance (NCD), which is the length of the compressed file constituted by the concatenated two signals, normalized by the length of the two compressed files including each single signal. To test the NCD sensitivity to physiological properties, we used NCD to measure the cortico-muscular synchronization, a well-known mechanism to control movements, in 15 healthy volunteers during a weak handgrip. Independently of NCD compressor (Huffman or Lempel Ziv), we found out that the resulting measure is sensitive to the dominant-non dominant asymmetry when novelty management is required (p = 0.011; p = 0.007, respectively) and depends on the level of novelty when moving the non-dominant hand (p = 0.012; p = 0.024). Showing lower synchronization levels for less dexterous networks, NCD seems to be a measure able to enrich the estimate of functional two-node connectivity within the neuronal networks that control the body.
Collapse
Affiliation(s)
- Annalisa Pascarella
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Italy
| | - Eugenia Gianni
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Matteo Abbondanza
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Karolina Armonaite
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Faculty of Psychology, Uninettuno University, Rome, Italy
| | - Francesca Pitolli
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Teresa L’Abbate
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Faculty of Psychology, Uninettuno University, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Joy Grifoni
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Faculty of Psychology, Uninettuno University, Rome, Italy
| | - Domenico Vitulano
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Italy
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Vittoria Bruni
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Italy
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Livio Conti
- Faculty of Engineering, Uninettuno University, Rome, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione Roma Tor Vergata, Rome, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Independent Researcher, Rome, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
163
|
Abnormalities of hemispheric specialization in drug-naïve and drug-receiving self-limited epilepsy with centrotemporal spikes. Epilepsy Behav 2022; 136:108940. [PMID: 36228484 DOI: 10.1016/j.yebeh.2022.108940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Self-limited epilepsy with centrotemporal spikes (SLECTS) is a pediatric benign epilepsy but often accompanied by subsequent (in adulthood) functional changes such as language, which are thought to have distinct areas of hemispheric lateralization and functional differentiation. This study aimed to explore hemispheric specialization measured by resting-state functional magnetic resonance imaging (rs-fMRI) functional connectivity in drug-naïve and drug-receiving SLECTS. METHODS Hemispheric specialization was quantified in three groups of children, including 21 drug-naïve patients (DNP) with SLECTS, 34 drug-receiving patients (DRP) with SLECTS and 36 demographically matched typical development (TD). RESULTS Compared with the TD group, both the DNP and DRP groups exhibited significantly higher specialization in the left superior temporal gyrus, right parahippocampus, left putamen, and right caudate. The DNP group exhibited significantly higher hemispheric specialization in the right precentral gyrus and right inferior temporal gyrus, while the DRP group demonstrated significantly higher hemispheric specialization in the left postcentral gyrus and right hippocampus than the TD group. Furthermore, bilateral cerebellum_6 showed opposing hemispheric specialization trends in the two patient groups. Further meta-analytical mapping demonstrated that hemispheric specialization-related differential brain regions are primarily involved in language processing. CONCLUSION Our findings showed that children with SLECTS had altered hemispheric specialization, mainly in language processing regions, suggesting both abnormal intrahemispheric segregation and interhemispheric integration in these children.
Collapse
|
164
|
McIlvain G, Schneider JM, Matyi MA, McGarry MD, Qi Z, Spielberg JM, Johnson CL. Mapping brain mechanical property maturation from childhood to adulthood. Neuroimage 2022; 263:119590. [PMID: 36030061 PMCID: PMC9950297 DOI: 10.1016/j.neuroimage.2022.119590] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 02/07/2023] Open
Abstract
Magnetic resonance elastography (MRE) is a phase contrast MRI technique which uses external palpation to create maps of brain mechanical properties noninvasively and in vivo. These mechanical properties are sensitive to tissue microstructure and reflect tissue integrity. MRE has been used extensively to study aging and neurodegeneration, and to assess individual cognitive differences in adults, but little is known about mechanical properties of the pediatric brain. Here we use high-resolution MRE imaging in participants of ages ranging from childhood to adulthood to understand brain mechanical properties across brain maturation. We find that brain mechanical properties differ considerably between childhood and adulthood, and that neuroanatomical subregions have differing maturational trajectories. Overall, we observe lower brain stiffness and greater brain damping ratio with increasing age from 5 to 35 years. Gray and white matter change differently during maturation, with larger changes occurring in gray matter for both stiffness and damping ratio. We also found that subregions of cortical and subcortical gray matter change differently, with the caudate and thalamus changing the most with age in both stiffness and damping ratio, while cortical subregions have different relationships with age, even between neighboring regions. Understanding how brain mechanical properties mature using high-resolution MRE will allow for a deeper understanding of the neural substrates supporting brain function at this age and can inform future studies of atypical maturation.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Julie M Schneider
- Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States
| | - Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Matthew Dj McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Zhenghan Qi
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States; Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
165
|
Li W, Fan L, Shi W, Lu Y, Li J, Luo N, Wang H, Chu C, Ma L, Song M, Li K, Cheng L, Cao L, Jiang T. Brainnetome atlas of preadolescent children based on anatomical connectivity profiles. Cereb Cortex 2022; 33:5264-5275. [PMID: 36255322 PMCID: PMC10151881 DOI: 10.1093/cercor/bhac415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/13/2022] Open
Abstract
During the preadolescent period, when the cerebral thickness, curvature, and myelin are constantly changing, the brain's regionalization patterns underwent persistent development, contributing to the continuous improvements of various higher cognitive functions. Using a brain atlas to study the development of these functions has attracted much attention. However, the brains of children do not always have the same topological patterns as those of adults. Therefore, age-specific brain mapping is particularly important, serving as a basic and indispensable tool to study the normal development of children. In this study, we took advantage of longitudinal data to create the brain atlas specifically for preadolescent children. The resulting human Child Brainnetome Atlas, with 188 cortical and 36 subcortical subregions, provides a precise period-specific and cross-validated version of the brain atlas that is more appropriate for adoption in the preadolescent period. In addition, we compared and illustrated for regions with different topological patterns in the child and adult atlases, providing a topologically consistent reference for subsequent research studying child and adolescent development.
Collapse
Affiliation(s)
- Wen Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Kaixin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, No.1 Jinji Road, Qixing District, Guilin 541004, China.,Research Center for Augmented Intelligence, Zhejiang Lab, Kechuang Avenue, Zhongtai Sub-District, Yuhang District, Hangzhou 311100, China
| | - Long Cao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China.,Research Center for Augmented Intelligence, Zhejiang Lab, Kechuang Avenue, Zhongtai Sub-District, Yuhang District, Hangzhou 311100, China
| |
Collapse
|
166
|
Zhao X, Liang W, Wang W, Liu H, Zhang X, Liu C, Zhu C, Cui B, Tang Y, Liu S. Changes in and asymmetry of the proteome in the human fetal frontal lobe during early development. Commun Biol 2022; 5:1031. [PMID: 36175510 PMCID: PMC9522861 DOI: 10.1038/s42003-022-04003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Inherent hemispheric asymmetry is important for cognition, language and other functions. Describing normal brain and asymmetry development during early development will improve our understanding of how different hemispheres prioritize specific functions, which is currently unknown. Here, we analysed developmental changes in and asymmetry of the proteome in the bilateral frontal lobes of three foetal specimens in the late first trimester of pregnancy. We found that during this period, the difference in expression between gestational weeks (GWs) increased, and the difference in asymmetric expression decreased. Changes in the patterns of protein expression differed in the bilateral frontal lobes. Our results show that brain asymmetry can be observed in early development. These findings can guide researchers in further investigations of the mechanisms of brain asymmetry. We propose that both sides of the brain should be analysed separately in future multiomics and human brain mapping studies.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjun Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Hailan Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chengxin Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Caiting Zhu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
167
|
Pizzanelli C, Pesaresi I, Milano C, Cecchi P, Fontanelli L, Giannoni S, Giorgi FS, Cosottini M, Bonanni E. Distinct limbic connectivity in left and right benign mesial temporal lobe epilepsy: Evidence from a resting state functional MRI study. Front Neurol 2022; 13:943660. [PMID: 36247782 PMCID: PMC9558280 DOI: 10.3389/fneur.2022.943660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFunctional connectivity (FC) studies showed that pharmaco-resistant mesial temporal lobe epilepsy (MTLE) affects not only the limbic system, but also several extra-limbic regions, including areas belonging to resting state networks. Less is known about FC in subjects with benign MTLE (i.e., sensitive to antiseizure medication, bMTLE).Aim and methodsWe evaluated FC of hippocampus and amygdala in subjects with bMTLE, distinguished based on the epileptic focus lateralization. We enrolled 19 patients (10 with left and 9 with right bMTLE) and 10 age-matched healthy subjects. Connectivity was investigated at rest by using a seed-based regression analyses approach with four regions of interest (left and right hippocampus, left and right amygdala). Patients were also tested with a neuropsychological battery and their scores were correlated with fMRI data.Results and conclusionsOur study documented an asymmetrical disruption of FC in bMTLE, in relation to the side of the focus. Right subjects only exhibited limited altered connections, while left subjects—who performed worse in verbal memory tests—showed a wide bilateral hypoconnectivity of hippocampus and amygdala with areas belonging to language and memory network. The strength of FC between left limbic areas and language and memory network correlated with better performances in verbal memory tests. Moreover, we observed an increased FC with areas of default mode network, more pronounced in left subjects, a possible attempt to compensate cognitive deficit but without effectiveness.We believe that these findings could help to better characterize bMTLE, in which a dysfunction of limbic connectivity is detectable despite well-controlled epilepsy.
Collapse
Affiliation(s)
- Chiara Pizzanelli
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
- *Correspondence: Chiara Pizzanelli
| | | | - Chiara Milano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Paolo Cecchi
- Department of Translational Research and New Technologies in Medicine and Surgery, Neuroradiology Unit, University of Pisa, Pisa, Italy
| | - Lorenzo Fontanelli
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Sara Giannoni
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, Human Anatomy, University of Pisa, Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, Pisa University Hospital, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, Neuroradiology Unit, University of Pisa, Pisa, Italy
| | - Enrica Bonanni
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
168
|
Hsu CT, Sato W, Kochiyama T, Nakai R, Asano K, Abe N, Yoshikawa S. Enhanced Mirror Neuron Network Activity and Effective Connectivity during Live Interaction Among Female Subjects. Neuroimage 2022; 263:119655. [PMID: 36182055 DOI: 10.1016/j.neuroimage.2022.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Facial expressions are indispensable in daily human communication. Previous neuroimaging studies investigating facial expression processing have presented pre-recorded stimuli and lacked live face-to-face interaction. Our paradigm alternated between presentations of real-time model performance and pre-recorded videos of dynamic facial expressions to participants. Simultaneous functional magnetic resonance imaging (fMRI) and facial electromyography activity recordings, as well as post-scan valence and arousal ratings were acquired from 44 female participants. Live facial expressions enhanced the subjective valence and arousal ratings as well as facial muscular responses. Live performances showed greater engagement of the right posterior superior temporal sulcus (pSTS), right inferior frontal gyrus (IFG), right amygdala and right fusiform gyrus, and modulated the effective connectivity within the right mirror neuron system (IFG, pSTS, and right inferior parietal lobule). A support vector machine algorithm could classify multivoxel activation patterns in brain regions involved in dynamic facial expression processing in the mentalizing networks (anterior and posterior cingulate cortex). These results indicate that live social interaction modulates the activity and connectivity of the right mirror neuron system and enhances spontaneous mimicry, further facilitating emotional contagion.
Collapse
Affiliation(s)
- Chun-Ting Hsu
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan..
| | - Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan..
| | - Takanori Kochiyama
- Brain Activity Imaging Center, ATR- Promotions, Inc., 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, 46 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Kohei Asano
- Institute for the Future of Human Society, Kyoto University, 46 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan; Department of Children Education, Osaka University of Comprehensive Children Education, 6-chome-4-26 Yuzato, Higashisumiyoshi Ward, Osaka, 546-0013, Japan
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, 46 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Sakiko Yoshikawa
- Institute of Philosophy and Human Values, Kyoto University of the Arts, 2-116 Uryuyama Kitashirakawa, Sakyo, Kyoto, Kyoto 606-8271, Japan
| |
Collapse
|
169
|
Tasos E. To What Extent are Prenatal Androgens Involved in the Development of Male Homosexuality in Humans? JOURNAL OF HOMOSEXUALITY 2022; 69:1928-1963. [PMID: 34080960 DOI: 10.1080/00918369.2021.1933792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endocrine variations, including possibly reduced exposure to androgens, may contribute to the development of male homosexuality, with animal models demonstrating same-sex mate preference with altered exposure during prenatal or early postnatal development. As similar studies in humans are impossible, indirect physical and cognitive measures of androgen exposure are used. Some studies suggest that physical measures affected by prenatal androgens, including the index-to-ring finger ratio, growth indices, and facial structure, are more "feminine" in gay men. Gay men also exhibit significant childhood gender non-conformity and a "feminized" anatomical and functional brain pattern in sexual arousal, as well as domains such as language, visuospatial skills and hemispheric relationships. However, many of these results are equivocal and may be confounded by other factors. Research has also been hampered by inconsistencies in the reporting of sexual orientation and the potentially unrepresentative populations of gay men studied, while additional complexities pertaining to gender conformity and sexual role may also influence results.
Collapse
Affiliation(s)
- Emmanouil Tasos
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
170
|
White matter hyperintensity distribution differences in aging and neurodegenerative disease cohorts. Neuroimage Clin 2022; 36:103204. [PMID: 36155321 PMCID: PMC9668605 DOI: 10.1016/j.nicl.2022.103204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION White matter hyperintensities (WMHs) are common magnetic resonance imaging (MRI) findings in the aging population in general, as well as in patients with neurodegenerative diseases. They are known to exacerbate the cognitive deficits and worsen the clinical outcomes in the patients. However, it is not well-understood whether there are disease-specific differences in prevalence and distribution of WMHs in different neurodegenerative disorders. METHODS Data included 976 participants with cross-sectional T1-weighted and fluid attenuated inversion recovery (FLAIR) MRIs from the Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) cohort of the Canadian Consortium on Neurodegeneration in Aging (CCNA) with eleven distinct diagnostic groups: cognitively intact elderly (CIE), subjective cognitive impairment (SCI), mild cognitive impairment (MCI), vascular MCI (V-MCI), Alzheimer's dementia (AD), vascular AD (V-AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), cognitively intact elderly with Parkinson's disease (PD-CIE), cognitively impaired Parkinson's disease (PD-CI), and mixed dementias. WMHs were segmented using a previously validated automated technique. WMH volumes in each lobe and hemisphere were compared against matched CIE individuals, as well as each other, and between men and women. RESULTS All cognitively impaired diagnostic groups had significantly greater overall WMH volumes than the CIE group. Vascular groups (i.e. V-MCI, V-AD, and mixed dementia) had significantly greater WMH volumes than all other groups, except for FTD, which also had significantly greater WMH volumes than all non-vascular groups. Women tended to have lower WMH burden than men in most groups and regions, controlling for age. The left frontal lobe tended to have a lower WMH burden than the right in all groups. In contrast, the right occipital lobe tended to have greater WMH volumes than the left. CONCLUSIONS There were distinct differences in WMH prevalence and distribution across diagnostic groups, sexes, and in terms of asymmetry. WMH burden was significantly greater in all neurodegenerative dementia groups, likely encompassing areas exclusively impacted by neurodegeneration as well as areas related to cerebrovascular disease pathology.
Collapse
|
171
|
Hopkins WD. Neuroanatomical asymmetries in nonhuman primates in the homologs to Broca's and Wernicke's areas: a mini-review. Emerg Top Life Sci 2022; 6:ETLS20210279. [PMID: 36073786 PMCID: PMC9472819 DOI: 10.1042/etls20210279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
Population-level lateralization in structure and function is a fundamental measure of the human nervous system. To what extent nonhuman primates exhibit similar patterns of asymmetry remains a topic of considerable scientific interest. In this mini-review, a brief summary of findings on brain asymmetries in nonhuman primates in brain regions considered to the homolog's to Broca's and Wernicke's area are presented. Limitations of existing and directions for future studies are discussed in the context of facilitating comparative investigations in primates.
Collapse
Affiliation(s)
- William D. Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX 78602, U.S.A
| |
Collapse
|
172
|
Pengo M, Alberici A, Libri I, Benussi A, Gadola Y, Ashton NJ, Zetterberg H, Blennow K, Borroni B. Sex influences clinical phenotype in frontotemporal dementia. Neurol Sci 2022; 43:5281-5287. [PMID: 35672480 PMCID: PMC9385756 DOI: 10.1007/s10072-022-06185-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/28/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) encompasses a wide spectrum of genetic, clinical, and histological findings. Sex is emerging as a potential biological variable influencing FTD heterogeneity; however, only a few studies explored this issue with nonconclusive results. OBJECTIVE To estimate the role of sex in a single-center large cohort of FTD patients. METHODS Five hundred thirty-one FTD patients were consecutively enrolled. Demographic, clinical, and neuropsychological features, survival rate, and serum neurofilament light (NfL) concentration were determined and compared between sex. RESULTS The behavioral variant of FTD was more common in men, whereas primary progressive aphasia was overrepresented in women (p < 0.001). While global cognitive impairment was comparable, females had a more severe cognitive impairment, namely in Trail Making Test parts A and B (p = 0.003), semantic fluency (p = 0.03), Short Story Recall Test (p = 0.003), and the copy of Rey Complex Figure (p = 0.005). On the other hand, men exhibited more personality/behavioral symptoms (Frontal Behavior Inventory [FBI] AB, p = 0.003), displaying higher scores in positive FBI subscales (FBI B, p < 0.001). In particular, apathy (p = 0.02), irritability (p = 0.006), poor judgment (p = 0.033), aggressivity (p = 0.008), and hypersexuality (p = 0.006) were more common in men, after correction for disease severity. NfL concentration and survival were not statistically different between men and women (p = 0.167 and p = 0.645, respectively). DISCUSSION The present study demonstrated that sex is a potential factor in determining FTD phenotype, while it does not influence survival. Although the pathophysiological contribution of sex in neurodegeneration is not well characterized yet, our findings highlight its role as deserving biological variable in FTD.
Collapse
Affiliation(s)
- Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Department of Neurological and Vision Sciences, Neurology Unit, ASST Spedali Civili, Brescia, Italy
| | - Ilenia Libri
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Department of Neurological and Vision Sciences, Neurology Unit, ASST Spedali Civili, Brescia, Italy
| | - Yasmine Gadola
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Nicholas J Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mӧlndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mӧlndal, Sweden
- Institute of Psychiatry, King's College London, Maurice Wohl Clinical Neuroscience Institute, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mӧlndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mӧlndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy.
- Department of Neurological and Vision Sciences, Neurology Unit, ASST Spedali Civili, Brescia, Italy.
| |
Collapse
|
173
|
Willbrand EH, Voorhies WI, Yao JK, Weiner KS, Bunge SA. Presence or absence of a prefrontal sulcus is linked to reasoning performance during child development. Brain Struct Funct 2022; 227:2543-2551. [PMID: 35932310 PMCID: PMC9418286 DOI: 10.1007/s00429-022-02539-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022]
Abstract
The relationship between structural variability in late-developing association cortices like the lateral prefrontal cortex (LPFC) and the development of higher-order cognitive skills is not well understood. Recent findings show that the morphology of LPFC sulci predicts reasoning performance; this work led to the observation of substantial individual variability in the morphology of one of these sulci, the para-intermediate frontal sulcus (pimfs). Here, we sought to characterize this variability and assess its behavioral significance. To this end, we identified the pimfs in a developmental cohort of 72 participants, ages 6-18. Subsequent analyses revealed that the presence or absence of the ventral component of the pimfs was associated with reasoning, even when controlling for age. This finding shows that the cortex lining the banks of sulci can support the development of complex cognitive abilities and highlights the importance of considering individual differences in local morphology when exploring the neurodevelopmental basis of cognition.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Willa I Voorhies
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jewelia K Yao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Kevin S Weiner
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Silvia A Bunge
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
174
|
Das A, Mandel A, Shitara H, Popa T, Horovitz SG, Hallett M, Thirugnanasambandam N. Evaluating interhemispheric connectivity during midline object recognition using EEG. PLoS One 2022; 17:e0270949. [PMID: 36026515 PMCID: PMC9417031 DOI: 10.1371/journal.pone.0270949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Functional integration between two hemispheres is crucial for perceptual binding to occur when visual stimuli are presented in the midline of the visual field. Mima and colleagues (2001) showed using EEG that midline object recognition was associated with task-related decrease in alpha band power (alpha desynchronisation) and a transient increase in interhemispheric coherence. Our objective in the current study was to replicate the results of Mima et al. and to further evaluate interhemispheric effective connectivity during midline object recognition in source space. We recruited 11 healthy adult volunteers and recorded EEG from 64 channels while they performed a midline object recognition task. Task-related power and coherence were estimated in sensor and source spaces. Further, effective connectivity was evaluated using Granger causality. While we were able to replicate the alpha desynchronisation associated with midline object recognition, we could not replicate the coherence results of Mima et al. The data-driven approach that we employed in our study localised the source of alpha desynchronisation over the left occipito-temporal region. In the alpha band, we further observed significant increase in imaginary part of coherency between bilateral occipito-temporal regions during object recognition. Finally, Granger causality analysis between the left and right occipito-temporal regions provided an insight that even though there is bidirectional interaction, the left occipito-temporal region may be crucial for integrating the information necessary for object recognition. The significance of the current study lies in using high-density EEG and applying more appropriate and robust measures of connectivity as well as statistical analysis to validate and enhance our current knowledge on the neural basis of midline object recognition.
Collapse
Affiliation(s)
- Anwesha Das
- Human Motor Neurophysiology and Neuromodulation Lab, National Brain Research Centre (NBRC), Manesar, Haryana, India
| | - Alexandra Mandel
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States of America
- The George Washington University, Washington, DC, United States of America
| | - Hitoshi Shitara
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Tokyo, Japan
| | - Traian Popa
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Silvina G. Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nivethida Thirugnanasambandam
- Human Motor Neurophysiology and Neuromodulation Lab, National Brain Research Centre (NBRC), Manesar, Haryana, India
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
175
|
Thome I, García Alanis JC, Volk J, Vogelbacher C, Steinsträter O, Jansen A. Let's face it: The lateralization of the face perception network as measured with fMRI is not clearly right dominant. Neuroimage 2022; 263:119587. [PMID: 36031183 DOI: 10.1016/j.neuroimage.2022.119587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
The neural face perception network is distributed across both hemispheres. However, the dominant role in humans is virtually unanimously attributed to the right hemisphere. Interestingly, there are, to our knowledge, no imaging studies that systematically describe the distribution of hemispheric lateralization in the core system of face perception across subjects in large cohorts so far. To address this, we determined the hemispheric lateralization of all core system regions (i.e., occipital face area (OFA), fusiform face area (FFA), posterior superior temporal sulcus (pSTS)) in 108 healthy subjects using functional magnetic resonance imaging (fMRI). We were particularly interested in the variability of hemispheric lateralization across subjects and explored how many subjects can be classified as right-dominant based on the fMRI activation pattern. We further assessed lateralization differences between different regions of the core system and analyzed the influence of handedness and sex on the lateralization with a generalized mixed effects regression model. As expected, brain activity was on average stronger in right-hemispheric brain regions than in their left-hemispheric homologues. This asymmetry was, however, only weakly pronounced in comparison to other lateralized brain functions (such as language and spatial attention) and strongly varied between individuals. Only half of the subjects in the present study could be classified as right-hemispheric dominant. Additionally, we did not detect significant lateralization differences between core system regions. Our data did also not support a general leftward shift of hemispheric lateralization in left-handers. Only the interaction of handedness and sex in the FFA revealed that specifically left-handed men were significantly more left-lateralized compared to right-handed males. In essence, our fMRI data did not support a clear right-hemispheric dominance of the face perception network. Our findings thus ultimately question the dogma that the face perception network - as measured with fMRI - can be characterized as "typically right lateralized".
Collapse
Affiliation(s)
- Ina Thome
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.
| | - José C García Alanis
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Clinical Child and Adolescent Psychology, Department of Psychology, University of Marburg, Marburg, Germany; Analysis and Modeling of Complex Data Lab, Institute of Psychology, University of Mainz, Mainz, Germany
| | - Jannika Volk
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Christoph Vogelbacher
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Olaf Steinsträter
- Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany.
| |
Collapse
|
176
|
Sun HM, Li QY, Xiao RY, Zhang ZD, Yang XY, Yang J, Jin B, Wen JX, Wu YJ, Yang H, Wang F. A structural MRI study of global developmental delay in infants (<2 years old). Front Neurol 2022; 13:952405. [PMID: 36062014 PMCID: PMC9434372 DOI: 10.3389/fneur.2022.952405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To use structural magnetic resonance imaging (3D-MRI) to evaluate the abnormal development of the cerebral cortex in infants with global developmental delay (GDD). Methods The GDD group includes 67 infants aged between 112 and 699 days with global developmental delay and who underwent T1-weighted MRI scans in Shanxi Children's Hospital from December 2019 to March 2022. The healthy control (HC) group includes 135 normal developing infants aged between 88 and 725 days in Shanxi Children's Hospital from September 2020 to August 2021. Whole-brain T1-weighted MRI scans were carried out with a 3.0-T magnetic resonance scanner, which was later processed using InfantSurfer to perform MR image processing and cortical surface reconstruction. Two morphological features of the cortical surface of the 68 brain regions were computed, i.e., the cortical thickness (CT) and cortical surface area (SA), and compared between the GDD and HC groups. Results With regard to the CT, the HC group showed a rapid decrease at first and then a slow increase after birth, and the CT of the GDD group decreased slowly and then became relatively stable. The GDD group showed bilaterally higher hemispherical average CT than those in the HC group. In detail, for the left hemisphere, except in the entorhinal and temporal poles in which the average CT values of the two brain regions were lower than those of the HC group, the CT of the 26 brain regions in the GDD group was higher than those of the HC group (p < 0.05). For the right hemisphere, the CT of the entorhinal in the GDD group was lower than that in the HC group. Otherwise, the CT of the remaining 28 brain regions was higher than those in the HC group (p < 0.05). With regard to the SA, both groups showed a rapid increase after birth till 23 months and remained quite stable afterward. The GDD group shows lower SA bilaterally than that in the HC group. In detail, SA in the GDD group was lower in most cortical regions of both hemispheres than in the HC group (p < 0.05), except for the right temporal pole and entorhinal. When testing for brain asymmetry, we found that the HC group showed obvious asymmetry of CT and SA, while only a few cortical regions in the GDD group showed asymmetry.
Collapse
Affiliation(s)
- Hui-miao Sun
- Department of Magnetic Resonance Imaging (MRI), Children Hospital of Shanxi Province (Shanxi Maternal and Child Health Hospital), Taiyuan, China
- *Correspondence: Hui-miao Sun
| | - Qian-yun Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Ru-yi Xiao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ze-dong Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Xiao-yan Yang
- Department of Magnetic Resonance Imaging (MRI), Children Hospital of Shanxi Province (Shanxi Maternal and Child Health Hospital), Taiyuan, China
| | - Jie Yang
- Department of Magnetic Resonance Imaging (MRI), Children Hospital of Shanxi Province (Shanxi Maternal and Child Health Hospital), Taiyuan, China
| | - Bo Jin
- Department of Magnetic Resonance Imaging (MRI), Children Hospital of Shanxi Province (Shanxi Maternal and Child Health Hospital), Taiyuan, China
| | - Jia-xiang Wen
- Department of Magnetic Resonance Imaging (MRI), Children Hospital of Shanxi Province (Shanxi Maternal and Child Health Hospital), Taiyuan, China
| | - Yan-jun Wu
- Department of Magnetic Resonance Imaging (MRI), Children Hospital of Shanxi Province (Shanxi Maternal and Child Health Hospital), Taiyuan, China
| | - Hong Yang
- Department of Magnetic Resonance Imaging (MRI), Children Hospital of Shanxi Province (Shanxi Maternal and Child Health Hospital), Taiyuan, China
| | - Fan Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
- Fan Wang
| |
Collapse
|
177
|
Fedeli D, Del Maschio N, Del Mauro G, Defendenti F, Sulpizio S, Abutalebi J. Cingulate cortex morphology impacts on neurofunctional activity and behavioral performance in interference tasks. Sci Rep 2022; 12:13684. [PMID: 35953536 PMCID: PMC9372177 DOI: 10.1038/s41598-022-17557-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Inhibitory control is the capacity to withhold or suppress a thought or action intentionally. The anterior Midcingulate Cortex (aMCC) participates in response inhibition, a proxy measure of inhibitory control. Recent research suggests that response inhibition is modulated by individual variability in the aMCC sulcal morphology. However, no study has investigated if this phenomenon is associated with neurofunctional differences during a task. In this study, 42 participants performed an Attention Network Task and a Numerical Stroop task in an MRI scanner. We investigated differences in brain activity and response inhibition efficiency between individuals with symmetric and asymmetric aMCC sulcal patterns. The results showed that aMCC morphological variability is partly associated with inhibitory control, and revealed greater activation in individuals with symmetric patterns during the Stroop task. Our findings provide novel insights into the functional correlates of the relationship between aMCC morphology and executive abilities.
Collapse
Affiliation(s)
- Davide Fedeli
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Federica Defendenti
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Simone Sulpizio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
178
|
Reduced white matter microstructural integrity in prediabetes and diabetes: A population-based study. EBioMedicine 2022; 82:104144. [PMID: 35810560 PMCID: PMC9278067 DOI: 10.1016/j.ebiom.2022.104144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Background White matter (WM) microstructural abnormalities have been observed in diabetes. However, evidence of prediabetes is currently lacking. This study aims to investigate the WM integrity in prediabetes and diabetes. We also assess the association of WM abnormalities with glucose metabolism status and continuous glucose measures. Methods The WM integrity was analyzed using cross-sectional baseline data from a population-based PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events (PRECISE) study. The cohort, including a total of 2218 cases with the mean age of 61.3 ± 6.6 years and 54.1% female, consisted of 1205 prediabetes which are categorized into two subgroups (a group of 254 prediabetes with combined impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) and the other group of 951 prediabetes without combined IFG/IGT), 504 diabetes, and 509 normal control subjects. Alterations of WM integrity were determined by diffusion tensor imaging along with tract-based spatial statistics analysis to compare diffusion metrics on WM skeletons between groups. The mixed-effects multivariate linear regression models were used to assess the association between WM microstructural alterations and glucose status. Findings Microstructural abnormalities distributed in local WM tracts in prediabetes with combined IFG/IGT and spread widely in diabetes. These WM abnormalities are associated with higher glucose measures. Interpretation Our findings suggest that WM microstructural abnormalities are already present at the prediabetes with combined IFG/IGT stage. Preventative strategies should begin early to maintain normal glucose metabolism and avert further destruction of WM integrity. Funding Partially supported by National Key R&D Program of China (2016YFC0901002).
Collapse
|
179
|
Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data. Neuroimage 2022; 262:119550. [DOI: 10.1016/j.neuroimage.2022.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
|
180
|
Wan B, Bayrak Ş, Xu T, Schaare HL, Bethlehem RAI, Bernhardt BC, Valk SL. Heritability and cross-species comparisons of human cortical functional organization asymmetry. eLife 2022; 11:e77215. [PMID: 35904242 PMCID: PMC9381036 DOI: 10.7554/elife.77215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The human cerebral cortex is symmetrically organized along large-scale axes but also presents inter-hemispheric differences in structure and function. The quantified contralateral homologous difference, that is asymmetry, is a key feature of the human brain left-right axis supporting functional processes, such as language. Here, we assessed whether the asymmetry of cortical functional organization is heritable and phylogenetically conserved between humans and macaques. Our findings indicate asymmetric organization along an axis describing a functional trajectory from perceptual/action to abstract cognition. Whereas language network showed leftward asymmetric organization, frontoparietal network showed rightward asymmetric organization in humans. These asymmetries were heritable in humans and showed a similar spatial distribution with macaques, in the case of intra-hemispheric asymmetry of functional hierarchy. This suggests (phylo)genetic conservation. However, both language and frontoparietal networks showed a qualitatively larger asymmetry in humans relative to macaques. Overall, our findings suggest a genetic basis for asymmetry in intrinsic functional organization, linked to higher order cognitive functions uniquely developed in humans.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom)LeipzigGermany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of LeipzigLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | - Şeyma Bayrak
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of LeipzigLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | - Ting Xu
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | | | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
181
|
Sadeghi N, Joghataei MT, Shahbazi A, Tonekaboni SH, Akrami H, Nazari MA. Motor planning is not restricted to only one hemisphere: evidence from ERPs in individuals with hemiplegic cerebral palsy. Exp Brain Res 2022; 240:2311-2326. [PMID: 35876852 DOI: 10.1007/s00221-022-06425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/17/2022] [Indexed: 11/27/2022]
Abstract
The evidence for the hemispheric specialization of motor planning reveals several inconsistencies between the left-lateralized hypothesis and a distributed system across the hemispheres. We compared participants with left hemiplegic cerebral palsy (HCP) to right-handed control subjects in this study's first experiment by inviting them to perform a motor planning task. Participants were required to release the start button, grasp a hexagon, and rotate it according to the instructions. In the second experiment, we compared left-HCP subjects with right-HCP subjects inviting them to perform the same task (we used the data for left-HCP subjects from the first experiment). P2 amplitude, as well as planning time, grasping time, releasing time, and initial grip selection planning patterns, were used as outcome measures in both experiments. The first experiment revealed that controls acted more quickly and chose more effective planning patterns. Also, the P2 amplitude was smaller in left-HCP subjects than in control subjects. No significant group effect was observed in the second experiment for any movement-related measure or P2. At the neural level, however, there was an interaction between 'region' and 'group,' indicating the distinction between the two groups in the right region. The results are discussed in terms of motor planning's hemispheric distribution and individual differences in the HCP group.
Collapse
Affiliation(s)
- Neda Sadeghi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hale Akrami
- Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran.
| |
Collapse
|
182
|
Silver E, Pulli EP, Kataja EL, Kumpulainen V, Copeland A, Saukko E, Saunavaara J, Merisaari H, Lähdesmäki T, Parkkola R, Karlsson L, Karlsson H, Tuulari JJ. Prenatal and early-life environmental factors, family demographics and cortical brain anatomy in 5-year-olds: an MRI study from FinnBrain Birth Cohort. Brain Imaging Behav 2022; 16:2097-2109. [PMID: 35869382 PMCID: PMC9581828 DOI: 10.1007/s11682-022-00679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
AbstractThe human brain develops dynamically during early childhood, when the child is sensitive to both genetic programming and extrinsic exposures. Recent studies have found links between prenatal and early life environmental factors, family demographics and the cortical brain morphology in newborns measured by surface area, volume and thickness. Here in this magnetic resonance imaging study, we evaluated whether a similar set of variables associates with cortical surface area and volumes measured in a sample of 170 healthy 5-year-olds from the FinnBrain Birth Cohort Study. We found that child sex, maternal pre-pregnancy body mass index, 5 min Apgar score, neonatal intensive care unit admission and maternal smoking during pregnancy associated with surface areas. Furthermore, child sex, maternal age and maternal level of education associated with brain volumes. Expectedly, many variables deemed important for neonatal brain anatomy (such as birth weight and gestational age at birth) in earlier studies did not associate with brain metrics in our study group of 5-year-olds, which implies that their effects on brain anatomy are age-specific. Future research may benefit from including pre- and perinatal covariates in the analyses when such data are available. Finally, we provide evidence for right lateralization for surface area and volumes, except for the temporal lobes which were left lateralized. These subtle differences between hemispheres are variable across individuals and may be interesting brain metrics in future studies.
Collapse
|
183
|
Zhao H, Cai H, Mo F, Lu Y, Yao S, Yu Y, Zhu J. Genetic mechanisms underlying brain functional homotopy: a combined transcriptome and resting-state functional MRI study. Cereb Cortex 2022; 33:3387-3400. [PMID: 35851912 DOI: 10.1093/cercor/bhac279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Functional homotopy, the high degree of spontaneous activity synchrony and functional coactivation between geometrically corresponding interhemispheric regions, is a fundamental characteristic of the intrinsic functional architecture of the brain. However, little is known about the genetic mechanisms underlying functional homotopy. Resting-state functional magnetic resonance imaging data from a discovery dataset (656 healthy subjects) and 2 independent cross-race, cross-scanner validation datasets (103 and 329 healthy subjects) were used to calculate voxel-mirrored homotopic connectivity (VMHC) indexing brain functional homotopy. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analysis was conducted to identify genes linked to VMHC. We found 1,001 genes whose expression measures were spatially associated with VMHC. Functional enrichment analyses demonstrated that these VMHC-related genes were enriched for biological functions including protein kinase activity, ion channel regulation, and synaptic function as well as many neuropsychiatric disorders. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons and immune cells, and during nearly all developmental periods. In addition, the VMHC-associated genes were linked to multiple behavioral domains, including vision, execution, and attention. Our findings suggest that interhemispheric communication and coordination involve a complex interaction of polygenes with a rich range of functional features.
Collapse
Affiliation(s)
- Han Zhao
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Huanhuan Cai
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Fan Mo
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Yun Lu
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Shanwen Yao
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Yongqiang Yu
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Jiajia Zhu
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| |
Collapse
|
184
|
Asymmetry of Endocast Surface Shape in Modern Humans Based on Diffeomorphic Surface Matching. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain asymmetry is associated with handedness and cognitive function, and is also reflected in the shape of endocasts. However, comprehensive quantification of the asymmetry in endocast shapes is limited. Here, we quantify and visualize the variation of endocast asymmetry in modern humans using diffeomorphic surface matching. Our results show that two types of lobar fluctuating asymmetry contribute most to global asymmetry variation. A dominant pattern of local directional asymmetry is shared in the majority of the population: (1) the left occipital pole protrudes more than the right frontal pole in the left-occipital and right-frontal petalial asymmetry; (2) the left Broca’s cap appears to be more globular and bulges laterally, anteriorly, and ventrally compared to the right side; and (3) the asymmetrical pattern of the parietal is complex and the posterior part of the right temporal lobes are more bulbous than the contralateral sides. This study confirms the validity of endocasts for obtaining valuable information on encephalic asymmetries and reveals a more complicated pattern of asymmetry of the cerebral lobes than previously reported. The endocast asymmetry pattern revealed here provides more shape information to explore the relationships between brain structure and function, to re-define the uniqueness of human brains related to other primates, and to trace the timing of the human asymmetry pattern within hominin lineages.
Collapse
|
185
|
Ji L, Hendrix CL, Thomason ME. Empirical evaluation of human fetal fMRI preprocessing steps. Netw Neurosci 2022; 6:702-721. [PMID: 36204420 PMCID: PMC9531599 DOI: 10.1162/netn_a_00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/09/2022] [Indexed: 11/04/2022] Open
Abstract
Increased study and methodological innovation have led to growth in the field of fetal brain fMRI. An important gap yet to be addressed is optimization of fetal fMRI preprocessing. Rapid developmental changes, imaged within the maternal compartment using an abdominal coil, introduce novel constraints that challenge established methods used in adult fMRI. This study evaluates the impact of (1) normalization to a group mean-age template versus normalization to an age-matched template; (2) independent components analysis (ICA) denoising at two criterion thresholds; and (3) smoothing using three kernel sizes. Data were collected from 121 fetuses (25-39 weeks, 43.8% female). Results indicate that the mean age template is superior in older fetuses, but less optimal in younger fetuses. ICA denoising at a more stringent threshold is superior to less stringent denoising. A larger smoothing kernel can enhance cross-hemisphere functional connectivity. Overall, this study provides improved understanding of the impact of specific steps on fetal image quality. Findings can be used to inform a common set of best practices for fetal fMRI preprocessing.
Collapse
Affiliation(s)
- Lanxin Ji
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Cassandra L. Hendrix
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Moriah E. Thomason
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
186
|
Moghimi P, Dang AT, Do Q, Netoff TI, Lim KO, Atluri G. Evaluation of functional MRI-based human brain parcellation: a review. J Neurophysiol 2022; 128:197-217. [PMID: 35675446 DOI: 10.1152/jn.00411.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain parcellations play a crucial role in the analysis of brain imaging data sets, as they can significantly affect the outcome of the analysis. In recent years, several novel approaches for constructing MRI-based brain parcellations have been developed with promising results. In the absence of ground truth, several evaluation approaches have been used to evaluate currently available brain parcellations. In this article, we review and critique methods used for evaluating functional brain parcellations constructed using fMRI data sets. We also describe how some of these evaluation methods have been used to estimate the optimal parcellation granularity. We provide a critical discussion of the current approach to the problem of identifying the optimal brain parcellation that is suited for a given neuroimaging study. We argue that the criteria for an optimal brain parcellation must depend on the application the parcellation is intended for. We describe a teleological approach to the evaluation of brain parcellations, where brain parcellations are evaluated in different contexts and optimal brain parcellations for each context are identified separately. We conclude by discussing several directions for further research that would result in improved evaluation strategies.
Collapse
Affiliation(s)
- Pantea Moghimi
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Anh The Dang
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| | - Quan Do
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Gowtham Atluri
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
187
|
Comparing brain asymmetries independently of brain size. Neuroimage 2022; 254:119118. [PMID: 35318151 DOI: 10.1016/j.neuroimage.2022.119118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/16/2023] Open
Abstract
Studies examining cerebral asymmetries typically divide the l-R Measure (e.g., Left-Right Volume) by the L + R Measure to obtain an Asymmetry Index (AI). However, contrary to widespread belief, such a division fails to render the AI independent from the L + R Measure and/or from total brain size. As a result, variations in brain size may bias correlation estimates with the AI or group differences in AI. We investigated how to analyze brain asymmetries in to distinguish global from regional effects, and report unbiased group differences in cerebral asymmetries in the UK Biobank (N = 40, 028). We used 306 global and regional brain measures provided by the UK Biobank. Global gray and white matter volumes were taken from Freesurfer ASEG, subcortical gray matter volumes from Freesurfer ASEG and subsegmentation, cortical gray matter volumes, mean thicknesses, and surface areas from the Destrieux atlas applied on T1-and T2-weighted images, cerebellar gray matter volumes from FAST FSL, and regional white matter volumes from Freesurfer ASEG. We analyzed the extent to which the L + R Measure, Total Cerebral Measure (TCM, e.g., Total Brain Volume), and l-R TCM predict regional asymmetries. As a case study, we assessed the consequences of omitting each of these predictors on the magnitude and significance of sex differences in asymmetries. We found that the L + R Measure, the TCM, and the l-R TCM predicted the AI of more than 89% of regions and that their relationships were generally linear. Removing any of these predictors changed the significance of sex differences in 33% of regions and the magnitude of sex differences across 13-42% of regions. Although we generally report similar sex and age effects on cerebral asymmetries to those of previous large-scale studies, properly adjusting for regional and global brain size revealed additional sex and age effects on brain asymmetry.
Collapse
|
188
|
Liu G, Huo E, Liu H, Jia G, Zhi Y, Dong Q, Niu H. Development and emergence of functional network asymmetry in 3- to 9-month-old infants. Cortex 2022; 154:390-404. [DOI: 10.1016/j.cortex.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
189
|
Davis R, Donati G, Finnegan K, Boardman JP, Dean B, Fletcher‐Watson S, Forrester GS. Social gaze in preterm infants may act as an early indicator of atypical lateralization. Child Dev 2022; 93:869-880. [PMID: 35112717 PMCID: PMC9545542 DOI: 10.1111/cdev.13734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Visual field biases have been identified as markers of atypical lateralization in children with developmental conditions, but this is the first investigation to consider early lateralized gaze behaviors for social stimuli in preterm infants. Eye-tracking methods with 51 preterm (33 male, 92.1% White) and 61 term-born (31 male, 90.1% White) infants aged 8-10 months from Edinburgh, UK, captured the development of visual field biases, comparing gaze behavior to social and non-social stimuli on the left versus right of the screen. Preterm infants showed a significantly reduced interest to social stimuli on the left versus right compared to term children (d = .58). Preterm children exhibit early differential orienting preferences that may be an early indicator of atypical lateralized function.
Collapse
Affiliation(s)
- Rachael Davis
- Salvesen Mindroom Research CentreUniversity of EdinburghEdinburghUK
| | - Georgina Donati
- Department of Psychological SciencesBirkbeck, University of LondonLondonUK
| | - Kier Finnegan
- Department of ImmunobiologyUCL Great Ormond Street Institute of Child HealthLondonUK
| | - James P. Boardman
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Bethan Dean
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | | | | |
Collapse
|
190
|
Dubol M, Stiernman L, Wikström J, Lanzenberger R, Neill Epperson C, Sundström-Poromaa I, Bixo M, Comasco E. Differential grey matter structure in women with premenstrual dysphoric disorder: evidence from brain morphometry and data-driven classification. Transl Psychiatry 2022; 12:250. [PMID: 35705554 PMCID: PMC9200862 DOI: 10.1038/s41398-022-02017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a female-specific condition classified in the Diagnostic and Statical Manual-5th edition under depressive disorders. Alterations in grey matter volume, cortical thickness and folding metrics have been associated with a number of mood disorders, though little is known regarding brain morphological alterations in PMDD. Here, women with PMDD and healthy controls underwent magnetic resonance imaging (MRI) during the luteal phase of the menstrual cycle. Differences in grey matter structure between the groups were investigated by use of voxel- and surface-based morphometry. Machine learning and multivariate pattern analysis were performed to test whether MRI data could distinguish women with PMDD from healthy controls. Compared to controls, women with PMDD had smaller grey matter volume in ventral posterior cortices and the cerebellum (Cohen's d = 0.45-0.76). Region-of-interest analyses further indicated smaller volume in the right amygdala and putamen of women with PMDD (Cohen's d = 0.34-0.55). Likewise, thinner cortex was observed in women with PMDD compared to controls, particularly in the left hemisphere (Cohen's d = 0.20-0.74). Classification analyses showed that women with PMDD can be distinguished from controls based on grey matter morphology, with an accuracy up to 74%. In line with the hypothesis of an impaired top-down inhibitory circuit involving limbic structures in PMDD, the present findings point to PMDD-specific grey matter anatomy in regions of corticolimbic networks. Furthermore, the results include widespread cortical and cerebellar regions, suggesting the involvement of distinct networks in PMDD pathophysiology.
Collapse
Affiliation(s)
- Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden
| | - Louise Stiernman
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, 751 85, Sweden
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, 1090, Austria
| | - C Neill Epperson
- Department of Psychiatry, Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Marie Bixo
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden.
| |
Collapse
|
191
|
Gazzina S, Grassi M, Premi E, Alberici A, Benussi A, Archetti S, Gasparotti R, Bocchetta M, Cash DM, Todd EG, Peakman G, Convery RS, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Butler CR, Santana I, Gerhard A, Ber IL, Pasquier F, Ducharme S, Levin J, Danek A, Sorbi S, Otto M, Rohrer JD, Borroni B. Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiol Aging 2022; 114:94-104. [PMID: 35339292 DOI: 10.1016/j.neurobiolaging.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
Abstract
Frontotemporal dementia associated with granulin (GRN) mutations presents asymmetric brain atrophy. We applied a Minimum Spanning Tree plus an Efficiency Cost Optimization approach to cortical thickness data in order to test whether graph theory measures could identify global or local impairment of connectivity in the presymptomatic phase of pathology, where other techniques failed in demonstrating changes. We included 52 symptomatic GRN mutation carriers (SC), 161 presymptomatic GRN mutation carriers (PSC) and 341 non-carriers relatives from the Genetic Frontotemporal dementia research Initiative cohort. Group differences of global, nodal and edge connectivity in (Minimum Spanning Tree plus an Efficiency Cost Optimization) graph were tested via Structural Equation Models. Global graph perturbation was selectively impaired in SC compared to non-carriers, with no changes in PSC. At the local level, only SC exhibited perturbation of frontotemporal nodes, but edge connectivity revealed a characteristic pattern of interhemispheric disconnection, involving homologous parietal regions, in PSC. Our results suggest that GRN-related frontotemporal dementia resembles a disconnection syndrome, with interhemispheric disconnection between parietal regions in presymptomatic phases that progresses to frontotemporal areas as symptoms emerge.
Collapse
Affiliation(s)
- Stefano Gazzina
- Neurophysiology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Enrico Premi
- Stroke Unit, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | | | - Alberto Benussi
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Spedali Civili Hospital, Brescia, Italy
| | | | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Emily G Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Facultéde Médecine, Université Laval, Quebec City, Québec, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tubingen, Tubingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Chris R Butler
- Nueld Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience & Experimental Psychology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Departments of Geriatric Medicine and Nuclear Medicine, Essen University Hospital, Essen, Germany
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND), Paris, France
| | | | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jonathan D Rohrer
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Barbara Borroni
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy.
| | | |
Collapse
|
192
|
Selective plasticity of callosal neurons in the adult contralesional cortex following murine traumatic brain injury. Nat Commun 2022; 13:2659. [PMID: 35551446 PMCID: PMC9098892 DOI: 10.1038/s41467-022-29992-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) results in deficits that are often followed by recovery. The contralesional cortex can contribute to this process but how distinct contralesional neurons and circuits respond to injury remains to be determined. To unravel adaptations in the contralesional cortex, we used chronic in vivo two-photon imaging. We observed a general decrease in spine density with concomitant changes in spine dynamics over time. With retrograde co-labeling techniques, we showed that callosal neurons are uniquely affected by and responsive to TBI. To elucidate circuit connectivity, we used monosynaptic rabies tracing, clearing techniques and histology. We demonstrate that contralesional callosal neurons adapt their input circuitry by strengthening ipsilateral connections from pre-connected areas. Finally, functional in vivo two-photon imaging demonstrates that the restoration of pre-synaptic circuitry parallels the restoration of callosal activity patterns. Taken together our study thus delineates how callosal neurons structurally and functionally adapt following a contralateral murine TBI. Which contralesional circuits adapt after traumatic brain injury (TBI) is unclear. Here the authors used in vivo imaging, retrograde labeling, rabies tracing, clearing and functional imaging to demonstrate that callosal neurons selectively adapt after TBI in mice.
Collapse
|
193
|
Pirone A, Magliaro C, Cantile C, Lenzi C, Coli A, Miragliotta V. Comparative and quantitative morphology of the pig and wild boar cerebellum for identifying possible effects of domestication. Ann Anat 2022; 243:151957. [DOI: 10.1016/j.aanat.2022.151957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
194
|
Ferrulli A, Gandini S, Cammarata G, Redaelli V, Massarini S, Macrì C, Terruzzi I, Cannavaro D, Luzi F, Luzi L. Deep transcranial magnetic stimulation in combination with skin thermography in obesity: a window on sympathetic nervous system. Acta Diabetol 2022; 59:729-742. [PMID: 35174415 PMCID: PMC8995296 DOI: 10.1007/s00592-022-01859-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
AIMS Obesity is known to be associated with an altered thermoregulation as well as a dysregulation of sympathetic nervous system (SNS). Considering the ability of deep transcranial magnetic stimulation (dTMS) to modulate the SNS, we hypothesized a potential role of dTMS in affecting thermoregulation in obesity. Aims of the study were to monitor the effect of a single session of dTMS on body temperature in subjects with obesity, and to correlate the dTMS-induced changes in body temperature with activation of the SNS (epinephrine and norepinephrine release). METHODS Twenty-nine subjects with obesity [5 M, 24 F; age 50 (IQR: 58, 38) yrs; BMI 36.1 (IQR: 33.9, 38.7) kg/m2] were randomized into 2 groups receiving a single session of high frequency stimulation (HF) or sham stimulation. Under neutral thermal conditions, infrared thermography was utilized to assess bilateral fingernail-beds and abdominal temperature. RESULTS During a single session HF, the average temperature of both fingernail-beds decreased. Right-hand temperature difference was statistically greater in HF vs Sham: median = - 1.45 (IQR: - 2.0, - 1.0) °C for HF, p = 0.009. While temperature variation in the fingernail-bed of left hand was not statistically significant in HF compared to Sham: median = - 1.26 (IQR: - 1.6, -0.5) °C, p = 0.064. Concurrently, when estimating the effect of norepinephrine variation on temperature change of fingernail-bed of left hand, a borderline significant positive association was estimated (beta = 1.09, p = 0.067) in HF. CONCLUSIONS Deep TMS revealed to be effective in modulating temperature in subjects with obesity, partially reversing obesity-induced alterations in heat production and dissipation with a potential SNS-mediated mechanism.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulio Cammarata
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Veronica Redaelli
- Department of Biomedical, Surgical and Dental Sciences - One Health Unit, University of Milan, Milan, Italy
| | - Stefano Massarini
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy
| | - Concetta Macrì
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Daniele Cannavaro
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Fabio Luzi
- Department of Biomedical, Surgical and Dental Sciences - One Health Unit, University of Milan, Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy.
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| |
Collapse
|
195
|
Newby D, Winchester L, Sproviero W, Fernandes M, Ghose U, Lyall D, Launer LJ, Nevado‐Holgado AJ. The relationship between isolated hypertension with brain volumes in UK Biobank. Brain Behav 2022; 12:e2525. [PMID: 35362209 PMCID: PMC9120723 DOI: 10.1002/brb3.2525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hypertension is a well-established risk factor for cognitive impairment, brain atrophy, and dementia. However, the relationship of other types of hypertensions, such as isolated hypertension on brain health and its comparison to systolic-diastolic hypertension (where systolic and diastolic measures are high), is still relatively unknown. Due to its increased prevalence, it is important to investigate the impact of isolated hypertension to help understand its potential impact on cognitive decline and future dementia risk. In this study, we compared a variety of global brain measures between participants with isolated hypertension to those with normal blood pressure (BP) or systolic-diastolic hypertension using the largest cohort of healthy individuals. METHODS Using the UK Biobank cohort, we carried out a cross-sectional study using 29,775 participants (mean age 63 years, 53% female) with BP measurements and brain magnetic resonance imaging (MRI) data. We used linear regression models adjusted for multiple confounders to compare a variety of global, subcortical, and white matter brain measures. We compared participants with either isolated systolic or diastolic hypertension with normotensives and then with participants with systolic-diastolic hypertension. RESULTS The results showed that participants with isolated systolic or diastolic hypertension taking BP medications had smaller gray matter but larger white matter microstructures and macrostructures compared to normotensives. Isolated systolic hypertensives had larger total gray matter and smaller white matter traits when comparing these regions with participants with systolic-diastolic hypertension. CONCLUSIONS These results provide support to investigate possible preventative strategies that target isolated hypertension as well as systolic-diastolic hypertension to maintain brain health and/or reduce dementia risk earlier in life particularly in white matter regions.
Collapse
Affiliation(s)
- Danielle Newby
- Department of PsychiatryWarneford Hospital, University of OxfordOxfordUK
| | - Laura Winchester
- Department of PsychiatryWarneford Hospital, University of OxfordOxfordUK
| | - William Sproviero
- Department of PsychiatryWarneford Hospital, University of OxfordOxfordUK
| | - Marco Fernandes
- Department of PsychiatryWarneford Hospital, University of OxfordOxfordUK
| | - Upamanyu Ghose
- Department of PsychiatryWarneford Hospital, University of OxfordOxfordUK
| | - Donald Lyall
- Institute of Health and WellbeingUniversity of GlasgowScotlandUK
| | | | - Alejo J. Nevado‐Holgado
- Department of PsychiatryWarneford Hospital, University of OxfordOxfordUK
- Big Data InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
196
|
Structural Brain Asymmetries for Language: A Comparative Approach across Primates. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humans are the only species that can speak. Nonhuman primates, however, share some ‘domain-general’ cognitive properties that are essential to language processes. Whether these shared cognitive properties between humans and nonhuman primates are the results of a continuous evolution [homologies] or of a convergent evolution [analogies] remain difficult to demonstrate. However, comparing their respective underlying structure—the brain—to determinate their similarity or their divergence across species is critical to help increase the probability of either of the two hypotheses, respectively. Key areas associated with language processes are the Planum Temporale, Broca’s Area, the Arcuate Fasciculus, Cingulate Sulcus, The Insula, Superior Temporal Sulcus, the Inferior Parietal lobe, and the Central Sulcus. These structures share a fundamental feature: They are functionally and structurally specialised to one hemisphere. Interestingly, several nonhuman primate species, such as chimpanzees and baboons, show human-like structural brain asymmetries for areas homologous to key language regions. The question then arises: for what function did these asymmetries arise in non-linguistic primates, if not for language per se? In an attempt to provide some answers, we review the literature on the lateralisation of the gestural communication system, which may represent the missing behavioural link to brain asymmetries for language area’s homologues in our common ancestor.
Collapse
|
197
|
Zhou X, Sobczak GS, McKay CM, Litovsky RY. Effects of degraded speech processing and binaural unmasking investigated using functional near-infrared spectroscopy (fNIRS). PLoS One 2022; 17:e0267588. [PMID: 35468160 PMCID: PMC9037936 DOI: 10.1371/journal.pone.0267588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate the effects of degraded speech perception and binaural unmasking using functional near-infrared spectroscopy (fNIRS). Normal hearing listeners were tested when attending to unprocessed or vocoded speech, presented to the left ear at two speech-to-noise ratios (SNRs). Additionally, by comparing monaural versus diotic masker noise, we measured binaural unmasking. Our primary research question was whether the prefrontal cortex and temporal cortex responded differently to varying listening configurations. Our a priori regions of interest (ROIs) were located at the left dorsolateral prefrontal cortex (DLPFC) and auditory cortex (AC). The left DLPFC has been reported to be involved in attentional processes when listening to degraded speech and in spatial hearing processing, while the AC has been reported to be sensitive to speech intelligibility. Comparisons of cortical activity between these two ROIs revealed significantly different fNIRS response patterns. Further, we showed a significant and positive correlation between self-reported task difficulty levels and fNIRS responses in the DLPFC, with a negative but non-significant correlation for the left AC, suggesting that the two ROIs played different roles in effortful speech perception. Our secondary question was whether activity within three sub-regions of the lateral PFC (LPFC) including the DLPFC was differentially affected by varying speech-noise configurations. We found significant effects of spectral degradation and SNR, and significant differences in fNIRS response amplitudes between the three regions, but no significant interaction between ROI and speech type, or between ROI and SNR. When attending to speech with monaural and diotic noises, participants reported the latter conditions being easier; however, no significant main effect of masker condition on cortical activity was observed. For cortical responses in the LPFC, a significant interaction between SNR and masker condition was observed. These findings suggest that binaural unmasking affects cortical activity through improving speech reception threshold in noise, rather than by reducing effort exerted.
Collapse
Affiliation(s)
- Xin Zhou
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Gabriel S. Sobczak
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Colette M. McKay
- The Bionics Institute of Australia, Melbourne, VIC, Australia
- Department of Medical Bionics, University of Melbourne, Melbourne, VIC, Australia
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Communication Science and Disorders, University of Wisconsin-Madison, Madison, WI, United States of America
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
198
|
Wilson C, Moyano AL, Cáceres A. Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans. Front Cell Dev Biol 2022; 10:878142. [PMID: 35517494 PMCID: PMC9062071 DOI: 10.3389/fcell.2022.878142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as “the establishment of polarity,” newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, in vivo approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.
Collapse
|
199
|
Zhao L, Matloff W, Shi Y, Cabeen RP, Toga AW. Mapping Complex Brain Torque Components and Their Genetic Architecture and Phenomic Associations in 24,112 Individuals. Biol Psychiatry 2022; 91:753-768. [PMID: 35027165 PMCID: PMC8957509 DOI: 10.1016/j.biopsych.2021.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The functional significance and mechanisms determining the development and individual variability of structural brain asymmetry remain unclear. Here, we systematically analyzed all relevant components of the most prominent structural asymmetry, brain torque (BT), and their relationships with potential genetic and nongenetic modifiers in a sample comprising 24,112 individuals from six cohorts. METHODS BT features, including petalia, bending, dorsoventral shift, brain tissue distribution asymmetries, and cortical surface positional asymmetries, were directly modeled using a set of automatic three-dimensional brain shape analysis approaches. Age-, sex-, and handedness-related effects on BT were assessed. The genetic architecture and phenomic associations of BT were investigated using genome- and phenome-wide association scans. RESULTS Our results confirmed the population-level predominance of the typical counterclockwise torque and suggested a first attenuating, then enlarging dynamic across the life span (3-81 years) primarily for frontal, occipital, and perisylvian BT features. Sex/handedness, BT, and cognitive function of verbal-numerical reasoning were found to be interrelated statistically. We observed differential heritability of up to 56% for BT, especially in temporal language areas. Individual variations of BT were also associated with various phenotypic variables of neuroanatomy, cognition, lifestyle, sociodemographics, anthropometry, physical health, and adult and child mental health. Our genomic analyses identified a number of genetic associations at lenient significance levels, which need to be further validated using larger samples in the future. CONCLUSIONS This study provides a comprehensive description of BT and insights into biological and other factors that may contribute to the development and individual variations of BT.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - William Matloff
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Yonggang Shi
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California.
| |
Collapse
|
200
|
Fan Z, Fan Z, Qiu T, Hu L, Shi Y, Xia Y, Sun X, Liu Y, Li S, Xia M, Zhu W. Altered topological properties of the intrinsic functional brain network in patients with right-sided unilateral hearing loss caused by acoustic neuroma. Brain Imaging Behav 2022; 16:1873-1883. [PMID: 35397062 DOI: 10.1007/s11682-022-00658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
Neuroimaging studies have identified alterations in functional connectivity between specific brain regions in patients with unilateral hearing loss (UHL) and different influence of the side of UHL on neural plasticity. However, little is known about changes of whole-brain functional networks in patients with UHL and whether differences exist in topological organization between right-sided UHL (RUHL) and left-sided UHL (LUHL). To address this issue, we employed resting-state fMRI (rs-fMRI) and graph-theoretical approaches to investigate the topological alterations of brain functional connectomes in patients with RUHL and LUHL. Data from 44 patients with UHL (including 22 RUHL patients and 22 LUHL patients) and 37 healthy control subjects (HCs) were collected. Functional brain networks were constructed for each participant, following by graph-theoretical network analyses at connectional and global (e.g., small-worldness) levels. The correlations between brain network topologies and clinical variables were further studied. Using network-based analysis, we found a subnetwork in the visual cortex which had significantly lower connectivity strength in patients with RUHL as compared to HCs. At global level, all participants showed small-world architecture in functional brain networks, however, significantly lower normalized clustering coefficient and small-worldness were observed in patients with RUHL than in HCs. Moreover, these abnormal network metrics were demonstrated to be correlated with the clinical variables and cognitive performance of patients with RUHL. Notably, no significant alterations in the functional brain networks were found in patients with LUHL. Our findings demonstrate that RUHL (rather than LUHL) is accompanied with aberrant topological organization of the functional brain connectome, indicating different pathophysiological mechanisms between RUHL and LUHL from a viewpoint of network topology.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 20040, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 20040, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 20040, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Liuxun Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 20040, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yuan Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 20040, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yunman Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 20040, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Sichen Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 20040, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 20040, China. .,Neurosurgical Institute of Fudan University, Shanghai, China. .,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China. .,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
| |
Collapse
|